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Abstract— Microwave breast imaging (MBI) uses low power and longer wavelength signals
(compared to X-ray mammography) to obtain information about breast tissues, and promises a
safer and more accurate modality for regular breast scanning. One of the major impediments of
this technology has been a large signal reflection from the breast skin. In this paper, we present
a method to reducing the effect of signal reflection from the breast skin by placing the antenna
in-contact with the breast skin. In the reported method, the skin is considered a layer of the
antenna substrate, and the effect of having the antenna in contact with the skin is included
in the antenna design itself. Thus, the design allows placing the antenna on the breast skin.
This reduces the signal scattering from the skin and more transmitted signal is irradiated on
the tumor, thus, increasing the tumor detection sensitivity. Design and simulation in Ansoft
High Frequency Simulation Software (HFSS) is presented. The simulation results show that the
current density in the breast skin is much less while the current density in the tumor is much
higher when the antenna is placed directly on the breast skin, compared to when the antenna
is placed away from the skin. While, in this paper, the antenna is discussed in the context of
microwave breast imaging, the concept of placing an antenna directly on human skin has a wide
range of biomedical applications.

1. INTRODUCTION

In 2009, more than 192 thousand new cases of breast cancer were expected in the United States
and more than 40 thousand women were estimated to lose their lives [1]. In 2007, 1.3 million new
cases of breast cancer and 465 thousand deaths were estimated worldwide [2]. Early detection
of breast cancer by regular breast screening has been shown to sharply reduce the breast cancer
related mortality and increase the survival rate [3]. Despite the benefits of the regular breast cancer
screening, only 66.5% women of forty years age and older conducted mammogram screening in 2005.
This has been particularly due to the health risk associated with the X-ray used in mammography
and its accuracy in detecting the early breast tumors [4]. Recently, the U.S. Preventive Services Task
Force (USPSTF) has updated its guidelines, recommending a regular mammogram screening at the
age of fifty and above, once every two years. This is a change from its previous recommendation of
yearly screening at the age of forty [5]. This change has fueled additional debates on the health risk
of X-ray mammography, its accuracy, and the merits of using it as the primary screening modality.
However, the benefits of early breast tumor detection are well accepted. Thus, the development of
a safer and more accurate breast scanning and imaging modality has been pursued for a relatively
long period, with microwave breast imaging being one of the most viable technologies [6]. In MBI
technique, an antenna transmits a microwave signal to the breast and the scattered signal is received
and analyzed to extract dielectric properties of the tissues.

Another key challenge in breast cancer detection and treatment has been to design and develop
a standard method that heightens efficiency coincided with nondestructive cancer psychoanalysis.
The overall ideal for this innovative concept is to detect with potential benefits of adequate depth
penetration via microwave imaging, while minimizing cumulative side-effects to healthy tissue due
to ionized radiation. Due to the complexity that coincides with a successful methodology, these
biological systems must endure heterogeneous characteristics [7]. Key functions for microwave-
based breast cancer diagnosis would be (i) low health risk, (ii) the ability to detect breast cancer
at a curable stage, (iii) is sensitive to tumors and specific to malignancies, (iv) involves minimal
discomfort for lesion tolerability to women, and (v) provides easy to interpret, objective, and con-
sistent results [8]. Such medical devices that posses adequate depth penetration while avoiding the
use of ionized radiation and breast compression would be of great interest for malignant purposes.
Further, the infrastructure of microwave breast imaging for cancer detection contains a bevy of
algorithms alongside geometric configurations, which can overcome the problems associated with
current methodologies.
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Microwave imaging of biological compositions have developed an enormous amount of atten-
tion because of its ability to access the breast for imaging (e.g., image reconstruction algorithms,
computational methods, increased computing supremacy.) MBI infrastructure consists of several
deficiencies that conclude ex-vivo circumstances, electromagnetic (EM) signals coupled with giga-
hertz signal frequencies [9]. Further, the electromagnetic phenomenon is an approach that mirrors
the electromagnetic properties of breast tissue allowing for a more efficient exam. Therefore, as
mentioned before, the coupling with the signals in gigahertz range are considerable because of the
significant absorption and scattering that occurs during EM exposure to the breast [9]. In partic-
ular, the latter two features of self-propagating waves could lead to enormous amplification of one
particular attribute, or complicated instrumentation from the need to place transmitting and re-
ceiving RF transmitters to avoid spatial resolution. For example, significant electromagnetic loss in
tissue, and it’s extremely high contrast with surrounding air [9]. Furthermore, the development of
microwave patch transceivers (antennas) operating at 2.45 GHz is known to reduce cluttered data,
producing well-localized images or real and imaginary parts of the wave numbers [10]. Concluding
all of which may be etched to comply with current breast cancer research, resulting with a more
promising approach.

Despite the popularity, there are several proposed ideals that could potentially become histor-
ical due to promising results via microwave imaging. Such methodologies consist of ultrasound
and digital mammography, magnetic resonance imaging (MRI), position emission tomography, and
electrical impedance scanning. According to previous studies, the above cutting edge portrays some
success in reference to cancer detection, but in accordance to early detection and unnecessary mas-
tectomies, significant approaches are in high regard. For example, MRIs, a computer aided method
that uses a magnet to create detailed images of internal structures without the use of radiation. In
compliance with the rest (e.g., mammograms), the above treats with radioactive techniques which
could pose significant side-effects, and worsen a patient’s current condition. Therefore, an under-
standing of the breast tissue and skin diplomacy is documented to help one better understand how
current methods detect as well as acknowledge between healthy and malignant tissue. In the field
of enhancing breast detection applications, there are substantial interests in the development of
new and effective approaches to demonstrate the use of microwave imaging for tumor detection.
The interactions of EM and gigahertz signals are mainly being investigated for a significant and
consistent contrast between malignant and other breast tissues [8].

One of the major impediments of MBI technology has been a large signal reflection from the
breast skin. Many techniques to reducing the signal reflection at the breast skin have been em-
ployed [11-13]. Most of the approaches use an intermediate solution between the antenna and the
breast, but no significant success has been achieved thus far. In this paper, we present the design
and simulation of microwave breast imaging using 2.54 GHz signal. HFSS (ver. 12) has been used
for the modeling and simulation. While, the experimental implementation of the concept is still in
progress, the simulation results presented shows that the direct placement of the antenna on the
breast skin can significantly increases the sensitivity of the MBI systems.

2. THEORY

The microwave breast imaging technique utilizes the signal scattering by an object when the object
is illuminated by an electromagnetic signal. The signal scattering by an object depends on various
factors, including the environment, signal strength, and the material properties of the object [14].
For a given signal source and the environment, the scattered signal depends on the electrical
properties of the object, especially dielectric and conductivity. This principal is utilized to detect
the tumor in the breast using microwave signals. The breast tumors have very distinct electrical
properties (higher dielectric permittivity and higher conductivity), which allows them to detect by
analyzing the scattered signals. As shown in Figure 1, the amount of signal scattered by a breast
tumor is higher than that of normal breast tissues, which can be received by a separate antenna or
the property change of the transmitting antenna due to the scattered signals, can be analyzed and
utilized for the tumor detection.

3. MODELING AND SIMULATION

The modeling and simulation was performed in Ansoft electromagnetic simulation softwares. Pre-
liminary simulation and proof of concept were conducted in Ansoft Designer, while the complete
simulation was conducted in Ansoft HFSS. Figure 2 shows a preliminary design in Ansoft Designer
and antenna voltage standing wave ratio (VSWR) obtained for the design.
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Figure 1: Schematic representations of breast, antenna and tumor showing signal scattering in (a) a normal
breast and (b) a breast with a tumor.
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Figure 2: (a) Antenna and breast layers modeled in Ansoft Designer. (b) VSWR vs. frequency plot of the
antenna system (including breast layers) as shown in (a).
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Figure 3: Rectangular mi-  Figure 4: The developed breast models (with a tumor at the center)
crostrip antenna model in  simulated in HFSS. (a) Antenna placed 5cm away from the breast (10
HFSS. cm from the center), case-I. (b) Antenna placed in contact with the breast

(on the breast surface), case-II.

A rectangular microstrip antenna designed in HFSS was considered. A flexible copper substrate
(Pyralux FR9151 CU CLAD) was selected as the antenna substrate. With the substrate param-
eters given, a rectangular antenna for 2.45 GHz with 50 Q input impedance was designed (shown
in Figure 3). With the help of the simulation software, the antenna was optimized to resonate at
2.45 GHz. The simulation and the experimental results were compared, and the simulation model
was optimized to match with the experimental results. Breast model was developed in HFSS which
is represented as a 10 cm wide and 5cm high cone (with eight facets). The breast volume consist
of breast skin of 5mm width (dielectric coefficient, e, = 39, and conductivity, ds = 1.1S/m [15])
and remaining volume consisting of breast fatty tissues (dielectric coefficient, ey = 4.49, and con-
ductivity, 6y = 0.59S/m [16]). The developed breast model was simulated, (i) placing an antenna
5cm away from the breast (case-I) and (ii) placing the antenna in contact with the breast (case-II),
shown in Figures 4(a) and (b), respectively. The developed models were simulated for both the
cases of antenna placement, for healthy breasts as well as for breasts with a tumor.

4. RESULTS AND DISCUSSION

The rectangular microstrip antenna (shown in Figure 3) was simulated in Ansoft HF'SS and various
parameters of the antenna, including return loss, impedance, radiation pattern, and gain pattern
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were evaluated. After tuning the antenna for 2.45 GHz, the antenna was fabricated and tested.
With the help of the experimental results the antenna simulation model was optimized to match
with the experimental results. The return loss pattern and the radiation pattern of the optimized
antenna are shown in Figures 5(a) and (b) respectively.

The optimized antenna model was used to simulate with the breast models developed in HFSS.
The simulation was performed for the cases where the antenna was placed away (5cm) from the
breast (case-I, Figure 4(a)) and when it was placed on the breast surface (in contact with the
breast skin, case-II, Figure 4(b)). Simulation models were analyzed for both the cases of healthy
breast as well as for a breast with a tumor at the center. The tumor is represented as a 10 mm
diameter sphere with dielectric permittivity (¢;) = 50 and conductivity () = 4S/m [15]. When
an antenna is placed on the surface of the breast, the performance characteristics of the antenna
undergo changes. To minimize the effect of the breast skin contact with the antenna, the antenna
was optimized to resonate again at 2.45 GHz. The optimization was performed with the help of the
simulation model where the breast skin was considered as one of the substrate layer of the antenna.
The optimized antenna was used for the simulation with the breast. As the signal scattered by
an object depends on the induced current density in that object, the current density in the tumor
as well as in the breast skin and fatty tissues are compared. The simulation results showing the
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Figure 5: Simulation results of the designed antenna. (a) Return loss pattern. (b) 3-D radiation pattern.
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Figure 6: Simulated current densities in (a) skin, (b) fatty tissues, and (c) tumor, when the antenna is placed
5cm away from the breast.

(b)

Figure 7: Simulated current densities in (a) skin, (b) fatty tissues, and (c) tumor, when the antenna is placed
on the breast skin.



930 PIERS Proceedings, Cambridge, USA, July 5-8, 2010

current densities in the breast skin, fatty tissues, and tumor, for both the cases (case-I and case-II)
are presented in Figure 6 and Figure 7, respectively.

A comparison between the current densities in the breast tumor for the two cases (case-I and
case-1I) is shown in Figure 8. It is observed that the highest current density in the tumor in Case-II
(69.65 A/m?) is about six times higher than the current density in Case-I (11.95A/m?), which
increases the visibility of the tumor to the antenna by the same factor.
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Figure 8: Current densities in breast tumors for, (a) case-I (maximum current density = 11.95A/m?, (b)
case-1I (maximum current density = 69.65 A/m?).

The simulation results show that the visibility of the tumor or the sensitivity of the antenna to
the tumor can be increased by placing an antenna in contact with the breast skin. The placement of
the antenna on the breast skin affects the characteristics of the antenna. Thus, the antenna needs
to be designed such that the effects of breast skin contacts are already considered in the design.

5. CONCLUSION

The simulation models developed and the results presented show that the sensitivity of the tumor
detection increases when the antenna makes contact with surface of the breast as opposed to when
it is placed away from the breast. It is due to the fact that, the breast skin has electrical properties
comparable to the breast tumors and when the antenna is placed away, most of the received
scattered signal is from the breast skin. This results in masking of the tumor scattered signal by
strong skin scattered signals. For the case when the antenna is placed on the breast surface, the
effect of the skin can be included in the antenna design, improving the signal strength received
from the tumor. The simulation results show that the current densities inside the tumor is about
six times higher when the antenna is in contact compared to when it is placed 5 cm away from the
breast, and thus this provides us a proof of the concept presented. In this paper, the prospect of an
antenna that can be placed on the breast skin has been presented and a simple antenna design for
the case has been discussed. However, the design of an antenna which will be affected minimally
when the properties of the skin vary, the experimental implementation of such an antenna, and the
complete modeling and the experimental implementation of the system are still in progress. The
results obtained from the further wok will be reported in the conference presentation.
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Abstract— We have investigated the possibility of building a Dicke radiometer that is inexpen-
sive, small-sized, stable, high sensitivity and consists of readily available microwave components.
The selected frequency band is at 3—4 GHz and can be used for breast cancer detection, with suf-
ficient spatial resolution. We have found microwave components that are small (< 5mm x 5mm)
and provide sufficient sensitivity. We have built two different Dicke radiometers: One is of con-
ventional design with Dicke switch at front end to select antenna or noise rererence and the other
with a low noise amplifier before the Dicke Switch. We have tested this concept with simulations
and built prototypes. The two designs provide a gain of approximately 50 dB, and bandwidth of
about 500 MHz. One of the designs has a stability x> 1 and the other design provide instability
u < 1 for a part of the pass band. The prototypes are tested for sensitivity after calibration
in two different known temperature waterbaths. The results show that the design with the low
noise amplifier before the Dicke switch has 36% higher sensitivity than the other design with
Dicke switch in front.

1. INTRODUCTION

Over the past four decades, research in microwave radiometry has been conducted for use in medical
applications [1]. Detection of breast cancer, hyperthermia, inflammation and lung oedema are some
applications for medical use [2]. Microwave radiometers can be assembled in different ways. The
two most common are total power radiometer and Dicke radiometer [3]. A total power radiometer
consists of a high gain low noise amplifier (LNA) followed by a power meter or a square law detector
and integrator. This radiometer is very sensitive to amplification drift. A Dicke radiometer uses a
switch in front of the LNA to select between the sensing antenna and a known noise reference, as
shown in Fig. 1. When switching faster than the drift in gain, the drift is mostly canceled out [4].
The goal of the present design is to determine whether it is possible to create an inexpensive and
small sized front stage to a radiometer, using available commercial surface mount device (SMD)
components, that is stable against oscillations and has a usable sensitivity for radiometric mea-
surement of temperature at deepth in tissue. It is previously shown that a LNA before the Dicke
switch gives a better signal-to-clutter ratio (SCR) [5]. We want to find out if it is possible to have
a LNA before the Dicke switch for both antenna and the reference signal.

2. THEORETICAL BACKGROUND

A microwave radiometer is an instrument that can measure temperatures inside the body. The
measuring principle is to quantify the thermal emitted power over a given frequency band. Black-
body spectral radiance at temperature T at all frequency is given by Planck’s law. Planck’s law
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Figure 1: Block diagram of Dicke radiometer.
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can be approximated by Rayleigh-Jean’s law, and from which the noise power P over a frequency
band Af can be written as [4]:

P=KkTAf. (1)
where k is is Boltzmann’s constant. The theoretical noise temperature T, of a cascade system is

given by:

TeQ Te3 TeN
+ R 2
G1 G1G2 GlGQ...GN,1 ( )

Te = Tel +

where T, ;, G; are the noise temperature and gain of the individual stages. From (2) the noise
performance of the first stage is critical. The theoretical sensitivity of an ideal radiometer with no
gain fluctuation is [4],

T, +Te
VAFT

where AT is the minimum detectable change in the radiometric antenna temperature 7, and 7
is the integration time in the low pass filter (integrator). For a Dicke radiometer (Fig. 1), the
theoretical sensitivity is given by:

AT =

3)

2(T, + Te)
ATmin Afr (4)
A conventional Dicke radiometer front end has antenna, noise reference, Dicke switch, low noise
amplifier and a bandpass filter (BP). The other part is the square law detector, low frequency (LF)
amplifier, analog to digital converter (ADC) and a controller PC, or a power meter connected to
the front end. With the Dicke switch attached directly to the antenna, the radiometer can be used
as a total power radiometer.
A stable amplifier cascade configuration is important in order to avoid internal oscillation that
interferes with the extremely low radiated power received by the antenna. The stability of a system
can be described using the Edward-Sinsky stability factor defined as [6]:

B 1—|S1)?
/’I’ - * >
|S22 — STy - A + [S12 - Sa1]

1 ()

where S;;, A are elements and the determinant of the S parameter matrix, respectively. The system
is unconditionally stable if pu > 1.

3. RADIOMETER DESIGN

Equation (1) shows that the noise power P depends primarily on the temperature 7" and bandwidth
A f. For human body temperatures, and for a practical bandwidth of 300-500 MHz, the noise power
over that bandwidth is low. To detect this low power, it is crucial to have a sensitive instrument
like a radiometer. From previous work [5], we have found that the frequency band around 3.5 GHz
is disturbed less by EMI than other low GHz frequency bands. This frequency range provides lower
penetration depth in the human body compared to lower GHz frequencies. Howerver of this band
has been show suitable for detecting superficial breast cancer [7]. The challenge is to find a LNA
balancing the trade offs between lowest possible noise, highest gain, low power consumption and low
cost. Several LNAs were considered, but our choice was a LNA from Hittite. A combination of low

Table 1: Specification of used SMD components.

Device Name Gain [dB] | NF [dB] | T [K] Frequency
[GHZ]
LNA HMC593LP3E (Hittite) 19 1.2 92.3 3.3-3.8
BP (LP part) LFCN-34004 (Mini-Circuits) —1.03 1.03 77.6 0-3.4
BP (HP-part) HFCN-3100+ (Mini-Circuits) —-1.01 1.01 75.9 3.4-9.9
Dicke switch CSWA2-63DR+ (Mini-Circuits) —1.2 1.2 92.3 0.5-6
DC block capacitor | GQM1885C1H470JB01 (Murata) | —0.014 0.014 0.94 3.5
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pass (LP) and high pass (HP) filters gave appropiate 500 MHz band width. The steep slope of the
frequency cutoff at the edges of the pass band was further enhanced by the use of two consecutive
filters of the same type. The Dicke switch was another challenge of the design. We want a Dicke
switch with lowest possible insertion loss, high isolation, 3.3-3.8 GHz bandwidth, small size, and
single supply voltage. Our choice was a switch from Mini-Circuits. The switch requires a DC
block capacitor 47 pF before and after. Our choise was a capacitor from Murata. A single LNA
does not provide enough gain to get the power into the required range. Based on the component
specifications listed in (Table 1), for the LNA, filter and switch we find that a configuration of three
LNAs (3 x 19dB) and four filters (4 x (—1) dB) should give a reasonable amplification in this high
frequency part. The bandpass filter gives a theoretical bandwidth Af = 500 MHz.

3.1. Different Design

The first stage of the radiometer has many issues that can cause problems; oscillation, stability,
system noise, temperature and gain drift and electromagnetic interference (EMI). An optimum
radiometer front end has high sensitivity, low noise temperature, stable, low gain drift and low
surface component temperature. For flexibility and comparability a Dicke front end radiometer
should also be able to run as a total power radiometer. A full radiometer can be designed in many
ways. We want to design the Dicke concept with use of a powermeter and a PC with Labview
as a post-detector and to drive the Dicke switch. The design was first simulated. Design #1:
Conventional Dicke radiometer with the DC block capacitor and Dicke switch in front, one LNA,
the bandpass filter and 2 LNA in cascade as a booster amplifier as shown in (Fig. 2(a)). Design
#2: The proposed Dicke radiometer with the LNA in front, the switch, 2 LNA in cascade and
the bandpass filter as shown in Fig. 2(b). The last design does not need DC block capacitors
because there is an internal DC block in the LNA. The radiometers have been characterized using
S-parameters, system noise (2), sensitivity (3), stability factors (5), mean and standard deviation
of a known temperature source.

4. RESULTS

4.1. Simulation

In the simulation, S-parameters were given by touchstone files from the component manufactuer’s
web site. Simulations were performed by importing individual touchstone files for every single
block in the design, and simulating the circuit’s S-parameters over the frequency 1-6 GHz. The
theoretical noise temperature of the cascade system given by (2) and parameters used from (Table 1)

_| bc
Block —|_ — LNA _L
Dicke | | || || || - Dicke
J_ switch LNA BP LNA LNA switch M LNA 1 LNA — BP [—
—{ be — LNA j
Block
(a) Design #1. (b) Design #2.
Figure 2: Block diagram of design #1 and #2.
Table 2: Theoretical, simulation and measurement parameters for the radiometers.
Parameter | design #1 design #2
Theoretical system noise temperature T. 217.2K 95.1K
Simulated noise power from S-parameters P, —34.25dBm | —34.01 dBm
Simulated from measured S-parameters P, —35.26dBm | —33.40dBm
Measured noise power P, —33.50dBm | —32.80dBm
Theoretical sensitivity, total power radiometer AT 0.016 K 0.012K
Theoretical sensitivity, Dicke radiometer ATmin 0.032K 0.024 K
Measured sensitivity, total power radiometer AT 0.064 K 0.046 K
Measured sensitivity, Dicke radiometer AT 0.098K 0.062K
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gave T, for each design. The system noise temperature is clearly dependent on the first stage. The
expected output power from the system when using 7, = 290K can be found by integrating over
frequencies in the simulated system |Ss1|? and multiplying by k(T, +7), given by (1) this will gives
the simulated power in Watt, as in: Ps = 10log [ [Sa1|?k(T, + T¢)] in dBm. The theoretical noise
temperature using (2), expected output power, and sensitivity using (3), (4) are listed in (Table 2).

4.2. Prototype Testing

The prototype design was built with a printed circuit board (PCB) RO4350B, thickness of 0.254 mm
and a copper layer of 35 microns. The system was tested in the Agilent- E5071C network analyzer
and E4419B power meter with the E4412A sensor. The Dicke switch is controlled by an USB-3114
device from Measurement Computing. The measurements are done with the front end blocks from
the (Fig. 1) and shown in (Fig. 2). The measurment were carried out by generating touchstone files
from network analyzers and calculates the stability and the expected output power Ps,,. A time-
series measurements was conducted with a 50 ) load as antenna at a temperature of T, = 290K,
connected to the power meter to get the system’s operation over time and the measured power P,
and other system operation parameters listed in Table 2. The simulated and measured forward
transmissin So1 and stability factor p are given in (Fig. 3) for the two designs. The input reflection
coefficient S11 and output reflection coefficient Sag are given in (Fig. 4). Sensitivity of the radiometer
design is found by calibrating the radiometers with two different and known temperatures in water
bath, T}, T.. Calibration parameter s = ITDZ:% is the slope of the output power P, and P, as

-100, 2 3 4 5 0 2 3 4 -100, 3 4 05 3 4
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Figure 3: S3; and p for design #1 and #2. Solid line: Simulated values. Dotted line: Measured value.
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op,

a function of temperature T}, T.. We can then find the sensitivity AT = for the prototype
radiometers and are given in (Table 2). op is the measured standard deviation to the measured
output power P,. The Dicke consept was also testet for gain variation caused by temperature
changes on the radiometeret performed with a Peltier element and by changing the supply voltage
(Fig. 5).

