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Abstract— This article deals the numerical modelling and experimental verification of physi-
cal and chemical processes during measurement with inductive flowmeter. There are presented
theoretical model and example numerical solution with the comparison of magnetic field mea-
surement. The numerical models are based on combined finite element method (FEM) and finite
volume method (FVM) of flowmeter electrodes. The model joins magnetic, electric and current
field, flow field and chemical nonlinear ion model. Results were compared with accuracy magnetic
field measurement inside of body flowmeter.

1. INTRODUCTION

The full magneto-hydro-dynamical (MHD) model of inductive flowmeter is coupled problem. There
are coupled magnetic, fluid flow field and electric circuit and chemical (ions) models, Fig. 1. These
models are solved with different view. The one of them is the analytical solution of flowmeter
model with concentrated parameters application, solved in [1] and in further to use solution with
electronics [2]. Complete MHD numerical model formulated with partial differential equations was
published in research report [3] and paper [4]. Flowmeter calibration to zero drift before known
was described in journal [5].
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Figure 1: Principle of the induction flowmeter.

Our model was solved with combined finite element methods (FEM) and finite volume methods
(FVM) like was presented in [4]. Results from numerical model and experiments were compared
and the numerical equality was very good.

2. NUMERICAL MODEL

According to research report [3] electromagnetic part of the flowmeter is derived from reduced
Maxwell equations

rotH = J , (1)
divB = 0, (2)
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where H is vector of magnetic field intensity, B is vector of magnetic field induction, J is vector
of current density.

rotE = 0, (3)
divJ = 0, (4)

where E is vector of electric field intensity. Material properties are represented by equation

E = Hµ0, (5)
J = Eγ, (6)

where µ0 is permeability of vacuum, is specific conductance of measured liquid. Vector functions
of electric and magnetic field are expressed by means of scalar electric φe and magnetic potentials
φm

E = −gradφe, (7)
H = −gradφm. (8)

Final current density from (4) J is influenced by velocity v of the flowing ions solution and outer
magnetic field

J = γ(E + v ×B). (9)

If electrodes E1 and E2 have different electrical potentials (Fig. 2) then current density J is created
in the Ω area according to (9) and current IL flows in the ion solution

IL =
∫∫

Se

J · dS =
∫∫

Se

γ(E + v ×B) · dS (10)

where Se is a directed area of electrodes E1 and E2 into space Ω. We obtain voltage between
flowmeter electrodes E1, E2 from

UL =

E2∫

E1

E · d`, (11)

where electric field intensity is derived from the force F which affects a charge q. Current den-
sity J(v) depends on immediate ion velocity between E1 and E2. After modification voltage on
flowmeter electrodes is

UL =
∫∫∫

Ω

(
J(v)
IL

×B

)
· (vio + v)dV. (12)

The model of fluid velocity distribution is derived for incompressible fluid and was able to formulate
from balance of forces the Navier-Stokes equation for the fluid element

∂v

∂t
+ v · gradv = A− 1

ρ
grad p + υ ·∆v, (13)

where A is an external acceleration and υ kinematic viscosity. Next step was derivation of FEM
and FVM model [3]. The final term for output voltage on flowmeter electrodes which was evaluated
is
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where

v+
ok, e =

Je

Fc∆Veik+
, v−ok, e =

Je

Fc∆Veik−
,

ik+ =
Nion+∑

k=1

c+
k N+ion

k = 1, 2902 · 10−5 mol/m3,

ik− =
Nion−∑

k=1

c−k N−ion
k = −1, 3175 · 10−5 mol/m3, (15)

and where Fc is Faraday constant, Fc = 96484C.mol−1, Ee electric field intensity in direction of
ions motion in an element of mesh, c+ positive ions concentration, c− negative ions concentration,
∆Ve is element volume, N+ion

k is integer multiple of electron charge for specific positive ion, N−ion
k

is integer multiple of electron charge for specific negative ion, q−e is whole charge of negative
ions in one element, q+

e is whole charge of positive ions in one element, N+
ion is number of different

positive charge carriers (elements, compounds), Nion− is number of different negative charge carriers
(elements, compounds). Potable water has for instance this composition of ions with volume density
mio:

Positive ions Negative ions Neutral substances:

Na . . . 32,71 mg/dm3 F . . . 1,58 mg/dm3 HCO3 762,4mg/dm3 CO2 . . . 4063 mg/dm3

K . . . 1,525 mg/dm3 Cl . . . 5,350 mg/dm3 H2O . . . 1000000mg/dm3

Mg . . . 43,81 mg/dm3 SO4 . . . 13,08 mg/dm3

Ca . . . 157,7mg/dm3 NO3 . . . 0,540 mg/dm3
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Figure 2: Geometrical model of flowmeter body.

3. NUMERICAL MODEL AND EXPERIMENTAL MEASUREMENT

The partial results of MHD model are showed in Fig. 3(a). Dependence of output voltage on fluid
velocity is showed in Fig. 3(b). This result is practically identical with experimental measurement
on DN-100 ELIS s. r. o Brno Fig. 4(b), where the part of magnetic flux density B measurement as
a function of radius R and coordinate z according Fig. 1 is shown. The results of the experiments
on Fig. 5 correspond with the numerical model described above in Equations (1) to (15). The
deviation between measured and modeled flowmeter never exceeds 3.4%.

The voltage UL dependence on flow velocity v was tested on flowmeter Fig. 4(b). The deviation
of numerical result and experimental was less than measurement uncertainty.
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Figure 3: Numerical modelling results, (a) Distribution of a magnetic field intensity H in the flowmeter
body, (b) Dependence of voltage UL on flow velocity v.
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Figure 4: Experimental flowmeter body, (a) Open body, (b) Magnetic field verification.
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Figure 5: Experimental results, magnetic flux density depend on position of active part flowmeter.
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Abstract— An analysis of the electric state of air shows the presence of various ion sorts. The
therapeutic effect of negative high-mobility ions of proper concentration is known. This positive
effect was observed in caves that are used for speleotherapy. This article presents the capability
of methods for measuring ion concentration and for ion spectral analysis.

1. INTRODUCTION

Electrical phenomena occurring in ionized gases involve physical-chemical-biologically reactive ions,
radicals, and molecular species. These phenomena are encountered and overlap among diverse fields
of chemistry, physics, engineering, meteorology, climatology, medicine, microbiology, physiology and
industrial hygiene. The physical and chemical aspects of small air ions and radicals have been under
investigation almost from the discovery of electricity. Plasma chemistry and discharge physics are
inexorably intertwined. The health implications of air ionization have been reviewed elsewhere [1–
5]. Improved diagnostics and mechanistic understandings of electrical discharges in gases [6, 7] have
led to the development of engineered devices with highly controllable processes for the generation
of non-thermal plasmas in the treatment of chemical [8, 27, 28] and biological contaminants [9–12].
Coupled with the increased interest in controlling the potpourri of airborne contaminants, there
has been an awakening kindled in applying this technology for improving the air quality of enclosed
indoor environments [13–17].

It is known the effect of negative ions to human healthy. The presence of negative air ions in
an inhaled air is necessary for the normal vital activity of animals and humans [18]. Clean rural
air contains some hundreds to some thousands negative air ions in a cubic centimeter. It has been
established that during a long stay in closed rooms, people experience a deficit of the negative air
ions, the so-called oxygen “starvation.” It causes a worsening of a health condition and predisposes
to the development of diseases [19, 20]. In the 1930s, A. L. Tchijevsky suggested compensating for
the negative air ions deficiency by an electric ionization of air [19]. The problem of an artificial
ionization of air remains urgent also at present. The indoor air in hospitals and offices where many
people are present, as well as in air-conditioned rooms, contain, in the best case, as little as tens
or hundreds of charges in a cubic centimeter, and the level of the negative air ions can fall even
to zero [21]. It was shown by A. L. Tchijevsky [19, 22] and later by N. I. Goldshtein [23] that the
complete absence of the negative air ions in the inhaled air is fatal to animals. Modern devices
generate the negative air ions in different quantities, from a few hundreds to thousands and millions
ions per cubic centimeter. These devices are used for both cleaning the air from dust, microbes,
and volatile admixtures by high doses of the negative air ions [24] and enriching the air by the
negative air ions for prophylactic and therapeutic purposes.

The Department of the Theoretical and Experimental Electrical Engineering of Brno University
of Technology and the Institute of Scientific Instruments of the Academy of Sciences of the Czech
Republic are involved in the research of ion field in office and living spaces [25, 26]. The objective is
to increase the concentration of light air ions in these spaces. Another task is to set up a simulated
therapy room, with conditions similar to speleotherapy caves. It sets the requirements for accurate
measurement of ion field with good repeatability. The article deals with the design of gerdien
condenser and peripheral measuring devices. An optimal design is important for eliminating the
inaccuracy of ion concentration measurement.

2. MEASURING METHOD

Several methods are currently used to measure air ion fields: the dispersion method, the ionspec-
trometer method, the Faraday cage method, and the gerdien condenser method, whose principle
is shown in Figure 1. Here is d1 — inner electrode diameter, d2 — outer electrode diameter, l



Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, 2008 1063

— length of gerdien condenser, M — air flow volume rate, v — air flow velocity, e — elemen-
tary charge of electron, +© positive air particle (ion), −© negative air particle (ion). The gerdien
condenser consists of two electrodes. There is an electric field between the inner electrode (the
collector) and the outer electrode. The field is imposed by voltage source U . Air ions flow from
the fan through the gerdien condenser. Negative ions in the electric field impact the collector, and
the current produced is measured by a pA-meter [25]. The current measured is proportional to air
ion concentration. The model of the measuring system was presented in [26].

Figure 1: Principle of gerdien condenser method.

Gerdien condenser shape ensures that the flow of air is laminar. Air flow turbulence can distort
the accuracy of measurement. The surface of the electrodes is required to be as smooth as possible.
The design of gerdien condenser is shown in Figure 2.

Figure 2: Gerdien condenser design. Figure 3: Design of low-level amplifier.

The current flowing through the gerdien condenser is due to the ion concentration. Current
intensity depends on polarization voltage, on the dimension and parameters of gerdien condenser,
and on ion concentration. The specific current range for the designed gerdien condenser is 10−10 A–
10−13 A. The low-level amplifier is realized with INA 116 — Figure 3. The design of the amplifier
is shown in Figure 3.

3. NUMERICAL MODELING OF DESIGN, VERIFICATION

It is possible to carry out analysis of a gerdien condenser model as a numerical solution by help of
Finite element method (FEM). The electromagnetic part of the model is based on the solution of
full Maxwell’s equations. It was solved like simply electrostatic field. This results showed to new
facts in gerdien condenser design [26]. New design of gerdien condenser was made with filter for
the specific particles, Figure 2.

4. TESTS OF GERDIEN CONDENSERS

The gerdien condenser design was tested according to the special measuring methodology [26]. The
experiments are shown in Figure 4 and Figure 5.
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Figure 4: Gerdien condenser measuring method- test by electronic ion generator.
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Figure 5: Gerdien condenser measuring-test by water, electronic generator and aromastic.
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Figure 6: Results of differential measurement of electronic negative ion generator.

5. CONCLUSION

The new design of gerdien condenser and the optimization of peripheral measuring devices have
minimized the systematic error of measurement. The system allows measuring air ion concentration
with a sensitivity > 50 ions/cm3. The ion mobility is in the interval 0.3–100 cm2V−1s−1. The system
is used to measure ion field distribution in living and office spaces.
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Kolejńı 2906/4, 612 00 Brno, Czech Republic

Abstract— The article provides a brief description of measurement methods which are suitable
for measurement of parameters of the high power electromagnetic pulses. Special requirements for
measurement methods have to be considered because of the specific properties of EMPs and the
parameters of output quantities of pulsed power sources. For measurement of current pulse which
is generated in pulsed power source the magnetooptical method was proposed. This method was
experimentally realized in collinear configuration. The properties of the EMP which is generated
by the high power microwave source can be quantified by means of calorimetric method. On
the basis of this method, the calorimetric sensor was constructed and utilized for experimental
measurement.

1. INTRODUCTION

In the last few years we can observe the growing interest in non-lethal electromagnetic weapons
development [1]. The purpose of this sort of weapons is to affect the functionality of electronic
systems of intruders. In connection with this problematic, the EMP (electromagnetic pulse) is
frequently cited term in the area of military and security applications. High power microwave
sources, which are able to radiate the EMP requires a powerful source of energy. One of the
promising way is the utilization of flux compression generators (FCG). FCG serves as a converter
of the kinetic energy of detonation to the electromagnetic energy. A high current and high voltage
pulse is produced by the FCG [2]. The value of the output pulse can reach up to hundreds of
MA and hundreds of kV. After the pulse shaping the power pulse is fed to the microwave source,
which emits the EMP. The arrangement of the high power microwave pulse generator is shown in
Figure 1.
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Figure 1: The arrangement of high power microwave pulse generator.

For optimization purposes of design and construction of the pulsed power generator and mi-
crowave source it is necessary to measure the electromagnetic quantities on the realized prototypes.
In the case of the pulsed power generator the peak value of current pulse and its waveform is
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the object of interest. The properties of the current measurement method are very demanding.
They are limited by the time relations of the waveform in the sub-microseconds range and by the
peak value of the current. The classical current measurement method (current shunt) are failing.
The current shunts have to large parasitic inductance. For the MA current values it is necessary
to achieve very low resistance to. The promising is the utilization of magneto-optical effect as a
principle of measurement methods.

The basic idea about the optimal EMP generation process in the microwave pulse source can
be obtained by the measurement of the power and the energy of the output pulse. EMP is emitted
into the free-space obviously. The special antenna can be used for pulse measurement. But, this
approach is inconvenient, because of the wide frequency spectrum of the pulse, its single-shot
character and mostly unknown radiation pattern of the EMP emitter. It is not necessary to get
the waveform of the EMP. The idea about the optimal function of the emitter gives the power level
and the energy of the pulse. For this reason, the calorimetric method is suitable for application in
EMP emitter measurement.

2. THE MAGNETO-OPTICAL MEASUREMENT METHOD

The magneto-optical measurement method. is based on the Faraday’s magnetooptic effect. The
connection between the sensor and the measuring device is implemented in the optical wavelength.

There are three basic types of the possible active sensors. The first type is a garnet with high
Verdet constant, the second one is an optic fiber and the third one is based on magnetooptic proper-
ties of ferromagnetic mono/multi thin film. Other types of sensors are based on the magnetooptic
Kerr’s effects (MOKE), or surface MOKE (SMOKE) effect. By an available measuring devices
application we can measure pulses with the limit length Tmax = 0.1 ns [3, 4].

The polarization rotation of light passing the MO sensor is affected by the magnetic part of
EM pulse. The rotation is due to the magnetic field and properties of the sensor material (Verdet
constant). The differential measurement method utilizing the MO glass element was experimentally
realized. Laser beam with linear polarization passes the MO glass placed in Helmholtz coil. The
laser beam is subsequently fed through an analyzer and the polarization rotation is converted
to intensity modulation. The intensities orthogonal beams are sensed by a photodiodes. The
magnetooptic glass FR-5 by Hoyoa Optics was used in this experiment.

The sensitivity of the sensor and its bandwidth are contradictory properties. Because of the high
power level of EM pulse the sensitivity of the sensor is not a critical requirement. The bandwidth
of the sensor has to be appropriate to the measured signal characteristic. When it has to be able
to detect transients with duration 1 ns, the corresponding bandwidth reaches the value of 350 MHz.
The experimental setup is depicted in Figure 2.

He-Ne laser 

photodetectors

Wollaston 

prism 

Faraday 

rotator 

coils 

polarizer 

/4 retarder

polarizer 

condensator

shunt 

sparkgap 

Figure 2: Experimental setup for magneto-optic method verification.

Measured current is fed through the coil system with 4 turns. The inductance was L = 2µH.
The coil system is connected into the discharge circuit with the high voltage capacitor(C = 8µF,
U = 2, 2 kV) and spark-gap. For comparative current measurement a low resistance (Rs = 5 mΩ)



Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, 2008 1069

was used as a current shunt. The frequency of the periodic current transient was f = 37 kHz. A
strong electromagnetic interference was generated by the spark-gap discharge. The interference was
suppressed by means of differential measurement method. The example of the waveform obtained
by the discharge are shown in Figure 3. On the basis of calculated field distribution in the coils
and the Verdet constant of the Faraday rotator, the waveform of the current pulse was obtained.
The peak value of the current pulse achieves Ip = 2 kA. The current waveform distortion by the
parasitic inductance of the shunt is obvious in the Figure 3.
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Figure 3: The example of the waveforms obtained by the magneto-optical method verification (left) and the
evaluated current waveform (right).

3. THE CALORIMETRIC METHOD

For measurement of parameters of EMP which is generated in the last stage of the pulsed microwave
source the calorimetric method was chosen. The group of calorimetric methods represents another
type of converter to be introduced. We can measure power supplied by pulse. Figure 4 depicts four
versions of the method utilizing calorimetric measurement.

l = 10 m
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Figure 4: Calorimetric method for the single-shot pulses measurement.