5. DISCUSSION

The proposed designs gave the expected gain over the selected frequency band. Design #1 was
stable p > 1 for all frequencies. The other design #2 was instable p = 0.99 for frequency 2.91 GHz
and stable for all the other frequencies. The instability can be caused by parasitic effects between
the different LNA’s. The problem can be solved by increasing the isolation between the different
LNA’s. This isolation can be performed with attenuators (pads) or by placing the various selected
parts of the bandpass filter between the LNA. The input reflection coefficient is in the expexted
range. The output reflection coefficient (#1) has a peak in the center frequency 3.5 GHz, and care
must be taken for the following stage, usually a square law detector. The noise temperature T, was
better for design #2 than for design #1 and was expected since the first LNA in design #2 has
a gain of 19dB. The chosen thichness of the PCB is a challenge, because the soldered connector
are easily broken apart from the PCB, and a new design requires a multi-layer PCB for better
mechanical stability. Although the design is chosen for minimum power consumption, it requires a
heatsink for the least possible influence from ambient temperature that gives unwanted temperature
variations and thus gain drift. And in the design where the LNA are in the front, it is important
that they has the same temperature and are drifting in the same way since the Dicke consept do
not work at those. Ongoing research is looking at the possibility of using small heatpipe to conduct
heat away from the circuit as a possible solution to reduce temperature drift. Sensitivity for the
prototype was worse than expected, and can come from manual soldering of SMD components with
more solder flux than in a professional soldering process. The design where the low noise amplifier
is before the Dicke switch for both antenna and reference input, has 36% better sensitivity than the
design where the Dicke switch is in front. From (Fig. 5) we can conclude that the Dicke consept
is working as expected. The output from the Dicke radiometer is stable when we are changing the
temperature of the radiometer and supply voltage.
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Abstract— Hilbert-Huang Transformation (HHT) is a powerful tool for nonlinear and non-
stationary data analysis. In this paper, a dataset using an ultra-wide (UWB) impulse radar
system with central frequency of 1 GHz was collected for life motion detection behind a cinder
block wall. To extract the information of life motions such as breathing and heartbeats from
the raw data, we first applied the empirical mode decomposition (EMD), the first step of HHT
to decompose the signal (background signal included) into a family of the intrinsic mode func-
tions (IMFs). We then apply Hilbert spectral analysis (HSA) to get the frequency spectra of
different IMFs. After dividing by the spectrum of the background radar record (equivalent to
de-convolving the background record in the time domain), we found that breathing appear as a
spectral peak at 0.2-0.4 Hz and heart beating appears as 1.0-1.2 Hz. This is coinciding with real
condition. Our preliminary results show that the HHT technique provides significant assistance
in signal processing for the detection of human targets behind opaque obstacles.

1. INTRODUCTION

Hilbert-Huang Transformation (HHT) is a novel digital signal processing technology based on the
combination of the empirical mode decomposition (EMD) and the Hilbert spectral analysis (HSA).
It is designed specifically for analyzing nonlinear and nonstationary data [1]. In this paper we first
design a through-wall life detection experiment and then using HHT to analysis the dataset collected
by ultra-wide band (UWB) impulse radar system. Our effort contributes to the research of live
human beings detection, the one is becoming increasing important in modern society. Its purpose is
to identify life-being located behind the obstacle, which has significant meaning on the application
of military, rescue operations under conditions of extraordinary situations or other related field. In
common condition, even a person stays quietly without doing anything can still appear to have tiny
movement caused by breath and heart beat. These displacements can be captured by EM wave
detection. Some research shows that UWB impulse radar system was efficient of capturing human
breath and heart-beat movement [2,3]. Based on these, E. Zaikov explored an experiment using
UWB radar for trapped- people detection [4]. In which the tiny breath and heart-beat movement
was easily submerged by noise when people was motionless. By applying HHT preliminary into
analysis, Ram M. Narayanan [5] presented the results with several potential breath-signal peaks in
frequency domain in 0.4-0.8 Hz. However real breath signal still can not be localized; at the same
time the extraction of heart beat, only 1-2 mm chest movement related, is failed to achieve. Here
we are striving to overcome these difficulties.

2. EXPERIMENT DESIGN

The through-wall human cardioasperation detection experiments were conducted in a laboratory
with ciderbrick walls (no reinforced steel bars) as shown in Figure 1. The Ground Penetration
Radar (GPR) (Sensors and Software 1-GHz Nuggins system) is used as the UWB impulse source
and receiving system. The recording time window length for each recording trace is chosen to be
16 ns, long enough for the radar waves to be reflected from an object in the air within 2-meter
radius. GPR is located with its antenna closely stick to one side (Figure 1(a)) of the wall. On
the other side of the wall, a chair is put in front of the wall, the distance between which and wall
is set to be 1 meter. The subject we choose has good health condition with average heart beat
frequency 1.05-1.2 Hz (65-72 beats/min). The distance between subject’s cardiac and ground floor
is measured to be 55 cm, when he is sitting in the chair. Taking this as a reference, the location of
GPR is set to validate that both antenna and the cardiac stay in same horizontal line (Figure 1(b)).

The GPR system collected 1 recording trace per 0.1 sec, with 8 stacking to minimize the random
error. At the beginning of the experiment, subject is absent; data with the 1024 recording traces
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Figure 1: Photos of experiment setup. (a) and (b) are device set on two sides of the wall, the location of
GPR is set to validate that both antenna and the cardiac stay in same horizontal line.

(nearly two minutes) is collected by GPR as a background reference signal. It will be used in data
analysis later. After that, subject is asked to sit peacefully on the chair with his shoulders and
back tightly against the back of the chair to stop body displacement. Now we collect data in three
statuses: normal breathing, holding their breath, and repeatedly speaking the words “one, two,
three”. The breath frequency of normal breath and speaking are measured to be around 0.2-0.4 Hz
(12-24 times/min) and 0.4-0.5 Hz (24-30 times/min) respectively. And for breath holding, breath
frequency can be seen as 0. For the first and the third status the total number of recording traces
is well above 1024, for about 2 minutes. For the status of holding breath the number of recording
traces is less than 256, i.e., generally less than 30 seconds.

3. HHT DATA PROCESSING AND RESULT ANALYSIS

3.1. Empirical Mode Decomposition (EMD) and Back Ground De-convolution

In experiment mentioned before, four datasets are totally collected: background signal, normal
breathing, breath holding and speaking. Here taking dataset of normal breathing (Figure 2(a)) as
an example, which is made of 1024 time traces. Each trace is generated from one pulse. Because the
time period between two traces is 0.1s, in X-direction the total measured time is 102.4s. The Y-
direction shows the length of each trace. 161 points is contained in one trace with the time window
of 16.1ns, so the time period between two points is 0.1ns in Y direction. In Figure 2(a), with
the existence of wall strong reflection appears from 0.3 ns to 0.7ns. With the consideration of void
velocity of EM wave and the distance of 1 m between wall and human, the reflection signal of human
physiology movement should appear after 12ns. This is also shown in Figure 2(b) precisely, taking
the example of trace No. 400, when compare this trace between normal breath and background
reference, obvious phase distortion appears after 14 ns. This is caused by reflection and velocity
change when EM wave passing human body. Based on this, we only focus the dataset from 14 ns to
16 ns, which includes signal of breathing and heart beating. However, due to multiple refection from
wall and test environment, data collected is too complex to recognize human physiology movement
directly, which is a relative small portion submerged into complex background. If this complex
signal can be divided into several simple patterns, the small target portion we concerned will be
easier to be extracted.

Here we apply EMD, one step of HHT into data analysis. EMD sees a signal trace as a muster
of many coexisting simple oscillatory modes with the same number of extreme and zero crossings,
symmetric envelopes and significantly different frequencies. These modes are called intrinsic func-
tions (IMFs). What EMD does is to separate those IMFs from the original signal one by one, until
the residue is monotonic [1]. Now EMD is applied to the data with the sample time from 14ns
to 16ns, and the same IMFs of different sample time are summated and averaged. By doing this,
the signal noise ratio of signal is increased and the uncertainty of signal is reduced. At the same
time, dataset of background reference is derived into IMFs as the same way as what mentioned
before. After letting each IMF of normal breath de-convoluted by identical IMF from background,
we derive the result of normal breath with 7 IMFs included (Figure 3).

From IMFs of normal breath (Figure 3), we can find out that EMD always extract IMF from the
highest frequency to lowest. The tiny peaks with relative high frequency appearing on IMF7 and
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Figure 2: (a) is the dataset of normal breathing, in which X-axis represents different traces from No. 1 to
No. 1024, and the time period between two traces next to each other is 0.1s. Y-axis shows the length of
each trace. 161 points is contained in one trace with the total time window of 16.1ns. (b) is one trace plot
for trace No. 400 from the datasets of both normal breath (red) and background (blue). Phase distortion
appears after sample time of 14 ns.

IMF5 are totally coming from errors of de-convolution rather than EMD. Here the first component,
IMF1 appears to have a similar shape of radio wave, and its frequency is much higher than any
kinds of physiological movements. It may mainly relate to the carrier wave radiated from GPR,
the same as IMF2. From IMF3 and IMF4, 9-13 peaks can be counted in every 10 seconds; this
coincides with the frequency of heart beating (1.1-1.2Hz). However, as the displacement caused
by cardiac movement is tiny, distinct feature can not be identified in either IMF3 or IMF4. In
IMF5 and IMF6, the movement with obvious amplitude and every two to three peaks in 10 seconds
is clearly shown. We believe this is caused by breath movement (0.2-0.4 Hz), the most obvious
movement in chest area. In IMF7, both amplitude and frequency is very low, this is not taking
into consideration.

IMFs of Normal Breath After Background Deconvolution (Averaging from 14ns to 16ns)
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Figure 3: IMFs of normal breath after background de-convolution.
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3.2. Hilbert Spectral Analysis (HSA)

EMD is the data processing approach used in time domain. It is not enough for further quantitative
analysis for physiology features we concerned, especially for heart beating with tiny amplitude. So
it is necessary to transform IMFs we derived into the spectrum of frequency domain. As to this
point, traditional method used by most people before is fast Fourier transformation (FFT). But for
non-stationary and instantaneous signal analysis, HSA, the other step of HHT, is a better solution
than FFT. The principle of HSA is clearly shown in [Huang and Wu, 2008] [1]. Here we make a
comparison between HSA and FFT by using original (without de-convolution) IMF 5 of normal
breath and breath holding, the result is shown in Figure 4. It is clear that for both normal breathing
and breath holding, the peaks derived by HAT are narrower and more identical than which derived
from FFT. Another advantage coming from HSA is that the shape of the spectrum will not be
significantly effected by the length of original trace in time domain. This can be seen from breath
holding in Figure 4(b), in which the time window is only 256 points. After 0.3 Hz, compare to
continuous fake peaks generated by FFT, spectrum of HSA is much more smooth and realistic.
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Figure 4: Comparison between FFT (blue) and HSA (red) spectrum of Original (without de-convolution)
IMF5. (a) displays differences for dataset of normal breathing. (b) shows the condition of breath holding.

By using HSA on IMFs shown in Figure 3, we get frequency spectrum of 7 IMFs shown in
Figure 5(a). Note that in IMF 4 obvious peak appears around the location of 1.05 Hz. We believe
this can be seen as the feature of subject’s heartbeat. Frequency component with large amplitude
of 0.3 Hz is observed in IMF 2, 6 and IMF 1, 3, 4, 5, 7 with tiny peak. This may relates to human
breathing. Besides these, there are still others peaks appear in different IMFs, the prediction
of the origin can come about harmonic frequency, suppose the frequency of heart beating and
breathing are 1.1 Hz and 0.3 Hz respectively. The production of these two movements will produce
new frequency of 1.4 Hz and 0.8 Hz. This can explain the peaks appear in IMF3 and IMF4. If the
harmonic wave is strong enough, it may effect on the original wave to produce secondary harmonic
wave, such as the peak of IMF5 in 0.5 Hz. This prediction is waiting for further validation.

3.3. IMFs Compare among Normal Breathing, Breath Holding and Speaking

After processing datasets of breathing holding and speaking in the same way illustrated in part
3.2 and 3.3, we get frequency spectrum of 7 IMFs for two statuses respectively. After making
comparison among statuses for each IMF, we observe obvious differences on chest movement appear
in IMF6 (Figure 5(b)). When compare with normal breathing, the frequency of 0.3 Hz disappear in
the spectrum breath holding. This is believed to cause by the seizing of chest movement. On the
contrast, the higher peak of breathing appears at 0.5 Hz at the spectrum of speaking shows that
when people speak, both the amplitude and frequency of chest movement increase.
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Figure 5: (a) is frequency spectrum of 7 IMF's for normal breathing derived by HSA. Frequency component
of breathing is obvious in IMF2 and IMF6, and heart beat can be seen in IMF4. (b) shows comparison on
IMF6 among normal breathing, breath holding and speaking. With seizing chest movement, the frequency
of 0.3 Hz, which coincides with breathing, disappears in the middle spectrum.

4. CONCLUSIONS

In this paper it proves that by using HHT, the combination approach of EMD and HSA, feature
of human breathing and heart beating can be successfully extracted from datasets collected by
UWB impulse radar system. For the frequency spectrum derived by HSA from different IMF's,
distinct frequency relates to different physiology movement can be well recognized. After analysis,
these components are highly coinciding with the real human movement. This shows the significant
potential of HHT approach for through-wall life detection improvement.
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Abstract— Optical sensing and imaging applications often suffer from a combination of low
resolution object reconstructions and a large number of sensors (thousands), which depending on
the frequency can be quite expensive or bulky. A key objective in optical design is to minimize
the number of sensors (which reduces cost) for a given target resolution level (image quality) and
permissible total sensor array size (compactness). Equivalently, for a given imaging hardware
one seeks to maximize image quality, which in turn means fully exploiting the available sensors
as well as all priors about the properties of the sought-after objects such as sparsity properties,
and other, which can be incorporated into data processing schemes for object reconstructions.
In this paper we propose a compressive-sensing-based method to process through-focus optical
field data captured at a sensor array. This method applies to both two-dimensional (2D) and
three-dimensional (3D) objects. The proposed approach treats in-focus and out-of-focus data
as projective measurements for compressive sensing, and assumes that the objects are sparse
under known linear transformations applied to them. This prior allows reconstruction via familiar
compressive sensing methods based on 1-norm minimization. The proposed compressive through-
focus imaging is illustrated in the reconstruction of canonical 2D and 3D objects, using either
coherent or incoherent light. The obtained results illustrate the combined use of through-focus
imaging and compressive sensing techniques, and also shed light onto the nature of the information
that is present in in-focus and out-of-focus images.

1. INTRODUCTION

In traditional analog imaging, images are only acquired in focus, discarding additional information
present in out-of-focus images. Recent research [1] suggests that one can significantly increase the
amount of object information collected per detector by capturing images for not one but several
focal planes (through-focus imaging). In conventional imaging one usually places the object in
focus, and captures the respective image in the associated image plane. However, this may require
using a large sensor array. If, in addition, one captures out-of-focus data, then the number of
sensors can be reduced while maintaining the same image quality as the in-focus case. Similarly, in
imaging three-dimensional objects one usually employs a particular “best focal plane” and captures
the respective in-focus image. However, if one captures data for other focal planes then one can
achieve comparable resolution as the “best focal plane” case with less sensors, and fully 3D imaging.

If, in addition, the object under investigation is known to be sparse when represented in a
given basis or dictionary, or generally under a given linear transformation applied to it (such
as the gradient operator, as pertinent to certain piecewise constant objects [2]), then one can
implement compressive sensing inversion algorithms [2, 3] to increase the resolution per sample ratio.
We propose a method that treats the information in multiple through-focus images as projective
measurements for compressive sensing, allowing a greater resolution per detector ratio than possible
with either conventional through-focus imaging [1] or compressive sensing (of conventional in-focus
data) alone. The proposed compressive through-focus imaging is illustrated in the reconstruction
of canonical 2D and 3D objects, using either coherent or incoherent light. The obtained results
illustrate the combined use of through-focus and compressive sensing techniques, and shed light
onto the nature of the information that is present in in-focus and out-of-focus images. Information
about sparse objects appears to be concentrated in completely out-of-focus planes for coherent light
and in near-focus planes for incoherent light.

2. OPTICAL SYSTEMS

We consider a general imaging system that is characterized by unit-impulse response or Green’s
function A(r, r’; p) where r and r’ denote image and object coordinates, and p denotes system
parameters. For example, for the simple lens system in Figure 1, p = (f, 21, 22) where f denotes
the lens focal length, z; is the distance from the object plane (for a 2D object) or a given plane
in the object (for a 3D object) to the lens, and 2o is the distance from the lens to the detector
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Figure 1: Lens-based through-focus imaging system for imaging of 2D or 3D objects.

plane. In the following we will explain the proposed compressive through-focus imaging assuming
the particular lens-based system in Figure 1; however, clearly the key idea in this paper, that of
using reconfigurable system states as a way to create compressive measurements, applies to more
general systems as long as they exhibit degrees of (controllable) reconfigurability. By capturing
data in different sensor positions and for different system configurations, and processing the data
holistically, including priors, it is possible to maximally exploit the available sensing resources.
Next the focal length is assumed to be constant while the lens position is varied to create different
system states and thereby capture data corresponding to different states.

Two modalities are of interest: coherent and incoherent imaging. In coherent imaging, involving,
e.g., a secondary source that is induced at a scatterer in its interaction with coherent light (due to
a coherent source like a laser), the field at a detector at position (u,v) in the detector plane that
is due to an extended object characterized by object wavefield Uyp;(r’) is given by

Udet(U,'U;p) = /dl’,h [(u7v)7 I‘/; p] UObj (I‘/) ' (1)

Above the object coordinates (r’) are in 2D space for thin (2D-approximable) objects such as
transparencies and in 3D space for more general 3D objects. The detectors measure only the
magnitude of this field, but by using reference beams one can also measure the phase. For incoherent
imaging, involving primary or secondary incoherent sources, the corresponding relation is

Laea(ut,v:p) = / ' |1 [(u,0), ¥'5 p] | Long () (2)

where Iget(u,v) = (|Udet (u, v)|?) and Iop;(r') = (|Uobj(r’)|?), where (-) denotes average. In through-
focus imaging, the data are captured for several “in” and “out-of” focus states, as defined by the
distances z1; and zo which correspond to different positions of the lens relative to the object and
the detector plane. The next section outlines how the data are processed to create images.

3. COMPRESSIVE IMAGING

Importantly, in the coherent and incoherent optical systems described by (1) and (2) the mapping
from the object function (i.e., the wavefield Ugp; in the coherent case and the intensity Iop; in the
incoherent case) to the data is linear. Then we can interpret the data as linear projections of the
object to be imaged with known functions. In particular, defining the inner product

(g1]g2) = / dr'g; () go (¢') (3)

then the data in (1) and (2), for the given set of detector positions (u,v) (say M such detectors)
and system states p (say N such through-focus states), are the projective measurements

Udet(u, v; p) = (A" (u, v, -5 p)|Uspj) (4)

and
Tt (u, v; p) = (|h?|(u, v, -5 p)|Ion;) (5)
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If the object is representable in a known basis, say (in the coherent case)

Uni () = 3 Bs)B. (), (6)

s=1,2,...

where By are the basis functions and ((s) are the basis coefficients of Ugyp;, then the inverse problem
corresponds to estimating ((s) from the captured M N data. The usual approach without sparsity
priors is to find the solution of minimum 2-norm,

B = argmin||B]l,  Uaer(u, v; p) = Y B(s) (h*(u, v, -5 p)| By) , (7)

but if it is known that the sought-after object is sparse then one can implement

§ = argmin||B][1,  Uses(u, v; p) = Y B(s) (W (u, v, - p)|Bs) (8)

which gives a exact or an approximate solution if the inner products (h*(u, v, -; p)|Bs) obey certain
conditions [2,3]. Generally, for a given sparsity, the number of projective measurements that
are required to reconstruct the sparse signal is governed by the well-known restricted isometry
property of compressive sensing. In the present case, the projective measurements are of a particular
form that imposes constraints in the so-called coherence between the sparsity basis {Bs} and the
projectors {h*(u, v, -; p)}. In general, the lower the coherence as measured by the highest value
of the inner product between the functions Bs and h*, the smaller the required amount of data.
Also, to avoid redundance, the selected projections (h*) should be linearly independent. Finally,
perhaps a basis where the object is sparse is not known, but its gradient is known to be sparse (as
for many practical extended objects, see [2]). Then one can apply the sparsity constraint to the
so-called total variation (TV) of the object function [2], minimizing its 1-norm in the inversion.

4. COMPUTER ILLUSTRATIONS

To illustrate, we consider imaging of 2D and 3D objects from through-focus data captured for
different lens and/or object positions at a fixed detector array. The forward and inverse results
were obtained using the analytical results above and standard Fourier optics [4] along with suitable
discretization of the equations (computational grids) as illustrated in Figure 1. For 2D objects
we kept the object-detector distance fixed and changed only the lens position (the lens-detector
distance z3). Reconstructions of 2D objects with coherent light were performed with an in-focus
magnification of one, simulating an everyday camera. Reconstructions of 2D objects with incoherent
light were performed with the object plane in the far field, simulating a telescope. Reconstructions of
3D objects with both coherent and incoherent light were performed with an in-focus magnification of
100, simulating a high-powered microscope. To imitate a microscope stand, in the 3D case multiple
through-focus pictures were acquired by moving the entire object back and forth in the z-direction

Original Object Reconstructed Object

10

Y (in %) -10 0
X (in)

Figure 2: Incoherent imaging of ten point sources on a 24 x 24 x 4 grid. Only sixteen detectors acquire
pictures from eight evenly-spaced lens positions on both sides of the in-focus position z; = 158\ (based
on the object plane shown in Figure 1). Radius and shading of outer circle indicate intensity. Inner circle
indicates the exact location of the point-source. (Detailed values used in the simulation, all in values of
A zp = 15798 x 10%, 21 € {153.39, 154.66, 155.92, 157.18, 158.45, 159.71, 160.97, 162.24}, f = 156.41,
d = 15798 x 10%, A%Y = 1.5798, Az = 1.5798, Ay = 1.0734 x 10?).
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while keeping the lens and detector plane positions fixed. The results of a reconstruction of ten
incoherent point sources are shown in Figure 2. The results of a reconstruction of ten coherent
point sources are shown in Figure 3. The results are encouraging.

The TV-based inversion approach is illustrated in Figure 4. The object is a (2D) transparency
formed by 4 shapes of uniform field value, taken to be unity inside the shapes and zero outside.
Images were obtained using four methods: a) the conventional minimum 2-norm solution using all
the through-focus data, b) the compressive sensing minimum 1-norm solution using through-focus
data, c) the compressive sensing minimum TV 1-norm solution using only in-focus data, and d) the
minimum TV 1-norm solution using through-focus data. Methods (c) and (d) visibly outperformed
methods (a) and (b). Furthermore, when adopting the TV approach, the inversion based on
through-focus data was also clearly superior to the one based on in-focus data only, confirming the
additional information content in through-focus data. Although the through-focus data consisted
of 164 samples while the strictly in-focus data consisted of 169 samples, the error in the TV-based
reconstruction using through-focus data was noticeably smaller than the in-focus one.

Original Object Reconstructed Object
3

Zin 2.)
Z(in %)

Y (in k) X (in 1) Y (inx) X (in) Phase
(Rad.)

Figure 3: Coherent imaging of ten point sources lying on a discrete 24 x 24 x4 grid. Sixteen detectors acquired
pictures from eight evenly-spaced lens positions on both sides of the in-focus position of z; = 158\ (based on
the object plane shown in Figure 1). Radius of outer circle is proportional to intensity and shading of outer
circle indicates phase. White inner circle indicates the exact location of point-source on the grid. (Detailed
values (in lambda): 2o = 1.5798 x 104, z; € {153.39, 154.66, 155.92, 157.18, 158.45, 159.71, 160.97, 162.24},
f=156.41, d = 1.5798 x 10*, A% = 1.5798, AZ = 1.5798, Ay = 1.0734 x 10?).
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Figure 4: Through-focus imaging by minimization of the object’s TV 1-norm. The through-focus data
was acquired using 4 detectors at 41 evenly spaced lens positions centered at the in-focus position, while the
strictly in-focus data was acquired using 169 detectors at a single in-focus object position, with both detector
setups covering an area of (6.32 x 102))2. In the plots, circle radius is proportional to intensity while shading
of the outer circle indicates phase. For clarity, reconstructed points with magnitudes smaller than 0.1 were
not plotted. (Values (in lambda): f = 7.90 x 10%; d = 3.16 x 10%; A%Y = 157.98. Through-focus: 2z, ranging
from 0.0385 x 10° to 3.1210 x 10°; z; = 3.16 x 10° — 29; Agq = 3.16 x 103. In-focus: 2y = 1.5798 x 10°;
21 = 1.5798 x 105; Ay = 486.09).
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5. DISCUSSION AND CONCLUSION

The proposed compressive through-focus imaging approach was validated for both 2D and 3D ob-
jects and for different lens system configurations. After carrying out many examples, we concluded
that the key factors governing the image quality are 1) the effective linear independence of the
projective measurement vectors (mapping from the object, as given in the grid or Dirac delta basis,
to the data at the different sensors and focal states), and 2) the coherence between the projective
measurement basis and the grid or Dirac delta basis adopted for the object, which is known to play
a key role in compressive sensing. The first aspect was investigated via the singular value decompo-
sition. It was found that if the through-focus positions are all very close to a given in-focus position
then the degree of linear independence of the projective measurement vectors is low. The linear
independence is generally greater as the through-focus positions are farther apart. For coherent
light the best strategy is to allow the through-focus positions to include out-of-focus positions over
a broad separation. For incoherent imaging, it is also convenient to separate as much as possible
the through-focus positions but they must remain relatively close to the in-focus position. Out of
focus information is more limited in the incoherent case.