Version I discussed in [5, 6] has a sensor in the form of an ideal resistor and enables measurement
of the maximum value of microwave power Pmax. The analyzed peak voltage corresponds to peak
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value of power Pmax. For available measuring devices we can measure pulses with the limit length
Tmax = 50 ps. Version II scans the change of resistance of the sensor, created by an evaporated thin
layer, in dependence on the pulse energy. For available measuring devices we can reach the accuracy
of 30% up to impulse limit length Tmax = 0.1 ns. Version III is based on the measurement of the
temperature change of the thermistor placed in contact with the layer. Under the same conditions
as for the previous version we can reach the accuracy improvement of an order of magnitude.
Version IV is the bridge connection of Version III. Several thermistors are attached in series to the
evaporated layer; then, three resistors create a DC bridge of Weston type with the thermistors.
The change of resistance in the thermistor arm is evaluated. The voltage in measuring the bridge
diagonal is consequently integrated. Thus, the value of the pulse energy is obtained (and recorded
by the measuring device). For available measuring devices we can measure pulses with the limit
length Tmax = 0.03 ns with accuracy to 10

For the measurement of free-space EMP, the combined calorimetric sensor was built [7]. The
sensor operation is based on Version I and Version IV of the calorimetric method in Figure 4. The
first part (Version I) serves as the sensor of instantaneous power and the second part (Version IV)
serves as the sensor of pulse energy. The realization of the combined sensor is shown in Figure 5.
Both parts are equipped with Horn antennas to ensure the matching of the free-space EMG wave
to the sensor input. The sensor was calibrated with an RF generator in an absorption room. The
calibration was performed for microwave pulses with defined duration and power level. Due to
safety requirements, the connection between the sensor and the measuring device was ensured by
means of coaxial cable of the minimum length lmin = 10 m.

 

Figure 5: Realization of combined calorimetric sen-
sor.

Figure 6: Waveform of microwave power, Pmax =
50 kW.

The combined calorimetric sensor was used for the measurement of vircator-emitted EMP. The
supply of the vircator was provided by pulse high-voltage source powered by Marx bank. When the
vircator is in the operational mode, hard RTG emission is generated in addition to the microwave
emission [8]. The energy of the electron beam is Wb = 1 MeV. Therefore, safety requirements equal
to those mentioned above have to be considered.

The example of the waveform of small microwave power Pmax = 50 kW is in Figure 6. However,
vircator is able to emit EMP with peak value of hundreds of MW when supplied with pulsed power
generators.

4. CONCLUSION

The overview of methods suitable for the measurement of short single-shot EMPs with high power
level and high-value pulsed current waveform was given. The methods were experimentally re-
alized and verified. A combined calorimetric sensor for free-space measurement was built and
the functionality of the calorimetric sensor was proved by real measurement of vircator-emitted
EMP. The magneto-optic method was found as suitable for application by the measurement on
the pulsed power generator. Its advantages are high bandwidth, galvanic isolation and the pos-
sibility of common-induced interference rejection. For practical application an integral fiberoptic
magneto-optical sensor is proposed [9].
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Abstract— We know active and passive methods of a location. This article deals only with
a passive location of dynamic targets. The passive optics location is suitable just for tracking
of targets with mean velocity which is limited by the hardware basis. The aim of this work is
to recognize plasma, particles etc. It is possible to propose such kind of evaluation methods
which improve the capture probability markedly. Suggested method is dealing with the short-
distance evaluation of targets. We suppose the application of three independent principles how to
recognize an object in a scanned picture. These principles use similar stochastic functions in order
to evaluate an object location by means of simple mathematical operations. Methods are based
on direct evaluation of picture sequence by the help of the histogram and frequency spectrum.
We find out the probability of unidentified moving object in pictures. If the probability reaches
a setting value we will get a signal. The processing of dynamic pictures and their filtration are a
significant part of work. Static objects, background (trees, buildings) must be filtered off before.
This filtration is being also done by means of the probability function. Probability distribution
of an object position is gained from a sequence of more pictures.

1. INTRODUCTION

The present state of the image processing with the target detection aim is orientated mostly on
the security [6], robotics [7], medicine [8], astronomy [10, 11, 14] or for example on ground target
detection and recognition in the army area [9, 12, 15]. Also there are other application areas [13].
Mostly the main problem to detect relatively large and slow objects on the static background and
to recognize objects, faces etc. and to identify them. For example in robotics is image processing
used for the robot orientation and navigation, eventually for some simple environment analysis,
in the security area could be image processing used for the face detection and identification. In
the medical applications it should be used in combination with CT or NMR methods. Army uses
image processing for example in the radar technology where image is often restored from some data
obtained with help of some active radar system and it is restored in the cylinder or in the spherical
coordinates. The optical location is by army used for the target detection, identification and
tracking etc. Our system solves different problem. We are trying to detect and track relatively very
fast objects like plasma particles etc. In the first approximation we can test the device on the birds
flocks. We suppose usage of the several basic methods bounded by the probability function for the
movement detection and tracking in the image. The theoretical solution was published [2]. There
were done the first tests of the proposed methods. These methods were tested in the MATLAB
environment. Some of the solution aspects are described in the following text. The proposed
methods were tested by the set of the testing images and the object location methodology was
tested on the real video sequence. These methods are recapitulated and resumed from the view
of the method efficiency, speed and the other parameters during the image processing. There
is also summarized hardware used for the algorithm implementation, tests and on-line detection
experiments in the text.

2. THE COMBINED DIFFERENTIAL IMAGES METHOD

The differential images method described in the [2] was combined with the image segmentation. The
good properties of the both methods are used with an advantage and so we obtained powerful tool,
which meets the high computational requirements and the low resolution ability of the recorded
image. The MATLAB environment supports two basic principles of the image segmentation —
The boundary detection method and the edge detection method, both described in [3–5]. There
was with an advantage used a bwboundaries function, implemented in the Imagetools package.
This function is based on the boundary detection segmentation method. It can work on the binary
image only. The searching process is following: from some automatically selected initial pixel its
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vicinity pixels are probed for their value and it is decided if they belong to the object area. This
step is repeated for each pixel in the object vicinity. There was tested another function from the
MATLAB Imagetools package — bwtraceboundary. This function uses the same principle as the
bwboundaries function described above but it has in comparison to the bwboundaries function one
significant disadvantage — user must specify the initial pixel for the image segmentation. Another
tested segmentation method was based on the edge detection principle. This method had bad
results during the testing. We weren’t able to prevent the removing of some target objects or their
significant parts. The combined differential images method uses several-step algorithm. In the
first step are the important areas selected in the image by the image segmentation. Then in these
selected areas the detailed tracking is performed with the time domain differences assistance.

 

Figure 1: Differential images method principle.

3. THE HISTOGRAM METHOD

The histogram is the statistical information. It shows the intensity distribution in the image. It
can be said in the first moment this method is not capable of the target movement detection in the
image. The reason for this is: If the object is moving above the quasi-constant background, it is
very difficult to recognize target movement or its position.

Figure 2: Image segmentation and target detection.

4. THE SPECTRUM ANALYSIS METHOD

The next suggested method is the spectrum’s analysis method. In the figure bellow is shown
the spectrum’s difference for the diagonal and the flat object move above the simple background.
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Particular spectrums are obtained by the 2D Fast Fourier transform algorithm — in MATLAB
implemented in the fft2 function. The lines direction in the amplitude spectrum difference is
perpendicular to the movement direction. If there are changed background colors, is in addition
similar pattern visible in the phase spectrum difference. In the similar test images sequences is
solution simple. More complicated method application is in the real recorded sequences. Step
order was: At first were selected potential target areas by the RGB space analysis (or the combined
differential images method) — to the feasible pixels was associated white color and to the others
was associated the black color. In the next step the spectrums were calculated. During the difficult
testing was discovered that method of the spectrum’s analysis method doe’s not give usable results
according to the entered parameters of the object velocity, its size and quality and the image
sequence density. The tested objects were detectable only with big difficulty. More detailed problem
description is in [3–5].

Figure 3: The difference of the amplitude and phase spectrum’s during the diagonal and flat object move.

5. THE METHODS SUMMARY

From the comparison of the suggested methods (The combined difference images method, the
histogram method and the spectrum’s analysis method) follows that the methods are applicable
on the images with much higher intensity level according to the background. It was determined
that the image segmentation method based on the edge detection is not directly usable for the
hardware solution implementation. The MATLAB environment during the edge detection applies
some threshold on the image and this can filter out the target or his significant part. In the opposite
the boundary detection method (the bwboundaries function) looks like very powerful tool. This
function works above the binary image and it is very fast. Disadvantage for this method is that we
are loosing some information during the transformation from the RGB space to the binary space.
This can result loss for the small targets. Still this disadvantage has lower dependencies than the
corresponding effect for the edge detection method. Very efficient is threshold segmentation method
but this method can give bad results according to the threshold selection. In addition, if we know
the color distribution in the RGB spectrum we can very simply filter the image before we try to
detect the object and remove some redundant information. Then we can concentrate only to the
reduced image area and detection progress can be faster. If we speak about the sensitivity and the
precision of the elementary methods, big problem part lies in the fact, that the real image matrix is
relatively very big according to the traced object. This disadvantage can be particularly removed
by using the Subimaging. On these subimages is applied segmentation by the thresholding in the
RGB space. Probable targets are processed by the suggested methods. (The combined difference
images method, the histogram method and the spectrum’s analysis method).

6. THE FALSE TARGET (BACKGROUND) FILTERING METHOD

Suppose that we have selected possible targets in the image. We can confirm or decline the cor-
rectness of the detected target using the object presence monitoring. Monitoring is done by the
Kalman filter application [3–5]. If the target movement shows some hint of periodicity, we can
reject it as the false target (ground targets, false targets, etc.). The second possibility of the false
target detection is finding of its connection to the image boundary. According to this information
we can reject this target like false target or select it like the probable target.
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7. HARDWARE AND THE DSP PROGRAMMING METHOD SELECTED FOR
EXPERIMENTS

For the experiments are selected following components-Camera: ST VS6724 with the ×24 evalua-
tion board, CMOS chip, Resolution of 2Mpix, Possibility of training with small and cheap camera
chip and then chip exchange to some more reliable for application, Processor: TI TMS320C6416
with the TMS320C6416T DSK evaluation board. Processor is programmed with help of the Real-
time Workshop and Simulink system using the Real-time Workshop target. After the principles
verifying in MATLAB follows simple compilation of MATLAB (SIMULINK) code to the C lan-
guage using special libraries for selected DSP and import to the Code Composer Studio. There can
be the C code optimized, compiled and uploaded to the DSP.

8. IMAGE PROCESSING PREVIEW [5]

   

 (a) (b) (c)

Figure 4: (a) Original image — selected targets, (b) Segmented image — selected potential targets, (c) Final
detected targets selected by method.

9. CONCLUSIONS

Basic theoretical methods were tested and owing to their suitable combination the method of
dynamic object detection in the image was found. In the Section 8 you can see the images sequence
in the particular method phases. Figure 9 shows the detected targets. More testing must be
performed for the algorithm speed and accuracy tuning.
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Abstract— Generally all Magnetic Resonnce Imaging (MRI) techniques are affected by mag-
netic and electric properties of measured materials, resulting in errors in MR image. Using nu-
merical simulation we can solve the effect of changes in homogeneity of static and RF magnetic
fields caused by specimen made from conductive and/or magnetic material in MR tomograph.
This paper deals with numerical simulation of material susceptibility influence to magnetic field.

1. INTRODUCTION

In MR tomography, strong magnetic field is used (above 1 T). Because MR is very sensitive to
inhomogeneity of this field, even such weak induced magnetic field as from para- or diamagnetic
material is significant. Second mechanism, which affects field homogeneity, is magnetic field off
eddy current induced by RF impulse in conductive material. Aim of this paper is in simulation of
weakly magnetic material influence to static magnetic field.

For numerical simulation, two approaches can be used: normal Finite Element Method (FEM)
and calculation of reaction field considering the induced polarity in the region. These approaches
have been discussed in [6] and [7], where the accuracy consideration and possible reduction of nu-
merical method errors can be found. Using FEM for calculation of magnetic field in MR tomography
requires double precision arithmetic and sufficiently fine mesh, because change of the magnetic field
in vicinity of slightly magnetic materials is weak in comparison to basic static magnetic field. Sec-
ond approach may use single precision arithmetic, because only reactional field (induced own field
of magnetic material) is computed.

2. 2D ANALYTIC SOLUTION

Let’s have specimen with susceptibility χm1 surrounded by reference medium with known suscepti-
bility χm2 and placed into static primal magnetic field with magnetic intensity vector H0 oriented
in uz direction — see Fig. 1 left. We have to determine magnetic intensity H of incurred field,
which is superposition of primal and reaction field Hr (effect of specimen magnetization).

Because there are not variable currents in whole area, magnetic field is irrotational (rot H = 0)
and we can use scalar magnetic potential

H = −gradϕm. (1)

Magnetic potential of primal field of intensity H0 is

ϕm0 = −
∫

H0 · uzdz = −H0z. (2)

Incidence of magnetized specimen from Fig. 1 left we can replace with effect of field of surface
magnetic charge with density σm on boundary of areas Ω1 a Ω2 — see Fig. 1 right, whereas
susceptibility of areas is now zero. First we have to compute magnetic charge density distribution
on bound Γ and consequently the intensity of reaction field ∆H = H−H0

∆H(r) =
1
2π

∮

Γ

σm(r′)
ur

R(r, r′)
dΓ. (3)

Surface magnetic charge invokes scalar magnetic potential [5]

ϕmr(r) = − 1
2π

∮

Γ

σm(r′) ln R(r, r′)dΓ. (4)
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Figure 1: 2D analytic model for rectangular specimen (left), replacement of specimen magnetization effect
by surface magnetic charge at the area boundaries (right) and boundary detail (middle).

Total scalar magnetic potential at point r is superposition of static primal field intensity (2) and
contribution from charged bound (4)

ϕm(r) = −Hz − 1
2π

∮

Γ

σm(r′) lnR(r, r′)dΓ. (5)

Using condition of magnetic flux Bn = Bnun we obtain an integral formula for surface magnetic
charge density normal component conjunction on bound Γ (see Fig. 1 middle)

Bn = µ0(1 + χm1)H1n = µ0(1 + χm2)H2n (6)

Analogically to the Gauss theorem causes magnetic charge of density σm at point A magnetic
field of intensity

∆Hn = ±σm(A)
2

. (7)

Using (5) and (1) we have the normal components of magnetic field intensity at point A (Fig. 1
middle)

H1n = H0uzun +
1
2π

grad
∮

Γ, r∈Ω1

σm

(
r′

)
ln R(r, r′)dΓun, (8)

H2n = H0uzun +
1
2π

grad
∮

Γ, r∈Ω1

σm

(
r′

)
ln R(r, r′)dΓun. (9)

Whenever A ∈ Γ and thus r ∈ Γ, has integral in formulas (8) a (9) singularity at point A (where
r = r′). We can remove this singularity omitting point r = r′ from integration and taking field
contribution of this point using (7) instead. So we can write

H1n = H0uz · un +
1
2π

∮

Γ
r6=r′

σm

(
r′

) 1
R(r, r′)

dΓuR · un − σm(A)
2

, (10)

H2n = H0uz · un +
1
2π

∮

Γ
r6=r′

σm

(
r′

) 1
R(r, r′)

dΓuR · un +
σm(A)

2
, (11)

where was used
grad lnR(r, r′) =

1
R(r, r′)

uR. (12)

Substituting from (10) and (11) into (6) we have after some rearrangement

χ∆

2π

∮

Γ
r∈Γ, r6=r′

σm (r′)
R (r, r′)

dΓuR · un +
σm(r)

2
= −χ∆H0uz · un, (13)
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where differential susceptibility was introduced

χ∆ =
χm1 − χm2

χm1 + χm2 + 2
. (14)

Formula (13) is not analytically solvable, thus we solve it numerically by mean of boundary
element method. After solution of (13) using collocation method described in [5] we have obtained
results, shown in next figure. Shape of magnetic flux density is in the Fig. 2. In this simulation
the aluminium specimen (Ω1) was considered with χm1 = 22 · 10−6, length of specimen z = 20 mm,
thickness a=(3, 5 and 7)mm. Specimen was immersed into the water with χm2 = −9 ·10−6− (Ω2).
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Figure 2: Result of numerical solution - magnetic flux density obtained by collocation method.

3. 3D NUMERICAL SOLUTION

Three dimensional numerical modeling was provided using FEM and Ansys software. The scalar
magnetic potential was computed by solving of Laplace’s equation

∆ϕm = divµ (−gradϕm) = 0. (15)

One of used model is in Fig. 3. Here weakly paramagnetic specimen is surrounded by diamagnetic
reference substance. The model was meshed with Solid96 element type. Boundary conditions were

m2
χ m1

m2

,

1

3

4

2

χ

χ

Figure 3: FEM model (left) and compute result (right) for magnetic flux density.
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set up to achieve induction B0 = 4,700 T in z-axes direction: ϕm = const. on the surfaces Γ1, Γ2,
∂ϕm

∂n = 0 on the shell surface Γ3.
FEM modeling and solution is described in [8]. One of obtained results — the module of

magnetic induction B along the “path” marked in Fig. 3 — is shown in the figure in the right.

4. CONCLUSIONS

Both method of numerical modeling of magnetic field deformation in MRI, caused by weakly mag-
netic specimen, which were described here, was compared with experimental results [3, 8]. Proximity
of measured and numerically modeled data was good — see [5]. To enable comparison, simulation
was adjusted to the same conditions as experiment: size of sample, susceptibilities and magnetic
field of B = 4.7 T.

Based on this simulation, MR measuring technique was founded [8], which is suitable for sub-
stances with no signal in MR tomography. The method uses Gradient Echo (GE) method and
benefits from magnetic induction field shape in specimen vicinity, which is immersed in reference
medium with measurable MR signal. After an optimization this method can be used for investi-
gation of the materials used in MR tomography as well as of biological tissues affecting quality of
MR images.
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Experiments with the Effect of Non-homogenous Parts into
Materials
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Premysl Dohnal1, Michal Hadinec1, and Karel Bartušek2

1Brno University of Technology, Czech Republic
2Academy of Scince of the Czech Republic, Czech Republic

Abstract— The article describes possibility of the deformity magnetic field numerical model-
ing into surroundings of the measured dia-paramagnetic specimens. This deformation study is
given for the purposes MR measuring, where MR images are deformed from the point of view of
susceptibility heterogeneous materials. For the numerical simulation was chosen elementary con-
figuration. The results was verified by MR experimental measurement. As the MR measurement
method was used techniques of the gradient echo.

1. INTRODUCTION

Measurement method for measuring susceptibility of the homogenous materials by magnetic reso-
nance (MR) techniques were detailed described in texts [4–7] and the results were verified by finite
element methods (FEM) numerical simulations. For measuring susceptibility of the heterogeneous
materials with the complicated shapes MR techniques (it was described in [8, 9]) hadn’t always
unique outgoing values. It is necessary find the method, how it is possible reliable measured results
verify. One of the possibility of verification is the use of FEM numerical analysis with ANSYS
system. The main advantages of the FEM ANSYS system is the ability to solve the multi-physical
models, anisotropic materials and possibility to use of APDL programming language. This all
advantages haven’t the other programs together.

The aim of our work is to find simply model for numerical modeling and NMR experiment-
verification. There can be changed heterogeneous material properties and next experimentally
measured. The idea of increase of MRI is in the hybrid experimental and numerical inverse method.
The numerical results are used in the MRI experimentally obtained data. The application of
numerical results to the NMR post-processing can much more increase the final images.

2. GEOMETRICAL MODEL

90

path of the cut 
through the

inhomogeneity

Figure 1: The sample geometry for numerical modeling, path of magnetic flux density evaluation.

The Fig. 1 describes the sample geometry for the numerical modeling. On both sides, the
sample is surrounded by the referential medium (clay). As shown in Fig. 1, in the model there are
defined five volumes with different susceptibilities. The materials are defined by their permeabilites:
material No. 4 – the medium outside the cube (air, χ = 0), material No. 3 – referential medium
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(clay, χ = −9, 92.10−6), material No. 2 – the cube and the inhomogeneity covering (sodium glass,
χ = −11, 7.10−6), material No. 1 – the material inside the inhomogeneity (water, χ = −12, 44.10−6).
The permeability rate was set with the help of the relation µ = 1 + χ.

For the sample geometry according to Fig. 1, the geometrical model was built in the system
Ansys by FEM. In the model there was applied the mesh of elements, type Solid96 (ANSYS). The
boundary conditions (4) were selected for the induction value of the static primary magnetic flux
density to be B0 = 4, 7000T in the direction of the z coordinate (the cube axis) – corresponds with
the real experiment carried out using the MR tomograph at the Institute of Scientific Instruments,
ASCR Brno.

3. NUMERICAL ANALYSIS

The numerical modeling was realized using the FEM with the ANSYS system and it was detailed
described into reference [4]. The numerical modeling results are represented in Fig. 2, Fig. 3. The
numerical modeling results were then used for the representation of the module of magnetic flux
density B along the defined path. For the model meshing, the element sizes selected as optimum
were 0, 25.10−3 m and 0, 125.10−3 m. The boundary conditions ±ϕm/2 were set to the model edges,
to the external left and right boundaries of the air medium, as represented in Fig. 1. The excitation
value ±ϕm/2 was set by using again the relation (4). This is derived for the assumption that, in
the entire area, there are no exciting currents, therefore there holds for the rot H = 0 and the
field is irrotational. Consequently, for the scalar magnetic potential ϕm holds

4.69996 T

4.70001 T

4.69996 T

4.699975T 

Figure 2: The numerical solution of the FEM model in the ANSYS system, distribution of module magnetic
flux density B.
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Figure 3: The magnetic flux density distribution change into water inhomogeneity ∆B = 36 µT, ANSYS
numerical analysis results.

H = −gradϕm (1)



Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, 2008 1083

The potential of the exciting static field with intensity H0 is by applying (2)

ϕm =
∫

H0 · uzdz = H0 · z (2)

where uz is the normal vector on z direction. The

H0 =
B

µ0 · µr
(3)

Then

± ϕm

2
=

B · z
2µ0

=
4, 7000 · 90 · 10−3

2µ0
(4)

where z is the total length of the model edge.

4. EXPERIMENTAL MEASUREMENT

-

Px1 (0,0)

Px1 (0,0)
Modul

of the
spectrum [-]

2000 1500 1000 500 0 500

Figure 4: The experimentally measured spectral characteristic into water inhomogeneity.

The experimental measuring was realized using the MR tomograph at the Institute of Scientific
Instruments, ASCR Brno. The tomograph elementary field B0 = 4, 7000T is generated by the
superconductive solenoidal horizontal magnet produced by the Magnex Scientific company. The
corresponding resonance frequency for the 1 H cores is 200MHz. The numerical modeling and
analysis of the task have verified the experimental results and, owing to the modifiability of the
numerical model, we have managed to advance further in the experimental qualitative NMR image
processing realized at the ISI ASCR. As the MR measurement method was used technics of the
gradient echo. The results spectral characteristic into water inhomogeneity are given into Fig. 4.
The relation for computation frequency to the magnetic flux density distribution change ∆B is

∆B =
2π∆f

2, 67e8
(5)

where f (Hz) is measured frequency and ∆B (T) is magnetic flux density distribution change.
For water inhomogeneity according to Fig. 1 is value magnetic flux density distribution change
from graph Fig. 4 equal. ∆B = 4, 7µT. The frequency fmax = 900 Hz with maximum diagram
value in Fig. 4 on histogram according to relation (5) correspond to ∆B = 21.15µT. This is
the right results, because the difference of magnetic flux density from numerical results , Fig. 2 is
approximately ∆B = 15.0µT. The accuracy result was obtained from path solution. The numerical
results are showed in Fig. 3. There is the difference of magnetic flux density ∆B = 36.0µT. The
better result can be done with the numerical result histogram solution.

5. CONCLUSIONS

The result showed, that it is possible use FEM modelling to the heterogeneous material analysis and
use for the magnetic field deformation study into MR experiments. The mathematical experiments
showed good results in surroundings of the heterogeneous objects with the complicated shapes.
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5. Steinbauer, M. and E. Kroutilová, “Measurement of weakly magnetic material using new
MR technique,” Applied Electronics 2006, University of West BohemiaDepartment of Applied
Electronics and TelecommunicationsUniverzitn 8306 14 PilsenCzech Republic, Pilsen, Czech
Republic, ISBN: 80-7043-442-2, s. 87–91, 2006.

6. Steinbauer, E. and M. Batrusek, “Measurement and simulation of material influence in MR
tomography,” Proceedings of the International Workshop ISEP-UTEE 3. -6. 9. 2006 Paris,
L’Institut Supérieur d’Electronique de Paris, Paris, France, ISBN: 80-214-3250-0, s. 87–92,
2006.
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resonance. n. n. Brno: VUTIUM, ISBN: 978-80-214-3379-3, 21 s, 2007.

9. Batrusek, K. and Z. Dokoupil, “Magnetic resonance diffusion measurement method in heteroge-
nous systems,” Nodern Development of Magnetic Resonance, 1. Kazan, Russian Federation,
Zavoisky Physicel Technical Institute Kazan, s. 142–143, 2007.



Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, 2008 1085

Optimization Method of EMI Power Filters and Its Measurement

Z. Szabó, J. Sedláček, and M. Hadinec
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Abstract— One of the most important problems solved nowadays is the improvement of the
electronic systems immunity. This paper deals with the modelling and synthesis of EMC power
filters. This is very important in the field of the electromagnetic compatibility and EMC filter
design and optimisation. Various types of EMC filters are discussed. Idea of the synthesis and
optimisation of EMC filters is illustrated on example. Results of our synthesis of EMC filter are
shown at the conclusion.

1. INTRODUCTION

As the complexity of high-speed electronic system packages increase, engineers and designers are
required to take control of more and more aspects of electrical and mechanical engineering early in
the design cycle. In order to achieve the objective of faster time-to-market and to be cost effective
one needs to be able to predict the electromagnetic radiated emission noises of the system design [1].

Sensitivity of devices to electromagnetic disturbances is increasing in many industrial fields. For
example in EMC modeling and simulation on chip level [2], automotive equipments EMC mod-
eling [3] etc.. Due to the increasing amount of devices sensitive to electromagnetic disturbances
solution of problems coupled with electromagnetic compatibility is very important. Problems with
electromagnetic compatibility can be suppressed by using special circuit elements. In area of
EMC (electromagnetic compatibility) are very often used EMI (electromagnetic interference) fil-
ters. Modeling and synthesis of EMI filters is described in this paper. The created model enables
to investigate influence of mismatched condition very quickly without measurement of filter. The
great advantage of optimization method is that enable to optimize resulting filter model param-
eters by usage of usually accessible software for network analysis without requirement of special
numerical programs what brings new possibility for many designers in area of EMC filter design
and optimization. The great advantage of optimization method is that enable to optimize result-
ing filter model parameters by usage of usually accessible software for network analysis without
requirement of special numerical programs what brings new possibility for many designers in area
of EMC filter design and optimization.

2. EMI FILTERS

Electromagnetic interference (EMI) can be reduced to acceptable level using filter circuits usually
referred as EMI or RFI filters. EMI filters are usually low-pass filter circuits with serial choke coils
and parallel capacitors. These filters can be generally divided to two different groups. First group
are named as data filters — are used namely in telecommunication systems. EMI data filters are
performed as well known low-pass filter configurations (LC ladder circuits). Because these filters
are constructed for constant load and generator impedances, design and optimization of filters can
be realized according known design and optimization procedures.

The second group of EMI filters are filters used in power electronic. In comparison to EMI data
communications filters EMI power filters operate typically under mismatched impedance conditions.
This major problem of EMI filter design for power electronic equipment is caused by the arbitrary
generator and load impedances. These impedances are really arbitrary because neither their value
can be known, filters are installed in different equipments and supply network. The design of power
EMI filters is different then well known procedures of classical filter design and requires some special
view and procedures.

EMI filters are generally two-ports characterized by insertion loss (IL) rather then voltage atten-
uation. An insertion loss definition and measurement method is clear from Fig. 1. The difference
between the measured voltage appearing beyond the insertion point before (switch position 1) and
after the filter insertion (switch position 2) can be expressed as:

IL = 20 log
(

UL1

UL2

)
. (1)
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The voltage UL1 can be expressed using resistances of load and generator, and then insertion loss
is given:

IL = 20 log
(

Ug

UL2

RL

Rg + RL

)
. (2)

The requirement of insertion loss value must be fulfill in wide frequency range from DC to frequen-
cies about hundred MHz. Thus analysis and measurement of the insertion loss must be made by
filter design process in wide frequency range for many frequencies. Such a measurement procedure
is not highly desirable in practical engineering. The chart in Fig. 2 presents typical frequency
characteristic of insertion loss of EMI filters.

Figure 1: Insertion loss definition and measurement. Figure 2: Typical frequency characteristic of EMI
filter.

In the pass band insertion loss must be negligible from cut-off frequency fc it monotonically
increases. At the stop frequency fs reaches insertion loss required value, up the stop frequency fs
due to parasitic effects exhibit curve some imperfections and usually decreases. After determining
the required insertion loss in the stop band-pass, the next step of filter design is to choose a cir-
cuit configuration. Important factors may include a limitation on capacitive current for grounded
equipments or the acceptable voltage drop across power line filters. For stringent suppression re-
quirements must be also consider the mismatched impedance conditions. In area of power electronic
EMC filter most often are used low-pass LC ladder filters in L, PI or T configurations. For high-
performance applications are used also multistage LC circuits with higher number of basic sections.
In power engineering practice, multistage filters having more then four stages are not very common.
To suppress EMI on all wires, filter prototypes must be inserted in every wire of power lines. Thus
power filter network becomes more complex with an increase in the number of wires to be filtered.
The two-wire EMI filter should be studied as a six-terminal network. EMI power filters are inserted
most often in three phase main supply lines and then must be filtered each wires including neutral.
The complexity of EMI filters then significantly increases. The measurement of insertion loss in
this case must be realized separately for all terminal pairs. According of used measurement system
(symmetric, asymmetric or non-symmetric) the unused terminal pairs must be connected together
to obtain the lowest insertion loss value. These specifications require the unused terminals to be
grounded, ungrounded, or linked to ground through specific impedance [7].

3. MODELING OF EMI POWER FILTERS

The synthesis of proper filter models (equivalent circuits) including function elements as well as
parasitic elements is one from important parts of successful EMI filter design and optimization.
Using modeling techniques can be analyzed the effects of parasitic phenomena and impedance
mismatch.

In present time PC technique enables to apply direct calculation method very easy. The direct
calculation method is also the simplest approach for generating a complete EMC filter model. This
modeling method is based on equivalent filter circuit synthesis by means of built-in filter elements.
The models can be synthesized from the limited data available from manufacturers but also with
measured data. To express filter performance in required wide frequency range, the basic filter
elements must be assumed not ideal. Basic electrical element must be replaced by equivalent
circuit including their parasitic elements (Fig. 3). The approximate values of parasitic elements of
most often used EMI filter elements (inductors and capacitors) are summarized in Table 1 [4].
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Figure 3: Equivalent circuits: (a) of capacitor, (b)
of inductor, (c) of resistor.

Table 1: Typical element values of real filter ele-
ments.

4. SYNTHESIS OF EMI POWER FILTER MODEL

The model of the filter for three phase power FN 256-64-52 is here presented as an example of EMC
filter model synthesis and optimization. The first step of filter model synthesis was grown from
known basic (from manufacturer’s data sheet) filter topology (Fig. 4).

Figure 4: Typical electrical PI topology of power
four-wire EMI filter.

Figure 5: The resulting circuit diagram of filter
model (filter FN 256-64-52).

In the second step the ideal basic elements (R, L, C) were replaced by real models for each
of the tree lines. The initial filter value parameters were approximated. Using commercially
available analyzers TINA and P-SPICE 9 the filter with equal load and generator resistors (50 Ω)
was analyzed. Frequency curve of insertion loss was obtained from circuit analysis. It was compared
with the frequency curve presented by the same measuring conditions in manufacturer’s data sheet.

Figure 6: Insertion loss characteristics as function of load inductance.
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Then the frequency curve the model of the filter was optimized using optimizer routines from
analyzers. As the result of the optimization procedures the values of each element of the model of
the filter were obtained. The resulting circuit diagram of the model of the filter with the values of
its parameters is shown in Fig. 5.

Using created filter model an influence of resistance of generator R1 and resistance load R2 on
insertion loss of the filter was investigated to determine worst case of operation. How is seen from
curves (Figs. 9, 10), the effect of the mismatch conditions in the worst case can decrease initial
insertion loss of about 20 dB in the entire working frequency range what must be by assumed.

We can see from Fig. 6, that in real conditions must be taken into account not only resistances,
but also inductances of loads and generators.

Using measuring chamber is shown on figures (Fig. 7, Fig. 8) the insertion lost characteristics
of the EMC four wire power filter was measured. Results of the measurement were compared with
the insertion lost characteristics obtained from the filter modeling.

Figure 7: Measuring chamber with EMC four wire
power filter.

Figure 8: Measuring place with measuring chamber
and devices.

5. CONCLUSIONS

The paper deals with the problems of modeling of optimization of EMC filters. The method of
synthesis and optimization was described on example of EMC filter. The resulting circuit diagram
of the model of the filter with its parameters and the insertion lost characteristics were shown.
Influence of mismatched conditions of the insertion lost was investigated. Resulted characteristic
from synthesis were compared with experimentally obtained characteristics. In the future the
method decrypted in this paper will be improved and the method will be tested on various types
of EMC filters.
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Estimation Method of Quasi-wavefronts for UWB Radar Imaging
with LMS Filter and Fractional Boundary Scattering Transform
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Graduate School of Informatics, Kyoto University
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Abstract— UWB (Ultra Wide-Band) radar has a variety of applications including security
surveillance systems. The SEABED algorithm is a fast imaging method for UWB radar, that
uses a reversible transform between the real and data spaces [1]. We introduce an intermediate
space between the real and data spaces [2]. Curves in the intermediate space can be smooth,
and can be used to extract quasi-wavefronts (the equi-phase surface). In this paper, we use LMS
(Least-Mean-Square) filters in the intermediate space for imaging arbitrary target shapes.

1. INTRODUCTION

UWB (ultra-wideband) pulse radar is a promising candidate as an environment measurement, or
sensing, method for robots. Radar imaging for a nearby target is known as an ill-posed inverse
problem: a problem that has been extensively studied [3, 4]. However, conventional algorithms
require long computational time, that makes it difficult to apply UWB to real-time operations
for robots. We have proposed a fast radar imaging algorithm, the SEABED algorithm, for UWB
pulse radar [5, 6]. This algorithm is based on a reversible transform, IBST (Inverse Boundary
Scattering Transform), between the target shape and observed data. This transform enables us to
estimate target shapes quickly and accurately in a noiseless environment. The SEABED algorithm
extracts equi-phase surfaces (also called quasi-wavefronts) first, and then applies an IBST to obtain
the estimated image. However, in a noisy environment the image estimated by the SEABED
algorithm is degraded because the quasiwavefronts cannot be accurately estimated. In this paper,
we introduce an FIBST (Fractional IBST) [2] to the quasi-wavefront extraction process. This
transform is obtained by expanding the conventional IBST, which enables us to deal with the
intermediate space between real and data spaces, and propose a stable quasi-wavefronts extraction
algorithm . We show some application examples with numerical simulations.