In summary, we showed that through-focus imaging and compressive sensing can be combined
to reduce the number of samples, and specifically the number of photodetectors necessary to re-
construct sparse objects. While conventional in-focus imaging requires as many detectors as pixels
in the acquired image, the number of samples required for compressive through-focus imaging can
be much smaller since it is restricted only to the object’s sparsity. By repeatedly reconfiguring
the lens system setup to acquire multiple samples with each detector, compressive through-focus
imaging allows a fuller exploitation of physical resources. The through-focus nature of compres-
sive through-focus imaging holds additional advantages for microscopy. Although it is difficult to
acquire an in-focus image of a 3D object in conventional microscopy, our results suggest that com-
pressive through-focus imaging can reconstruct entire 3D objects by exploiting prior information
like sparsity. We plan to continue developing further the ideas presented in this work, including the
use of compressive sensing methods based on total variation (TV) that apply to certain extended
objects.
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Abstract— In this paper we present a Krylov subspace technique and use residual minimization
to efficiently solve parametric electromagnetic inversion problems. We exploit the shift-invariance
property of Krylov subspaces to compute total fields inside a homogeneous object for a whole
range of contrast values. As soon as these fields are found, we can determine the corresponding
scattered fields in a straightforward manner. This approach allows us to solve the inverse problem
by simply inspecting an objective function which measures the discrepancy between the measured
and modeled scattered field data.

1. INTRODUCTION

Many iterative inversion methods use forward solutions in every inversion step. For homogeneous
objects, forward problems can be solved efficiently by exploiting the shift-invariance property of
Krylov subspaces. To be specific, solving a forward problem for a homogeneous object using an
integral equation approach essentially amounts to evaluating a matrix resolvent in which the inverse
of the contrast coeflicient acts as the resolvent parameter. The action of this resolvent function
on a given vector can be evaluated very efficiently by exploiting the shift-invariance property of a
Krylov subspace. After only a single run of a Krylov subspace method, field approximations can
be constructed for a whole range of contrast coefficients. In previous work [1], we constructed these
field approximations using the Arnoldi algorithm in combination with a Full Orthogonalization
(FO) approach. The drawback of this FO approach is that, for a given contrast, the norm of
the residuals corresponding to successive field approximations is not necessarily a nonincreasing
function. In this paper, we remedy this problem by constructing field approximations for which the
2-norm of the corresponding residual is minimum (similar to the well known Generalized Minimum
Residual or GMRES method, [3]). For a whole range of contrast parameters, we only need to solve
small-scale least-squares problems and for a given contrast coefficient, the 2-norm of the residual
is guaranteed to be nonincreasing as the number of iterations increases. Since all Krylov basis
vectors need to be stored in the Arnoldi algorithm, we may run into storage problems especially
for electrically large objects. A restarted version of the above method as proposed in [2] may then
be applied.

Given the Krylov field approximations, the scattered field at specified receiver locations can be
computed in a straightforward manner and the inverse scattering problem can actually be solved by
inspecting a (possibly nondifferentiable) objective function which measures the discrepancy between
the true and modeled scattered field data.The effectiveness of the method is illustrated by a number
of numerical examples for single and multi-frequency data.

2. INTEGRAL REPRESENTATIONS AND THEIR DISCRETIZED COUNTERPARTS

We consider E-polarized electromagnetic fields in a configuration that is invariant in the z-direction.
An object with a finite support D is located in vacuum and is characterized by a conductivity o,
a permittivity € = ege;, and a permeability pg. Clearly, the object has no magnetic contrast
and the conductivity ¢ and the relative permittivity &, of the object are unknown. It is our
objective to retrieve these medium parameters from scattered electric field data measured outside
the support of the object. Specifically, for the scattered field at a receiver location with position
vector p = p'° ¢ D, we have the so-called data equation

ih?

Ty 0 (e = PDE-(p' ) dA (1)
‘e

E;C(precjw) — C

where i is the imaginary unit, k = w/cg is the wavenumber (¢ is the electromagnetic wave speed in

vacuum), H[()l) is the Hankel function of the first-kind and order zero, ( is the contrast coefficient
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given by

.0
(=¢e —14+i—, (2)
wWeQ
and F, in the integrand is the total electric field strength inside the object. The latter field is
unknown, but we do know that it has to satisfy the object equation

ih?

T Hy (Klp — p'|) E.(p,w) dA = EP(p,w), 3)
S

Ez(pvw) - C

with p € D and where E'™¢ is the known incident field. Eq. (3) is a Fredholm integral equation of
the second kind for the total field E, inside the object if the contrast coefficient is known. Also
note that the total field in D is equal to the incident field and the scattered field at the receiver
location vanishes if ( = 0 (no object is present in D). From this moment on we exclude this trivial
case and consider nonzero contrast coefficients only.

We discretize Eqgs. (1) and (3) on a uniform grid and use pulse expansions for the electric field
strength (see [4], for example). We obtain the discretized data equation

B (p™,w) ~ (r"u (4)

and the discretized object equation _
(I-¢G)u=u"". (5)

In these equations, r is the receiver vector, u contains the field approximations for the total field
inside the object, and u™° contains incident electric field values sampled on the grid. Matrix G
is a matrix representation of the Hankel function (Greens function) and its action on a vector can
be computed using the FFT. Finally, we call the right-hand side of Eq. (4) modeled scattered field
data and set v¢ = (rTu.

The way we retrieve the permittivity and conductivity of the object is by inspecting a certain
objective function. Specifically, we first assume that minimum and maximum relative permittivity
and conductivity values can be found such that e;.min < &r < €rmax and omin < 0 < Omax, Where
Erimax = Ermin > 1 and Omax > omin > 0. The above intervals define our region of interest in the
complex (-plane. This region is discretized using a uniform grid, and for each grid value we solve
the object Eq. (5) for the total field u. Having found this field, we substitute u in the expression
for v°¢ to obtain the corresponding modeled scattered field at the receiver location. We repeat this
procedure for all values on the (-grid. A collection of modeled scattered fields is obtained in this
way and all these fields are compared with the true measured field using the objective function

|B(p, ) = 17°(w)]?
Bz (o, w) P

F= (6)

Other, possibly nondifferentiable objective functions, can be used as well. If the modeled scattered
field is such that F' < ¢, where ¢ > 0 is a user specified tolerance, then the contrast coefficient
corresponding to this field is a solution of our inverse problem.

3. RESIDUAL MINIMIZATION

The approach outlined in the previous section is practical if we can efficiently solve the discretized
object equation for a large number of different contrast coefficients. This can be achieved by
exploiting the shift-invariance property of Krylov subspaces. Loosely speaking, what this amounts
to is that if we solve the forward problem for a particular worst-case contrast coefficient, then very
little extra work is needed to obtain the total field for all other contrast coefficients in our (-domain
of interest.

We start by introducing the contrast source w = —(u (the minus sign is included for convenience
only) and we rewrite the object equation as

A(a)w =u™ where A(a)=G + ol (7)

and o = —1/( (recall that ( # 0). Suppose now that we use the Generalized Minimum Residual
method (GMRES method, see [3]) to solve this system for a particular value of . After m iterations
we have the field approximation w,, available and the corresponding residual is given by r,, =
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Figure 1: Grid of (-values of interest (omin = 0).

u'"® — A(a)w,,. The question now is: which value of a (or, equivalently, which value of ¢) requires
the largest number of iterations to reach a prescribed and sufficiently small tolerance level for the
normalized 2-norm of the residual? It is reasonable to assume that the contrast coefficient for which
|¢| is maximum is the worst-case contrast coefficient (node B in Figure 1). This, however, turns
out not to be true. Excessive numerical testing shows that the worst-case ¢ is given by Im(¢) =0
and Re(¢) = €r.max — 1. In other words, the worst-case configuration consists of a lossless object for
which the relative permittivity is maximum (node A in Figure 1). This is illustrated in Figure 2
where we show the normalized 2-norm of the residual vector for contrast coefficients located at
nodes A, B, and C in Figure 1 (rp = u™™). The object is a square block with a side length equal
to the wavelength of the electromagnetic field. Out of the three cases, the contrast coefficient
corresponding to node A produces the worst convergence behavior.

Having identified the worst-case contrast coefficient, we write the corresponding o parameter as
& and the system of Eq. (7) is written as

[A(&) + fT]w = u™ where B=a — a. (8)

Following [2], we call the above system with 3 = 0 the seed system, and we call Eq. (8) with a
8 # 0 an add system. We run the GMRES algorithm only for the worst-case seed system to reach a
prescribed tolerance for the normalized 2-norm of the residual vector. The field approximations for
the add systems follow by solving small scale least-squares problems. Specifically, after m iterations
of the Arnoldi algorithm with the seed system matrix A (&), we have the summarizing equation

A(&)Vm = Vm+1ﬂma (9)

where H,, is an m + 1-by-m upper Hessenberg matrix containing the recurrence coefficients of
the Arnoldi algorithm, and the columns of matrix V,, form an orthonormal basis of the Krylov
subspace generated by A(a) and the incident field vector rg = u™°. Now let w,, belong to this
Krylov subspace and take this vector as an approximation to w in Eq. (8). We write w,,, = V,,cp
and the corresponding residual is given by

in ~ in ] I
P = U™ — [A(&) + AT Wy = Vi1 {nu ef™ " — [Hm + 3 <_6”_>] m} . (10
where || - || denotes the 2-norm and egmﬂ) is the first column of the m-by-m identity matrix. Since

the basis vectors are orthonormal, the 2-norm of the residual is given by

inc m ' Im
el = | e = [, (B ) e ()

and we observe that for each new value of § we need to solve a small scale least-squares problem
only. To summarize, GMRES solves the seed and add systems simultaneously, since the Krylov
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Figure 2: Normalized 2-norm of the residual for contrast coefficients corresponding to node A (solid line),
node B (dashed line), and node C (dashed-dotted line).

subspaces generated with rg = u'™, G, A(&) and A(a) = A(a) + SI are all the same. More
precisely, we have
K™[A(a),ro] = K™[A(a),ro] = K™ (G, 1) (12)

and the dimension m is determined by the worst-case contrast coefficient. The object equation
for this worst-case coefficient is the seed system and as soon as the 2-norm of the corresponding
residual is sufficiently small, we have essentially solved all add systems as well.

The use of Arnoldi’s method may become prohibitive for electrically large objects (objects large
compared with the wavelength of the electromagnetic field) and problems requiring a large number
of Arnoldi iterations, since all Krylov basis vectors need to be stored and the computational load
also increases with m. Using a restart version of GMRES then comes to mind, but implementing
such a procedure is not straightforward, since we may loose the shift-invariance property of the
Krylov subspaces. Suppose, for example, that we restart the GMRES method after p iterations.
Denoting the residual of the seed and add system by r,(&) and r,(c), respectively, we have

K™[A(a),rp(a)] # K" [A(a), rp(a)], (13)

in general. In [2], it is proposed to force the residual vectors of the seed and add systems to be
collinear, that is, we require that r,(«) = 7,1, (&) for some 7,. With this condition it is possible to
exploit the shift-invariance property of the Krylov subspaces and restarts are possible as well. We
have implemented the restart version based on this idea to avoid possible storage problems. For
details about the algorithm and a discussion on when the collinearity property exists, see [2].

4. NUMERICAL RESULTS

To retrieve the medium parameters of a square block located in vacuum, we illuminate this block
by electromagnetic waves with a frequency of f = 42 MHz. The side length of the block is equal to
A, where A is the wavelength in vacuum that corresponds to this frequency. A single-source/single-
receiver unit is symmetrically located above the block. The distance between the block and the
source/receiver unit is A\/2. Furthermore, the true medium parameters are ¢, = 4.5 and o =
5 mS/m and for the minimum and maximum medium parameters we take €r.min = 1, €r;max = 10,
Omin = 0mS/m, and opmax = 10mS/m. Finally, the domain of interest in the complex (-plane
is discretized using a 40 x 40 grid. We therefore need 1599 forward solutions (the scattered and
total field for ¢ = 0 are known). The seed system has a contrast coefficient ( = 9 and there are
1598 add systems to be solved. The resulting objective function on the domain of interest is shown
in Figure 3. The true medium parameters are easily recognized, but there are other minima as
well. We therefore carry out two additional experiments at two different frequencies, namely, at
f =30MHz and f = 36 MHz. The objective function becomes

rec

3 3
_ B (P w) — v*(wi)* _
F = ka = (0, op) | with ka = 1. (14)
k=1 k=1
We take my = 1/3 for k = 1,2,3. We evaluated this objective function by computing forward
solutions for each frequency separately and for each frequency we used the Arnoldi algorithm with
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Figure 3: Top view (left) and surface plot (right) of the objective function F' on the domain of interest for
a single frequency of f = 42 MHz.
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Figure 4: Top view (left) and surface plot (right) of the objective function F' on the domain of interest using
three frequencies (f = 30, f = 36, and f = 42 MHz).

and without restarts to obtain the total fields inside the object. Both approaches produce the
same objective function, of course, and this function is shown in Figure 4. The global minimum
corresponding to the true medium parameters remains where it is and a number of false minima
have disappeared. We still have local minima around the o = 0 axis, but the objective function
at these minima is much larger than at the global minimum. Moreover, the objective function is
smoother than in the single frequency case.

5. CONCLUSIONS

We have presented an efficient electromagnetic inversion method for homogeneous objects. The
method exploits the shift-invariance property of Krylov subspaces and through residual minimiza-
tion it very efficiently solves for the total field inside the object. Because of this property, we
can solve the inverse problem by simply inspecting a user-defined objective function. Although we
have presented our results for a differentiable objective function, other possibly nondifferentiable
objective functions may be used as well.

In this paper we have considered homogeneous objects only. For inhomogeneous objects we can
still try to match the scattered field due to a homogeneous object to the scattered field generated
by an inhomogeneous object. This topic is very important in many different areas most notably in
effective medium theory. Presently we are using the technique presented in this paper to investigate
to what extent it is possible to find an effective homogeneous scatterer for homogeneous objects
with randomly distributed inclusions.
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Abstract— Antenna modeling is a significant issue with respect to the image reconstruction
process in a microwave tomography system. Herein, the radiated field from the antenna is
modeled as a vertical polarized cylindrical wave, in the numerical incident field model of the
algorithm. Two different monopole antenna designs are compared with the incident field model
in both amplitude and phase, using data conducted by a flexible microwave imaging system.
Finally, the incident field’s impact on the reconstructed images by the Newton Kantorovich
algorithm, using measured data from both antennas, is presented.

1. INTRODUCTION

Quantitative microwave imaging has been extensively studied in the past years as an alternative
technique in biomedical imaging, with a strong potential in early stage breast cancer detection [1].
Many encouraging results have been presented for the application and even prototype systems have
been developed for obtaining clinical results by using either a radar-based technique [2] or microwave
tomography [1]. In microwave tomography the inverse scattering problem is solved to retrieve the
complex permittivity profile of the biological object from the measured scattered field and the
applied incident field. This can be done in two different approaches, solving the nonlinear inverse
problem or using different linear approximations, like the Born or Rytov approximations. The linear
approach is computationally efficient and suitable for smaller objects with low contrast [3]. However,
in biomedical applications the objects are often large with a high dielectric contrast, limiting the
usability of the linear approximations. Therefore, more often different iterative methods are used to
solve the nonlinear inverse scattering problem. Since, this is a highly computational-heavy process
the three-dimensional problem is often simplified into a two-dimensional (2-D) problem [4, 5]. Still
today there are many practical issues to be considered in the quantitative microwave imaging
problem including: modeling errors, coupling effects, calibration, measurement errors, etc.

In this study, the nonlinear inverse scattering problem is solved, with a Newton-based iterative
optimization scheme, the Newton-Kantorovich (NK) algorithm [6]. The measured scattered field
is iteratively compared with the computed field from the direct problem with the complex permit-
tivity profile estimation and an applied incident field model. Consequently, the solution is highly
sensitive to model errors in the incident field. This paper focus on this model error’s impact on
the reconstructed quantitative image using data from a flexible robotic microwave imaging system,
developed at Milardalen University (MDH). This study is conducted during the development of
the imaging system and the first quantitative images of a 2-D breast phantom are obtained.

2. TOMOGRAPHY SYSTEM OVERVIEW

The robotic microwave imaging system is developed as a flexible experimental platform, where one
of the applications is breast imaging. Using a robot controlled system different system geometries
can be investigated by measuring the scattered field with a single transmitting/receiving antenna-
pair, thus avoiding the mutual coupling that can occur when an antenna-array is used. The receiving
antenna can be positioned along planar, cylindrical and spherical surfaces with a high accuracy, with
a relative position error less than 0.1 mm. In addition, the wide-band system gives the possibility to
investigate different frequency bands for different imaging applications with a relatively fast data
acquisition time, 0.5s per measurement point when the robot is used in a very slow movement
mode for highest precision of the positioning.

The main parts of the system, as shown in Fig. 1, are an ABB robot which controls the me-
chanical positioning of the receiving antenna, a water-tank (2m in diameter) with an object-fixture
and step motor for multi-view measurement, a vector network analyzer (VNA), and a developed
Matlab™ control interface collecting field data.
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Figure 1: Experimental setup of the robot con-  Figure 2: The receiving monopole antennas mounted
trolled data acquisition system. The robot (I)  on the robot arm. (a) Antenna 1: with a wire ground
with the receiving antenna (II), water-filled tank  plane, (b) antenna 2: with a circular ground plane.
(IIT) with fixture (transmitting antenna, rota-

tional board, object and step motor) (IV), VNA

(V), and the PC with a Matlab™ control inter-

face (VI).

3. ANTENNAS AND EXPERIMENTALL SETUP

In this study, two different monopole antenna designs are compared with the numerical incident
field model. Both antennas, depicted in Figs. 2(a) and 2(b), are simple monopoles consisting of a
semi rigid coaxial cable which has a physical length of 11 mm of the protruding inner conductor
and tuned for tap water with a complex permittivity of e* = 76 4+ j7.3 (at 1140 MHz and 21°C),
estimated from a measurement based method [6] using the same antennas. It has been shown that
the monopole antenna can be easily modeled as a line source in a 2-D imaging problem [7]; also the
fact that the monopole antenna is an efficient radiating element, cheap and easy to manufacture
gives good motivation for using them in the tomography system. When immersed into water
the antennas are fairly broad banded from 950 MHz-1450 MHz with return loss less than 10dB.
However, in this study only a single frequency of 1140 MHz is used for both antenna setups.

By using the monopole antenna with a ground plane increases the antenna gain, thus improves
the efficiency of the imaging system. The difference between the antennas is the design of the
ground-plane. In the first prototype (Fig. 2(a)), it is simply designed with four wires forming a
horizontal cross, and the second setup (Fig. 2(b)) uses a circular ground plane. Since, the first design
do not obtain a rotational symmetric radiation pattern in the horizontal plane, the orientation of
the receiving antenna must be kept in a specific angel towards the transmitter to obtain a incident
field as close as possible to the model. This process was done by manually tuning the angular
position of the receiver and transmitter, around their own axis, to obtain a cylindrical waveform
fitting the incident field model. In Fig. 3, the amplitude of the measured incident field is depicted,
during the tuning process to best fit the simulated field. As expected, the second design obtains
a more rotational symmetric radiation pattern in the horizontal plane and is easier matched with
the computed values, without having to manually tune the directions of the antennas.
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Figure 3: Amplitude of the incident measured field Figure 4: The experimental setup geometry.

for antenna 1, during the tuning process.
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The scattered field is, herein, measured along a circular arc with a radius of 120 mm, in the
horizontal plane with vertically polarized monopole antennas, considering a two dimensional trans-
verse magnetic case (2D-TM). The robot arm moving the attached receiving antenna in 37 points
using a 5° angular step sweeping 180° from 90° to 270° (Fig. 4). The transmitter is positioned at
0° on the same circular arc. The object is rotated with an angular step of 9° using the step motor
controller to obtain a multi-view examination in 40 views.

In this study, a simple breast phantom is placed in the centre of the system. It consists of two
different PVC cylinders with a diameter of 110 mm to hold the normal breast tissue (¢* = 35+57.3)
and 20 mm to hold the tumor liquid (saline water £* = 58 + j15), with 2.5 mm and 2 mm tick PVC
structure, respectively. The breast tissue is simulated with the mixture of the surfactant Triton
X-100 and deionized water considering an average of the three categories of adipose breast tissues
presented in paper [8] by Lazebnik et al..

4. FIELD VALIDATION AND IMAGE RECONSTRUTION

As mentioned earlier, the NK algorithm is iteratively minimizing the error between the measured
and the computed scattered field from a numerical incident field model in the direct problem. As a
result, the solution is highly sensitive to model errors of the incident field inside the object region.
The numerical incident field must agree with the measured field from the experimental setup.
The radiated field from the transmitting antenna is simply implemented as a vertical polarized
cylindrical wave emitted by a line source, as

Bine(r) = =5 froHg" (krlr =) (1)

The Ho(l)(kl\r —r'|) term is the zero-order Hankel function of the first kind, f is the frequency, k;
is the wavenumber of the background medium, and finally r and r’ represents the observation and
source point, respectively. A validation of the measured incident field (in one view) can be done
by comparing it with the computed incident field at the receiving points, with the assumption that
when a good agreement is obtained also the incident field inside the object region must fit well.
In Figs. 5 and 6, the measured amplitude and phase is compared with the numerical model for
antenna 1 and 2, correspondingly. One can see that the second antenna design has a much better
fit in both amplitude and phase compared to first design.

However, in the image reconstruction process it is the incident field inside the object that
is of major importance. Therefore, the image reconstruction from the multi-view data of the
breast phantom using both antennas designs will be compared. In this way the impact of the
incident field model error inside the object region due to the antenna choice can be investigated, in
terms of artifacts in the reconstructed images. Fig. 7 shows the reconstructed real and imaginary
permittivity profiles during the first three iterations, starting from the initial guess of a breast
without tumor (Fig. 7(a)), for both antenna designs. One can see that results is better with the
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Figure 5: The incident field comparison between measured field for antenna 1 (Fig. 2(a)) and the simulated
field, amplitude (left) and unwrapped phase (right). The measurement are obtained at a temperature of
21.5°C for the background-medium giving an estimated complex permittivity of ¢* = 75.6 + 57.3.
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Figure 6: The incident field comparison between measured field for antenna 2 (Fig. 2(b)) and the simulated
field, amplitude (left) and unwrapped phase (right). The measurement are obtained at a temperature of
18.8°C for the background-medium giving an estimated complex permittivity of ¢* = 78 4 ;8.3.
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Figure 7: Reconstructed real and imaginary permittivity profile of the phantom using both antennas
(Figs. 2(a) and 2(b)), starting with (a) the initial guess, (b), (c) and (d) iteration 1, 2, 3 for antenna 1,
respectively, (e), (f) and (g) iteration 1, 2, 3 for antenna 2, respectively and (h) expected profile.

second antenna design, the reconstructed images has much less artifacts, especially in the imaginary
part. The tumor phantom is clearly reconstructed even if some artifacts appear in the imaginary
part. These results indicate the importance of choosing an antenna design that enables a minimal
incident field model error in the algorithm.

5. CONCLUSIONS

In this paper, two different monopole antenna designs have been validated in a flexible microwave
tomography system. The results show how the selection of antenna design impacts the error between
the measured incident field and the numerical incident field model. By comparing the reconstructed
images of a simple breast phantom it was shown how the quantitative image is affected by this model
error. Using an antenna design that minimizes the error between the model and the measured values
leads to a better reconstruction of the object. This confirms the importance of minimizing the model
error inside the object region.
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Abstract— In this paper, we propose to simulate the SAR response of semi-arid subsurfaces.
We characterize the soil surfaces and subsurfaces by a two layer geo-electrical model. The up-
per layer is described by its dielectrical constant, thickness, a multi-scale bi-dimensional surface
roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering
parameters. The lower layer is described by its dielectric constant and multi-scale surface rough-
ness. To compute surface, subsurface and volume scattering, we consider a two layers multi-scale
bi-dimensional Small perturbations model. In this study, each surface of the two layers surface is
considered as a band limited fractal random process corresponding to a superposition of a finite
number of one dimensional Gaussian processes each one having a spatial scale. We investigated
the dependence of backscattering coefficient on roughness multi-scale parameters and soil mois-
ture parameters for different incident angles by a sensitivity analysis. This sensitivity analyses is
the first step of an inversion procedure.

1. INTRODUCTION

The retrieval of information related to physical surface parameters is a major objective of many
studies in remote sensing investigations. In that context, modeling radar backscattering through
natural surfaces has become an important theme of research and active remote sensing and has
shown its utility for many applications in hydrology, geology, astrophysics, etc.

Previous works [9] have studied the potential of low-frequency imaging SAR to map the shallow
subsurface of Mars by comparing the results obtained for comparative test sites used to extrapolate
their models to the Martian case. Considering the penetrations capabilities of L band SAR in dry
sand, they developed a two layer integral equation model to simulate radar backscattering on arid
subsurfaces. They used the classical statistical description of natural surfaces and characterized
roughness by statistical parameters namely correlation length and standard deviation.