2. SYSTEM MODEL

We assume a mono-static radar system. An omni-directional antenna is scanned along a straight
line. UWB pulses are transmitted at fixed intervals and received by the antenna. The received
data is A/D converted and stored in memory. We estimate target shapes using the obtained data.
We deal with a 2-dimensional problem. We define a real space in which targets and antenna are
located. We express the real space with the parameters (x, y). Both x and y are normalized by λ,
which is the center wavelength of the transmitted pulse in air. We assume y > 0 for simplicity. The
antenna is scanned along the x-axis in r-space. We define s(X, Y ) as the received waveform after
applying a matched filter at the antenna-location (x, y) = (X, 0). Here, we define Y with time t
and the speed of the radiowave c as Y = ct/(2λ). We define a data space expressed by (X, Y ).

3. SEABED ALGORITHM

In previous work we developed a fast radar imaging algorithm, ‘SEABED’, based on a BST (Bound-
ary Scattering Transform) [5–8]. The algorithm uses a reversible transform, BST, between target
shapes and pulse delays. The BST is expressed as

X = x + y
dy

dx
, (1)

Y = y

√
1 +

(
dy

dx

)2

, (2)

where (X, Y ) is a point on a quasi wavefront, and (x, y) is a point on the target boundary [1]. We
have clarified that the inverse transform of the BST is given by

x = X − Y dY/dX, (3)

y = Y
√

1− (dY/dX)2, (4)
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where we assume |dY/dX| ≤ 1. This condition is required because y should be a real number.
First, quasi wavefronts are extracted from the received signals s(X, Y ) in the SEABED algorithm.
Quasi wavefronts are extracted to satisfy the conditions ds(X, Y )/dY = 0 and |dY/dX| ≤ 1.
Finally, we apply the IBST to the quasi wavefronts, and obtain the final image. The extraction
of quasi-wavefronts is critical to obtaining high-quality images with this algorithm. However, the
quasi-wavefront cannot be accurately estimated for a noisy case. It is to solve this is the problem
that we propose a new algorithm in this study.

4. FRACTIONAL BOUNDARY SCATTERING TRANSFORM

Here, we explain a fractional boundary scattering transform obtained by expanding the conven-
tional boundary scattering transform [2]. We define the fractional boundary scattering transform,
FBST (α) as

x(α) = x + αy
dy

dx
, (5)

y(α) = y

√
1 + α

(
dy

dx

)2

. (6)

These equations contain a parameter α (0 ≤ α ≤ 1), which is not included in the conventional
boundary scattering transform. We call (x(α), y(α)) a ‘fractional transform quasi wavefront’. We
call the space expressed by (x(α), y(α)) a ‘fractional transform space’. The fractional transform
quasi-wavefront is equivalent to the conventional quasi-wavefront for α = 1 and the fractional
transform quasi-wavefront is equivalent to the target shape for α = 0. The fractional inverse
boundary scattering transform, FIBST (α) is defined in relation to the FBST similarly to the
relationship between BST and IBST; by changing the sign of α.

Our study [2] clarified that data in the fractional transform space can be smooth regardless
of the shape of targets. This characteristic can be used in the extraction of quasi-wavefronts.
Additionally, data in any space can be transformed to arbitrary space as in Fig. 1, a fact that can
be effectively used to develop our new algorithm. An example of data in 3 spaces (real, data, and
fractional transform) is shown in Fig. 2. The data has an edge around X = 1.5, but the data in
the fractional transform space is smooth, where we set α = 0.5. In this way, we can avoid edges
in the real and data space by applying an FBST to transform the data to the fractional transform
space.

Real Space Data Space 
BST=FBST(1)

IBST=FBST(-1)

Fractional Transform Space (α)

FBST(α)FBST(−α) FBST(α−1) FBST(1−α)

Figure 1: Relationships between spaces.
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Figure 2: An example of data in real, data, and fractional trans-
form spaces.

5. FRACTIONAL BOUNDARY SCATTERING TRANSFORM

A new extraction method for quasi-wavefronts is proposed here. 100 undesired interference points
are assumed with the true quasi-wavefront points for each antenna position X. The first 10 true
points are assumed and used as the initial value. We apply the FBST to the estimated quasi-
wavefront to obtain the curve in the intermediate space, and apply a 5th-order LMS filter to
estimate the entire curve. Then we apply the inverse FBST and obtain the predicted points. We
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adopt the nearest point to the prediction as the estimation in the next step. This procedure is
repeated. This process is shown in Fig. 3 and contrasted with the conventional method as used in
the original SEABED algorithm [1].

Proposed MethodConventional Method

Part of Fractional Space

Part of Data Space
(X1,Y1), (X2,Y2),...,(Xn,Yn)

Extrapolation with 
LMS filter (Xn+1,Yn+1),...

Part of Data Space
(X1,Y1), (X2,Y2),...,(Xn,Yn)

Extrapolation with 
LMS filter (xn+1, yn+1),...

FIBST( )

(x1, x1), (x2, y2),...,(xn, yn)
(   )

FBST( α)

Extrapolation with 
LMS filter (Xn+1,Yn+1),...

α(   )α(  )α (   )α (  )α (  )α

(   )α (   )α

Figure 3: Procedures of the proposed and conventional quasi-wavefront extraction methods.

Figure 4 shows an example of the application of the proposed algorithm to the data shown in
Fig. 2. The estimation of the quasi-wavefront until the 1st step in Fig. 4 is quite easy because of the
smoothness in the data that means it does not depend on the method used. However, there is an
edge around X = 1.5 in the data space. Simple LMS filtering fails to track the true quasi-wavefront
here. The proposed algorithm applies FIBST to the data to obtain the fractional transform space
data as black squares in step 2. Next, LMS filter prediction is applied to extrapolate the fractional
transform space data in step 3. Finally, the FBST is applied to obtain the estimated quasi-wavefront
in step 4. We adopt the nearest point to the prediction as the estimation in the next step. We
repeat these procedures until the final point is estimated.
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Figure 4: Application example of the proposed algorithm.

Figure 5 shows a comparison between the proposed method and the conventional method that
applies the LMS filter in the data space rather than the intermediate space. The results show that
the proposed method works while the conventional method produces a poor estimation. Fig. 6 shows
the estimated image with the conventional method and the proposed method. For the conventional
method, the shape for x > 1.5 is not estimated while our proposed method can correctly estimate
the entire target shape.
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Figure 5: Quasi-wavefronts estimated with the conventional methods (left) and proposed methods (right).
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Figure 6: Images estimated with the conventional methods (left) and the proposed methods (right).

6. CONCLUSION

In this paper, we introduced a FIBST (Fractional IBST) to the quasi-wavefront extraction process,
for the SEABED algorithm for UWB pulse radar imaging. This enables us to deal with the
intermediate space between real and data spaces, and propose a stable quasi-wavefront extraction
algorithm. The results of experimental application show that the proposed method maintains
tracking data even in noisy environments. Additionally, the proposed method can estimate the
entire target image while the conventional one cannot as it fails when multiple undesired points are
caused by noise and interference.
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Structural and Multiferroic Properties of BiFe0.5Co0.5O3 Ceramics
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Abstract— The crystal and magnetic structure of polycrystalline BiFe0.5Co0.5O3 prepared by
a solid-state reaction method with multiple calcination. The sample are characterized by using
various techniques: X-ray diffraction (XRD) study is carried out for phase determination and
lattice parameter calculations (a = 10.1812(4)). The ferroelectricity of the samples has been con-
firmed by the hysteresis loops measurement but the leakage current is quite large, implying that
Co substitution has no effect of the improvement on ferroelectricity in BiFe0.5Co0.5O3 samples.
The magnetization measurement performed at room temperature showed a perfect hysteresis
loop with large remnant magnetization (Mr ≈ 0.55 emµ/g) and low coercive field (Hc ≈ 197Oe).
The frequency dependence of admittance (Y

′
) at room temperature turn out a resonance curve

centered at f ∼ 12.6MHz and a negative overshoot as a typical of resonancelike behavior. The
dielectric property of the BiFe0.5Co0.5O3 ceramics were investigated at intermediate frequencies
(102 ∼106 Hz) in the temperature rage of 100∼560 ◦C.

1. INTRODUCTION

Multiferroic materials have renewed interest in recent years, in which both ferromagnetic and
ferroelectric properties exist in the same phase [1]. As a result they have spontaneous magnetization
which can be switched by an applied field, spontaneous polarization which can be reoriented by an
electric field, and often some coupling between the two [2–4]. Special device application which have
been suggested for such materials include multiple state memory elements, electric field controlled
ferromagnetic resonance devices, and transducers with magnetically modulated piezoelectricity [5–
8]. Many efforts have been devoted to find new materials with and to find multiferroic properties
in known compounds. However, almost all those gigantic magnetoelectric effects occur essentially
below liquid-nitrogen temperature.

BiFeO3 (BFO) is an interesting candidate as a magnetoelectric materials because the ferroelec-
tricity and antiferrimagnetic order present simultaneously at room temperature. G-type antiferro-
magnetic ordering takes place at 640 K, while ferroelectric order appears at a higher temperature
of 1100 K [9]. One problem for BFO as a room-temperature multiferroics is its intrinsic antiferro-
magnetic ordering. In order to improve the properties of BFO ceramics, some attempts have been
made including doping rare earth (RE) or Mn [10], respectively, on the Bi sites or Fe sites, and
fabricating strained films [11]. Hhowever, little improvement in the magnetic properties of BFO
has been achieved by element substitution, and the role of strain in magnetization also requires
further investigation [12, 13].

Bucci had earlier prepared BiCo1−xFexO3 and indicated a limiting value of 0.64 for x to obtain
single phase material [14]. Vasudevan had also synthesized BiCo1−xFexO3, Band confirmed that
sample of BiCo1−xFexO3 (x ≤ 0.7) show complex magnetic behavior [14]. The magnetic behavior
of sample with x < 0.1 is similar to that of BiCoO3. When 0.1 ≤ x ≤ 0.2, the sample show a
slight field dependence of susceptibility. The samples with 0.5 ≤ x ≤ 0.7 are ferromagnetic at
room temperature. Magnetic hysteresis measurements behaved a value of 79.6Oe for saturation
magnetization in the x = 0.7 sample. When x > 0.7 were found to be biphasic. Therefore, it is
worthwhile to experimentally investigate the effect of the substitution of Co for Fe on the physical
properties of BFO.

BiCo1−xFexO3 have, however, not been adequately reported about magnetic and other proper-
ties when x is a fix value. In this paper, the preparation of the Co (with x = 0.5) doped BFO
sample is reported and the effects of Co substitution on structural, magnetic, and dielectric prop-
erties of BiFeO3 are obtained. The results indicate that there exist a structural transition from
rhombohedral phase to cubic in the BiFe0.5Co0.5O3 and the addition of Co can improve significantly
the ferromagnetic properties of BiFeO3 bulk.

2. EXPERIMENTAL

Polycrystalline samples of BiFe0.5Co0.5O3 were prepared by a solid state reaction method with
multiple calcinations. The starting materials were Bi2O3 (99.99%), Co2O3 (99%), and Fe2O3
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(99%), mixed together at the stoichiometric ratios designed for BiFe0.5Co0.5O3 compositions with
5.0% excess Bi2O3 to compensate for the likely loss of Bi2O3 at higher temperatures. The oxide
mixture were ball milled together for 24 h in ethanol, and were subsequently dried and sieved. The
homogeneously mixed powders were calcined at 650∼700 ◦C for 24 h for several times. The fine
calcined powders of BFCO were pressed into circular pellets of 12 mm in diameter and 2 mm in
thickness. All the pellets were sintered at 830 ◦C for 1h for densification at atmospheric pressure,
and then cooled down at a rate of 1 ◦C/min in air.

The XRD analysis was carried out to study the phase determination and lattice parameter
calculations using M03XHF22 diffractometry with Cu Kα radiation (λ = 0.154056 nm) (2θ range
of 10∼70◦). The magnetic moment of the samples were measured using an EV7–VSM in the
range of fields −5 kOe ∼ 5 kOe at room temperature. Temprature dependence of the magnetic
moments of the samples were measured from 25 to 500 ◦C at 2000 Oe by VSM (HH-15). The pellets
were filed and polished to the thicknees of about 0.2 mm and 0.6 mm, coated with silver electrode
for ferroelectric and dielectric measurement, respectively. The hysteresis loops of polarization
verse electric field (P −E) were measured by a Precision LC (Radiant Technologies) standardized
ferroelectric tester. The dielectric constant (ε

′
) of the BFCO as a function of temperature ranging

from 100 to 560 ◦C were performed in a Broadband Dielectric Spectrometer at a heating rate of
1 ◦C/min.

3. RESULTS AND DISCUSSION

Figure 1 shows the XRD pattern of the BiFe0.5Co0.5O3 samples at room temperature and the inset
is that of the BiFeO3 sample. All the diffraction peaks of BiFe0.5Co0.5O3 were indexed according
to Ref. [14] and lattice parameters, derived by using A.C. Larson and R.B. Von Dreele, General
Structure Analysis System (GSAS), are a = b = c = 1.01812(4) nm and β = 90◦C. Comparing with
the XRD of BiFeO3, the pattern indicates that Co-doped BiFeO3 have a structural transformation
from rhombohedral (space group R3c) [15] to cubic structure (space group I23).

2θ(  C)
o

Figure 1: X-ray diffraction patterns of BFCO ce-
ramics at room temperature. The inset shows the
XRD of BFO ceramics.

E(           )kv/cm 

Figure 2: Ferroelectric hysteresis of BFCO cermics
at different applied fields.

Figure 2 shows the ferroelectric hysteresis loops measurement on poled samples of BFCO at
room temperature and different applied fields. BFCO did not give a perfect ferroelectric loop.
However, on Co substitution, the leakage current is still quite large, implying that Co substitution
has no effect of the improvement on ferroelectricity in BFCO samples. The reason may be that
charged defects governed by Fe2+, Co2+ irons, oxygen vacancies (VO2+), and /or bismuth vacancies
(VBi3+) may appear in the deoxygenated BFCO phases. These VO2+ and /or VBi3+ vacancies will
reduce the electrical resistivity of the sample, giving rise to high leakage currents in the samples [16]:

Figure 3 shows the magnetization M versus applied field H of BFCO at room temperature.
Relatively symmetric hysteresis loop was obtained from which we measured the coercivity Hc ≈
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H Oe

Figure 3: Magnetic hystersis loop of the BFCO ce-
ramics. The inset shows the detail of the loop in the
low field region.

Figure 4: Temperature dependenc of the magnetic
moments of BFCO ceramics, measured at 2000 Oe.

197Oe, the average remanence magnetization Mr ≈ 0.55 emµ/g and the magnetization at 5 kOe
(defined as MH) was 1.66 emµ/g. As shown in Fig. 4, the temperature dependence of magnetization
indicates that the ferromagnetic phase can exist up to about 420 K, above 670 K the magnetic phase
is paramagnetic, and between them an intermediate magnetic state is observed. The ferromagnetism
is considerably improved by Co-doping. The enhancement of the magnetic parameters might be
related to the increased magnetoelectric coupling inside Co-doped BFO. Presumably, the Fe2+,
Co2+ would coexist, giving rise to a relative large moment, in which the strong interaction would
accordingly influence the magnetic nature of the compound.

Figure 5: Dielectric constant vs temperature of
BFCO ceramics at different frequencies.

Figure 6: Admittance vs frequency of BFCO at
room temperature.

Figure 5 shows the temperature variation of dielectric constant at different frequencies. Di-
electric constant (ε

′
) have two peaks with their heights decreasing as frequency increases. At low

frequencies, the temperature of the first peak, T1 ∼ 322 ◦C, almost does not vary with frequency,
while the second peak, T2 ∼ 400 ◦C, shifts to lower temperature side with increasing frequency.
Above T2 the dielectric constant (ε

′
) reduces rapidly and changes to a negative value. At high

frequencies when f > 5.8 kHz, the second peak was completely suppressed, meanwhile the first
peak, T1 also shifts to lower temperature as frequency increases. The T1 is in the intermediate
magnetic phase and may be related to the ferro-intermediate-magnetic-phase-transition. The neg-
ative dielectric permittivity is intriguing and its interpretation might be taken into account as the
peculiar phase-separation formed by space-charge or interfacial polarization [17].
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Figure 6 shows the plot of admittance versus frequency at room temperature for the BFCO.
Prior to the measurement, the sample is electrically poled. It turns out a resonance curve centered
at f ∼ 12.6MHz and a negative overshoot as a typical resonance-like character in piezoelectric
material. Such an anomalous resonance behavior confirms the relatively strong magnetoelectric
interaction.

4. CONCLUSION

The BiFe0.5Co0.5O3 ceramic sample was synthesized using solid-state reaction method with multiple
calcinations. Co substitution at Fe site causes a structural transformation from rhombohedral
(space group R3c) to cubic structure (space group I23). Though the electric properties are not
enhanced by Co substitution, the improvement on both ferromagnetic and dielectric properties
at room temperature are achieved. The magnetic phase can be determined as three regimes.
The negative dielectric constants are observed in this ferromagnetic-ferroelectric system, requiring
theoretical interpretation. It is hoped that this study would stimulate further investigation on this
system.

REFERENCES

1. Schmid, H., Ferroelectrics, 162, 317, 1994.
2. Lottermoser, T. and M. Fiebig, Phys. Rev. B, 70, 220407, 2005.
3. Wang, J., J. B. Neaton, H. Zheng, et al., Science, 299, 1719, 2003.
4. Kimura, T., T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature, 426, 55,

London, 2003.
5. Dho, J. H., X. D. Qi, H. Kim, J. L. MacManus-Driscol, and M. G. Blamire, Adv. Mater.,

Weinheim, Ger., 18, 1445, 2006.
6. Lorenz, B., A. P. Litvinchuk, M. M. Gospodinov, and C. W. Chu, Phys. Rev. Lett., 92, 087204,

2004.
7. Lampis, N., C. Franchini, G. Satta, A. Geddo-Lehmann, and S. Massidda, Phys. Rev. B, 69,

064412, 2004.
8. Qi, X. D., M. Wei, Y. Lin, Q. X. Jia, D. Zhi, J. Dho, M. G. Blamire, and J. L. MacManus-

Driscoll, Appl. Phys. Lett., 86, 071913, 2005.
9. Kubel, F. and H. Schmid, Acta Crystallogr., Sect. B: Struct. Sci., 46, 698, 1990.

10. Yang, C. H., T. Y. Koo, and Y. H. Jeong, Solid State Commun., 134, 299, 2005.
11. Wang, J., J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogake, B. Liu, D. Viehland,

V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spal-din, K. M. Rabe, M. Wut-
tig, and R. Ramesh, Science, 299, 1719, 2003.

12. Eerenstein, W., F. D. Morrison, J. Dho, M. G. Blamire, J. F. Scott, and N. D. Mathur, Science,
307, 1203a, 2005.

13. Ederer, C. and N. A. Spaldin, Phys. Rev. B, 71, 224103, 2005.
14. Vasudevan, S., C. N. R. Rao, et al., Mat. Res. Bull., Vol. 14, 451-4-54, 1979.
15. Li, J. B., G. H. Rao, J. K. Liang, et al., Appl. Phys. Lett., 90, 162513, 2007.
16. Yuan, G. L., S. W. Or, Y. P. Wang, et al., Solid State Communications, 138, 76–81, 2006.
17. Rivas, J., J. Mira, B. Rivas-Murias, A. Fondado, et al., Appl. Phys. Lett., 88, 242906, 2006.



Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, 2008 1097

A New Broadband L-shaped Bend Based on Photonic Crystal Ring
Resonators

M. Djavid, F. Monifi, A. Ghaffari, and M. S. Abrishamian

Department of Electrical Engineering, K.N.Toosi University of Technology, Tehran, Iran

Abstract— In this paper, we propose a new type of 2D photonic crystal L-shaped bent waveg-
uide based on ring resonator with broadband acceptable bandwidth; FDTD method concludes
output efficiency over 90%.

1. INTRODUCTION

One of the key elements of integrated optical devices is a bent waveguide. Many papers have inves-
tigated different geometries of bent waveguide in order to improve its transmission characteristics.
Ring resonators are another useful element especially in add-drop filters. Because of high quality
factor of the ring resonator and the ring’s intrinsic single mode nature, very high spectral selectiv-
ity can be achieved [1, 2]. Therefore we used this element to achieve a new type of L-shaped Bent
waveguide with acceptable bandwidth about 1537 nm to 1600 nm in third communication window.

2. PHOTONIC CRYSTAL ADD-DROP FILTER BASED ON RING RESONATOR
COUPLING

A typical ring resonator in rectangular lattice photonic crystal of dielectric column in air host is
shown in Figure 1. As shown in this figure, by adding the four scatterer rods at the corners of
the ring resonator with the same properties as other rods, the performance of the ring resonator is
optimized.

Figure 1: Single-ring photonic crystal ring resonator (PCRR).

By putting a ring resonator next to the waveguide, it can be coupled to the waveguide at its
resonant frequency to trap the electromagnetic energy propagating in the waveguide and localized
its energy [3]. In other word, the ring resonator drops a light from the top waveguide and sends it
to the bottom waveguide, as shown in Figure 2.

(a) (b)

Figure 2: The electric field patterns for (a) drop (on-resonance λ = 1577 nm) and (b) through (off-resonance
λ = 1500 nm) channel.



1098 PIERS Proceedings, Hangzhou, China, March 24-28, 2008

3. NEW L-SHAPED BENT WAVEGUIDE

A typical right-angle bent waveguide is shown in Figure 3(a). In many papers worked on this kind
of bend and optimized it for high transmission by adding scatterer to its corner. But, bandwidth of
their structure is narrow [3]. In this paper we design a new L-shaped bent waveguide with excellent
power transmission as shown in Figure 3(a).

(a)

C

A B

(b) 

Figure 3: (a) A typical L-shaped bent waveguide, (b) a new L-shaped bent waveguide with ring resonator
(PCRR).

An optimized ring resonator in rectangular lattice photonic crystal of dielectric column in air
host is used in our structure as shown in Figure 3(b). This phenomenon occurs because of coupling
between the waveguide and ring resonator at resonant frequency [4–7].

By closing top of the vertical waveguide and adding a scatterer to top of it, the performance
of the bend is optimized, coupling rods are optimized separately. For better contrast, end of the
horizontal waveguide is opened to show that whole signal through out port C. The structure and
its three ports are labeled as A, B, and C, shown in Figure 3(b). As it will show later, the ring
resonator drops a light from the horizontal waveguide and sends it to the vertical waveguide.

4. SIMULATIONS

The structure used in this paper is 2D rectangular lattice photonic crystal of Si rods in the air host.
Refractive index of Si is 3.46, the radii of the rods is 18.5% of the lattice constant. The polarization
of the signal in our simulation is TM. The spectrum of the power transmission is obtained with
finite difference time domain method (FDTD) in MATLAB software. A perfect matched layer
(PML) is used around the bent structure. The computer used in this simulation is P4 3.00GHz
and has 4 GB of RAM. The power transmission spectra are computed by taking the FFT of the
fields that calculated by FDTD incorporating with integrating the pointing vector over the cells of
the output ports (during 30000 time step, 45min running time).

CB

Figure 4: Optical power transmission characteristics of L-shaped bent waveguide.

The result of the FDTD processing is shown in Figure 4. That shows the normalized transmis-
sions of the structure over the third communication window. The normalized transmissions of the
acceptable frequency range are presented in Table 1, as shown below. As shown in Table 1, normal-
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ized transmission power in range 1537 nm–1600 nm is above 80% and in range 1549 nm–1595 nm is
above 90%, therefore the acceptable frequency range is achieved.

Table 1: Normalized transmissions of the acceptable frequency range.

Wavelength range (nm) Normalized transmission 

1537-1549 80-90% 

1595-1600 80-90% 

1549-1595 Above 90% 

Finally, the results of time domain simulation are depicted. The figure shows the electric field
intensity of L-shaped bent waveguide at one of the ring resonator resonant wavelengths between
1537 nm to 1600 nm.

(a) (b) 

Figure 5: (a) Final pattern of our L-shaped bend with ring resonator, (b) electric field intensity of L-shaped
bent waveguide at one of the ring resonator resonant wavelengths in 1537–1600 nm.

5. CONCLUSIONS

In this paper, we investigated a two dimensional photonic crystal L-shaped bent waveguide based
on ring resonator and we showed that we got the desired acceptable frequency range. Also we
showed that the normalized transmission of this frequency range was above 90%.
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D. L. Boiko
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Abstract— Rotation-induced splitting of the otherwise degenerate photonic bands is pre-
dicted for a two-dimensional photonic crystal made of evanescently coupled microcavities. The
symmetry-broken energy splitting is similar to the Zeeman splitting of atomic levels or elec-
tron’s (hole’s) magnetic moment sublevels in an external magnetic field. The orbital motion
of photons in periodic photonic lattice of microcavities is shown to enhance significantly such
Coriolis-Zeeman splitting as compared to a solitary microcavity [11]. The equation of motion
suggests that nonstationary rotation induces quantum transitions between photonic states and,
furthermore, that such transitions might be used as a source for high-frequency gravitational
waves.

1. INTRODUCTION

The Sagnac effect in a rotating ring cavity, known also as the Coriolis-Zeeman effect for photons,
emerges as a frequency splitting of counterpropagating waves [1–4]. Thus, for a ring cavity with op-
tical path length of M wavelengths, the modal shift is MΩ with Ω being a rotation rate. Nowadays,
the effect is used in commercial He-Ne ring laser gyros of large (M∼106) cavity size. Significant
efforts were made towards designing miniature-sized solid-state devices based on a high optical gain
medium [5–7]. Theoretical investigations have been carried out about the impact of rotation on
the whispering gallery modes of a microdisc microstructure [8]. Here, the frequency splitting scales
with the closed optical path length, while the field polarization is either not relevant or assumed
to be parallel to the rotation axis Ω.

On the other hand, the Coriolis-Zeeman effect in a cylindrical microwave resonator rotating
along the symmetry axis [9, 10] or in an optical Fabry-Pérot cavity rotating in the mirror plane is,
at first sight, independent of the cavity size [11]. The frequency shift (S+M)Ω of polarization and
transverse modes is set by the spin (±1) and the azimuth mode index M . However, the higher the
mode index M , the larger the size of the cavity needed to support such a mode. By virtue of the
complexity of the mode discrimination at high M and because of the small frequency splitting of
the polarization modes, this effect has not yet been verified in experimental measurements.

Here, the Coriolis-Zeeman effect is considered in coupled microcavities arranged in a periodic
two-dimensional (2D) lattice in the plane of rotation [Fig. 1(a)]. On example of a square-symmetry
lattice, the possibility of enhanced Coriolis-Zeeman splitting, corresponding to M∼1000, is pre-
dicted for the low-order photonic modes [12]. It is caused by the photon’s orbital motion extended
over the large number of lattice cells. The equation of motion, which is similar to the Hamiltonian
for electrons and holes in magnetic field, suggests that nonstationary rotation induces quantum
transitions between photonic states and, vice verse, that such transitions will generate a nonsta-
tionary gravitational field.

2. PHOTONIC CRYSTAL OF COUPLED MICROCAVITIES

Arrays of evanescently coupled microcavities belong to a particular sub-class of 2D photonic crystal
(PhC) structures encompassing photonic crystal fibers and arrays of microcavities. Matrices of
vertical cavity surface emitting lasers (VCSELs) are an example of such 2D photonic crystals [13, 14].
In such structures, only a small transversal component k⊥ of the propagation vector k undergoes
Bragg reflections in the plane of periodic lattice [Fig. 1(a)]. The structures employ lattices of
periods significantly exceeding the optical wavelength. They are typically realized by the mirror
reflectivity patterning in a broad-area microcavity. As a model system for such PhC structures, a
Fabry-Pérot cavity with patterned mirror reflectivity is considered here. The cavity length is one
wavelength, lz=λ/n with n being the refractive index in the cavity. The reflectivity R1(x, y) of
the one cavity mirror (e.g., of the top mirror) is modulated in two directions parallel to its plane.
The reflectivity pattern R1=exp iϕ(x, y) consists of pixels with the relative phase shift ϕ(x, y)=∆ϕ
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(a) (b)

Figure 1: (a) Schematic of the array of coupled microcavities. (b) Band structure of square-lattice PhC
calculated from (7) [black curves] and using 8×8 k·p approximation (10) [gray curves]. The inset shows
the BZ and location of the high-symmetry triangle ∆ZT . The parameters are λ=960 nm, n=3.53, Λ=4 µm,
FF=0.65 and ∆ϕ=0.02.

separated by a grid of ϕ(x, y)=0. The mirror is thus perfectly reflecting (|R1|=1) and the phase
modulation pattern ϕ(x, y) defines the structure of the cavity modes. The period of the reflectivity
pattern Λ is of a few micron pitch (ΛÀlz). The pattern is characterized by a fill factor FF that
is the ratio between the area of the pixel and that of the unit cell. Like in typical VCSEL arrays,
the phase contrast of the reflectivity pattern is small (|∆ϕ| ∼10−2). The second mirror of uniform
reflectivity (R2=1) has no impact on the cavity modes.

3. MODEL HAMILTONIAN

The analysis is carried out here using an equivalent, unfolded cavity representation [15]. Multiple
reflections at the cavity mirrors effectively translate the cavity into a structure that is periodic along
the cavity axis (the z-axis). The unfolded PhC is thus three-dimensional and it can be analyzed
in terms of a modal expansion on orthogonal plane waves (OPWs). The Coriolis-Zeeman effect in
such photonic crystal is considered here using a frame of reference, which rotates together with the
crystal. Such noninertial rest frame is characterized by a metric tensor gik, the off-diagonal space-
time components g0α of which are dependent on the angular rotation speed Ω [16]. However, in the
unfolded-cavity representation, gik differs from the diagonal Minkowski tensor, even in the absence
of rotation. Thus g0α 6=0 at the subsequent mirror reflections since the reflection operator σ̂=ÎĈ2

includes rotation by π (about the z axis) followed by coordinate inversion [Fig. 1(a)]. Due to the
patterned mirror reflectivity, the equivalent unfolded PhC is of periodically varying “noninertiality”
in the xy plane [15]. In the approximation of the first-order terms Ωr/c and ∆ϕ, the metric tensor
gik has the following nonzero components:

g00 = −g11=−g22=−g33=1,
g0α= −1

ceαβγΩβxγ−δα3
c
ωϕ(x1, x2)

∑
j δ(x3 − 2jlz),

(1)

where g0α=gα0 (α = 1, 2, 3), the space-time coordinates are indexed according to the intervals
dx0=cdt, dx1=dx, dx2=dy and dx3=dz; twice repeated Greek indexes indicate summation. The
first term in g0α accounts for rotation of the coordinate system [1–4]. The second term accounts for
the multiple cavity roundtrips along the z-axis and reflections at the cavity mirrors. The z-period
of the unfolded crystal is thus 2lz. The metric tensor (1) is validated by inspecting the system
Hamiltonian [Eq. (7)] for the case of ϕ=0 (rotating FP cavity [11]) or Ω=0 (PhC in an inertial
frame [15]).

In the approximation (1), the coordinate space is Euclidean, with the metric tensor γαβ=−gαβ +
g0αg0β/g00 being the Kronecker delta δαβ. Proceeding in a standard manner [16], the covariant
Maxwell’s equations with metric (1) are converted to the usual form in terms of noncovariant field
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vectors B, H, D and E that assume the constitutive equations [17]

D = εE + H× g, B=µH + g ×E,

g =
Ω× r

c
+ ẑ

c

ω
ϕ(r⊥)

∑

j

δ(z − 2jlz), (2)

where ẑ is the unit vector along z-axis direction and the components of the vector g are gα= −
g0α/g00.

Maxwell’ equations in photonic crystal (2) are solved here by separating fast oscillations in the
z-axis direction and slow lateral field oscillations in the xy plane [17]:

[
Eα

Hγ

]
= eikzz−iωt 1 + η(z)√

2π

[
Z

1
2 Êαβ

Z−
1
2 e3βαÊγα

]
ψβ(r⊥), (3)

where n=
√

εµ and Z=
√

µ/ε are the refractive index and impedance in the cavity. The gauge
transformation is introduced here through the operator

Êαβ = δαβ

(
1− 1

4k2
z

∂2

∂xγ∂xγ

)
+

1
2k2

z

∂2

∂xα∂xβ
+ i

δα3

kz

∂

∂xβ
+

Ω
nc

e3γβ

(
δα3xγ − i

xα

kz

∂

∂xγ

)
, (4)

where the terms ∼k2
⊥/k2

z are taken into account. Such separation of variables is valid in con-

ditions of the paraxial approximation ( 1
k2

z|ψ|
∣∣∣ ∂2ψα

∂xβ∂xγ

∣∣∣¿ 1
kz|ψ|

∣∣∣∂ψα

∂xβ

∣∣∣¿1) and of the low contrast of

reflectivity pattern (|∆ϕ|¿1). The two-component vector ψ(r⊥)=
(

ψx

ψy

)
in the x-y plane is a

slowly-varying function of coordinates. It defines the spatial patterns of the six electromagnetic
field components (3) and it is considered here as the photonic state wave function. Its squared mod-
ulus |ψ(r⊥)|2 yields the intensity pattern of the main polarization component in (3). For Ω = 0,
Eqs. (3)–(4) are in agreement with the results obtained for the Gaussian beam [18].

In photonic crystals, the wave function ψ(r⊥) is a Bloch wave propagating in the xy plane [15],

ψqk⊥ = eik⊥r⊥uqk⊥(r⊥), (5)

where 4π2

Λ2

∫
cell u

∗
q′k⊥

uqk⊥d2r⊥=δq′q [20, 21, 17]. The longitudinal part in (3) [the term eikzz 1+ηqk(z)√
2π

]
is also a Bloch function. Within the z-period of the lattice, it has a small modulation depth
〈|ηqk|〉2lz

= 1
2lz

∫ lz
−lz

|ηqk| dz∼∆ϕ, which is set by an effective phase shift αqk at each reflection of the
patterned mirror. The general form of such periodic function ηqk is

1+ηqk = exp



iαqk

∑

j

[
θ(z−2jlz)−1

2

]
− izαqk

2lz



 (6)

where θ(z)=
∫ z
−∞ δ(ζ)dζ is the unit step function. Note that ηqk(z) is the odd function and

〈∂ηqk/∂z〉2lz
' 0 by virtue of the small contrast of the reflectivity pattern.