However, the weakness of the classical description of natural surfaces is the large spatial vari-
ability which affects the correlation function and make classical roughness parameters very vari-
able [2,5,7]. In that context, many previous works have suggested that natural surfaces are better
described as self affine random processes (1/f processes) than as stationary processes. In previous
works, we have analysed radar backscattering on multi-scale bi-dimensional surfaces [1,4]. This
novel multi-scale bi-dimensional description does not depend on classical roughness parameters
standard deviation and correlation length but on new parameters related to multi-scale surfaces
properties. In the first section, we present the multi-scale surface description.

In the next section, we present the study of the impact of this multi-scale roughness description
and soil moisture on radar backscattering using our two layers multi-scale bi-dimensional small
perturbation model (SPM) by investigating the sensitivity of backscattering to the new surface
parameters and to the dielectric constant.

2. A TWO DIMENSIONAL MULTI-SCALE DESCRIPTION OF NATURAL ROUGHNESS

In this section, we describe and discuss the employed surface model. In this paper, we model
natural roughness as a multi-scale process having a 1/f spectrum with a finite range of spatial
scales going from a few millimeters b (b < %) to several meters (B < resolution cell) [1,2]. The
surface is considered as a superposition of a finite number of one-dimensional gaussian processes

each one having a spatial scale [1] characterized by:

P2 “+o00

o)=Y > avle/L)

m=—p; n=—00
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where 2™ is a collection of gaussian random independent variables with variance v32~", x a

normalized distance with respect to an arbitrary length L = 2°b and ¢™ a collection of orthonormal
wavelet (4th Daubechies).

As natural roughness changes from one direction to another, one-dimensional profile are insuf-
ficient. Thus, bi-dimensional profiles are required to describe more adequately natural surfaces.
Wayvelet theory can be extended from one-dimensional to two-dimensional case using the separable
dyadic multi-resolution analysis introduced by Mallat [1,4,9]]. The bi-dimensional wavelet trans-
form gives us respectively the vertical wavelet component (1), the horizontal wavelet (2) component
and the diagonal wavelet component (3) of the height z;,, (where i = Vertical, Horizontal or Diag-
onal) considered as a 1/f process over a finite range of spatial scales going from an inner spatial
scale b of a few millimeters to an outer spatial scale B of several meters.
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where 2> and 2, * are a collection of uncorrelated zero mean Gaussian random variables [1,4].
Their associated autocorrelation function (ACF) is given by the following Equations (4) and

(5):

Py, o+ &y +n) = (g(e,y) 7z +&y+n)) (4)
and the standard deviation is given by
s* =7:(0,0) = £(0,0) = '(0,0) (5)

The roughness multi-scale parameter v is related to the fractal dimension and ~ is related to
the standard deviation and the number of spatial scales is equal to P.

3. A TWO LAYERS MULTI-SCALE BI-DIMENSIONAL SPM MODEL FOR THE STUDY
OF RADAR BACKSCATTER BEHAVIOR ON SEMI-ARID SOIL SUBSURFACES

The main purpose of our study is to develop an inversion model for soil moisture and multi-scale
roughness parameters retrieval over on semi-arid soil subsurfaces using remotely sensed data. The
first step of this study presented in this paper, consist to model radar backscattering over a two
layer geoelectrical model [9] by taking into account volume scattering. Each layer is described as
a multi-scale bi dimensional surface using our multi-scale description. The radar backscattering
coefficient can be expressed as the sum of a single scattering component and a multiple scattering
component (6).

ng - Ur}gp + Jé\ﬁ/ol (6)
q and p indicate the polarization state of the emitted and received wave respectively H for horizontal
polarization and V for vertical polarization. In this present work, multiple scattering component
is neglected.

We have considered a two layer backscattering model which can describe backscattering from
Mars surfaces which are characterized by a superficial dry layer of thickness d over a second dry or
wet layer of basaltic bedrock. We also take into account volume diffusion.

The total backscattering coefficient is the contribution of the two layers and a volume component

(7).

ng(e) - USlqp ( ) + Uqup(e) + USSqu (‘9) (7)
_ cos(6)
with U%Squ 0) = m Ti2Tor e Cos(et) US2qp(0t) (8)
1k 2rcd
174 — S cos(6¢
op(0) = 2n T2 T21 (1 — e ol >> cos(6) Pyp )
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where 6 is the incidence angle and ¢; is the transmission angle, P, has a value of 1.5 for the copolar
case ks and k., are the diffusion and extinction coefficients given by Fung in [5]

k .
ogiqp = exp(—2k?)(cos? 0)s?| I, |W (—2k sin 0, 0) (10)

i =1 for the first layer and 2 for the second layer and |I,| given by [5] and

W (= 2k,,0) = 2 (Té(g’n))nc‘)b‘(%x §)dédn (11)
/]

r2(0,0)

where W™ is the Fourier transform of the nth power of the multi-scale autocorrelation function
given by Mattia in [7] with n = 1 for the SPM model [1,4]. Surfaces are characterized by the
dielectric constant related to soil moisture, the albedo, the optical depth and surface roughness.
Previous works used classical statistical parameters namely correlation length and standard devia-
tion in the expression of the autocorrelation function W. The principal aim of this study is to use
the multi-scale surface description in the backscattering coefficient.

4. SENSITIVITY ANALYSIS

We have in a first step considered the V'V polarization and studied the sensitivity of radar backscat-
tering and angular trends for different multi-scale roughness, for different dielectric constants of
each layer. We present this sensitivity study in Figure 1.

4.1. Sensitivity to Multi-scale Roughness Parameters

We have simulated the angular trends from 20 to 60 degrees of the backscattering coefficient for
different roughness parameters. We kept vy at 0.2cm (Figure 2) and varied the fractal parameter
vy from 1.3 to 2.1 in V'V polarization for ten spatial scales.

Surfaces with v between 1.7 and 2.1 can be considered as smooth where as surfaces with 1 = 1.1
are quite rough. For all the simulations, the backscattering coefficient decreases with the incidence
angle. We notice that the backscattering coefficient increases when v increases. We also notice
an increasing trend of the backscattering coefficient with the multi-scale parameter v because the
surface is rougher (Figure 2(b)).

4.2. Sensitivity to Soil Moisture

Soil moisture is related to the complex dielectric constant €. In the Figure 3, we have represented
radar backscattering as a function of the module of the complex permittivity of the second layer
is. We notice that the backscattering coefficient oy decreases for the low values of £; and €2 and
after passing by a minimum and then increases. This can be explained by the fact that when the
layers are dry corresponding to a lower humidity and as a consequence a lower dielectric constant
the penetration of the signal is more important and the backscattered signal is lower. As the
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Figure 1: 3D representation of a multi-scale surface with multi-scale parameters v, = vy = 1.1; 7, = 71 =
0.2cm; vy = 72 = 0.3cm. Zpax = 3.7cm.
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dielectric constant increases, the surfaces and subsurface become wetter and the backscattered
signal increases because the penetration is lower.
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Figure 2: Backscattering coefficient dependence on fractal parameter v.
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Figure 3: Backscattering coefficient as a function of the module of the complex permittivity of the second
layer for different values of the complex permittivity of the first layer.

5. CONCLUSIONS

In this study, we have used a multi-scale roughness description using the wavelet transform and
the Mallat algorithm to describe natural surface roughness and investigated the impact of this
description on radar backscattering using a two layers multi-scale SPM model through a sensitiv-
ity analysis of backscattering coefficient to the multi-scale roughness parameters. We noticed an
increasing trend of radar signal with the dielectric constant due to a less penetration of the signal.
The overall objective of this work is to predict correctly surface and volume scattering in order to
retrieve roughness and soil moisture parameters by inverting radar polarimetric signals in a future
work.
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Soil Moisture Retrieval Using Data Cube Representation of Radar
Scattering

Seung-Bum Kim and Eni G. Njoku
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

Abstract— A time-series algorithm is proposed to retrieve surface (from surface down to 1m
depth) soil moisture using the simulated radar data. The time-series approach uses co-polarized
(VV and HH) backscattering coefficient (0°) values. Temporal averaging is applied to reduce
the radar measurement noise. To the extent that the surface roughness does not change within
the time-series window, the reduction of the noise enables the retrieval of the roughness. With
the roughness estimate, subsequently soil moisture is retrieved. The proposed retrieval is per-
formed using ‘data cubes’. The data cubes relate soil moisture and ¢, and are lookup tables
with the dimensions of soil moisture, roughness, and vegetation water content (VWC). The
cubes are generated by the first-order small perturbation model and the discrete scatterer model
for the grass vegetation. A Monte-Carlo analysis demonstrates that the soil moisture may be
retrieved within the error better than 0.06 cm®/cm?® up to about 3kg/m? VWC using six time-
series records, although presently assuming that the radar model correctly describes the surface
scattering processes.

1. INTRODUCTION

Radar returns from the land surface consist of scattering by the ground, the vegetation, and the
interaction between the two scattering media. Major parameters determining the radar backscat-
tering coefficient (JO) are soil moisture, surface roughness properties, and vegetation biomass.
For bare or short vegetation surfaces, semi-empirical or analytical models of scattering were con-
structed (e.g., [1,2]). Inversion of these models is available in either closed-form or approximations.
Although the bare surface study is an important basis of soil moisture retrieval, most of the global
land surfaces are vegetated. Often the effect of the vegetation scattering is formulated empirically
based on limited sets of field observations (e.g., [3]). Whether the empirical forms apply well to
more general cases needs examination before retrieving over larger areas.

To extend the soil moisture retrieval beyond the bare surface and beyond the validity range of
the empirical forms, one may utilize a radar scattering model that evaluates the scattering from
the vegetation as well as from the ground. The radar scattering models may describe the scattering
processes in more general forms than empirical forms do. ¢” from the scattering model may be
presented with three axes, soil moisture, roughness, and vegetation water content. We call such
presentation as ‘data cube’ (see Section 2 for more details of the data cube). This paper studies a
soil moisture retrieval strategy using the data cubes.

A previous study of the soil moisture retrieval using the data cubes indicated that the surface
roughness needs to be known well, in order to retrieval soil moisture with reasonable accuracy
(0.06 cm®/cm3, [4]). Instead, when the roughness becomes an unknown during the retrieval, the
soil moisture estimate error quickly exceeds 0.1 cm®/cm?® most likely because the roughness has a
strong effect on ¢°. However, a good knowledge of roughness is hard to obtain. In the present
study, the roughness is retrieved using time-series observations of ¢°. The retrieved roughness value
is then used to improve the soil moisture retrieval.

2. METHODOLOGY

2.1. Data Cube Representation of Radar Scattering

The proposed retrieval is performed using ‘data cube’ representation of the radar scattering pro-
cesses. The data cubes relate soil moisture and ¢, and are lookup tables with the dimensions of
the parameters most influential in characterizing ¢°. The number of dimension is set to 3, because
too large dimension means too many degrees of freedom during retrieval. These parameters are
bare surface roughness (ks, with k& and s being the wave number and rms height of the bare soil
surface respectively), volumetric soil moisture (m,), and VWC. The correlation length and corre-
lation function of the bare surface are also important in characterizing the scattering from the bare
surface. Different sets of the data cubes may be generated for each of the choices of the correla-
tion length and function, and the optimal set may be chosen such that the m, retrieval performs
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best. VWC is a lump-sum parameter representing various vegetation parameters such as dielectric
constant, orientation and number of scatterers, and layers of canopy. It is practical to let VWC to
represent all the vegetation information.

The data cubes are generated by a radar scattering model for a vegetation-covered soil layer,
where the inputs to the model are m,, ks, VWC, and other parameters describing bare surface
and vegetation, and the outputs are multi-channel ¢°. The scattering model consists of three
components:

0¥ (ks, My, VIWC) = 0°(ks, my) exp(—27 (VW C) cos 0) + 0% (ks, my, VIWC) + o (VIWC) (1)

Here 0¥ on the left-hand side of the equation represents the total backscattering coefficient in HH,
V'V, and HV polarizations as a function of ks, m,, and VWC, ¢ represents the scattering from
the bare soil surface modified by the two-way vegetation attenuation, o is the scattering of the
vegetation volume, and ¢*¥ denotes the scattering interaction between the soil and vegetation. The
vegetation attenuation is modeled with the opacity, 7, as a function of VWC. The attenuation is
further modified by the incidence angle, #. The scattering model used in this study incorporates
the 1st order small perturbation model for the bare surface and the discrete scatterer model for
the vegetation (SPM/DSM) as implemented [5] for the grass vegetation surface. Figure 1 shows
the data cubes for the co-pol oy obtained with the SPM/DSM model. The SPM is valid up to ks
of 0.3 and other surface scattering models are under development to extend the range of ks. In
general, co-pol ¢ increases with ks, m,, and VWC. Also 09{ g is typically smaller than a?,v over
the low-vegetation surfaces. These are clearly shown by the data cubes in Figure 1.

ks

VWC

Figure 1: Data cubes of co-pol 0¥ generated by the SPM/DSM radar scattering model. The ranges of the
axes are 0.1 to 2 (dimensionless), 0 to 0.6 cm?®/cm?, and 0 to 5kg/m? for ks (k and s are the wave number
and rms height, respectively), m, (soil moisture), and VWC (vegetation water content), respectively. o
values saturate to white and purple color. The SPM is valid up to ks of 0.3 and other surface scattering
models are under development to extend the range of ks.

2.2. Soil Moisture Retrieval with the Time-series oy and Data Cubes

Retrieval is in principle the inversion of the forward scattering processes. Given ¢ observations,
the goal is to estimate ks, m,,, and VWC. It is always advantageous to reduce the degree of freedom
during retrieval: in this respect, VWC may be retrieved from the cross-pol ¢° or be provided based
on optical images. This study proposes to estimate ks first, reduce the degree of freedom, and then
retrieve m, using the estimate of ks. The retrievals of VWC and ks let us choose the correct slices
of VWC and ks in the data cube. A slice refers to a 2-D plane perpendicular to an axis of the cube.
Then the retrieval of m, becomes a search within a one-dimensional series of ¢° that is provided
by the intersection of the VWC slice and the ks slice.

The choice of the ks slice (equivalently, ks retrieval) is based on the assumption that ks does
not change over a period of time-series ¢° measurements. The assumption would hold in the
absence of heavy rainfall or harvest. Despite the changes in VWC and m,,, ¢° measurements will
be located on the same ks slice of the data cubes if there were no radar measurement noise. The
radar measurement noise is denoted by ‘Kp noise’ with the value of Kp representing 1o of the
Gaussian noise. The presence of the Kp noise displaces the ¢ measurements away from the same
ks slice. The retrieval of ks is to determine the same single slice for ks where all the time-series
0¥ are located. Noting that the displacement is caused by the Gaussian Kp noise with zero-mean,
temporal averaging will reduce the effect of the noise for the purpose of ks estimate. ks is estimated
such that the time-series ¢¥ at the estimated ks slice is closest to the o observations.

The retrieval of ks and m,, is formulated as follows using N time-series sets of two co-pol ¢
measurements (Eqgs. (2a)—(2c)). There are 2N independent observations and N + 1 unknowns
consisting of Nm, and one ks value. The values of ks and m, are discrete on their axes in the
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data cube. Therefore the retrieval of these parameters is to find the corresponding indexes (ks
and imuv,,, where the subscript rtr denotes retrieval). First, at each candidate of iks,s, m, is
estimated using each of the time-series pair of oy measurements such that the difference between
‘retrieved’ and ‘measured’ ¢¥ is minimized in the least-square sense. The difference is denoted by
AO (imVpr (1)) iks—iksrtr in Eq. (2a), where 7 is the index representing the number of time-series
records and 7 ranges from 1 to N. In these equations, ich refers to the index for radar channels
and w denotes weights. This process provides an estimate of my, imuv,-(7), that is temporary
and not final yet. Here the ‘retrieved’ ¥ refers to og evaluated by the estimates of roughness
and soil moisture (ks and imw,,., respectively). Although the expression of ‘measured’ is used,
actual measurements of ¢¥ has not yet been used in this study, but instead the measured o9 is
simulated using the known value of ks, m, and VWC. These known values are used as ‘truth’ when
assessing the retrieval performance, and therefore are denoted by the subscript ‘true’ in Eq. (2b).
The measured ¢ includes the multiplicative Kp noise.

HHVV
A (11000 (D) | iertr = D Wich AT, (ikSpr, imvpg (1)) (2a)
ich

AGY, (1K, imupg)=(o0, mea(ikStrue, IMVtrye, IWWCtrue) — Uzoch,rtr (ikSpiy, iMUpty, IWWCLre +0))%(2b)

N
Aags(z’ksrtr = szAU zmvﬁr(z))}iks:ikwtr (2¢)
=1

d represents a random noise accounting for the 10% error of the VWC knowledge (ivwcypye). Fig-
ures 2(a)—(c) provide an example of how the m, retrieval works for one pair of oy measurements.
The plots illustrates the determination of imw, (7). 0'% g7 increases with soil moisture and roughness
while its contours span from lower-left to upper-right corners of the image (Figure 2(a)). Along the
contour the difference between the retrieved and measured o°, Ac¥, (imvy4(3)) |iks—iks.rir), Stays
the same and therefore the difference has the contours of similar shape (Figure 2(b)). Note that
Figure 2(a) shows one channel but Figure 2(b) is constructed using two channels, which explains
why the shapes of the contours are not identical between the two figures. The behavior of the dis-
tance for the m,, retrieval (Ac?,,) with respect to soil moisture is shown in Figure 2(c), where the

() o5, (a8 G

N AN

Figure 2: Example of soil moisture (m,) retrieval at one time instance, and of roughness (ks) retrieval over
the entire time-series. In (a), ‘+’ sign indicates the location of the truth m, (0.2cm?®/cm3) and truth ks
(0.3) on 0% . 0% yrepresents the data cube sliced at VWC of 2kg/m?. (b), (c) illustrate the retrieval of
m,. (b) shows the difference between the retrieved and measured o after the difference is accumulated over
the two channels, which is denoted by Ac?  in Eq. (2a). The measured o is the truth (‘+ sign in (a))
multiplied by the Kp noise. The dotted line marks the retrieved ks value. (c) shows Ac?  of (b) along the
dotted line in (b), where the minimum Ac?,, gives the m, retrieval. (d) illustrates the ks retrieval, which
searches the minimum of Ao, defined in Eq. (2¢). The Kp noise level is 17% (1o of the Gaussian noise)
and 10% error was introduced to VWC knowledge.
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minimum Ac¥, gives the m, retrieval of 0.23 cm?®/cm3. The truth m, was 0.2 cm?/cm?, resulting
in 0.03 cm?/cm? retrieval error.

The roughness (ks) is now retrieved so as to minimize the average over the entire time span of
the differences between retrieved and measured o (denoted as Aa?_(iks,,) in Eq. (2¢)). Once the
ks is retrieved, which is denoted as iks,s., the corresponding indexes for N number of m, values
have already been estimated by Eq. (2a). An example of the ks retrieval is shown in Figure 2(d).
Ao, varies between 0.5dB and 1.5dB. The ks retrieval is 0.32 where the minimum Ac?, is found.
The truth ks was 0.3.

3. MONTE-CARLO SIMULATION OF RETRIEVAL

Monte-Carlo analyses are performed to assess the retrieval performance in various soil conditions.
There are 6 x 11 nodes of the Monte-Carlo experiment: m, increases from 0 to 0.5cm?/cm® by
0.1, VWC increases from 0 to 5kg/m? by 0.5, and ks is fixed. Two Gaussian random variables
characterize the Monte-Carlo simulation: the ancillary VWC information with 10% error (1o) and
the Kp noise with 17% (1o) multiplicative error. 300 realizations of the two Gaussian random vari-
ables are made per node (the retrieval performance was similar between 300 and 3000 realizations).
6 time-series records are used and the simulation is performed with ks of 0.3 that corresponds to
1cm rms height of the surface.

The Monte-Carlo analysis of the time-series m,, retrieval is shown in Figure 3(a). The retrieval
error increases with m,, because the sensitivity, do"/dm,,, decreases with m, (Figure 3(b)). The
attenuation of the surface scattering by the vegetation becomes more significant with the higher
VWC. As a result the sensitivity decreases and the retrieval error becomes larger.

0.5 5 T
= 0.4 (b)
E -10F
S 03
-
B o
3 %2 -15t i
£ 01 P
0.0 20C 7, . L |
0 2 3 4 5 00 01 02 03 04 05
VWC (kg/m2) m, (cm’/cm’)

Figure 3: (a) rms errors from the Monte-Carlo simulation of the time-series m,, retrieval. The error of greater
than 0.1cm?/cm? saturates to the purple color. (b) The response of V'V (solid) and HH (dash) ¢ to m,
with 0.3ks and 1.1kg/m? VWC.

4. CONCLUSION

The “data-cube time-series” algorithm is proposed to retrieve the soil moisture (m,) using L-band
radar observations with the Soil Moisture Active and Passive (SMAP) mission as an example. The
algorithm relies on the data cube representation of radar scattering. Through the temporal averag-
ing at the same location on the ground, the effect of radar measurement noise (Kp) on the estimate
of the surface roughness is reduced and as a result the roughness retrieval improves significantly.
With the ks estimate, m,, is retrieved such that the estimated ¢° matches the observed o best.
The proposed approach is tested with the Monte-Carlo simulation. m,, may be retrieved with a rms
error of 0.06 cm?®/cm? or better up to the vegetation water content (VWC) of about 3 kg/m?. The
ancillary VWC information has 10% error (1o), the Kp noise is a 17% (1o) multiplicative error,
and 6 time-series records are used as input. The retrieval error will improve since the SMAP radar
offers the Kp noise down to 13% level. However, the errors in the data cube representation of the
surface scattering have not been accounted for yet, which will increase the retrieval error.
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Abstract— Coincidental airborne brightness temperature (TB) and normalized radar-cross
section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-
band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign.
This paper describes results obtained from a set of flights which measured a field in 45° steps
over the azimuth angle. The field contained mature soy beans with distinct row structure. The
measurement shows that both TB and NRCS experience modulation effects over the azimuth
as expected based on the theory. The result is useful in development and validation of land
surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm
for NASA’s SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the
SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper,
it is nevertheless important to understand the effects at smaller scale.

1. INTRODUCTION

The airborne PALS (Passive and Active L- and S-band) instrument was used in the SMAPVEX08
(SMAP Validation Experiment 2008) campaign [2] to measure the brightness temperature (TB)
and normalized radar cross-section (NRCS) at L-band during a period of several days over an area
spanning tens of kilometers in Maryland and Delaware. SMAP (Soil Moisture Active and Passive) is
a NASA mission to measure global soil moisture and boreal land surface freeze/thaw state [1]. The
satellite will carry radar (active) and radiometer (passive) L-band instruments that will perform
simultaneous and coincident measurements of the Earth’s surface. The airborne PALS instrument
is an airborne simulator for SMAP.

Electromagnetic theory and experimental results indicate that over certain type of surface and
landcover both radiometer and radar measurements may experience signal modulation over the
azimuth angle with respect to the measurement location. This effect may be due to reflection
symmetry of the surface (e.g., [3]) or the Bragg scattering, or the combination of the two effects.
In both cases, the first order requirement for this azimuthal signature to manifest itself in the
measured signal of natural targets is essentially a periodic structure on the surface, sub surface
(within penetration depth), or in the layer above surface of the measured medium. Over ocean
surfaces the reflection symmetry phenomenon has actually been utilized to measure the wind vector
(e.g., [4,5]). However, in the observation of the water content in the soils the azimuthal signature
may cause degradation in the retrieval if the effect is not accounted for in the forward modeling. At
the same time, a critical factor in the azimuthal signature affecting the measurement is the ratio
between the size of the periodic surface and the instrument footprint on the ground and orientation
of periodic area, or areas. A large footprint effectively averages the surface features over the entire
footprint area and, when considering realistic surface conditions distributions, the net effect of
possible periodic surface structures within the footprint may reduce to negligible.

It is not expected that the resolution scale of SMAP, which ranges from 3km of the synthetic
aperture radar to 40 km of the radiometer, would experience significant azimuth effects such as the
ones observed in this or many other experiments. However, it is nevertheless important for the
mission algorithm development to understand the fine resolution scattering and emission behavior.
These results can be used, for example, for model development and validation. To this end, this
paper presents results obtained on one of the SMAPVEXO08 campaign days when the PALS in-
strument measured a crop field in 45 degree steps over the azimuth. In the analysis the azimuthal
behavior of both radar and radiometer measurement signals are quantified and the geophysical
explanation discussed.



968 PIERS Proceedings, Cambridge, USA, July 5-8, 2010

2. THEORETICAL BACKGROUND

The symmetry properties of Maxwell’s equations affect the scattering and emission coefficients of
media with reflection symmetry. Natural objects with periodically structured surface are generally
reflection symmetric. The co- and cross-polarized radar cross-section and horizontally and vertically
polarized brightness temperature have even symmetry and the third and fourth Stokes parameters
have odd symmetry [3].