By operating with e3αβ Ê−1
βγ and Ê−1

αβ [from (4)] on Maxwell’ equations for the curl of E and H,
substituting the gauge (3) and averaging over the z-period of the lattice, the Maxwell’ equations
are converted into the same form of a Hamiltonian eigenproblem with respect to the photonic state
wave function ψqk(r⊥)

[
m0c

2

n2
+

p̂2
⊥

2m0
− c~

2nlz
ϕ(r⊥)− Ω

n2

(
r⊥ × p̂⊥ + ~Ŝz

)]
ψqk = ~ωqkψqk, (7)

where m0=n~kz/c and Ŝz=iẑ× is the spin operator that reads (Ŝz)αβ=ieα3β=
(

0 −i
i 0

)
in the basis

of the two-component vector functions ψ=
(

ψx

ψy

)
. Solutions of Eq. (7) define the slowly-varying

components of photonic modes (3). The difference between the exact equation for (1+ηqk)ψqk
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and its z-period average [Eq. (7)] yields the equation for the periodic part of the fast longitudinal
component:

∂ηqk

∂z
= iαqk (1 + ηqk)


∑

j

δ(z − 2jlz)− 1
2lz


 (8)

where αqk= 〈ψqk|ϕ |ψqk〉. The solution of (8) is given by (6) provided that the eigen functions ψqk

of the Hamiltonian (7) are known.
In (7), the first term is due to the paraxial propagation along the z axis. The second and third

terms are the in-plane kinetic energy and the periodic crystal potential, respectively. The last term
in (7) is a perturbation induced by the Coriolis force. For ϕ=0 and Ω=0, within the accuracy of
the time variable, Eq. (7) is just the paraxial wave equation. For ϕ=0, Eq. (7) yields the effective
refractive index c

ω (kz+
k2
⊥

2kz
) of a circularly-polarized paraxial wave

neff = n + gτ ± Ωτ

ωn
, (9)

where τ=k
k defines the propagation direction, +/− sign is for the left/right handed polarization.

Eq. (9) agrees with previously reported expressions for the axial nonreciprocity [1] (second term)
and circular birefringence [11] (third term) induced by the Coriolis force for photons. Finally, the
unperturbed (Ω=0) Hamiltonian has been verified by experimental measurements in VCSEL array
PhC heterostructures [19]. These justify the approximation (7) of theHamiltonian.

4. RESULTS AND DISCUSSIONS

Analytical similarities between the effective single-electron Hamiltonian in a semiconductor sub-
jected to an external magnetic field and Eq. (7) allow the correspondence between the periodic
crystal potential V and phase pattern ϕ (V→− c~

2nLϕ), and the vector potentials A=1
2H×r and

g⊥=1
cΩ×r ( e

cA→m0c
n2 g⊥). Photons in photonic crystal subjected to a nonpermanent gravitational

field thus exhibit a behaviour similar to electrons (holes) in a magnetic field. Accordingly, the
impact of rotation on the envelope function and periodic part of the photonic Bloch wave (5) is
different. As in the case of electrons, [20, 21] the components of velocity operator v̂⊥= 1

i~ [r⊥, Ĥ] do
not commute ([v̂x, v̂y] =− 2i~

m0n2 Ωz, where v̂⊥= p̂⊥
m0
−Ω×r⊥

n2 ). However, the second-order terms ∼Ω2r2

c2

in the Hamiltonian (7) [and, respectively, in (1)] are needed to define whether the Landau-like
quantization is possible for photonic envelope wave functions. In the rest of the Letter, the impact
of rotation on the periodic part of Bloch functions is examined in detail using the example of a
square-lattice PhC.

Figure 1(b) shows the typical band structure of a square-lattice PhC, which is calculated along
the high symmetry lines ∆-Z-T in the Brillouin zone (BZ), using the OPW expansion in unper-
turbed (Ω=0) Hamiltonian. By virtue of the square lattice symmetry, all states are degenerate
by the photon’s spin (e.g., the doubly degenerate states T5 or T′

5). Angular rotation removes the
degeneracy of such states and splits their energies on 2~Ωn2 [Fig. 2(a), top panel]. However, there are
states, like the degenerate states T1, T2, T3 and T4, of the four-fold degeneracy, which is caused

Table 1: Basis functions (scalars) and photonic harmonics (vectors) of irreducible representations of the
group of k at the T point of the BZ (C4v point group)
Ti Ti × T5

T1 S T5 Sx̂, Sŷ
T2 XY (X2 − Y 2) T′′5 XY (X2 − Y 2)x̂, XY (X2 − Y 2)ŷ
T3 X2 − Y 2 T′′′5 (X2 − Y 2)x̂, (X2 − Y 2)ŷ
T4 XY T′5 XY x̂, XY ŷ
T5 iX, iY T1 + T2 + T3 + T4 :

T1
i√
2

(Xx̂ + Y ŷ)
T2

i√
2

(Y x̂−Xŷ)
T3

i√
2

(Xx̂− Y ŷ)
T4

i√
2

(Y x̂ + Xŷ)
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(a) (b)

Figure 2: (a) Coriolis-Zeeman splitting of the T5 (T′5) (top panel) and T1-T4 (bottom panel) bands as a
function of rotation rate Ω. Λ = 4 µm and ∆ϕ = 10−4. (b) Relative splitting ∆ωL,S

Ω (left axis) and matrix
element 〈T1|r2|T1〉 1

2 (right axis) as a function of the lattice contrast ∆ϕ. The lattice constant Λ is 4 (black
curves) and 6 µm (gray curves), n = 3.53. Other parameters are given in the caption of Fig. 1.

by the orbital symmetry of the Bloch functions. For such states, there is an important angular
momentum contribution 1

n2~ΩzL̂z to the energy shift.
The Coriolis-Zeeman splitting of these states is analyzed here using the first-order kp expansion

in the T point [k = ( π
Λ , π

Λ , kz)] of the BZ. The expansion basis is deduced from the empty lattice
test. Four scalar plane waves exp(±πx

Λ ±πy
Λ ), which form the first photonic band of empty lattice,

originate from the nearest equivalent T points of reciprocal lattice and provide representation that is
reducible under the C4v point group (the symmetry group of k). Their symmetrized combinations of
T1, T4 and T5 representations are indicated in the second column of Table 1 with the capitals letters
corresponding to the main term of Taylor expansion on parameter |r⊥|

Λ (e.g., |S〉= 1
π cos πx

Λ cos πy
Λ ,

|iX〉= i
π sin πx

Λ cos πy
Λ ). The photon’s spin transforms as the two-dimensional representation T5.

Therefore, a reduction of the direct product Ti⊗T5 results in the eight symmetry adapted photonic
harmonics of T1-T5 and T′

5 representations that constitute a suitable kp-expansion basis in the
low-order photonic bands. These states are well separated energetically from the other states in
the T point [Fig. 1(b)].

For a general state |ψqk〉=eik⊥r⊥
∑

i ci |Ti〉 at k⊥ measured from the T point of the BZ, the
8×8kp Hamiltonian for the coefficients ci is of the block-diagonal form

Ĥ =

[
Ĥ0 + Ĥkp + ĤΩ + ~2k2

⊥
2m0

0
0 Ĥ0 + Ĥ∗

kp − Ĥ∗
Ω + ~2k2

⊥
2m0

]
(10)

where

Ĥ0 =



~ωT ′5 0 0 0

0 ~ωT1 0 0
0 0 ~ωT1 0
0 0 0 ~ωT5


, Ĥkp =

~P
m0




0 k− k+ 0
k+ 0 0 k−
k− 0 0 −k+

0 k+ −k− 0


,

ĤΩ = −~Ω
n2




1 −M−
~k−
2P M−

~k+

2P 0
−M−

~k+

2P −M + 1 0 −M+
~k−
2P

M−
~k−
2P 0 M + 1 −M+

~k+

2P

0 −M+
~k+

2P −M+
~k−
2P 1




in the basis of functions 1√
2
(T′5x±iT′5y) , ∓i√

2
(T1∓iT2) , ±i√

2
(T3±iT4) , ∓i√

2
(T5x±iT5y) 1. The upper (lower)

sign refers to the top (bottom) 4×4 block. In (10), k±=kx ± iky, P= 1√
2
〈S|−i~ ∂

∂x |iX〉= ~π√
2Λ

is

1The wave functions are 1√
2

XY (x̂±iŷ) , ± 1
2 (X∓iY )(x̂±iŷ) , ∓ 1

2 (X±iY )(x̂±iŷ) , ∓ i√
2

S(x̂±iŷ) .
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the interband matrix element of p̂ that defines the band mixing. The eigen solutions of (10) are
plotted in Fig. 1(b). Good agreement with the band structure calculated from Eq. (7) justifies the
first-order kp approximation (10) of the system Hamiltonian.

In Eq. (10), the matrix ĤΩ in (10) is a perturbation induced by rotation. It accounts for the
Coriolis-Zeeman energy shift, which is of the opposite sign for the left (upper 4×4 block) and right
(lower block) handed polarization states of the same orbital symmetry. The rotation lifts degeneracy
between such spin states, producing the frequency splitting ∆ωS = 2 Ω

n2 , as indicated in Fig. 2(a)
[top panel] on example of the T̂5 (T̂′

5) states. In (10), the parameter M= M++M− accounts for
the orbital part of wave functions. The orbital contribution ∆ωL=2MΩ

n2 to the Coriolis-Zeeman
energy shift ±1

2~∆ωL±1
2~∆ωS in the T1-T4 states is shown in the bottom panel of Fig. 2(a) (∆ωS

is not visible at the scale of ∆ωL). The energy shift ±1
2~∆ωL [the term − Ω

n2 r×p̂ in Eq. (7)] is
evaluated here using the relationship rmn= i~

m0

pmn

En−Em
. Note that the procedures to evaluate the

matrix elements of ~L̂z=r⊥×p̂⊥ in free space [22, 23] and in periodic lattices [24] are different.
Here, the f -sum rule 1

mαβ
= δαβ

m0
+ 2

m2
0

∑
n

pα
mnpβ

nm

En−Em
[20, 21] implies that M± = ∓1

2( m0
mT5,T ′5

−1) and

∆ωL =
ẑΩ
n2

[
m0

mT ′5

− m0

mT5

]
, ∆ωS = 2

ẑΩ
n2

. (11)

For an array of square pixels defining the microcavities, M±= 2nlzP 2

~m0cFF∆ϕ

[
sin π

√
FF

π
√

FF
(1± sin π

√
FF

π
√

FF
)
]−1

.
It follows that reducing the effective mass (via the lattice pitch Λ, fill factor FF and contrast ∆ϕ),
one can enhance the Coriolis-Zeeman splitting and achieve M of more than 103. [Fig. 2(b) shows
the ratio ∆ωL

Ω = 2M
n2 , left axis]. The enhancement is caused by the weak localization of photonic

wave functions to the lattice sites. The intraband matrix element 〈qk|r2|qk〉=~2(M2
−+M2

+)

2P 2 in the
T1-T4 bands indicates that the photonic wave functions spread over a large PhC crystal domain
[Fig. 2(b) right axis], and the frequency splitting is proportional to the characteristic size of this
domain

∆ωL

Ω
=

2π
√

2〈r2
⊥〉

n2Λ
[1+sinc2π

√
FF ]−1. (12)

Thus, as in the case of a ring cavity, the frequency splitting of optical modes increases with the
characteristic modal size in the plane normal to the rotation axis. Finally note that in the bands
of T5 symmetry, the intraband matrix elements of r2 are nonzero as well. However, the orbital
contribution to the Coriolis-Zeeman energy splitting vanishes, in accordance with the group theory
selection rules.

5. CONCLUSION

With present experimental techniques, the predicted frequency splitting [Eq. (12), Fig. 2(a)] can
be validated by direct measurements.

The analogy between Eq.(7) and electron’s (hole’s) magnetic moment Hamiltonian suggests
that a nonstationary rotation or gravitational field g(t) will induce quantum transitions between
photonic states. This effect might be used for detection of high frequency gravitational waves.
Furthermore, Eq. (7) allows formally an inverse process to take place as well. On the basis of such
formalism, one can expect that a superposition of nonstationary photonic states, which represent a
system undergoing quantum transition, might serve as a source g(t) for high frequency gravitational
waves [25].
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Surface-Polariton-Enhanced Reflected THz-Field
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Abstract— The present work predicts the large enhancements at the band edges of a cou-
pled Bloch-surface-plasmon-polariton band in the spectrum of the reflected far electromagnetic
field due to anti-crossing gaps induced by the strong coupling between the continuous surface-
plasmonpolariton mode and the discrete Bloch-like modes. The existence of these Bloch-like
modes is a direct consequence of the nonlocal mixing of specular and diffraction modes of the
reflected electromagnetic field by free-electron induced optical polarization and the interference
of a pair of surface optical-polarization waves with opposite Bragg order numbers in the presence
of a grating.

1. INTRODUCTION

Ebbesen et al. [1, 2] reported an enhancement of the optical transmission through an array of deep
sub-wavelength cylindrical holes on a silver film, in which a very intriguing zeroth-order transmis-
sion was shown in such a system. Similar phenomena were observed in sub-wavelength metallic
gratings [3]. These enhanced optical transmissions are believed to be a result of light coupling to
surface-plasmon-polaritons (SPPs) in structured metallic films [4]. The induced Bragg transmission
modes are evanescent and acquire resonant coupling to the surface-plasmon mode. As a result, they
indirectly contribute to the zeroth-order transmission mode through interference between a pair of
surface Bragg waves with opposite diffraction order numbers.

In order to understand and explain the rich physics for the enhanced optical transmission,
nearfield studies must be undertaken. The previous methods of calculation are spatially local and
adiabatic in time, thereby neglecting the nonlocal nature and the memory of the induced optical
polarization in the Maxwell equations. In this paper, we investigate a structure consisting of a
half-space of air (region-1) and a semi-infinite conductor (region-2). The surface is covered with a
conducting sheet as well as a metal grating at the interface. With the use of our model, we are able
to demonstrate electromagnetic-field (EMF) enhancement and the effects due to grating diffraction,
nonlocal evanescent and radiation mode mixing, and longitudinal field. In this paper, we present a
spatially-nonlocal dynamic theory which includes effects due to retardation (perpendicular to the
interface) and Bloch-like states (parallel to the interface). This allows us to determine quantitatively
the enhancements of the transmitted near EMF and the reflected far EMF.

The rest of this paper is organized as follows. In Sec. 2, we introduce our spatially-nonlocal
dynamic theory for calculating both near and far EMF spectra in a semi-infinite conductive bulk
covered by a conducting sheet and a grating on top of it. The paper is concluded in Sec. 3 with a
remark on the effect of an absorption loss in a conductive bulk.

2. MODEL AND THEORY

In our model, one half-space is filled with air for z < 0, and another half-space z > 0 is occupied by
a semi-infinite doped semiconductor. The interface at z = 0 consists of a current-driven conducting
sheet and a metal grating on top of it. Optically, this sheet and the grating can be considered to be
in one plane. The reason for this is that the sheet thickness is much smaller than the wavelength
and the decay length of the impinging light. They, however, can still be electrically separated from
each other by an energy barrier [5]. Light incident from z < 0 is diffracted by the grating in both
the reflection (z < 0) and the transmission (z > 0) regions. The diffraction (Bragg) modes of EMFs
are excited by the induced optical polarization at the interface from both the conducting sheet and
grating. In addition, all the Bragg modes of EMFs are mixed nonlocally with each other by the
grating.

The grating is periodic in the x direction. We seek Bloch-like solutions with the use of a
planewave expansion. We then take the Fourier transform with respect to x for the electric fields.
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Setting qy = 0 and denoting the electric field below the interface by E1 and above by E2, we
obtain [5, 6]

E1(qn, ω; z) = exp(iηT
1 z)




AT
x (qx; ω)

AT
y (qx; ω)

−(qx/ηT
1 )AT

x (qx; ω)


 δn,0

+
∞∑

n′=−∞
exp(−iβT

1,n+n′z)




BT
x (qn+n′ ;ω)

BT
y (qn+n′ ;ω)

(qn+n′/βT
1,n+n′)B

T
x (qn+n′ ;ω)


 , for z < 0, (1)

E2(qn, ω; z) =
∞∑

n′=−∞
exp(iβT

2,n+n′z)




CT
x (qn+n′ ; ω)

CT
y (qn+n′ ; ω)

−(qn+n′/βT
2,n+n′)C

T
x (qn+n′ ; ω)




+
∞∑

n′=−∞
exp(iβL

2,n+n′z)




CT
x (qn+n′ ;ω)

0
(βL

2,n+n′/qn+n′)CL
x (qn+n′ ; ω)


 , for z > 0. (2)

In this notation, n and n′ are integers, the imaginary parts satisfy Im[βT
1,n+n′], Im[βT

2,n+n′], Im[βL
2,n+n′]

≥ 0, the angular frequency of the incident EMF is ω, the wave vector qx = (ω/c) sin θi, ηT
1 =

(ω/c) cos θi, θi is the incident angle, qn = qx + n(2π/d) where d is the period of the grating. In
addition, for the transverse (T ) EMF we obtain βT

1,n and βT
2,n from the dispersion relation

[
(βT

1,n)2

(βT
2,n)2

]
=

(ω

c

)2
[

1
εT
2 (qn, βT

2,n; ω)

]
− q2

n, (3)

where the region-1 (z < 0) is filled with air. On the other hand, for the longitudinal (L) EMF,
we obtain βL

2,n as a root of the equation εL
2 (qn, βL

2,n; ω) = 0. Moreover, the summation over n′ in
Eqs. (1) and (2) represents the contributions from all Bragg modes (n′ 6= 0) of the reflected and
transmitted electric fields in the presence of the conductive grating.