On the other hand, constructive summation of scattered waves takes place when the orientation
of the structures and the relationship between the wavelength and periodicity is aligned in certain
way. This is called Bragg scattering. Whereas the reflection symmetry causes smooth signature
over the azimuth angle the Bragg scattering causes sharp enhancement of backscattering at the
particular azimuth angle for, for example, crop rows.

The equations used for modeling the effect of the reflection symmetry are usually formulated as
second-order Fourier series. For brightness temperature the equations are written as [6]:

Tpp = Tppo + Tpi cos ¢ + T cos 2¢ (1)
TB,q = qu sin ¢ + qu sin 2¢ (2)

where Tz stands for brightness temperature; T},/,1/2 stand for the harmonic coefficients, in which
p denotes either first or second Stokes parameter, or modified Stokes parameter [7], and ¢ either
third or fourth Stokes parameter; and ¢ stands for the azimuth angle with respect to the periodic
surface. And for radar cross-section the equation can be written as [3, 8]:

0¥ = Ay + Aj cos g + Ay cos2¢ (3)

where Ay, /5 stand for the harmonic coefficients.
On the other hand, the condition for the row structure of the surface to cause Bragg scattering
can be formulated as:
nA = 2dsiné (4)

where n stands for integer denoting the multiples of the wavelength, A stands for the wavelength,
d stands for the spacing of the periodicity, 6 stands for the incidence angle.

It is expected that the response of PALS in SMAPVEXO08 azimuth experiment is composed of
these two components: reflection symmetry and Bragg scattering.

3. EXPERIMENT

The SMAPVEXO08 soil moisture field experiment took place in Maryland and Delaware from
September 29 to October 13, 2008. This study focuses on a set of flights carried out over one
crop field growing soy beans.

In the campaign the PALS instrument was mounted on Twin Otter aircraft with incidence angle
of about 40°. The flight altitude over the field was 1km where the antenna with 20° beamwidth
allowed footprint of about 450 x 600 m. The radar of PALS operates at about 1.26 GHz and the
radiometer at 1.413 GHz. In the SMAPVEXO08 campaign the PALS instrument was flown with
an Agile Digital Detector (ADD) for mitigation of Radio Frequency Interference (RFI) [2]. The
resolution of PALS radiometer and radar are specified in < 0.2 K and < 0.2 dB range, respectively.
PALS flew over the field in varying azimuth angles in 45° steps over the full 360°. Figure 1 shows
the ground tracks of the footprint centers over the field.

The soy beans on the field were on mature state at the time of the experiment. The spacing
between the rows was about 20cm. The water content in the soil was relative high being slightly
less than 0.3 cm?/cm3.

Figure 2 shows the row spacing which causes Bragg scattering under the conditions of the PALS
measurements in SMAPVEXO08 campaign as a function of the distance from the aircraft nadir
point. The antenna beam and the beam incidence angles within the main lobe is collocated with
the horizontal axis (the distance from nadir point) and marked with red color.

4. RESULTS

The radar and radiometer measurements over the footprint intersection were binned based on
the azimuth angle. The measurements were collected over a circular area with radius 250 m (see
the magenta circle in Figure 1) and binned in 8 azimuth bins. Brightness temperatures and radar
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Figure 1: The ground tracks of the footprints in the 1-km altitude azimuth experiment. The magenta circle
shows the area over which the data is analyzed.
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Figure 2: The row spacing allowing Bragg scattering as a function of the distance from the aircraft nadir
point in case of n = 1, 2 and 3 (multiples of wavelength).
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Figure 3: VV-polarized NRCS (left) and the second Stokes parameter (right) as a function of the azimuth
angle. The error bars show the spread of the measurement made at that particular angle. The red dashed
line on the TB plot shows a cosine curve fitted to the measurement points.
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cross-sections in these bins were combined using the inverse distance squared weighting [9] to obtain
representative values for TB and NRCS. Additionally, the standard deviations of the values in the
bins were calculated to estimate the variance of the measurement at each angle.

Figure 3 shows the VV-polarized normalized radar cross-section (left) and the second Stokes
parameter (which is defined as vertical polarization minus horizontal polarization) of brightness
temperature (right) as a function of the azimuth angle (0° is parallel to the row structure). The
error bars indicate the standard deviation of the measurement samples in the azimuth bins.

Figure 2 indicates that the row spacing of the field would cause Bragg scattering in one part of
the footprint. This backscatter enhancement can be observed at —90° and 90° in Figure 3. This
is consistent with Bragg scattering effect which occurs in perpendicular orientation from the row
direction. The Bragg scattering contribution is in the order of 1 to 3dB. The fact that the whole
footprint does not satisfy the condition for the Bragg scattering obviously lowers the contribution
(see Figure 1). The scattering symmetry effect, however, cannot be detected from the radar cross-
section measurements.

In the second Stokes parameter measurement the signature is dominated by the first harmonic
coefficient of the Fourier series in Equation (1). A cosine curve (dashed red line in Figure 3) is
fitted to the measurement with about 3 K magnitude. This would imply that the medium under
investigation, defined by mature soy beans over moist soil surface, would be reflection symmetric.

5. CONCLUSIONS

Airborne measurements of brightness temperature and normalized radar cross-section of a crop field
over the azimuth were presented. The measurement results suggest that the mature soy bean field
with distinct row structure invokes the backscatter enhancement under Bragg scattering conditions.
Furthermore, observations of the second Stokes parameter suggest that the soil/soy bean medium
has reflection symmetric properties. The result is expected for a fine resolution scale measurement
of a homogeneous field surface such as the one in question. The result is useful in assessing the
contribution of periodic structures on the forward models on small resolution scale. These results
can then be combined at coarser resolution while accounting for the natural distribution of targets
different types of targets.
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Abstract— The paper studies the wave equations for the electromagnetic field when there is
the gravitational field at the same time. In the description with the algebra of octonions, the
deductions of wave equations are identical with that in conventional electromagnetic theory with
vector terminology. By means of the octonion exponential function, we can draw out that the
electromagnetic waves are transverse waves in a vacuum. The inference can be used to rephrase
the law of reflection, Snell’s law, and Fresnel formula etc. The study claims that the deductions of
wave equation for electromagnetic fields keep unchanged in the case for existence of gravitational
fields. The electric components of electromagnetic waves can not be determined simultaneously
with magnetic components in electromagnetic fields.

1. INTRODUCTION

In the electromagnetic field, the inferences of wave equation are believed to be correct. Until to now,
this validity is confined only to one special condition that there exist only the electromagnetic fields.
When there are gravitational fields, the people doubt whether the wave equation of electromagnetic
field is still correct or not. The validity about wave equations is being questioned continuously, and
it remains as puzzling as ever. The existing theories do not explain why the deductions of wave
equation should keep unchanged, and then do not offer compelling reason for the unique situation.
The paper tries to find out why the deductions of wave equation keep the same in most cases.

The algebra of quaternions was invented by W. R. Hamilton [1] in 1843, and then was first used
by J. C. Maxwell [2] in 1861 to represent field equations of electromagnetic field. O. Heaviside in
1884 recast Maxwell equation in terms of vector terminology and electromagnetic forces [3], thereby
reduced the original twenty equations down to the four differential equations.

In 1871, H. Helmholtz made clear the electromagnetic theory effectively [4]. Studying Helmholtz
equation [5] and boundary conditions can deduce some wave features, including the law of reflection,
Snell’s law, Fresnel formula, and total internal reflection etc. In 1887, H. R. Hertz was the first to
satisfactorily demonstrate the existence of electromagnetic radiation by constructing an apparatus
to produce and detect the electromagnetic waves.

In the paper, rephrasing with the algebra of octonions, we will achieve Maxwell equation in the
electromagnetic fields, and then some wave properties in a vacuum, including the electromagnetic
wave equation and the transverse waves etc.

2. ELECTROMAGNETIC AND GRAVITATIONAL FIELDS

The wave feature of gravitational field and electromagnetic field can be described simultaneously
by the octonion space, which consists of two quaternion spaces [6].

In the quaternion space, the coordinates are 1o, 71, 72, and 73, with the basis vector E;, =
(ig,i1,12,13). The radius vector is Ry = ¥(r;i;), and the velocity V4, = ¥(v;i;), with ig = 1. Herein
ro = vot. vg is the speed of gravitational intermediate boson, and ¢ is the time. ¢ = 0,1, 2, 3.

In the quaternion space for the gravitational field, the gravitational potential is A, = X(a;i;),
and the gravitational strength is B, = X(b;i;) = ¢ 0 A,. While the gravitational strength B, covers
two parts, g/vg = dpa+ Vag, and b =V x a. That is, B, = by + (g/vo + b). The gauge equation
is, bp = Opap + V -a = 0, with a = ¥(a;i;), V = X(i;0;). Herein the o denotes the quaternion
multiplication, the operator ¢ = ¥(i;0;), with 9; = 9/dr;. 7 =1,2,3.

In the quaternion space for the electromagnetic field, the basis vector is E. = (Io, I1, Iz, I3),
the radius vector is R, = ¥(R;1;), and the velocity is V., = 3(V;I;). The E. is independent of the
Eg, with E, = E; oIy and Iy oIy = —1. Vj is the speed of electromagnetic intermediate boson.

These two quaternion spaces can be combined together to become an octonion space [7], with
the octonion basis vector E = (ip, i1, i, i3, Iy, I, I2,I3). The radius vector in the octonion space
is R = ¥(r;i; + R;I;). And that the octonion velocity is V = X(v;i; + V;1;). Herein the symbol o
denotes the octonion multiplication.

The potential of gravitational field and electromagnetic field are A, = ¥(a;i;) and A, = X(A4;1;)
respectively. They are combined together to become the field potential, A = A, + ke4A., in the
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octonion space. The field strength B consists of the gravitational strength B, and electromagnetic
strength B.. That is, B = ¢ 0 A = B, + k.yBe, with the k.4 being a coefficient. While the strength
B. = Bolp + (E/Vh + B), and covers two parts, E/Vy = (0pA + VAp) oIy and B = (V x A) o I,.
The gauge equations are by = 0 and By = 0. Herein, By = dpAg + V - A, with A = X(4;i;).

The electric current density, S, = ¢V, is the source of electromagnetic field in the octonion
space. Meanwhile the linear momentum density is that of gravitational field. And the source S was
devised to describe consistently the field source of electromagnetism and gravitation.

(B/vo + 0)* 0 B = —uS = —(11gSg + kegpteSe), (1)

where p is a coefficient. . and pg4 are the electromagnetic and gravitational constants respectively,
with k:gg = fig/te. q is the electric charge. And * denotes the conjugate of octonion.
According to the basis vectors, the above can be decomposed further as follows,

B o B/vo + 07 0 By = — 1Sy, (2)
O 0 Be = —teSe. (3)

In the above, Eq. (2) is the field equation for the gravitational field, meanwhile Eq. (3) is for
the electromagnetic field. Further, the latter one in the above can be rewritten as,

V-B =0, (4)
0B+ V* x E/Vy =0, (5)
V*-E = —(q/ee)lo, (6)
WE/ Vo + V" x B = —p.S, (7)
where the coefficient e. = 1/(ueVE). S = 2(5;1;), Sj = qVj. So = Solo, So = qVb.

By contrast with Maxwell equation in vector terminology, it is found that the above is the same

as that in conventional electromagnetic theory, except for the direction of displacement current.
And the gauge equation By = 0 is different either.

Table 1: The octonion multiplication table.

1 i i i3 I, I, I, I,
1 1 i i i3 I, I, I, I
i -1 iy -y I, I, -I I,
i iy i3 -1 i, I, Iy -I, -I,
s i3 i -4 -1 I L I, -I,

Ib I, -, -I, -I, -1 i i» i3
L L I, I, I, —i -1 —iz i

L, I, I, I, -I, —i, i3 -1 —i
L I, L I, I, —iy - 1 -1

3. OCTONION EXPONENTIAL FUNCTION

In the octonion space, defining the octonion exponential function as
exp {I(a + ib)} = cos(a + ib) + Isin(a + ib), (8)

where a and b are all real. 7 is the imaginary unit. I is the octonion unit, with I-I = —1.
When b = 0, the above reduces to one octonion, exp(Ia) = cos(a) + Isin(a). When a = 0,
Eq. (8) reduces to the exponential function,

exp(Iib) = cos(ib) + Isin(ib). (9)
The octonion exponential function exp(—il«) satisfies,

exp(—ila) o exp(ilar) =1, exp(—ila) o exp(—ila) = exp(—il2a), (10)
9j exp(—ila) = ilKj o exp(—ila), 97 exp(—ila) = K7 exp(—ila), (11)
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where a = —(XKjr;), with K; being the coefficient.

In case there is only the quaternion components in the unit I, Eq. (8) reduces to the quaternion
exponential function, exp {i(a + ib)} = cos(a + ib) + isin(a + ib). And that the octonion unit I is
reduced to the quaternion unit i, with ioi = —1.

4. WAVE EQUATION

Studying wave transmission of electromagnetic field need to solve Maxwell equation Egs. (4)—(7).
In a vacuum far away from the field sources, there does not exist free electric charge Sy and electric
current S, and then field equation Eq. (3) can be reduced to,

O* o B, = 0. (12)
Applying the operator ¢ to the above, we have the wave equation
0o (0" oBe) =0, (13)
or Laplace equation,
(05 + 0f + 03 + 93)B. = 0. (14)

The Laplace equation is also the wave equation in the octonion space. In a similar way, this
wave equation can be obtain from Eq. (12) with the conjugate operator ¢* in a vacuum.

Proceeding with the operator dy and V, we can obtain the wave equation about the components
of field strength from the Maxwell equation directly,

(O} + 0} + 03 +02)E =0, (15)
(O + 0 + 03 +03)B =0. (16)

The above means that the Eq. (14) can be separated into two parts in the above. And two
strength components of electromagnetic field, E and B, are both possessed of wave features, and
can be detected at present.

Table 2: The operator and multiplication of the physical quantity in the quaternion space.

definition meaning

V- -a —(01a1 + Dras + Osa3)

V xa i1 (02a3 — O3a2) + i2(03a1 — Oraz) + i3(Oras — Daay)
Vag i101a0 + i202a0 + i303a0

Opa i100a1 + i20pas + i30pas

5. TRANSVERSE WAVE

In a similar way, for the electromagnetic wave with the angular frequency w, the field strength
should be a harmonic function, coswt, and can be chosen as the function exp(—iwt).
The electromagnetic strength E and B can be written as follows,

E = E(r) exp(—iwt), B = B(r)exp(—iwt), (17)
substituting the above in Eqs. (15) and (16),
(—w? + Z@?)E(r) =0, (—w?+ Z@?)B(T) =0. (18)

From Maxwell equations, Egs. (5) and (7) in a vacuum, we find that the amplitude of electro-
magnetic strength will be increased steadily or deceased continuously. So the field strength is one
hyperbolic cosine cos(icr), and can be replaced by the exp(—ila) further. Herein, ¢ is the imaginary
unit. The wave vector is K = 3(I;K}), and vector radius r = X(i;r;).

And then, the field strength E(r) and B(r) are

E(r) = Eg oexp(—ila), B(r) =By oexp(—ila), (19)
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Table 3: The operator and multiplication of the physical quantity in the octonion space.

definition meaning

Vv-S 7(8151 + 0255 + 8353)10
VxS  —1,(0255 — 05S5) — Io(3Sh — 01Ss) — Ts(1Ss — 9r51)
VSy 10150 + 120250 + 13035
0oS 10051 + 120052 + 130053

where Eg and By both are the constant vectors in the octonion space.
Further, substituting Eq. (19) in Eq. (18), we have the result,

— (w/Vo)* + BK7 =0. (20)

In the electromagnetic field, we will find that the electromagnetic waves are the transverse waves
in a vacuum. From the field equations

V-E=0, V-B=0, (21)
we obtain
K- -Ey=0, K-E{):O, K-By=0, K-B6:0, (22)

where E/ = EO o I, B6 == Bo ol

The above states that the electromagnetic waves, Eg and By, both belong to transverse waves.
So do two new wave components, Ej and Bj,. Moreover, the amplitudes of wave components, E{,
and By, are the same as that of Eg and By respectively.

In the electromagnetic field, there exist some relationships among the wave components, Eg and
By, with two new kinds of wave components, E{ and By,. The field equations,

VxE=0B/0t, V-E=0, (23)
can be rewritten as,
VoE =0B/ot. (24)
Expanding the exp(—ila), the above implies that
[K o E{, + wBy]cosh(a) + [K o Eg — wBg]sinh(a) = 0, (25)
considering Eq. (22) and the a may be any value, and then
K xEj+wBy=0, KxEj—wBj=0. (26)
In the same way, from the field equations
ViV xB=0E/dt, V-B=0, (27)
we have
K x B +wEg/VZ =0, K xBy—wE,/VZ=0. (28)

The above means that there are some relationships between the B, with B, o I. The K and
E( will yield a new wave component By, while the K and B produce a new wave component Ej.
Associating with the K x By is only the E{,, and with the K x Eq is the Bj,. This implies that
it is impossible to determine simultaneously the Eg and Bg via the K. However, we can measure
the Eo and By, synchronously, or the E{, and By at the same time. In the nature, there are many
substances being able to slow down the speed of electromagnetic waves, so the electromagnetic
strength may possess the wave features, including the reflection and refraction etc.
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6. CONCLUSIONS

In the electromagnetic and gravitational fields, the field equations and their wave features can be
rephrased with the algebra of quaternions and of octonions. The related conclusions include the
wave equation and transverse wave etc.

In the electromagnetic field, making use of the algebra of octonions, we can deduce the wave
equation, and find that electromagnetic waves belong to the transverse wave in a vacuum. Bringing
in the octonion exponential function exp(ila), the wave vector and electromagnetic wave compo-
nents, Ey and By, will produce two new wave components, E{, and By, respectively. In contrast
to conventional electromagnetic theory with vector terminology, the research points out that the
E( and By can not be determined simultaneously via the wave vector. But the Eg and B{, can be
measured at the same time, while the E{, and By can also be.

It should be noted that the study for the deductions of wave equations in the electromagnetic
fields examined only some simple cases in octonion spaces. Despite its preliminary characteristics,
this study can clearly indicate that the wave equation of electromagnetic field can be deduced
from the field equation with the algebra of octonions, and obtain some inferences in the vacuum
far away from the field sources. For the future studies, the research will concentrate on only the
electromagnetic waves transmitting in the conductors.
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Abstract— The theorem for existence and for the main properties of the L (¢, n) numbers
(¢ — real, N — restricted positive integer), is formulated with the help of three lemmas and proved

numerically. Lemma 1 discloses the existence of quantities and determines them for ¢ # [, (f =
0,—1,—2,...) as the common limits of some couples of infinite sequences of positive real numbers,
constructed by means of the positive real zeros of a real Kummer confluent hypergeometric
function of specially picked out parameters. Lemma 2 defines the same in case ¢ = [ (when
the function in question has simple poles) as the common limit of the sequences of ﬁ([ —&,n)
and f/(f+ €,7 4+ 1) numbers in the sense of Lemma 1 attained, if the positive real number &
becomes vanishingly small and shows also that under the circumstance referred to f)([ +£,1)
approximates to zero. Lemma 3 states that for ¢ = [ and & = 141 it holds L(¢&,7) = L(2 — [, 7) and
L(1+41,7) = L(1 —I,7), resp., and that L(0.5,7) and L(1.5,7) are related with the Ludolphian
number 7. The application of results obtained in the theory of waveguides is demonstrated.

1. INTRODUCTION

The name L numbers has been given to the common limits of some infinite sequences of positive
real numbers with terms, devised by means of the positive purely imaginary (real) zeros of definite
functions, constructed with the help of complex (real) confluent hypergeometric ones [1] of specially
chosen parameters and eventually also through cylindrical functions [2-6]. They appeared in the
theory of azimuthally magnetized circular ferrite waveguides, sustaining normal (slow) T'Ey,, (TEOﬁ)
modes, based on the functions mentioned, studied for the development of microwave ferrite control
components [2—6].

In this investigation the theorem for existence and for the basic features of the L(¢, 7) numbers —
an integral part of the aforesaid class, is advanced and substantiated numerically. Following the
recently elaborated model [3, 5], it is structured as a composition of three lemmas. The first of them
reveals the existence of numbers and defines them as the limits of the infinite sequences of numbers

{K_(&,n,k-)} and {NI_(¢,7, k_)} in which K_ (&7, k) = [k_|C\ and N_ (&7, k) = |a_|C\
in case k_ — —oo, (féc)n — nth positive real zero of the Kummer function ®(a,¢;z) in & with
a, ¢, & —real,a <0, é>00ra<é<0,e#01=0,-1,-2.., k =a-¢2 —real i =a,

z > 0, n — positive integer, linked with a or with a and ¢. Lemma 2 determines the quantities in

case ¢ = | as the common limit of the sequences {L(I — &,7)} and {L(I+ &7+ 1)} for & — 0 (6 —
infinitesimal positive real number). Lemma 3 reveals some of their characteristics. (The hats “”

are used to designate real quantities.) The employment of quantity ﬁ(S, n) is commented.

2. THEOREM FOR EXISTENCE AND FOR THE MAIN PROPERTIES OF THE f,(é, )
NUMBERS

Theorem 1: The statement of the theorem is expressed by the following three Lemmas:

Lemma 1: If( zs the nth positive real zero of the Kummer confluent hypergeometric function

®(a, ¢ ) in & provzded a, ¢, T are real, a < 0, ¢ — restricted positive number, ¢ >0 (n =1,2,...,p,
p=abslal) ora <0, ¢ — restmcted negative real number, different from zero or a negatwe mteger,
¢ <0

s
(e#1,1=0-1,-2..),a<e<0, (h=12....4 3 =p—q p=absla], § = abs[e].
g =12...,p—1), k. = a— ¢/2 — real, negative, & = c/2—|—k_, & > 0, ([a] denotes the
&9 M_(Ein k) = ol | (@- = o),

largest integer less or equal to a), K_(¢,n,k_) = |k_|C
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then the infinite sequences of positive real numbers {élic)n}, {IA(, (¢,n,k_)} and {M, (¢,n, l;:,)} are

convergent for k_ — —o0, (¢, — fized). The limit of the first sequence is zero and the limit of the
second and third ones is the same. It equals the finite positive real number L where L = L(¢,n). It

s valid:

lim f(, (cn 1%,) — lim N_ (cn 1%,) — L(&,n). (1)
k_— k_——o00
L(l - A) and L(l + &, +1) are finite positive real numbers in the sense of

Lemma 2: If L(l — ¢,
Lemma 1 in which | = 0,—1,—2,... is zero or a negative integer, € is a positive real number,
less than unity, (0 < &€ < 1) and n 15 a restricted positive integer, taking the same values as in
Lemma, 1, then the infinite sequences of positive real numbers {L(I — é,7)} and {L(I 4+ &7+ 1)} are
convergent for é — 0 and possess a common limit. The sequence {L(l —&,n)} ({L(I+&,a+1)})
tends to it from the left (right). The limit mentioned is accepted as a value of the ﬁ(é, n) number

Table 1: Zeros é}gé) _and numbers K_(é,7,k_) and M_(é, 7, k_) for ¢ =1 and 3, assuming 72 = 1 and 2 in
case of large negative k_.
¢ ¢o, Reai) | m_(cak) (9, R(enk) | m_(cak)
k- 1 3
n=1
—1.10% [(-4) 14457964919 1.44579 64919 1.44572 42021 |(-4) 6.59365 41513 6.59365 41513 6.59266 51031
—-2.10% |(-5)7.22898 24551 1.44579 64910 1.44576 03461 |(—4) 3.29682 70590 6.59365 41179 6.59315 95939
—4.10% [(=5)3.61449 12270 1.44579 64908 1.44577 84184 | (—4) 1.6484135274| 6.59365 41096 6.59340 68475
—6.10% [(=5)2.40966 08179 1.44579 64908 1.44578 44425 |(-4) 1.0989423513| 6.59365 41080 6.59348 92667
—-8.10% [(-5) 1.80724 56134| 1.44579 64908 1.44578 74545 |(=5) 8.24206 76344|  6.59365 41075 6.59353 04765
—1.105 [(-5) 1.44579 64907| 1.44579 64907 1.44578 92618 [(-5) 6.59365 41072 6.59365 41072 6.59355 52024
=2
Z1.10% (4)7.6178156311] 76178156311 | 7.61743 47403 |(=3) 1.7712500013] 17.71250 00134 | 17.70984 31384
—2.10* |(-4)3.8089077986] 7.6178155972 | 7.6176251518 |(—4) 8.8562499003| 17.7124998007 | 17.71117 13632
_4.10* |(—4) 1.9044538972] 7.6178155887 | 7.6177203660 |(—4)4.4281249369| 17.7124997475 | 17.71183 55288
—6.10* |(—4) 126963 59312| 7.6178155872 | 7.6177521054 |(—4)2.95208 32896| 177124997377 | 17.71205 69252
—8.10% (=5)9.5222694833] 7.6178155866 | 7.6177679753 |(—4)2.2140624668| 17.7124997342 | 17.71216 76248
Z1.105 |(-5)7.6178155864] 7.6178155864 | 7.6177774973 |(—4) 1.7712499733| 177124997326 | 17.71223 40451

Table 2: Zeros {* and numbers K_ (¢, k) and M_(¢,7, k_) for ¢ = —1.03527 61948 and 0.21846 97035,

assuming n = 1 and 2 in case of large negative k_.

p ¢o, R (enk) M_(c.nk) o, k(e k) M_(e. i)
k- —1.03527 61948 0.21846 97035
n=1
—1.10* [(—4)6.4031064354] 6.40310 64354 | 6.40343 78846 |(-5)2.4156151178] 0.2415615118 | 0.24155 88731
—2.10% [(-4)3.2015532018| 6.40310 64035 | 6.40327 21281 [(=5) 1.2078075589| 0.2415615118 | 0.24156 01924
—4.10* [(-4) 1.60077 65989| 6.40310 63956 | 6.4031892578 |(—6) 6.03903 77944| 0.24156 15118 | 0.24156 08521
—6.10% |(—4) 1.06718 43990| 6.40310 63941 | 6.40316 16356 |(—6) 4.02602 51963| 0.2415615118 | 0.24156 10720
~8.10% [(=5)8.0038829919| 640310 63936 | 6.4031478247 |(-6)3.0195188972| 0.2415615118 | 0.2415611819
~1.105 [(=5)6.4031063933| 6.40310 63933 | 6.4031395382 |(=6)2.4156151177| 0.2415615118 | 0.24156 12479
n=2
—1.10% [(=3) 1.74371 44423] 17.4371444227 | 174380470358 |(—4) 4.47004 35373] 4.47004 35373 | 4.46999 47089
—2.10% [(-4)8.7185721078| 174371442156 | 17.4375955221 |[(-4)2.2350217627| 4.4700435254 | 4.4700191112
—4.10% |(-4) 435928 60409| 17.4371441638 | 17.4373698170 [(~4) 1.11751 08806 4.4700435224 | 4.47003 13153
—6.10% [(—4)2.90619 06924 17.4371441542 | 17.43729 45897 |(=5) 7.45007 25364| 4.4700435219 | 4.47003 53838
—8.10% [(—4)2.17964 30189| 17.4371441508 | 174372569775 |(=5) 5.5875544021| 4.4700435217 | 4.47003 74181
~1.105 [(—4) 1.7437144149| 174371441493 | 17.4372344106 [(=5) 447004 35216| 4.4700435216 | 4.47003 86387
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in case ¢ =1 (¢ — zero or a negative integer). Thus, it is assumed that:

Moreover, the sequence {f)([+ g,n)} in which [=0,-1,-2,-3,...
is a positive real number, less than unity, (0 < é < 1) and i =1 is convergent, as well when & — 0
with the zero as its left limiting point.

Lemma 3: Under the conditions

Besides, it is valid:

Numerical proof: The proof of Lemma 1 is illustrated in Tables 1 and 2 for ¢
integers and arbitrary real numbers (positive and negative, save for ¢ = [), and that

L(e,n) = hmﬁ(i—é,ﬁ)

é—0

= lim L
E—0

(FOsm) = (e ) ()

(Z+é,ﬁ+1).

Correspondingly, it is written:
1im£(i+é,1) —0.
é—0

of Lemmas 1 and 2, it is true: 1) In case ¢
L(l,n)=L(2—1,n); @) If¢c=1%1, (¢=0,%+1,£2,43,...), it is fulfilled: L(1+1,n) = L(1—1,7n);

~

s zero or a negative integer, é

Table 3: Numbers L(¢,7) with é =1 — & and L(é,72 + 1) with ¢ = [+ £ in case [ = 0,—1,...,—5, 7 =1 and
2for é=10"%4=1,2,...,5.
I 0 -1 -2 3 4 -5
n=1
I:(f —&,n
1.10°! 3.31569 73770 6.05485 68064 9.44333 92952 13.45838 85151 | 18.0845298622 | 23.31039 98436
1.102 3.63470 41442 6.53958 16381 10.10326 29760 | 14.30218 06384 | 19.12012 98110 | 24.54513 46009
1.1073 3.66691 06818 6.58824 48059 10.16928 06088 | 14.38638 11950 | 19.22327 55144 | 24.66793 09171
1.10+* 3.67013 44314 6.59311 31561 10.17588 28648 | 14.39479 98367 | 19.23358 64627 | 24.68020 44600
1.10°° 3.67045 68374 6.59360 00120 | 10.17654 30967 | 14.39564 16897 | 19.23461 75267 | 24.68143 17627
i(2-1.4)
‘| 3.67049 26605 6.59365 41068 | 10.17661 64546 | 14.39573 52258 | 19.23473 20834 | 24.68156 81193
I:(l +é,n+ 1)
1.10°5 3.67052 84839 6.59370 82026 10.17668 98148 | 14.39582 87672 | 19.23484 66501 | 24.68170 44932
1.10 3.67085 08967 6.59419 50621 10.17735 00455 | 14.39667 06119 | 19.23587 76963 | 24.68293 17652
1.10°3 3.67407 53350 6.59906 38670 | 10.1839524164 | 14.40508 89478 | 19.24618 78515 | 24.69520 39706
1.102 3.70635 07496 6.64777 25059 10.24998 15422 | 14.48925 89278 | 19.34925 42483 | 24.81786 65343
1.10°! 40322378730 7.13702 39958 1091101 76357 | 15.32993 74668 | 20.37684 63973 | 26.03912 57896
n=2
ii-é.7)
1.10°" | 11.70308 17308 | 16.93402 62374 | 22.85963 85091 | 29.46141 82532 | 36.72453 54054 | 44.63690 08475
1.102 12.24413 74109 | 17.63436 01501 | 23.72317 15028 | 30.49220 78437 | 37.92659 32481 | 46.01412 90483
1.103 | 12.2985631700 | 17.70468 28252 | 23.80976 84684 | 30.59547 29546 | 38.04691 75870 | 46.15189 40180
1.10* | 12.30400 89570 | 17.71171 80099 | 23.81843 06442 | 30.60580 13907 | 38.05895 12928 | 46.16567 10478
1.10° 12.30455 35690 | 17.71242 15575 | 23.81929 68921 | 30.60683 42536 | 38.06015 46919 | 46.16704 87563
i2-i.4)
‘| 12.30461 40804 | 17.71249 97298 | 23.81939 31360 | 30.60694 90162 | 38.06028 83854 | 46.16720 18348
i(l +&,n+ 1)
1.105 | 12.30467 45944 | 17.71257 79022 | 23.81948 93910 | 30.60706 37790 | 38.0604221108 | 46.16735 49136
1.104 | 12.3052192111 | 17.71328 14563 | 23.82035 56335 | 30.60809 66462 | 38.06162 54813 | 46.16873 26232
1.103 | 12.31066 57118 | 17.72031 72898 | 23.82901 83612 | 30.6184255115 | 38.0736594717 | 46.18250 97741
1.102 | 123651628481 | 17.7907048475 | 23.91567 05215 | 30.72173 35481 | 38.19401 22805 | 46.32028 68487
1101 | 12.9133550520 | 18.4975246490 | 24.7847192258 | 317568103910 | 39.39891 01103 | 47.69871 66990

= [, it holds:

— positive
of Lemmas
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Table 4: Numbers L(&,n) with é =+ & in case [ =0,—1,...,—5, A =1for é=10"% i=1,2,...,5.
A 0 -1 -2 -3 —4 -5
i(i+§,1)

1.107 0.00001 00000 | 0.00448 54849 0.04994 90596 | 0.20013 48158 0.51378 35703 1.03676 73410
1.10~* 0.00010 00050 | 0.01427 59657 0.10925 61462 | 0.36404 21445 0.83761 28606 1.57171 80732
1.1073 0.00100 04999 | 0.04607 07880 | 0.2437470870 | 0.67670 89436 1.39589 82715 | 24347057174
1.102 0.01004 99171 0.15530 16048 0.57183 93596 1.32229 98657 2.44008 91907 | 3.94611 12078
1.10°! 0.10492 12125 0.60135 94011 1.54771 56128 2.95799 04285 4.83919 24333 | 7.19567 87737
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Figure 1: Dependence of f/(é, 7) numbers on 7 with  Figure 2: 5(1)(7‘7(()1)) — curves of the slow TFéll) mode
¢ as parameter. in the ferrite guide for —1 < &M < 0.

2 and 3 i) — in Tables 3 and 4 (cf. the digits marked by bold face type). The case 1w = 1 and
2 is considered, except in Table 4, corresponding to 7 = 1 only. Statement i) of Lemma 3 is
an obvious corollary of point i) of the same. The authentity of Eq. (4) is checked directly, (e.g.,
L(0.5,1) = 0.6168502751 and L(1.5,1) = 2.4674011003). The effect of ¢ and 7 on L(é,7) is
presented in Fig. 1 and Table 5.

3. APPLICATION

The propagation of slow TAEOTAL modes of phase constant B is considered in a circular waveguide of
radius 7, entirely filled with azimuthally magnetized ferrite, described by a permeability tensor
of off-diagonal element & = fyMr Jw, (7 — gyromagnetic ratio, M, — remanent magnetization,
w — angular frequency of the wave), and a scalar permittivity ¢ = ege,. The solution of Maxwell
equations subject to the boundary condition at the wall 7 = 7y reveals that they are governed by
the characteristic equation:

@ (a4, ) = 0, (5)

with & = ¢/2+ k, ¢ = 3, &g = 2Bat0, k = aB/(262), B = [ — (1 — 42)]"/? — radial wavenum-

ber. It is valid provided (s = CAIE:C)] /(2f0), giving the eigenvalue spectrum looked for. It may

~ (1 (2
be shown that transmission of two slow waves TE((m) and TE((m) is possible in two areas for
\&9)\ < 1 and |d(,2)| > 1, resp. Fig. 2 presents with dashed lines the phase characteristics for

~ (1
T Eél) mode, corresponding to the first case computed, following the procedure, developed ear-
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lier [2,6]. The curves are restricted by an envelope line from the side of lower frequencies of

equation: 7oen— = L(&, 1) /{|é&

(1)

en—

- @0 )22y, 39 =1 — (al

1)

n—

)2]1/2 (&(1)

eENn—

is a parameter)

where 7o = Bofor/Er, B = B/(Bov/Er), By = B2/(Boy/Er) and By = w,/Eofig. (Throughout the paper

the subscripts

“_

9

magnetization, resp. to the envelope.)

Table 5: Values of L(¢,7) as a function of ¢ for 2 =1 and 2.

and “en—" distinguish the quantities, relevant to negative (&— < 0, k— < 0)

e n

A

c

A

c

=>

-3.0

2.0

-1.0

1.0

1.44579 64907

2.0

3.67049 26605

2.8

4.00209 21312

-1.8

222586 15078

-0.8

0.96338 27690

0.21940 16817

1.2

1.83206 07322

22

4.20080 97355

2.6

5.69683 88860

-1.6

3.37709 13769

-0.6

1.62888 38548

0.47564 39874

14

2.24827 40891

24

4.75859 34562

2.4

7.22882 15474

-14

4.45444 70199

04

228943 38223

0.76647 86833

1.6

2.69377 63812

2.6

5.34351 81897

22

8.70942 88338

-12

5.51970 18426

-0.2

2.96757 32740

1.09027 62038

1.8

3.16800 91269

2.8

5.95529 25831

2.0

-1.0

0.0

1.44579 64907

2.0

3.67049 26605

3.0

6.59365 41068

-3.0

2.0

-1.0

1.0

7.61781 55859

2.0

12.30461 40804

2.8

16.26302 22910

-1.8

11.64784 18558

—0.8

7.68564 25102

4.40112 03549

12

8.49636 43640

22

13.32925 60604

-2.6

18.13168 59216

-1.6

13.13246 77929

0.6

8.80050 96937

5.16075 88218

1.4

9.40449 70823

24

14.38254 76497

24

20.01051 78375

-14

14.63601 10992

04

9.94098 66095

5.94997 97114

1.6

10.34204 18046

2.6

1546430 37705

2.2

21.90515 62688

-1.2

16.16193 26198

—0.2

11.10869 26401

6.76899 23948

1.8

11.30881 16816

2.8

16.57434 53219

2.0 -1.0 0.0 7.61781 55859 | 2.0 {12.30461 40804 3.0 {17.71249 97298

4. CONCLUSION

The positive real numbers L(¢,7) are defined for é — arbitrary real and 7 — restricted natural

number as limits of certain sequences of real ones. On condition that ¢ # ) , [ = 0,-1,-2,-3,...,
the terms of the latter are composed through definite zeros of a real Kummer function of suitably

selected parameters, whereas if ¢ = [ (for which the function mentioned does not exist), as such
serve the quantities L(l — €,7) and L(l 4 é,n + 1) with ¢ — 0. Besides, a symmetry of the numbers
toward the point ¢ = 1 is found. The use of quantity L(3,7) in the theory of waveguides is shown.
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About the Specific Heat of Black Holes
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Abstract— If we give a certain thermic energy to a black hole (BH) it can happen that its
temperature decreases and its specific heat (SH) has a negative number. At the same time its
mass will increase, according to Hawking’s equation: Tpy = 87/m.

The mathematical formalism is easy and elegant, however, we do not know the real physical
checking which may explain this peculiar phenomenon. With this paper we try to describe how
heat may give a mass to the BH.

1. INTRODUCTION

The specific heat (SH) of a body is measured by the increase of its temperature when a thermic
energy is applied. In the case of an ordinary body we have a positive number, because the temper-
ature usually increases when a heat is applied. This is related to the second law of thermodynamics
according to which the heat passes from a warmer body to a colder one, until they have the same
temperature. However, if we analyse the entropy and the SH of a Black Hole (BH), as well as its
variations, the topic becomes more complex. As Hawking tells us “the second law of thermody-
namics has got its own status quite different from the other scientific laws, since it doesn’t seem to
be always applicable, but only in most of the cases. Apparently in the case of a BH there is quite a
simple way to violate the second law, such as throwing in BH some matter with a certain entropy,
for example a container full of gas. In this way, the matter’s total entropy would decrease and it is
not possible to see, inside the BH, how much entropy the matter has. Hence the area of its event
horizon (EH) increases every time matter falls in the BH” [1] (in Space-Time the EH is a 3-surface
H where, of course, H stands from Hamiltonian).

It was Bekenstein to suggest that the area of the EH was a measure of the BH’s entropy. Thus
every time the matter (carrying some entropy) fell in a BH, the area of the EH would increase,
so that the total entropy (that is the entropy inside and outside the BH) would not decrease. In
this way the second law of thermodynamics was not violated. However, a BH having entropy
implies a thermic radiation, an inside temperature, so it should behave as a black body. In fact “a
body with a particular temperature must emit radiation with a certain rhythm. This radiation is
required to prevent the violation of the second law. Thus, BH should emit a radiation too and,
according to Heisenberg’s Uncertainty Principle, BH (rotating and non rotating) should create and
emit particles.

“Calculations confirmed this emission, and showed that the spectrum of the emitted particles
was exactly the one which would have been emitted by a warm body, and that BH emitted particles
exactly at the right rhythm to prevent the violation of the second law. Calculus, repeated by several
researchers, have always confirmed that BH should always emit particles and radiations exactly as
if it was a very hot body, with a temperature depending only on its mass: the higher its mass the
lower the temperature” [1], and vice versa. In fact “a BH with a mass some times bigger than the
sun’s, would have a temperature one millionth degree bigger than Absolute Zero, that is much lower
than the radiation of microwaves which is in the universe (about 2,7 degree higher than Absolute
Zero), so that BHs emit even less than what they absorb” [1].

On the contrary “the lower the BH mass, the higher its temperature. Thus, as the BH loses its
mass, its temperature, and its emission rhythms, will increase, as a consequence it loses mass even
more quickly and it is doomed, probably, to disappear completely in a tremendous final explosion,
as big as the explosion of millions of H bombs. It is likely there exist primordial BHs with a
very small mass, produced by the collapse of irregularities emerged in the very first phases of the
universe.

Apparently these BHs have a very high temperature and they emit radiations with a much
higher rhythm. A primordial BH with a mass of a billiard of tons would live more or less as long
as the present age of the universe. Primordial BHs with a smaller initial mass would be already
completely evaporated, whereas those with a slightly bigger mass would be still emitting radiations
as X and gamma rays: in fact we observe a bottom of gamma rays” [1], as well as a bottom X
radiation, as detected by Giacconi and Tucker [2].
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2. DISCUSSION

We need to consider that in the ordinary General Theory of the Relativity, where Space-Time is
four dimensional, a stationary, isolated BH is described in Kerr’ metric [3], characterized by the
values of only two real parameters (not negative): m and a, where m is the total mass of BH and
a - m its total angular momentum. “The unrestrainable nature of BHs, since they collect any sort
of material, makes so BHs have very big entropies. BH’s entropy has a geometrical interpretation:
it is proportional to the EH’ area of that Hole!” [4]. According to the well known formula of
Beckenstein-Hawking, it is possible to attribute a well defined entropy:

Kc3A
B = iGh W

where A is EH’superficial area of the BH, K is Boltzmann’ constant, ¢ is the speed of light, G is the
gravitational constant, / is Planck’s constant written in Dirac’s way, S is the entropy. As Penrose
suggests “it is often extremely convenient to adopt for all these constants the unitary value, i.e., 1:

G=c=h=K=1 (2)

In this way also the temperature unit becomes an absolute thing” [4]. Hence, the Eq. (1) can
be reformulated in following way:

1

that is the entropy of a BH, according to Beckenstein-Hawking’s formula, it will just be one fourth
of EH’s area of the BH we took in consideration. In Kerr’s solution we find:

87 G2

A= i m(m+ mz—aQ) (4)
SH = 27T;Km (m +vm?2 — a2) (5)

expressed in general units” [4]. It is possible to infer that the higher the value of A, that is
EH’s surface area, the bigger BH’s evaporation phenomenon. Hawking provides a relevant result
“demonstrating that a BH must have also an its own temperature, which is proportional to the so
called superficial gravitation of the Hole. Using Kerr’s geometry, we get:

B 1
fonn = dtm {1 + ( — %)%} )

where T is the temperature of BH, m its mass, a - m its angular momentum. This temperature can
be obtained by the standard formula of Thermodynamics:

TdS = dE (7)

where, varying the energy E, we keep the angular momentum constant. Hence, BH will emit pho-
tons, as it was a physical object in a thermal equilibrium, irradiating energy with the characteristic
spectrum of (Planck’s) black body, at a temperature Tpy” [4]. We need to specify that in order
that Kerr’Geometry describes really a BH, not a naked singularity, it is necessary that m is bigger
(or equal to) than a. “The limit case of an ordinary BH happens when m = a, which just justifies
it as a BH. It is really a limit case (not reachable from an astrophysical point of view) of common
BH, with a zero value for its Hawking temperature. It is also necessary to mention a peculiar ther-
modynamic property of normal BHs, which with small angular momentum have negative SH. If we
give heat to a BH we notice that its temperature decreases” [4]. If we apply heat to an ordinary
body, its temperature will increase and its SH will have a positive value. Whereas, if we apply a
heath to a BH “the thermal energy provides mass to the BH (according to E=mc?) and it becomes
more massive. According to Hawking’s relation:

8
Ty = —
b= ®)

related to a Schwarzchild’s BH, its temperature will decrease, so that its SH is really negative” [4].
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3. CONCLUSION

We may wonder: how can the SH of a BH be negative? We may answer that the increase in its
mass makes its SH value decrease! But then, which mechanism explains that? The application of
heat to BH. Thus, it is the heat to give mass to the BH, to make it more massive. What is the
heat made of? It is well known that heat is thermic energy, i.e. electromagnetic waves (EMWs),
photons (Ps) after all. Thus, it is Ps which provide mass to the BH. However it has always been
stated that P’s mass is zero. This takes to an incongruence: mass less particles are able to increase
the mass of a body, the BH in our case. This is a real and concrete fact, indeed its SH is modified.
We get a confirmation of the phenomenon from Mathematics; in fact the increase of the mass (m),
which in Hawking’s relation is placed at the denominator — see Eq. (8) — will cause proportionally
a decrease of BH’s temperature (Tpy) and of its SH, the latter will be negative.

Then, how does heat, that is thermic Ps — normally known as massless — to give mass to a
BH? We need to keep in mind that any P, whatever its frequency, has a momentum, as stated in

(9):

= - 9

p=x (9)

where h is Planck’s constant, corresponding to 6,625 - 10727 [erg-s|, and A represents the wave

length of the considered P. Since we are considering thermic Ps, that is infrared rays, their A can
correspond to 5 - 1073 [cm]. If we develop the (9) we have:

6,625-107% [erg - 5] (10)
~ 5-1073[cm]

2

Since erg can be expressed in g-cm/s?-cm, that is erg = g-cm?/s?, we can write:

~6,625-107% [g- cm? /s
B 51073 [cm)]

(11)

we have:
p=1,325-10"*"[g- cm/s] (12)

This is the value of the momentum of a P in the infrared band. It shows that a common infrared
particle is not so ethereal [5]. We can infer from (12) that the P with its momentum carries also
a mass, or rather a dynamic-mass, since we are talking about a particle which is continuously in
motion. We also know that as soon as the P interacts with another particle the P transfer to the
latter its momentum [6] thus its dynamic-mass. If we consider that the most frequent hadronic
particle, that is the proton, weighs 1,6272-10724 [g], we have that a thermic particle, that is an
infrared P, carries a dynamic-mass more or less equal to the mass of a proton. Moreover, if we
consider that a single EMW of the infrared band carries about 10" Ps per second, then also the
infinitesimal quantity of energy (and hidden dynamic-mass) will have a certain value, being able
to make more massive our BH and make its SH become negative.

With this work we hope to give a small contribution to understand, in its intimate mechanism,
a singular astrophysical phenomenon: the negativity of BHs’ SH.
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Abstract— The aims of the study were to analytically detect and treat the nonlinear behavior
of weak indoor Global Positioning System (GPS) signal. Since analyzing nonlinear problems
are of great difficulty, scientists implement different numerical methods to treat such problems.
Ignoring nonlinearity is inevitable in the actual world of communications; therefore, nonlinear
analysis has been of great importance to the scientists in its field. The advantages of analytical
methods, specially Homotopy Perturbation Method (HPM), are that these methods are capable of
solving both regular and strong non-linear equations; plus, these methods are simple to apply and
will not increasing complexity. The obtained results are compared simultaneously with numerical
ones and as result shown in graphs and in tables; analytical solutions are in good agreement with
those of the numerical method. As a strategy, chaotic oscillators, which are sensitive to periodic
signal and inert to noise, possess huge advantages in weak signal acquisition. In this paper chaotic
oscillator is employed in weak GPS signal acquisition. In the final section, the results achieved
from computer simulation indicate that chaotic oscillator algorithm can acquire GPS signal at
—48dB/2 MHz SNR [1].

1. INTRODUCTION

Up to this date, different numerical methods have been implemented to solve the problem of a
nonlinear oscillators. This paper represents the nonlinear behavior of a Chaotic oscillator in weak
GPS signal [1]. It has been attempted to propose an analytical method as a solution for this
problem. The analytical method is simple and is also a strong method for engineers to use in their
designs.

In the dynamic model of this problem, the chaotic oscillator, weak GPS signals has been modeled
in the next part. The analytical methods, including Homotopy Perturbation Method (HPM), are
used for solving many engineering problems by a variety of scientists in different fields [2-8]. This
method is capable of solving highly nonlinear problems, while the constant coefficients of the
equations in the problems are parametrically inserted into the equation. Therefore, the obtained
results can be graphically shown and analyzed for different cases, and by inserting different values
for these parameters regarding each single case of study.

Fading, refraction, reflection and multipath interference are the major causes for weakening GPS
indoor signals [1]. Normally line-of-sight GPS signal is at 44 dBHz [9] while signal strength will
degrade larger than 25dB in bad case [10]. Common commercial GPS receivers, however, can only
acquire GPS signal above 38 dBHz [1]. To achieve successful position and navigation in today’s
electromagnetic signal filled environment, there has been so many efforts towards the prolonging
integration duration to achieve increase in the SNR [1]. Chaotic oscillator [11] is sensitive to periodic
signal and inert to noise, which can be utilized to achieve successful acquisition in weak signal. The
detection of weakened linear frequency modulation (LFM) signal after decrypting was first used
by Bo [12]. Bo’s work showed that chaotic oscillator detect extremely weak LFM signal, even at
—27dBHz. In the end, a comparative study is conducted to verify the accuracy of the analytical
method as compared with the numerical solution. The study solves the GPS equation and spring
equation which are basically the same equation and the results are shown in graphs and tables.