The magnetic field components can be simply obtained through the relation H = (−i/ωµ0)∇×
ET . When qy = 0, we get from Eq. (1) the magnetic field H1 below the interface

Hx
1 (qn, ω; z) =

( −i

ωµ0

) [−iηT
1 exp(iηT

1 z)AT
y (qx;ω)δn,0 (4)

+
∞∑

n′=−∞
iβT

1,n+n′ exp(−iβT
1,n+n′z)BT

y (qn+n′ ; ω)
]
,

Hy
1 (qn, ω; z) =

( −i

ωµ0

)(
ω2

c2

)[(
i

ηT
1

)
exp

(
iηT

1 z
)
AT

x (qx; ω) δn,0

+
∞∑

n′=−∞

(
−i

βT
1,n+n′

)
exp(−iβT

1,n+n′z)BT
x (qn+n′ ; ω)

]
, (5)

Hz
1 (qn, ω; z) =

( −i

ωµ0

) [
iqx exp(iηT

1 z)AT
y (qx;ω)δn,0

+
∞∑

n′=−∞
iqn+n′ exp(−iβT

1,n+n′z)BT
y (qn+n′ ;ω) ]. (6)
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In addition, the magnetic field H2 above the interface can be calculated by means of Eq. (2)

Hx
2 (qn, ω; z) = −

( −i

ωµ0

) ∞∑

n′=−∞
iβT

2,n+n′ exp(iβT
2,n+n′z)CT

y (qn+n′ ; ω), (7)

Hy
2 (qn, ω; z) =

(−i

ωµ0

)(
ω2

c2

) ∞∑

n′=−∞

(
i

βT
2, n+n′

)
εT
2 (qn+n′ , β

T
2,n+n′ ; ω)×exp(iβT

2,n+n′z)CT
x (qn+n′ ; ω),(8)

Hz
2 (qn, ω; z) =

( −i

ωµ0

) ∞∑

n′=−∞
iqn+n′ exp(iβT

2,n+n′z)CT
y (qn+n′ ;ω). (9)

For an incident field with an s-polarization, we have AT
x (qx; ω) = 0 and AT

y (qx; ω) = E0, where
E0 is the amplitude of the incident electric field. On the other hand, for an incident field with a
p-polarization, we have AT

y (qx; ω) = 0 and AT
x (qx; ω) = ηT

1 H0/(ωε0), where H0 is the amplitude of
the incident magnetic field.

For a conducting bulk medium, we use the random-phase approximation (RPA), [7] to obtain the
transverse dielectric function in the long-wavelength limit as εT

2 (qx, qz;ω) = εb[1−n3De2/ε0εbm
∗ω(ω

+iγ0)], where εb is the background dielectric constant of the bulk, n3D is the electron concentration,
m∗ is the effective mass of an electron in the bulk, and γ0 is the homogeneous broadening describing
the finite lifetime of excited electrons. In addition, by using the hydrodynamic model, [7] the
nonlocal the nonlocal longitudinal dielectric function in the long-wavelength limit can be expressed
as εL

2 (qx, qz;ω) = εb{1 − n3De2/ε0εbm
∗[ω(ω + iγ0) − ξ(q2

x + q2
z)]}, where ξ = 3v2

F /5 and vF =
~(3π2n3D)1/3/m∗ is the Fermi velocity of electrons in the bulk. The long-wavelength limit requires
vF qn/ω ¿ 1, which can be satisfied with either a high frequency ω (metals) or a low concentration
n3D (doped semiconductors).

As we discussed previously, [5] not all the boundary conditions are independent of each other
when qy = 0. For transverse EMFs, only four boundary conditions related to the continuity of
the x and y components of the E and H fields are independent. In the following, we only list the
independent boundary conditions.

For the specular (n = 0) mode, the boundary conditions for the EMFs at the interface require [5]

BT
x (qx;ω)− CT

x (qx;ω)− CL
x (qx;ω) = −AT

x (qx; ω), (10)

BT
y (qx;ω)− CT

y (qx; ω) = −AT
y (qx; ω), (11)

− iβT
1 c2

ω2
BT

y (qx;ω)− iβT
2 c2

ω2
CT

y (qx; ω)−
∞∑

n′=−∞

[
χ̄s(qn′ ; ω) +

1
2
χ̄g(qn′ ; ω)

]
BT

y (qn′ ; ω)

=
[
χ̄s(qx;ω) +

1
2
χ̄g(qx; ω)− iηT

1 c2

ω2

]
AT

y (qx; ω), (12)

− i

βT
1

BT
x (qx;ω)− i

βT
2

εT
2 (qx, βT

2 ; ω)CT
x (qx; ω)−

∞∑

n′=−∞

[
χ̄s(qn′ ; ω) +

1
2
χ̄g(qn′ ;ω)

]
BT

x (qn′ ; ω)

=
[
χ̄s(qx;ω) +

1
2
χ̄g(qx; ω)− i

ηT
1

]
AT

x (qx;ω), (13)

qx

βT
2

[
εT
2 (qx, βT

2 ; ω)− εb

]
CT

x (qx;ω) +
βL

2

qx
εbC

L
x (qx; ω)

+ iqx

∞∑

n′=−∞

[
χ̄s(qn′ ;ω) +

1
2
χ̄g(qn′ ; ω)

] [
CT

x (qn′ ; ω) + CL
x (qn′ ; ω)

]
= 0. (14)

Here, Eqs. (10) and (11) are related to the continuity of the x and y components of the E field at
the interface. Equations (12) and (13) are associated with the continuity of the x and y components
of the H field. In addition, Eq. (14) comes from the so-called additional boundary condition [5, 7].
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The summation over n′ in Eqs. (12)–(14) describes the excitation of diffracted EMFs [6] through
the specular mode due to an incident EMF by interacting with both the conductive grating (χ̄g)
and the current-driven conducting sheet (χ̄s). After excluding these Bragg modes, (i.e., by setting
n′ = 0,) in Eqs. (10)–(14), we reproduce the same results derived before [5]. The incident light
with an s-polarization or a p-polarization makes a difference in Eqs. (10)–(13) for the generation
of diffracted EMFs.

For the Bragg modes with even integers n 6= 0, the boundary conditions for the EMFs lead to

BT
x (qn;ω)− CT

x (qn;ω)− CL
x (qn; ω) = 0, (15)

BT
y (qn; ω)− CT

y (qn; ω) = 0, (16)

βT
1,nBT

y (qn; ω) + βT
2,nCT

y (qn; ω) = 0, (17)

1
βT

1,n

BT
x (qn; ω) +

1
βT

2,n

εT
2 (qn, βT

2,n; ω)CT
x (qn; ω) = 0, (18)

qn

βT
2,n

[εT
2 (qn, βT

2,n; ω)− εb]CT
x (qn;ω) +

βL
2,n

qn
εbC

L
x (qn; ω) = 0. (19)

Since the Bragg modes with even integers n 6= 0 do not directly couple to the conducting sheet
and grating due to the mirror symmetry of the system with respect to x = 0, Eqs. (15–19) simply
describe the continuity of the x and y components of the E and H fields, as well as the vanishing
normal (z) component of the total current at the interface.

For the Bragg modes with odd integers n, the boundary conditions for the EMFs take the form
of [5]

BT
x (qn;ω)− CT

x (qn;ω)− CL
x (qn; ω) = 0, (20)

BT
y (qn; ω)− CT

y (qn; ω) = 0, (21)

− iβT
1,nc2

ω2
BT

y (qn; ω)− iβT
2,nc2

ω2
CT

y (qn; ω)− (−1)
|n|−1

2

|n|π
∞∑

n′=−∞
χ̄g(qn+n′ ; ω)BT

y (qn+n′ ; ω) = 0, (22)

− i

βT
1,n

BT
x (qn; ω)− i

βT
2,n

εT
2 (qn, βT

2,n; ω)CT
x (qn; ω)−(−1)

|n|−1
2

|n|π
∞∑

n′=−∞
χ̄g(qn+n′ ;ω)BT

x (qn+n′ ;ω) = 0, (23)

qn

βT
2,n

[εT
2 (qn, βT

2,n; ω)− εb]CT
x (qn; ω) +

βL
2,n

qn
εbC

L
x (qn; ω)

+
i(−1)

|n|−1
2

|n|π qn

∞∑

n′=−∞
χ̄g(qn+n′ ; ω)[CT

x (qn+n′ ; ω) + CL
x (qn+n′ ; ω)] = 0. (24)

Here, Eqs. (20) and (21) for the odd integers n are the same as Eqs. (15) and (16) for the even
integers n 6= 0. The summation over n′ in Eqs. (22)–(24) represents the nonlocal mixing among
the Bragg modes (n′ 6= −n) and the specular mode (n′ = −n) by interacting with the conductive
grating through induced sheet currents [6].

Equations (10)–(24) constitute a complete set of linear equations (or a linear matrix equation [5]
with a coefficient matrix and a source-term vector) with respect to the independent variables
BT

x (qn, ω), BT
y (qn, ω), CT

x (qn, ω), CT
y (qn, ω), and CL

x (qn, ω) for n = 0,±1,±2, · · · . The components
of the source-term vector contain AT

x (qn, ω) for the p-polarization or AT
y (qx, ω) for the s-polarization.

For the conducting sheet and grating, their dielectric functions are given by [8] χ̄s(qx;ω) =
χe(qx; ω − qxvd) and χ̄g(qx;ω) = χe(qx; ω). Here, vd is the drift velocity of electrons under a bias
field and the electron sheet polarizability in the RPA is given by [9]

χe(qx; ω) =
2n2De2m∗

s

ε0~2kF |qx|3
{[

2z − C−
√

(z − u)2 − 1− C+

√
(z + u)2 − 1

]

+ i
[
D−

√
1− (z − u)2 −D+

√
1− (z + u)2

]}
, (25)
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where n2D is the electron density, kF =
√

2πn2D is the Fermi wave number of electrons in the sheet,
and m∗

s is the effective mass of electrons. Moreover, we have defined the notations in Eq. (25):
u = m∗

sω/~kF |qx|, z = |qx|/2kF , C+ = (z + u)/|z + u| and D+ = 0 (C+ = 0 and D+ = 1) for
|z +u| > 1 (|z +u| < 1), and C− = (z−u)/|z−u| and D− = 0 (C− = 0 and D− = 1) for |z−u| > 1
(|z− u| < 1). For χe(qx;ω), we have to use the full expression in Eq. (25), instead of a Drude-type
model, [5] since |ω − qnvd| can be smaller than ~kF |qn|/m∗

s, which invalids the long-wavelength
limit.

In the presence of interface roughness, the spatial interference of various diffracted EMF compo-
nents will be destroyed. In this case, a statistical average is required, i.e., a spatial average for the
square of the total EMF including the summation over all diffracted EMF components as shown
in Eqs. (1) and (2). The spatially-averaged square of the ratio R of the reflected to the incident E-
field amplitude at the interface, which cancels out the interference due to the x dependent relative
phase, is given by

R(ω) =
∞∑

n′=−∞
Rn(qn;ω) =

∞∑

n′=−∞

[1 + |qn/βT
1,n|2]|BT

x (qn;ω)|2 + |BT
y (qn; ω)|2

[1 + (qn/ηT
1 )2]|AT

x (qn;ω)|2 + |AT
y (qx; ω)|2 , (26)

where both the far field (n = 0) and near field (|n| À 1) contributions are included. R(ω) in
Eq. (26) is the reflection spectrum as a function of incident photon energy at the interface.

3. CONCLUSION

The main prediction in the current research is the enhanced-radiation mode in the spectrum of
the reflected electromagnetic field in the presence of a grating in the x direction. This enhanced
optical reflection results from the nonlocal mixing of n = 0 specular with |n| ≥ 1 diffraction
modes of the reflected electromagnetic field by the free-electron induced optical polarization and the
interference of two counter-propagating surface optical-polarization waves. We have demonstrated
and explained the effects of grating period and absorption loss on the optical enhancement of the
reflected electromagnetic fields.
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Abstract— Omnidirectional light propagation in two-dimensional (2D) photonic crystals (PCs)
is investigated. An efficient approach to identifying a complete photonic band gap (PBG) in 2D
PCs has been developed. The in-plane band structure of 2D photonic crystals is calculated by an
adaptive finite element method. With adopting the suitable boundary conditions, the eigenvalues
can be easily and rapidly calculated no matter how complex the geometric structures are. By
symmetry, the omnidirectional photon density of states (PDOS) can be calculated based on
the in-plane dispersion relation within the irreducible Brillouin zone. The PDOS corresponding
to both the radiation and evanescent waves can be obtained accurately and efficiently. We
demonstrate that the “complete band gaps” showed by some previous work due to considering
only the radiation modes will be closed by including the contributions of the evanescent modes.
These results are of general importance and relevant to the spontaneous emission by an atom, or
to dipole radiation in two-dimensional periodic structures.

1. INTRODUCTION

In the past two decades, photonic crystals (PCs) have attracted much attention [1, 2]. According to
the dimension of the periodicity, photonic crystals are divided into three categories, namely one-,
two-, and three-dimensional (3D) crystals-periodic dielectric materials characterized by photonic
band gaps (PBGs). A PBG can prohibit the propagation of electromagnetic (EM) waves whose fre-
quencies fall within the band gap region. These materials are expected to find many applications in
optoelectronics and optical communications. It was proposed that the emission of electromagnetic
radiation can be modified by the environment [3, 4]. Several environments such as metallic cavi-
ties [5], dielectric cavities [6], and superlattices [7–12] have been studied. The environmental effects
have been described by the photon density of states (PDOS) which is related to the transition rate
of Fermi golden rule. In principle, a complete band gap along all dimensions in space can be best
realized in a three-dimensional (3D) system. However, the difficulty in fabricating such 3D crystals
with band gaps in the optical regime prohibits the progression of many applications. Many studies
in 2D photonic crystals have been mainly focused on the in-plane propagation of EM waves [13].
There exhibits PBGs in various types of period structures. However, for some applications, the
investigation of an omnidirectional light propagation is crucial. A few studies show the possibility
of some 2D crystal structures to have an omnidirectional absolute band gaps with adopting the
off-plane wave vector kz = k0 sin θ, where k0 = ω/c [14–15]. In this work, we demonstrate that
the “complete band gaps” showed by some previous work due to considering only the radiation
modes will be closed by including the contributions of the evanescent modes. Theoretically, there
are no band gaps for propagation in the z-direction. As kz increases, the modes decouple and the
bandwidth shrinks to zero [16–21]. The polarization characteristics including both the transverse
electric (TE) and transverse magnetic (TM) modes are considered in our simulation model. The
contributions of the total PDOS from the radiative and evanescent waves can be distinguished.

2. FORMULATION

The propagation of light in a photonic crystal can be studied by solving the Maxwell’s equations.
For time-harmonic fields it is convenient to use a phasor notation. The Maxwell’s equations lead
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to the wave equations, or the master equations:

~∇×
[

1
µ(r)

× ~∇× ~E(r)
]
− ω2ε(r) ~E(r) = 0, (1)

~∇×
[

1
ε(r)

× ~∇× ~H(r)
]
− ω2µ(r) ~H(r) = 0, (2)

where ε(r) and µ(r) are the permittivity and permeability functions of the PCs, respectively, and
ω is the angular eigen-frequency. In a 2D periodic system, the dielectric function is a periodic
function of x and y. We assume that the materials are linear, homogeneous, isotropic, lossless, and
nonmagnetic. We have

εr(x, y) =
{

εa, x, y ∈ air region
εd, x, y ∈ dielectric region (3)

where εr(x, y) is the dielectric function profile, and εa and εd are the dielectric constants of the
air and dielectric regions, respectively. The two master equations are reduced to two homogeneous
Helmholtz’s equations for the air (dielectric) region

∇2 ~E(r) +
ω2

c2
εa(d)

~E(r) = 0, (4)

and

∇2 ~H(r) +
ω2

c2
εa(d)

~H(r) = 0. (5)

A two-dimensional photonic crystal is periodic in two directions (x, y) and homogeneous in the
third (z). For light propagating in the system, we can separate the modes into two independent
polarizations, TE and TM modes, and consider the band structure and photon density of states
of each. The propagation properties of TM and TE modes can be characterized by the field
components along the homogeneous direction, Ez(x, y) and Hz(x, y), respectively. As the system
has translational symmetry along the z-axis, we can assume the longitudinal wave functions as a
plane wave, exp(ikzz). By using separating of variables, the corresponding Helmholtz’s equations,
the z components of Eqs. (4) and (5), for the air (dielectric) region can be split into transverse and
longitudinal parts and the problem can be simplified as solving the Helmholtz’s equation in the
xy-plane. We can obtain

[
∂2

∂x2
+

∂2

∂y2

]
Ez(x, y) +

[
ω2

c2
εa(d) − k2

z

]
Ez(x, y) = 0, (6)

and [
∂2

∂x2
+

∂2

∂y2

]
Hz(x, y) +

[
ω2

c2
εa(d) − k2

z

]
Hz(x, y) = 0. (7)

To perform the 3D PDOS calculations, we construct two equifrequecy regions ω(kx, ky, kz) = ω
and ω(kx, ky, kz) = ω+∆ω, where ω is an arbitrary value of the frequency and ∆ω is an infinitesimal
increment [12, 13]. The PDOS is dN(ω) ≡ D(ω)dω:

D(ω) =
V
√

µrεr

8π3c

∫

ωk

ω√
ω2 − ω2

c

dSk. (8)

3. RESULTS AND DISCUSSION

We consider the omnidirectional light propagation in an inhomogeneous, linear, and nonmagnetic
medium. The calculation of total PDOS is based on the finite element method for a two-dimensional
photonic crystal. Using the formulation for the critical angle, cos−1(ωc/ω) ≥ sin−1(

√
εa/εd), we

can calculate the PDOS of the evanescent and radiative modes, separately. Figure 1 shows the
comparisons of 3D PDOS calculated by the FEM and the plane wave expansion method (PWEM).
These two curves are in good agreement. There is no complete three-dimensional PBG for two
dimensional structures. Then, we investigate the 3D PDOS of TE and TM modes, and we employ
the same parameters as those in Ref. [16]. Figure 2 and Figure 3 show our calculated 3D PDOS
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for the TE and TM modes, respectively. The PDOS for the radiative and evanescent waves are
also plotted. As one can see, the 3D PDOS of the evanescent waves is larger than that of the
radiative waves for both the TE and TM modes. Although the PDOS for the TE and TM modes
exhibit similar behavior, the corresponding contributions from the radiative and evanescent parts
are quite different. One can see the 3D PDOS of the radiative waves have a PBG between 0.403–
0.434(2πc/a). However, the “complete band gaps” will be closed by including the contribution of
the evanescent mode.
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Figure 1: Comparisons of 3D
PDOS calculated by the FEM and
PWEM [16].
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evanescent (radiative) waves.
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Figure 3: 3D PDOS for TM modes
of a triangular array [14]. The
dashed (dotted) lines correspond
to the PDOS of evanescent (radia-
tive) waves.