2. DYNAMIC AND MATHEMATICAL MODEL OF THE PROBLEM [13, 14]

This section, introduces the dynamic and mathematical approaches. Among the chaotic oscillators,
Duffing oscillator has been studied [15]. Duffing Oscillator was brought into non-linear dynamics
in 1918 by Duffing [16]. Holmes [17] modified the primal equation and reached a novel one which
depicts forced double-well model, which can be the general equation like an oscillator, compared
with a nonlinear spring, a linear spring and a damper under a harmonic load. This comparison is
as follows [18]:

mi + ci + kix + kox® = I cos(wt) (1)
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Subject to that following initial conditions:
z(0)=A, (0)=0 (2)

where m is the mass, ¢ is a viscous damping coefficient, k1 is a linear stiffness coefficient, and
ko is a nonlinear stiffness coefficient. The harmonic excitation force is characterized by the force
amplitude, Fy, with excitation frequency of w. A is the initial amplitude of displacement.

2.1. GPS Signal Model
Mark [19] proposed a typical received GPS signal model as: 7, = Ad(t;)C[(1+n)(tx—ts) cos|wipty—

wptr + @o)] + 6(tx) where ri is output of RF front end at sample time t; [1], fp = %2 is Doppler
4 21

shift, n = WDZLQMOG accounts for Doppler shift caused chip length dlstortlon fir = £ is carrier
frequency, o 18 initial carrier phase, §(ty) is Gaussian band-limited white noise, constant "Ais signal
amplitude, and d(t) stands for GPS data stream.

Front-end output is at frequency frr — fp sampling frequency fg is 5 MHz. After sampling,
output from low pass filter with 2 MHz bandwidth is at frequency fo = fir—|fp| — nfs, corre-
sponding to angular frequency wg. By deducing the original Duffing oscillator equation in the GPS
signal acquisition, the following equation can be achieved [1]: #(t) + wgki(t) — wi[z(t) — 23(t)] =
wé f cos(wgt) this equation is the application of Duffing oscillator in GPS signal acquisition at wg.
If the angular frequency w of GPS signal is the same as the inherent angular frequency wg of
oscillator system (previous equation which exactly the Duffing equation of spring), motion state
of trajectories on phase plane will change largely, which indicates that the received data contains
expected GPS signal.

As in [20], w can be found easily by having the parameters, A, ¢, m, k; and ko:

2
((k;l —mw?®) A+ isz?’) + (cwA)? = F? (3)

The stiffness coefficients of nonlinear and linear springs behave as well as the GPS’s equation, where
f(x) is the spring force and both GPS and z is the displacement:

In the following section, the basic concepts of the analytical and numerical methods are discussed
and later applied to the nonlinear equation above.
3. THE BASIC CONCEPT OF THE SOLUTIONS HPM

To illustrate the basic ideas of this method, we consider the following equation:

A(z)— f(r)=0 reQ (4)

Ox
B(m,at>—0 rel (5)

where A is a general differential operator, B a boundary operator, f(r) a known analytical function
and I' is the boundary of the domain €. A can be divided into two parts of L and N, where L is
linear and N is nonlinear. Eq. (4) can therefore be rewritten as follows:

with the boundary condition of:

L(x)4+ N(x)— f(r)=0 reQ (6)
Homotopy perturbation structure is shown as follows:
H(v,p) = (1 = p)[L(v) — L(xo)] + p[A(v) = f(r)] =0 (7)
where,
v(r,p): 2 x[0,1] > R (8)

In Eq. (7), p € [0,1] is an embedding parameter and zg is the first approximation that satisfies the
boundary condition. We can assume that the solution of Eq. (4) can be written as a power series
in p, as follows:

1/:1/0+py1—|—p21/2+...:2yipi (9)

and the best approximation for the solution is:

r=lim, jv=v9+vi +v2+... (10)
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3.1. Runge-Kutta

For the numerical approach to verify the analytic solution, the fourth RK (Runge-Kutta) method
has been used. This iterative algorithm is written in the form of the following formulae for the
second-order differential equation:

At
Tiy1 = X5 + F(hl + 2ho + 2h3 + k’4)

At (11)
Tit1 = 5 + At (.CL' -+ ? (hl + hg + k3)>

where, At is the increment of the time and hy, ho, hs, and hy are determined from the following
formulae:

hi = f (&, 2, %) k

At At .. At
he = f (tiaz 75131'-1—*2 $z,$z+f2 hl)

At At 1 At (12)
hs = f | ti, = @i + @5, - APy, & + —-
3 f(t,2,l'+2l’4th11'+2h2>

1
ha=f (t,-, At, z; + At iAt%Q,a‘:i + Athg)

The numerical solution starts from the boundary at the initial time, where the first value of the
displacement function and its first-order derivative are determined from initial condition (see Sec-
tion 2). Then, with a small time increment At, the displacement function and its first-order
derivative at the new position can be obtained using Eq. (11). This process continues to the end
of the time limit.

4. THE SOLUTIONS

In this section, the applications of the two methods to the nonlinear equation of oscillator are
discussed.

4.1. HPM (Analytic)
As the HPM was applied to the nonlinear equation of (1), we have:
(1 —p) (mio + cio + k1) + p (mi1 + ciy + kizy + koxy — F cos(wt)) (13)

After expanding the equation and collecting it based on the coefficients of pterms, we have:

p’ = mig + cig + k1o

pl = mai + ci1 + kixy + k'ng — F cos(wt) (14)
p? = méiq + cio + kixo + 3k2x%x1
p® = méis + cis + kixs + 3k2x%x2 + 3]432130.%%
One can now try to obtain the solution of different iterations (14), in the form of:
1 1 1 (—e Ve2—4 cym)t
xo(t) = im (C 02 — 4k1m + C2 — 4k1m) ez - m :
1 1 (*C*\/02f4k17n)t
o (02 — /2 —4k1m—4k1m> e 2m (15)
2c2 —4kim

The obtained iteration is used to generate the equation for the next iteration, and therefore the
second and third iterations are obtained. Since the two other ones and therefore the general solution
are too long to be written in this article, we have shown them in graphs (see Section 5). In Table 1,
the numerical values for z and & for different points of time and for f = 0.5, A = 0.06, w =
4.163379415.

4.2. Runge-Kutta (Numerical)

The Maple Package has been utilized for the numerical analysis of the problem, in which the rkf45
is used to solve ODEs. The solution for the displacement and the velocity for eleven different points
of time are shown in Table 2.
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5. RESULTS AND DISCUSSIONS

In this section, the results for displacement and the velocity for different times are shown in Tables 3
and 4, for different f’s and A’s, in order to evaluate the accuracy of the analytic solution.

As it is obviously seen, the results of the analytic and numerical approaches have shown excellent
compatibility. In order to have a better scheme of the problem, displacement z is shown in Figure 1
based on time, for ten seconds (different f’s and A’s are assumed).

In the Figure 2, the velocity of each position is drawn versus its position; therefore, the velocity
of any specific point x can be easily read. This can only be done using the analytic method; since
the equation of displacement is readily given by this method, the first and second differentiations

Table 1: The numerical values for « and & for ten different points of time (analytical ) for f = 0.5, A =
0.06, w = 4.163379415.

t x x

0 0.06 0

1 | —0.005350926 | —0.078888606
2 0.019216633 | —0.013109041
3 | —0.007335627 | 0.072786956

4 | —0.011085293 | —0.064177133
5 0.018934134 | —0.005887804
6 | —0.008674275 | 0.070317298

7 | —0.009880823 | —0.067501783
8 0.018986752 0.000133187

9 | —0.009935365 | 0.067363257

10 | —0.00861736 | —0.070438539

Table 2: The numerical values for  and & for ten different points of time (Numerical), for f = 0.5, A =
0.06, w = 4.163379415.

t T T

0 0.0599999999999999978 0

1 | —0.00281678838383509455 | —0.0825804788941202074
2 0.0195449692025107016 —0.0138897877722475686
3 | —0.00730911369839314530 0.0727177020000000000
4 | —0.0110834704233601106 | —0.0641821083631454459
5 0.0189342438965698738 —0.00588816238606704354
6 | —0.00867426974330831082 0.0703173716512146968
7 | —0.00988082636899610680 | —0.0675016034979940006
8 0.0189867450545043934 0.000133072037385784277
9 | —0.00993535776201434629 0.0673626924105089342
10 | —0.00861735199761238732 | —0.0704385763384659941

Y
& RKHS

002
# & [ [+
2ol Pﬁg foA AL A A
p 4 a oy Fla AR s 4]
I ST R
PN 2 S ) 2
VSV T

(a) /=0.5, A=0.06, ©=4.163379415

(b) /=0.7, A=0.04, ©=5.147879675

Figure 1: Displacement x based on time ¢.
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Table 3: A comparative table for error detection of the analytic method, for f = 0.5, A = 0.06, w =

4.163379415.

PIERS Proceedings, Cambridge, USA, July 5-8, 2010

x T
t HPM RKf45 HPM RKf45
0 0.06 0.06 0.00 0.00
1 | —0.00535092579 | —0.00281678838383509455 | —0.07888860559 | —0.0825804788941202074
2 0.01921663298 0.0195449692025107016 —0.01310904065 | —0.0138897877722475686
3 | —0.007335626939 | —0.00730911369839314530 | 0.07278695633 0.0727177020766173188
4 | —0.01108529346 | —0.0110834704233601106 | —0.06417713286 | —0.0641821083631454459
) 0.01893413390 0.0189342438965698738 —0.00588780420 | —0.00588816238606704354
6 | —0.008674275495 | —0.00867426974330831082 | 0.07031729844 0.0703173716512146968
7 | —0.009880823315 | —0.00988082636899610680 | —0.06750178333 | —0.0675016034979940006
8 0.01898675166 0.0189867450545043934 0.00013318678 | 0.000133072037385784277
9 | —0.009935365073 | —0.00993535776201434629 | 0.06736325729 0.0673626924105089342
10 | —0.008617359691 | —0.00861735199761238732 | —0.07043853899 | —0.0704385763384659941

Table 4: A comparative table for error detection of the analytic method,

5.147879675.

for f =07, A =004, w =

x T
t HPM RKf45 HPM RKf45
0 0.040000000 0.0400000000000000010 0.00 0.00
1 | —0.01668447952 | —0.0141498204358211938 | —0.01790373528 | —0.0215962732978834948
2 | —0.006766243615 | —0.00643783101998039124 | —0.09550085587 | —0.0962817733972154006
3 0.01386657809 0.0138931356222193238 —0.07218316940 | —0.0722528614780738738
4 0.01856032332 0.0185621543419157848 0.03426369079 0.0342587020066141973
5 0.001795120001 0.00179523506518929110 0.1010828182 0.101082536865805456
6 | —0.01704578135 | —0.0170457707679198232 0.05102090371 0.0510209094083521886
7 | —0.01617683835 | —0.0161768394708507908 | —0.05803595515 | —0.0580359227265403871
8 0.003397207022 0.00339721173637169130 | —0.09998605091 | —0.0999864615455689084
9 0.01904310147 0.0190430958431267415 —0.02632428341 | —0.0263237149352404214
10 0.01266966369 0.0126696551453435498 0.07777683300 0.0777768691824906740

i
4

it

000 o001 C0eE }[DZ o2 -0z

(a) =0.5, A=0.06, ®=4.163379415

(b) /=0.6, A=0.05, ®=4.582639115

Figure 2: & based on .

can be simply done by differentiating with respect to ¢.

Also using Figure 3, the acceleration of any specific point x can be easily read. As mentioned

earlier, this can only be done using the analytic approach.

The important point that cannot be seen on the figures of (& —z) and (& —x) is that the starting
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(a) f=0.5, A=0.06, ®=4.163379415 (b) /=0.6, A=0.05, ®=4.582639115

Figure 3: & based on z.

part of these diagrams, which refers to the times between ¢’s from 0 to 1, is not drawn. The reason is
that in this period of time, the behavior of the displacement equation has not yet become harmonic,
and therefore, the velocity and acceleration is not in the range of the above diagrams.

6. CONCLUSION

In this paper, chaotic oscillator is used to acquire weak GPS signal using HPM, which is a strong
analytical method applied to the nonlinear equation of an oscillator with damping term, and the
results have been compared with that of the numerical solution. The advantage is driven from
properties of non-linear dynamics.

Some other details in engineering have not been discussed in this paper. For example, in order to
cover the possible Doppler shift range 20 kHz [21], oscillator acquisition system can be implemented
by parallel structure with multiple oscillator acquisition channels. The main advantage of applying
HPM is that the results are readily obtained and a few iterations are used. The significant merit
of the analytic approach is to provide scientists with the general parametric relation between the
dependent and independent variables, namely, displacement and time respectively. Therefore, the
related equations can be simply obtained, giving one the opportunity for further studies, for different
cases and thereby different parameters.
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Electrodynamics in Expanding Cavities

J. A. Grzesik
Allwave Corporation, 3860 Del Amo Boulevard, Suite 404, Torrance, CA 90503, USA

Abstract— One embodiment of a plasma fusion reactor, in vogue a number of years ago at
the Lawrence Livermore National Laboratory, employed a cylindrical chamber having its ends
capped by massive, Yin-Yang (Y-Y) magnetic coils serving as barriers against charged particle
escape.! Such Y-Y coils, by their very geometry, require opposed current flow in close proximity,
circumstance which summons forth a dilatational magnetic pressure raising device disintegration
to the level of a calamitous possibility. And, while such Y-Y fragmentation is surely not a
welcome design outcome, nevertheless it does invite a preliminary analysis as to its potential
violence, analysis which enjoys besides a modicum of theoretical interest by virtue of making

relevant a scenario of electrodynamics in an expanding cavity.

With these dual aims in mind, we had many years ago undertaken the study of the very simplest
of such expanding cavity situations, namely, the growing interstitial (vacuum) wafer separating
two massive metallic plates undergoing a symmetric flight from one another. Quick penetration
into the heart of this problem was provided by the observation that, on the one hand, a quasi-
static (QS) field computation would surely suffice, while, on the other, that a moving boundary
condition (MBC) could be fashioned in lowest relativistic order by combining laboratory-frame
electric E and magnetic B fields, and the boundary velocity v, and thence requiring that the
effective tangential electric field ~ ¥x {E + vXxB} vanish upon both plate boundaries. In this
process, a secondary computation of E was bootstrapped upon a primary, QS one for B via
Faraday’s law, whereby the obligatory time derivative of the latter was implicitly tethered to
the dynamic evolution of its underlying separation parameter n(t).> Under this viewpoint there
easily emerged the invariance against time of the product of B by 7 (or else of current I by 7)
leading to a simple differential equation for the dynamical evolution of the net separation 7(t),
and, in particular, to the identification of a characteristic time scale 7 suggesting a most vigorous
magnet disintegration. This aspect of the work has been previously reported in summary form,?
and is set out anew here for the purpose of building an intuitive, heuristic base concerning field

evolution within the primitive, expanding wafer cavity now at hand.

A heuristic base of this sort is far too coarse to account for field retardation effects due to
signal transit at finite light speed ¢. We remove this defect by returning to the Faraday/Ampere
equations in their primitive form and subjecting them first to Fourier transformation in coérdinate
z along the direction of cavity expansion perpendicular to magnet walls. Such transformation
embraces the entire interval —co < z < oo and, as such, submits to a null-field attitude which
regards the field, in both its electric E and magnetic B manifestations, as being zero exterior
to the expanding wafer, i.e., V|z| > n(t)/2. Due deference must of course be paid, in the form
of Dirac delta function sources placed at z = £n(t)/2, to the radiation emanating from surface
current density +1(¢) flowing on cavity walls. Elimination of either field transform leads then to
a simple harmonic differential equation in time ¢ having a source gauged by I(t). Its solution is
readily gotten in a form that allows inverse Fourier transformation to proceed smoothly and, in
particular, to identify a retarded signal emission time t, < t as gauged from either plate which
obeys the intuitively pleasing condition ¢(t — t.) = {n(t) + n(t«)} /2. All in all one confronts at
this point a relatively simple pattern of connections between the field and its source I as reckoned
at retarded times t, suitably structured so as to track upper/lower plate emissions, connections
which succumb at length to an a posteriori enforcement of the non-relativistic limit 7(t) < ¢ so
as to recover anew the key I x n invariance previously inferred during the prelude of approximate,

QS/MBC analysis.

991

LA rather dramatic depiction of Y-Y coils, which serves to put their size into perspective against the scale of a human figure,
perched astride, and masked against the glare of his welder’s blowtorch, appears on the cover of Physics Today, Volume 34,
Issue 9, September 1981, herewith reproduced. Confer also the accompanying article, “A tandem mirror in place at MFTFEF” by

Bertram M. Schwartzschild on p. 22.

2Thus, as regards boundary velocities v along the plate normal, v = #7(t)/2, the overdot signifying a time derivative.

3Grzesik, J., “Kinetic energy release in missile ejection from confining magnets,” Transactions of the American Nuclear

Society Annual Meeting, 34, New York, June 12-16, 1977.

Some preliminary work from that same epoch, intended to account for a merely partial magnet disintegration in the form

of a ribbon missile, parallel to the prevailing current flow and ejected from just one plate, is reported in:

Kastenberg, W. E. and D. Okrent, “Some safety studies for conceptual fusion-fission hybrid reactors,” UCLA, School of

Engr. & Applied Science (Prepared for the Electric Power Research Institute, Palo Alto, California), I-1, 1-32, July 1978.

This complementary work, however, awaits to this day both its amendment and completion.
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Figure 1: In medias res: Yin- Figure 2: Expanding plate geometry.
Yang mirror magnet coils un-

der construction.

1. EXPANDING CAVITY FIELDS: THE INTUITIVE, QS/MBC SCENARIO

We place the origin of a right-handed Cartesian coordinate system anywhere along the mid-plane
between the two magnet faces, each one of them at right angles to the z-axis and situated, prior
to the onset of cavity dilation, at z = +a/2. Before such dilation, steady current sheets of linear
density +1pé, are assumed to flow upon these faces, and to sustain thus a sectionally uniform
magnetic field, equal to*

Bo = —poloé: (1)

within the interstitial sandwich —a/2 < z < a/2, and zero otherwise (cf., Figure 2, which, for
t > 0, depicts an evolved plate separation 7(t) > a and the associated field/current strengths B(t)
and I4(t) from Egs. (6) and (7) below). The source of magnetic field (1) is equally apportioned
among the two surface currents and because, as is easily shown, the steady-state magnetic field of
any given current distribution is inherently incapable of exerting a net self-force, each of the two
current sheets at z = +a/2 experiences, in the field of its partner, a repulsive pressure in an amount

_ pold :ﬁ

2
T (2)

with note taken of the fact that By = —puglp.

We imagine next that the supporting structures, while they may indeed be designed to withstand
such pressure when uncompromised, nevertheless somehow do fail at time ¢ = 0, allowing the
repulsion to initiate cavity dilation.” Regarding such dilation as a QS process, we arrive at a
picture wherein, at any given moment ¢ > 0, the magnetic field, with value B(t), remains both
uniform and &,-directed, and is accompanied now by an &,-directed electric field

E(z,t) = E(z,t)&,. (3)

A simple symmetry argument, involving coordinate system rotation through angle 7 around &,
shows next that F(z,t) is antisymmetric around cavity mid-plane z = 0, whereas its value is then
fixed at )

E(z,t) = zB(t) (4)

through recourse to Faraday’s law of induction when applied to a rectangular circuit in a plane
perpendicular to &,, having its horizontal leg aligned along &,, and the whole symmetrically disposed

4We describe field quantities in standard SI units. Vectors &, &y, and &, comprise together the usual Cartesian orthonormal
triad.

5We further idealize by ignoring the simultaneous presence of gravity pull, both as to its magnitude and its réle in symmetry
disruption. We focus instead exclusively upon the time scale of the dynamics engendered by purely electromagnetic forces.
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with respect to vertical origin z = 0. At the evolving plate positions £n(t)/2, MBC further requires
that

nB+nB =0, (5)
a perfect derivative which yields
B()a
B(t) = — (6)
n(t)
so as to agree with the fact that n(0) = a. Accompanying (6), of course, are currents of strength
Ioa
Li(t)=+—= (7)
n(t)

flowing upon upper/lower plates.

Magnetic pressure p retains its form on the right in (2) provided, of course, that By is duly
replaced by B(t) as now discovered. If next one writes p for the mass per unit area® of each plate,
then the dynamics of their expansion is seen to be governed by

. B2
L (8)
2 2po
or else ) ) 9
dr) B
pan” _ bod , (9)
4 dn  2pen?
which latter admits a first quadrature in the form
o 2B2a* (1 1
L (10
pop la

We proceed now to displace By in favor of its more operationally accessible attribute Iy, so as

to rewrite (10) as
d 2u0l? |1 -1
Bl (ﬂ) — [ ZHodo e, (11)
dt \a ap .

a gesture which identifies the dimensionless variables

n
= — 12
Q=" (12)
and y
T=-—, (13)
T
with

[ap
T = . 14

In its newly acquired, dimensionless guise, Eq. (11) thus reémerges in the form

aQ Q-1
a\a (15)

@ ¢
T:/1 1/ad§, (16)

yields to an elementary substitution” so as to provide the explicit result

T:\/Q(Q—1)+ln{\/§+ \/Q—l}, (17)

which, when brought to quadrature as
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Figure 3: Universal expansion curve for separating magnet plates.

plotted above as Figure 3.
About this result, we note at once the seemingly innocuous asymptotic limit

T~Q (18)

as both T" and @) tend toward oo, an approximate equality whose physical import is that of magnet
faces receding at a steady, terminal velocity, evidently unaffected by any residual magnetic pressure.
From (12) and (14), we then restore a physical terminal expansion rate in an amount

. a Qaugl?
oo =~ = | =0 (19)
T p

and, corresponding to it, a terminal kinetic energy K F., per unit magnet area

-2
KBy = ’”770", (20)

one which combines of course the contribution of both plates. When finally written as

B ,uofga B Bga

KE
00 9 2,“«0’

(21)
Eq. (21) conveys nothing other than the complete exchange into terminal kinetic energy of the mag-
netostatic energy initially resident between the undisturbed magnet faces. Our physical instincts
would in fact be expected to recoil from any potential outcome at variance with this result.

In Figure 3, we plot the universal expansion profile (17) with dimensionless time 7" as its abscissa
and dimensionless separation @ as ordinate. This curve is of necessity concave up,® with the
asymptotic limit (18) approached from below, simply because of the inevitable time lag prior to
full conversion of magnetic into kinetic energies. That conversion, however, is quite precipitous
in physical terms. For instance, if we invoke the typical values p ~ 103kgm™2, a ~ 1m, and
nolo = 8.1 Tesla, we find 7 &~ 3.09. .. milliseconds, a time short enough to be deemed as a token of
a most violent expansion.

1.1. QS/MBC Appendix: Field Energetics

Inasmuch as all field attributes lie at hand in such simple form, it is useful to pause so as to
reassure ourselves yet again of their self-consistency as regards energy conservation. All of our
ensuing discussion unfolds now on a per unit area basis, without further comment.

The magnetic energy W, is easily disposed of, and reads

_ B?p _ Bja®
2u0  2p0m

(22)

m

6Units of kgm—2.
7Only the most routine integrals emerge from (16) after one sets ¢ = cosh? 9.
80ne easily verifies on the basis of Eq. (15) that such upward concavity persists unabated even as T — co.
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Somewhat more complicated is the accompanying electric energy W, for which we now find, from
Egs. (4) and (6),

Mg, L (1)
We = € ; E“dz = b <c> W, (23)
with ¢ = (eo,uo)*l/ 2 being the customary expression for the velocity of light in vacuum. And since,
from (10), 7 rises monotonically only toward a finite, limiting value (19), W, from (23) ultimately
declines together with Wp,. On the other hand, inasmuch as the expression on the right in (23) is
clearly a relativistic correction, and quadratic at that, we are, in our present, QS frame of mind,
entirely justified in neglecting it.

Now the decline of W, is channeled via the Poynting vector S=EXB/ g, here strictly paral-
lel /antiparallel to &, and it would be pleasing indeed to witness the magnitude of S dissected into
one part, Sfn,, which accounts for (the now primarily) magnetic field penetration into a growing
domain, and another, Si., which urges the plates toward ever higher, if necessarily bounded, kinetic
energy. Evidently we have, from (6), with both plates taken into account,

B2a*n
S = =21, 24
™= 2on? (24)

At the same time, from (10), and again for both plates,

d (pi*\ _ Bia*n
Spe = — (2L = , 25
ke T dt ( 4 2p10m>? (25)

identical in every respect with Sy,,. Adding the two we get

32(1277
St + Spe = —2—, 26
fm e ,UO772 ( )

and this is precisely what emerges by forming the Poynting vector when (4) and (6) are applied,
with component directions properly considered, at both upper and lower plates, z = +n/2. We
have before us now in plain view both energy conservation and a neat equipartition of energy flow
into its field and kinetic reservoirs.

2. EXPANDING CAVITY FIELDS: RIGOROUS MAXWELL EQUATIONS cum NULL
EXTERIOR FIELD

The QS field description so far presented is necessarily coarse-grained on a time scale set by 7(t)/c,
simply because, by deliberate choice, it ignores the details of the cross-talk whereby the plates
inform each other of their evolving separation. Simply put, it conveys in some sense an average
over many cycles of n(t)/c. Thus, so as to assure its relevance on physical grounds, we should
evidently prefer to have the underlying parameters a, p, and Iy constrained in a way to assure that
T > n(t)/c. Adequate as this picture may be, it is nevertheless desirable to refine its temporal
resolution, a task to which we now turn by strengthening our adherence to the underlying Maxwell
equations.

Adherence to Maxwell’s equations raises the additional issue of just how much attention need
be paid to Lorentz-transformed field components. The answer, as it happily turns out, is none,
inasmuch as the entire discussion is free to unfold in the stationary frame of the pre-disruption
magnet arrangement. Accordingly, the only nod to special relativity, and a passing one at that, is
a recognition of signal retardation, a recognition which emerges in a natural way at a later point of
Fourier transform inversion. All in all, we seek here not so much to gratify an intellectual indulgence
but, rather, to establish an analytic basis from which practical approximations, such as (6) and
(7), may emerge in a natural way.

2.1. Basic Relations

Maxwell’s equations or not, the symmetries of the preceding discussion remain intact, and indicate
the presence of just two field components®?

E(z,t) = E(z,t)é, (27)

9However, do confer the provisional material in Subsection 2.6 at paper’s end.
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and

B(z,t) = B(z,t)é,, (28)
of which the first is odd against sign change in z, viz.,

E(—Z,t) = _E(27t)7 (29)
while the second is even,

B(—=z,t) = B(z,1). (30)
On the plates themselves at z = £1/2 there flow in addition the time-dependent currents

L.(t) = £1(1)3, (31)

which are the source of fields (27)—(28) and respond in turn to the local values thereof.
These up/down sources immediately assert themselves on noting that projection of Ampere’s
equation onto &, takes the form

PG OB ) (5= —n)/2) — o: + (02 @2)

involving on its right two instances of Dirac’s delta function é. The corresponding projection of
Faraday’s connection upon &, is source-free, and simply reads
0F(z,t 0B(z,t

( ) ) _ ( ? )‘ (33)

0z ot
We observe in passing that Eqgs. (32)—(33) accommodate without conflict the field symmetries
posited in (29)—(30).

We next subject Egs. (32) and (33) to Fourier transformation against coordinate z, distinguishing

the transforms from their parent quantities by a tilde placed atop. Thus

E(k,t) = /OO e " B(z,t)dz (34)
and o
Bk, t) = / e~ B (2, 1)dz. (35)

Following such transformation, Eqgs. (32) and (33) become

kB (k.t) 6123]5(;’:775) dipol(t) sin <k772(t)> (36)
and -
ikE(k,t) = a%’?’f). (37)

While our main objective is B(k,t) (or, more precisely, its Fourier parent B(z,t)), we first
eliminate it from Egs. (36)—(37) in favor of E(k,t), and then, with E(k,¢) thus in hand, return to
Eq. (36) with full attention dedicated to that primary target. Such elimination results in

02 (k,t) - 2i d (k)
T B = {I(t) sin ( 5 > } (38)

a structure whose solution can be exhibited as

Bk t) = Z /_ ; Grea(t — tl)d‘fl {I(tl) sin <’“7;t1)> } it (39)

in terms of the retarded Green’s function Gyet(t — ¢1), which satisfies the following analogue of (38)

d?Glret (1)

72 + (ke)?Gret(t) = (1) (40)
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and the additional stipulation that Gyet(t) = 0 whenever its temporal argument ¢ becomes negative.
As the solution of (40) is standard, and reads'"

Groa(t) = U (1) 2200 (41)

with Uy (t) being the Heaviside unit step, positive on its right, representation (39) is brought into

he form
t B, t) = 2/;\/?3 /0 “sin (he(t — 1) dfl {I(tl) sin (’“f”) } it (42)

once it is recognized that both current I(¢) and separation 7(t) are quiescent prior to the onset of
magnet separation at ¢ = 0. A routine integration by parts further reduces this into

Bl t) = -2 {10 sin (m) sin(ket) _ /0 "Ity sin (’mé’“)> cos (ke(t — 1)) dtl} . (43)

€0 2 kc

Collaboration between (36) and (43) then yields

B(k,t) = —2,/%° [Iosin (?)“’S(’“tu /0 tl(tl)sin <’“7g1)> sin(k:c(t—tl))dtll (44)

€0 kc

2.2. Fourier Inversion

Recovery of the spatial field dependence from either (43) or (44) is quite similar and so, given the
magnetic context of our discourse, we give initial pride of place to (44). When considering thus the
Fourier inversion

B(z,t) = % /Oo e B(k,t)dk (45)

—00

we encounter two distinct categories of terms, those proportional to initial current density I
{Category I}, and those associated with the quadrature over time {Category II}. By virtue of
the factor sin(ka/2)/k, the Fourier inversions appropriate to Category I are, in their aggregate, free
from singularities along the real k axis, a feature which permits one to indent the inversion contour
away from the axis of reals, say into C'_ running ever so slightly below the origin k¥ = 0. The Fourier
inversions appropriate to Category II are, by inspection, likewise free from singularities along the
real k axis. There emerge the following results.
Category 1

Even though singularity-free at k = 0 in the aggregate, each individual exponential contribution
into which the Category I term splinters does have a simple pole there. We find

1 dk
o — exXP (tk{z 4+ 01a/2 4 oact}) = iUy (2 + 010/2 + oact) (46)
C_

once again in terms of the Heaviside step as previously introduced, and with 01 = + and g9 = £+
being the independent signatures of all four contributing exponentials in their native states of
occurrence.
Category 11

In Category II, the Heaviside steps are replaced by Dirac deltas. We get, in the first place

% /oo exp (ik {z + o1n(t1)/2 + oac(t — t1)}) dk = 6 (z + oun(t1) /2 + oac(t — 1)) . (47)

And then, since

(48)

0 (2 +on(t)/2 + oac(t — b)) = %5 <t1 - {t L 2zt o1on(ty)/2 }) |

Cc

10That (41) is the correct Green’s function retarded solution is seen by inspection, and can in any event be verified by solving
Eq. (40) ab initio through yet another appeal to Fourier transformation, now against time ¢.
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we are instructed to seek a retarded time t1 = t,, 0 < t, < t, in accordance with

t*:t+022+0'10'27](t*)/2’ (49)
C

since only then will any one of the Dirac deltas be empowered to contribute to the temporal
quadrature on the right in (44). Moreover, in the neighborhood of any such ¢, we have

1 o9z + oro9n(t1)/2 - 1 _
(0 ) ) o

Of course, allowed solutions ¢, of (49) obeying 0 < t, < t, if any, depend not only upon current time
t and observation plane z but also upon signatures o; and o9. We make this explicit by attaching
them as suffixes, viz., t« — tig,0-

On the basis of Egs. (44) through (50), there emerges the expression

B(z,t) = —% I{Us(z4+a/24+ct)+Usp(z4+a/2—ct) = Uy (z—a/2+ct) — Ut (z —a/2 —ct)}

) { M) M) I(es) 1) } 1)
T=A(trs)/2 1+ 0t)/2 1+ 0(ts)/2e | 1—n(t—)/2c
which is subject to the further understanding that, in its last two lines, entry is denied to any term
whose t.s,s, may fail to conform with 0 < ¢, < t. Thus, for instance, the term corresponding to
tst+ cannot possibly contribute unless z < —n(tsyy)/2.
It follows in similar fashion from (43) that!!

E(z,t) :_cu70 Ip{Us(z+a/2+4ct) —Us(z+a/2—ct) —Us (2 —a/2+ct) + Usp (2 —a/2 —ct)}

_ { I(tqt) n I(tey—)  I(t—y)  I(t—-) } (52)
T it )/2e T At )20 T4 A(tes)/2e 1= n(t. )/

It is comforting finally to note that the a priori symmetries (29)—(30) have survived all of
the intervening analysis and are faithfully imprinted upon (52) and (51), in that order. A direct
verification of this attribute follows from the fact that, for any real argument ¢, U4 (¢)+U4(—¢) = 1,
whereas tig,0,(—2,1) = ty(—0y)(—0s) (2, 1) as an easy consequence of (49). Somewhat more succinctly,

one notes from Eqs. (43)—(44) that the symmetries (29)—(30) in physical space z are echoed exactly,
E(—k,t) = —E(k,t) (53)
and
B(_kat) = B(kat)a (54)
in reciprocal space k. Then, for instance,

B(- t)—l/oo ~ikz Bk t)dk:—l/oo i*2 B t)dk—l/oo *2 Bk, t)dk = B(z, 1), (55)
Z7 - 27_[_ € b - 27_(_ o € b - 27'(' o € b - Z? )

—0oQ
and similarly for the electric antisymmetry F(—z,t) = —FE(—=z,t). The upshot of such symmetry
verification is the freedom which it bestows upon us to limit all further field discussion to just the
upper, z > 0 cavity/magnet interval.

1By way of a quick sanity check, it is useful to remark that magnetic field B(z,t) from (51) bears more than a casual
similarity to its simple-minded forebear (1), whereas the electric field E(z,t) as now assembled echoes the dimensions on view
in its own precursor (4).
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2.3. Current/Separation Link: Null Exterior Field for |z| >n(t)/2

Nothing has been said to this point regarding the time evolution of current I(¢) or the expanding
cavity width n(¢). But, whatever may finally prove to be the temporal history of n(t), current I(t)
must be adjudicated on the basis of purely electromagnetic considerations, applied to the geometric
configuration prevailing at any given moment in time. One such consideration, easily expressed in
global terms, is a simple requirement of null field penetration exterior to the magnetic cavity, which
is to say, a requirement that B(z,t) = 0 whenever z > n(t)/2. For any z > a/2, the null field epoch
has the temporal extent 0 < t < ¢~, with upper bound ¢~ determined on the basis of z = n(t-.)/2.
Evidently t> > (2 —a/2)/c.

On taking note thus of the declared membership caveats for terms involving the several ¢,,,,, on
the right in (51), and of the underlying constraint U, ({)+U4(—¢) = 1, we now find it advantageous
to rewrite (51) as'?

B0 = -2 o (1- =22 (o - e

We confront thus a propagation onset at tmin = (2 —a/2)/c and its cessation at tmax = (2 +a/2)/c
of (just one half of) the spatially uniform field initially present within the undisturbed cavity
and escaping now upward. Furthermore, there enter into competition at these times the fields
subsequently radiated by the moving current sheets, first the radiation at time ¢,,;, released from
the more proximate, approaching magnet plate, and then at time t,,x from the more distant,
receding one. Our global requirement that this composite exterior field vanish fragments thus into
three distinct time regimes.
Time Regime I: 0 < t < (z — a/2)/c

The expression on the right in (56) is inherently null without imposing any condition upon
current I(t).
Time Regime II: (z —a/2)/c <t < (z+4+a/2)/c

We witness here the arrival of the initially resident cavity field and that radiated from the closest,
upper (approaching) magnet plate only. Radiation launched from the farther, lower (receding)
magnet face has not yet had sufficient time to reach observation plane z. Under the competition of
just the first two of these three candidates the null field requirement reads

I(t,__)

R, YT

(57)

and is operative across the (radiation) time interval 0 < t,__ < ¢t** with ¢"®* determined
from t1%* = (n(t™**) 4+ a) /2¢ > a/c. On this time interval the null field requirement provides
that current I(f.—_) remain essentially constant at its initial value Iy, save for a small, first-order
relativistic correction proportional to plate velocity 7(t.—_)/2c as scaled by light speed ¢, regardless
of how that ratio may be determined.
Time Regime III: (z +a/2)/c <t < t>

Radiation emanating from the lower, receding plate has by now been admitted into field com-
petition, with the null-field requirement amended so as to read

(O (e
T=n(t)/2e T+ n(te_)/2e

and to offer thus a basis for a recursive, bootstrap current determination. Indeed, the retarded
times ¢, (4)(—), both of which rise together with ¢, are here shifted with respect to one another, with
t.—_ having an onset at t,__ = t"®*, leading t,+_, whose onset at ¢,,_ = 0 is assuredly lower.
In particular, the t,__ handoff at the close of Time Regime II dovetails smoothly onto its value at
the onset of Time Regime III, as it evidently must. Furthermore, we have f,__ > {,, _, as is easily

seen on the basis of Eq. (49). And so in principle we can exploit the information already gleaned

(58)

12 A5 they are deployed in Eq. (56) and in its subsequent partner (62), the overt Heaviside space/time cutoffs U, are clearly
compatible with the constraints which we had previously imposed upon the admission on its right in Eq. (51) of I(¢t«+——_) and

I(tes_).
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from Eq. (57) so as to advance across the entire positive time axis, simply by setting the (here
strictly gedanken) observation planes z as far to the right as we please. On the other hand, such a
procedure, while logically defensible, suffers from what might best be described as a relativistic time
granularity in the amount a/c, whose smallness renders this approach algorithmically unattractive.

Instead of all this, we can undertake a systematic, broad-brush rentrenchment into the nonrel-
ativistic domain by noting, on the basis of (49), that the difference t.s,,, — t is, eo ipso, itself a
relativistic correction, allowing one to approximate by setting'®

t)/2
sy — 1) v T2 1720(0/2 (59)
C C C

02z +ayoan(t)/2 N 01027'7(75)/2(

t*olaz -t~
The null boundary condition (58) thus becomes

I(t) — f() (F202) 1) - () (=1022)
1+ 7(t)/2c - 1—n(t)/2¢ ’
or else, once the algebra has been reduced to its simplest terms,
I(t)i(t) + I(t)n(t) ~ 0, (61)

stated again, as was the case with (59), to lowest order in 1/c. But this is merely to say that the
product I(t)n(t) is approximately constant, allowing Eq. (7) to remain in force (and this even in
the face of an insistence that Eq. (57) be honored “in the small”).

Analogous considerations affect the electric field from (52). One emulates there the magnetic
transition from (51) to (56) by writing

Bt = G | (=02 ) (- )
S G R ee e e | (62)

so that, in particular, with a retrospective glance at (56),

E(z,t) = —cB(z,t) (63)

(60)

as befits a planar field, null or otherwise, freely propagating along the direction of positive z.'

And, happily, the magnetic null-field apparatus embodied in Eqs. (57)—(61) serves here just as well
to ensure that the exterior electric field be likewise brought to zero.

2.4. Bona Fide Cavity Field: |z| <n(t)/2

The considerations foregoing of the putative exterior field, null though it may be, was no idle
frivolity, simply because the physically accepted absence of penetration into ideal, perfectly con-
ducting metal does not occur merely on the strength of fiat. On the contrary, such absence occurs
only as a result of total cancellation among all available fields, those initially present and subse-
quently propagating outward, and those contributed by bona fide radiating current sources. An ac-
tive demand for this very cancellation imposed upon these sources offers a convenient stepping-stone
toward their determination, after the fashion of Eqgs. (57)—(58) or else their simplified version (7).
With this knowledge regarding the plate currents now taken for granted, we seek next to adapt the
general field representations (51) and (52), unrestricted as they are with regard to observation plane
location z, to the bona fide cavity interior, expanding in accordance with |z| < 7(t)/2. And, as was
the case in the discussion just now concluded, we can, by virtue of field symmetry/antisymmtry,
limit attention to merely the positive values of z, 0 < z < n(t)/2.

I30f course, while we do require that both n(t)/2c and 7(t)/2c remain small, this evidently imposes no practical restriction.
One may also note parenthetically that our somewhat more heuristic QS/MBC treatment likewise insists upon the smallness
of these two ratios, the second through an explicit mandate and the first implicitly, inasmuch as signal back and forth bounce
averaging cannot really be accorded any credence in the event that plate-to-plate transit time & 2n(t)/c grows excessively large.
For that reason, our retention of the QS/MBC framework even when n — oo (c¢f. Eq. (18) et seq) may, in a sense, be regarded
as a lapse in modeling fidelity, a physical blemish which should nevertheless be taken in stride on practical grounds. Indeed,
this entire physical caveat has already been hinted at within the introduction, wherein was suggested the desirability of having
> n(t)/e.
M The disposition of signs in (63) assures a Poynting vector that lies along the positive z-axis.



Progress In Electromagnetics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010 1001

Operative now is a different mix of retarded times t.,,,, than that appropriate to the exterior
field representations (56) and (62). We find

B(z,t) = _MOQIO{l_m <t+z—a/2>+U+ <t_z—a/2>_U+ (t_z+a/2>}

Cc (& C

Ho () I(tey )
2 {1 +0(te—y)/2¢ i ﬁ(t*+_)/20} (64)

and

E(z,t) = _cuglo {1 -Uy <t+ Z—Ca/2> U, (t i —ca/2> UL (t— z+ca/2)}
_ o { Itevy)  I(br-) }
2 (L +a(te-g)/2e LHi(teg—)/2¢

In Egs. (64) and (65), the terms proportional to initial plate current Iy and involving several
Heaviside steps Uy convey a process wherein the field present at ¢ = 0 undergoes a progressive dis-
mantling, with due attention to retarded propagation, by signals in sign opposition emitted from
both plates at the moment when disintegration begins. In conjunction with this there is set in mo-
tion, so to speak, a radiative field restoration attributable to time-varying currents / (t*(i)(@), both
of their cl%ntributions being restricted as to their participation in the manner expressed following
Eq. (51).

Of course, any given station z > a/2 qualifies as a legitimate cavity point only when t > ¢,
with t. gotten from z = n(t<)/2. In particular, as one readily verifies, an adherence to this
space/time constraint gives free rein to radiative participation on the part of the term proportional
to I(t«—4), which embodies radiation emitted from the upper plate, properly receding beyond z
when t > t_.'® By contrast, the radiation emanating from the lower plate, with current I(t., ),
streams by uninterruptedly after a time delay (a/2 + z)/c.

As is easily seen, the terms proportional to Iy in both (64) and (65) vanish following this lower-
plate time delay (a/2 + z)/c. The field structures then default into

Mo I(ti—4) I(t—)
Blzt) = =3 {1+ﬁ(t*+)/2c * 1+7‘7(t*+)/20} o

(65)

and

_ _CHo Itey)  I(tsy-)
Bt == {1+1'7(t*—+)/2c 1+7'7(t*+—)/2c}’ (67)

subject to the participation caveats as just now set out. And then, after the passage of several plate-
to-plate bounce intervals on the order of a/c past t~, we can seek yet again to invoke approximations
of the type illustrated in Egs. (59) and (60). Thus

I(te_y) I(t) + 1 (t) (M)

T n(tes) /2 1+n(t)/2c (68)
and
o) I(t) — I(t) (M) -
L+ n(tet—)/2¢ L+9(t)/2c 7
with )
B(z,t) = —puo {I(t)lii—;(é&t)?/(;i/Qc} ~ —pol(t) (70)
and _
B2 ) ~ 210 {H;((tt))/Qc} ~ — 2ol (1) (71)

151n Egs. (56) and (62) we have found it opportune to give explicit voice to such restrictions through the medium of Heaviside
unit steps U4 with suitable arguments.
6For 0 < z < a/2, the field radiated by I(t«—+) enjoys a steady presence beyond its onset at time (a/2 — z)/c.
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as the corresponding demotions for Egs. (66) and (67). In conjunction with Eq. (61), we have
now recovered the full trio (4), (6), and (7) earlier suggested on the basis of field heuristics which
embrace from the outset a coarse-grained evolution in time.

2.5. A Postscript on Plate Dynamics

As Egs. (68) and (69) suggest, it is the second, t,4— term in both field representations (66) and (67)
which conveys the radiation propagating upward from the lower, receding plate at z = —n(t)/2.
And so, if we continue to adhere to the premise that any notion of a magnetic self-force must be
discounted, we retain on the right in (66) only its second term and hence arrive at the modified
dynamical equation

4 p(t) < Pit) _ pol(t) { I(tss—) } (72)
dt | o /1 _ (i(t)/2¢)? 2 2 1+ 7(tes—)/2¢
with t,4_ gotten from
t*+_ :t_w. (73)

2c

And if, sufficiently emboldened by our previous work, we proceed next to sweep aside en masse all
relativistic corrections in both (69) and (73), we duly reduce (72) into

pii(t) _ pol(t)?
2 2

(74)

which is nothing other than (8).

2.6. Some Speculations on the Possible Presence of a Longitudinal, Electrostatic Field Com-
ponent

In addition to the transverse electric component
E(z,t) = E(z,t)é, (75)

as introduced in (27), one should in principle entertain the possibility of there being also a longi-
tudinal . _
hn(z7 t) = E|1|n(z7 t)é27 (76)

essentially electrostatic one. To the extent that it may be deemed to be really operative at all,
this component, on the one hand, is decoupled from our basic relations (32) and (33) while, on the
other, the mutual influence which it is able to exert between the plates is such as to counteract the
magnetic pressure from either (8) or (72). Its role, in fact, is identical to that of the electrostatic
field in a parallel-plate capacitor, whose presence engenders a mutual attraction. Indeed, if we
write +¢(t) for the electric charge density upon the plates at z = £+n(t)/2, then we find

LB 1) pos(t)i)
2 ot 2

{0(z=n(t)/2) +6(z+n(t)/2)} =0 (77)

as the counterpart of (32). And then, inasmuch as the equation of charge continuity in either plate
insists upon ¢(¢) = 0, this latter amounts to

(E2,t) = _%2 {Us (z+0()/2) = Uy (z = (1) /2)}, (78)

a classical capacitor field, beginning/ending on charges +¢y at z = £n(t)/2 and leading to a mutual
attraction in opposition to the magnetic repulsion from (8), (72), and (74). Such attraction has the
curious feature of remaining undiminished no matter how large 7(t) may ultimately become. Be
that as it may, the underlying message of (78) would seem to be that equations (8) and (72) should
more properly be viewed as providing conservative overestimates of expansion severity. Moreover,
we behold in (78) a null field component exterior to the cavity, |z| > 7(t)/2, exhibited on the basis of
a truly meager input of mathematics, and, in particular, no trace of signal retardation whatsoever.

Nevertheless, the fact remains that longitudinal electric component (78) injects a vexing aura
of physical indeterminacy. We can evade it, perhaps, by reminding ourselves that our glib, implicit
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assumption, to the effect that magnet plate metal extends upward and downward without bound,
is clearly a fiction. And, if that fiction be removed,'” with magnet faces assigned a depth d, then
we could just as well repeat the above argument with opposed surface charge densities F¢g residing
at z = £(n(t)/2 4+ d) and the electric component from (78) correspondingly canceled throughout
cavity interior |z| < n(t)/2 by

B (2,1) = Z—‘; {Us (z+{n(t)/2+d}) = Uy (z = {n(t)/2+ d})} . (79)

The additional charge densities ¢y on outer magnet faces are taken in opposition to their inner-face
counterparts if only because, in its quiescent state prior to disintegration, each plate within the
Y-Y apparatus may reasonably be presumed to be charge-neutral. While certainly plausible, all of
this seems tentative and provisional, and should be viewed cum grano salis, at the very least. In
particular, we have simply exiled to infinity in the plane of (z,y) any credible circuit mechanisms
for maintaining charge neutrality, be the magnet plates bounded or not as to their thickness.

3. EPILOGUE

In principle, we should go on to tease out the fine structure in the temporal evolution of current
I(t), cavity field components (66) and (67), and the dynamical Equation (72). On the other hand,
it is clear that any such program necessarily involves plate separation 7(t) in a nonlinear way, and is
thus best consigned to a numerical inquiry complete unto itself. And in any event, a fine-structure
study of this sort, while interesting perhaps on academic grounds, would clearly have little practical
relevance.

At the same time we have succeeded, we would hope, in demonstrating that, one the one hand,
an intuitive, coarse-grained QS/MBC framework can, with but a modest expenditure of analytic
effort, delineate most of the field features to be encountered within an expanding cavity, while, on
the other, that the QS/MBC program is in fact underwritten as a controlled, nonrelativistic limit of
a more robust, fully Maxwell-compliant field formulation. This limit amounts indeed to a blurring
of focus as to the fine features of temporal evolution.

In order to make tangible progress, we have of course pruned away much realism by adopting
what, at first sight, must seem to be an overly simplistic, strictly one-dimensional model. But
even here are surely to be found a few nuggets of genuine physical and mathematical interest. In
particular, we have been able to show that the null exterior field condition, repeatedly exploited
by us in several other problems, offers a most fruitful alternative to the traditional technique
of tangential component matching along surfaces of material discontinuity. All in all we would
hope that, someday, this work may encourage similar efforts addressed to more complex cavity
geometries. Spherical