4. CONCLUSIONS

In this work, omnidirectional light propagation in 2D photonic crystals is investigated. The po-
larization characteristics including both the TE and TM modes are considered in our simulation
model. The contributions of the total PDOS from the radiative and evanescent waves can be distin-
guished, respectively. For the quantum optical phenomena, the total PDOS has to be considered.
The “complete band gaps” do not exhibit in 2D PCs, if one considers both radiative and evanes-
cent modes. With our approach, an omnidirectional PBG can be determined efficiently. These
results are of general importance and relevant to the spontaneous emission by an atom, or to dipole
radiation in two-dimensional periodic structures.

ACKNOWLEDGMENT

This work was partially supported by the National Science Council, Taiwan, R. O. C. under Grant
No. NSC 96 – 2112 – M – 030 – 004 – MY3, National Center for Theoretical Sciences, and National
Center for High-performance Computing, Taiwan, R. O. C. which provides the computing resources.

REFERENCES

1. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals, Princeton University
Press, Princeton, New Jersey, 1995.

2. Joannopoulos, J. D., P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on
light,” Nature, Vol. 386, No. 13, 143–149, London, 1997.

3. Purcell, E. M., “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., Vol. 69,
681, 1946.

4. Kleppner, D., “Inhibited spontaneous emission,” Phys. Rev. Lett., Vol. 47, 233–236, 1981.
5. Barut, A. O. and J. P. Dowling, “Quantum electrodynamics based on self-energy: Spontaneous

emission in cavities,” Phys. Rev. A, Vol. 36, 649–654, 1987.
6. Rigneault, H. and S. Monneret, “Modal analysis of spontaneous emission in a planar micro-

cavity,” Phys. Rev. A, Vol. 54, 2356–2368, 1996.
7. Dowling, J. P. and C. M. Bowden, “Atomic emission rates in inhomogeneous media with

applications to photonic band structures,” Phys. Rev. A, Vol. 46, 612–622, 1992.
8. Suzuki, T. and P. K. L. Yu, “Emission power of an electric dipole in the photonic band structure

of the fcc lattice,” Opt. Soc. Am. B, Vol. 12, No. 4, 570–582, 1995.



Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, 2008 1115

9. Kamli, A., M. Babiker, A. Al-Hajry, and N. Enfati, “Dipole relaxation in dispersive photonic
band-gap structures,” Phys. Rev. A, Vol. 55, 1454–1461, 1997.

10. Sánchez, A. S. and P. Halevi, “Spontaneous emission in one-dimensional photonic crystals,”
Phys. Rev. E, Vol. 72, 056609, 2005.

11. Halevi, P. and A. S. Sánchez, “Spontaneous emission in a high-contrast one-dimensional pho-
tonic crystal,” Opt. Commun., Vol. 251, 109–114, 2005.

12. Lin, M. C. and R. F. Jao, “Quantitative analysis of photon density of states for a realistic
superlattice with omnidirectional light propagation,” Phys. Rev. E, Vol. 74, 046613, 2006.

13. Lin, M. C. and R. F. Jao, “Finite element analysis of photon density of states for two-
dimensional photonic crystals with in-plane light propagation,” Opt. Express, Vol. 15, 207–218,
2007.

14. Li, Z. Y. and Y. Xia, “Omnidirectional absolute band gaps in two-dimensional photonic crys-
tals,” Phys. Rev. B, Vol. 64, 153108, 2001.

15. Haas, T. and A. Hesse, T. Doll, “Omnidirectional two-dimensional photonic crystal band gap
structures,” Phys. Rev. B, Vol. 73, 045130, 2006.

16. Busch, K. and S. John, “Photonic band gap formation in certain self-organizing systems,”
Phys. Rev. E, Vol. 58, 3896–3908, 1998.

17. Fussell, D. P., R. C. McPhedran, C. M. de Sterke, and A. A. Asatryan, “Three-dimensional
local density of states in a finite two-dimensional photonic crystal composed of cylinders,”
Phys. Rev. E, Vol. 67, 045601(R), 2003.

18. Sigalas, M. M., R. Biswas, K. M. Ho, and C. M. Soukoulis, “Theoretical investigation of off-
plane propagation of electromagnetic waves in two-dimensional photonic crystals,” Phys. Rev.
B, Vol. 58, 6791–6794, 1998.

19. Foteinopoulou, S., A. Rosenberg, M. M. Sigalas, and C. M. Soukoulis, “In- and out-of-plane
propagation of electromagnetic waves in low index contrast two dimensional photonic crystals,”
J. Appl. Phys., Vol. 89, 824–830, 2001.

20. Rosenberg, A., R. J. Tonucci, and E. L. Shirley, “Out-of-plane two-dimensional photonic band
structure effects observed in the visible spectrum,” J. Appl. Phys., Vol. 82, No. 12, 6354–6356,
1997.

21. Meade, R. D., K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic
band gap in two dimensions,” Appl. Phys. Lett., Vol. 61, No. 4, 495–497, 1992.



1116 PIERS Proceedings, Hangzhou, China, March 24-28, 2008

Limitation of Spontaneous Emission Enhancement Using Surface
Plasmon Polaritons

Greg Sun1 and Jacob B. Khurgin2

1Department of Physics, University of Massachusetts Boston
100 Morrissey Boulevard, Boston, Massachusetts 02125, USA

2Department of Electrical and Computer Engineering, Johns Hopkins University
3400 N. Charles Street, Baltimore, Maryland 21218, USA

Abstract— We develop a rigorous theory of the enhancement of spontaneous emission from a
light-emitting device via coupling the radiant energy in and out of surface plasmon polaritons
(SPPs) on the metaldielectric interface. We show that while the efficiency of coupling into the
SPP mode can be quite high, the radiative efficiency of the SPP itself is relatively low, with a
substantial fraction of the energy lost in the metal. Using the GaN/Ag system as an example
we obtain easy-to-interpret analytical results that unequivocally indicate that using SPP pays off
only for emitters that have medium-to-low luminescence efficiency.

1. INTRODUCTION

Recently, there has been a great deal of interest in enhancing the efficiency of spontaneous emission
using the surface plasmon polariton (SPP). The first definite sign of improvement was attained in
GaN by placing a thin Ag film atop the GaN [1, 2]. Since then, SPP enhancement has been shown
in a large number of different light emitting media [3–8]. The coupling of normally non-radiative
SPPs into the radiation mode has been accomplished with 1-D dielectric gratings [3, 4, 7], or 2-D
corrugated silver films [6, 9], or more complicated cavity-like structures [10].

There were a number of analytical [11, 12] and numerical calculations [10] that describe the SPP
coupling into the radiation mode. Some of the calculations [12] completely disregard the issues of
Ohmic losses in SPPs and thus give an overly optimistic prognosis for the SPP enhancement. Oth-
ers [10] require extensive numerical modeling for each particular case. Recently, we have developed
an analytical framework [13] that provides unambiguous answers about the maximum improve-
ment in radiative efficiency that one can expect using SPP and about the optimal configuration in
which such improvement can be achieved. The theory relies only upon a very limited number of
parameters, namely the intrinsic luminescence efficiency of the emitter and the imaginary part of
the dielectric constant of a metal.

Let us consider a given emitter with an internal radiative diative efficiency ηrad = τ−1
rad/(τ−1

rad +
τ−1
nrad), where the radiative lifetime τrad is determined mostly by the density of modes in the di-

electric. When the emitter is placed in the vicinity of the metal layer, there appears another decay
channel – into the high-density SPP modes with a decay rate τ−1

SPP = FP τ−1
rad enhanced by the Purcell

factor FP [14]. Thus the energy is very efficiently transferred from the emitter into the SPP mode
because of the large values of FP , but in order for energy to be emitted, it has to be coupled into
the continuum of radiation modes by a grating. The radiative coupling into the radiation modes,
occurring with a rate κpr must compete with the nonradiative decay of the SPP itself, κnr. If one
now introduces the efficiency of coupling between SPP and radiation mode as ηpr = κpr/(κpr +κnr),
then the radiative efficiency due to SPP is ηSPP = ηprFP τ−1

rad/
(
FP τ−1

rad + τ−1
nrad

)
. We can then obtain

the expression for the overall SPP enhancement of the radiative efficiency as

FSPP =
ηSPP

ηrad
=

ηpr

ηrad + (1− ηrad )F−1
P

≤ ηpr

ηrad
(1)

Thus, no matter how high the Purcell factor, in the end the SPP enhancement is limited by the
ratio of radiative coupling efficiencies of the SPP to the original emitting source.

2. SURFACE PLASMON POLARITON-DISPERSION AND PURCELL FACTOR

We consider a typical SPP enhancement scheme that has emission collected on the same side of
the metal as shown in Fig. 1.



Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, 2008 1117

The SPP mode with a frequency ω localized at the interface of a metal layer with a dielectric func-
tion εM = 1−ω2

p/(ω2+jωΓ) and a dielectric medium with a dielectric constant εD is transverse mag-
netic (TM) wave. The electric field of the SPP can be written as Ep(z, x) = Ap(z)ep(βp, x)ej(βpz−ωt)

with Up = (εoεD/kD) |Ap|2 defined as the surface energy density of the SPP, and the SPP eigen
mode

ep(βp, x) =





√
2

εw
1/2
p

√
2β2

p − 1
(jβpx̂ + qM ẑ) e−qMx, x > 0

√
2

w
1/2
p

√
2β2

p − 1
(jβpx̂ + qDẑ) e−qDx, x < 0

(2)

where wp is the effective width of the SPP and ε = εM/εD. Here wave vectors βp, qD, and qM ,
related by β2

p−q2
D = 1 and β2

p−q2
M = ε, are all normalized to kD =

√
εDω/c, while co-ordinates x and

z are normalized to 1/kD, and are therefore all dimensionless. The SPP dispersion of the real (solid
line) and imaginary parts (dashed line) of the propagation constant βp = β

′
p + jβ

′′
p =

√
ε/(1 + ε)

shown in Fig. 2(a) is obtained using the actual complex dielectric constant for Ag [15] as well
as the dispersion of index of refraction for GaN [16]. Also plotted in Fig. 2(a) (dotted line) is
the propagation constant βp0 obtained under the assumption of no loss: Im (εM ) = 0. As one
can see, the presence of loss in the metal not only engenders a substantial imaginary part β

′′
p of

the propagation constant, but also limits the maximum attainable value of the real part β
′′
p and

consequently, the Purcell factor FP (Fig. 2(b)) as the minimum value of group velocity vg is also

Figure 1: Light emission through coupling of SPP to radiation modes by a grating placed at the interface.
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limited.

3. SPP COUPLING INTO THE RADIATION MODES

3.1. Radiation Modes
Consider now the TM radiation modes into which the SPPs get coupled by the grating, We can
write the electric field of the TM radiation mode as Er(z, x) = Ar(z)er(βr, x)ej(βrz−ωt) with
Ur = (εoεD/kD) |Ar|2 defined as the surface energy density of the radiation mode and the eigen
modes of electric field inside the dielectric normalized to some transverse dimension Lx,

er =





2kr√
Lx (q2

r + ε2k2
r)

(jβrx̂ + qrẑ)e−qrx, x > 0

2kr√
Lx (q2

r + ε2k2
r)
{jβr [ε cos (krx)− (qr/kr) sin (krx)] x̂

+ [εkr sin (krx) + qr cos (krx)] ẑ} , x < 0

(3)

where β2
r + k2

r = 1 and β2
r − q2

r = ε.
3.2. SPP-radiation Coupling
We shall treat grating as a perturbation and the dimensionless grating height hG = hM + hG has
been divided according to hD = 1/4qD and hM = 1/4qM . Both 1-D (Fig. 3(a)) and 2-D (Fig. 3(b))
gratings have been studied. Consider now the process of coupling from the SPP mode βp into the
continuum of the radiation modes with propagation vector βr = βp −G, where G is the wave-
vector of the first order Fourier component of the grating. As shown in Fig. 4(a) the SPP modes are
distributed on the ring with a radius βp(> 1) while the radiation modes are lying inside a smaller
circle with a radius of 1. The angle at which the radiation mode travels respect to the normal of
the metal-dielectric interface (Fig. 1) is therefore given as θ = sin−1 βr.
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Figure 3: Top view of (a) 1-D and (b) 2-D grating patterns along with their first-order wave-vectors in
reciprocal space.

To obtain coupling between the discrete SPP state and the radiation continuum, we first evaluate
the coupling between the SPP mode Eq. (2) and one of the radiation modes, Eq. (3), and then
integrate over the one-dimensional density of radiation modes ρr(βr, ω) = 1/2πω

√
1− β2

r to obtain
the following equation for the radiative decay of the SPP mode

∂

∂z
|Ap(z)|2 = −κpr(βp, βr) |Ap(z)|2 (4)

where the coupling strength is given by the following analytical expression

κpr =
(ε− 1)2 |fG|2
2wp(2β2

p − 1)

[
β2

p +
(β2

p − 1)2

εDβ2
p

]
βpkr

q2
r + ε2k2

r

{
βpβrqr + εk2

rqD

q2
D + k2

r

[
1− e−qDhD [(qD/kr) sin(krhD) + cos(krhD)]

]
+

εβpβrqD − q2
Dqr

q2
D + k2

r

[
1− e−qDhD [cos(krhD)− (kr/qD) sin(krhD)]

]
+

βpβr + qMqr

ε(qM + qr)

[
1− e−(qM+qr)hM

]}2

(5)
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in which the first-order coefficient of the Fourier series of the in-plane (x = 0) periodic dielectric
perturbation is fG = 1/π for the 1-D grating (Fig. 3(a)) and fG = 0.087 for the 2-D grating
(Fig. 3(b)). The coupling coefficient can be obtained as ηpr = χpr/(1 + χpr) where χpr = κpr/κnr

and κnr = 2β
′′
p .

4. OVERALL RADIATION EFFICIENCY ENHANCEMENT

Depending on the method of collection, the overall radiation efficiency should be integrated within
an emission cone (Fig. 4(b)) with a polar angle θmax = sin−1 βr, max where the maximum radiation
propagation constant βr, max is related to the in-plane angle ϕm = 2 sin−1(βr, max/2βp) (Fig. 4(a)).
Only those SPP modes with 0 < ϕ < ϕm coupled into the radiation modes with 0 < βr < βr, max

are collected in the radiation cone. The overall radiation efficiency should be evaluated as ηpr, all =

(NG/2π)
ϕm∫
−ϕm

ηprdϕ where NG = 2 for 1-D grating with two G-vectors (Fig. 3(a)), and NG = 6

for 2-D grating with six G-vectors (Fig. 3(b)). We consider three different cases of the collection
methods that are limited by different maximum polar angles. First, we assume that all radiation
modes escape the dielectric eventually by avoiding total internal reflection with the use of surface
roughness or a domed structure (θmax = π/2). Next we look at the situation in which the polar
angle of the emission cone is limited by total internal reflection (θmax = sin−1(1/

√
εD). Finally for

the case where the emission cone is limited by the numerical aperture (NA) of collection lens, the
maximum polar angle can be given as θmax = sin−1

(
sin[tan−1(NA/2)]/

√
εD

)
. The results of all

three cases are shown in Fig. 5(a) for 1-D and in Fig. 5(b) for 2-D gratings along with the Purcell
factor.

Figure 4: (a) SPP-radiation in-plane propagation constant coupling in reciprocal space, (b) Emission cone
with polar angle θ.

A clear pattern is observed: the 1-D grating offers consistently stronger coupling between the
SPP and radiation modes than the 2-D grating. As one can see, the coupling efficiency increases
as β

′
p decreases, but the Purcell factor also increases with β

′
p, hence overall emission enhancement

should reach a maximum at some optimum β
′
p, opt.

The overall SPP enhancement of the radiative efficiency FSPP = ηSPP/ηrad given by Eq. (1)
can be calculated as a function of the SPP propagation constant β

′
p, and the results are shown in

Fig. 6 for a wide range of the original radiative efficiency of the emitters in the dielectric under the
assumption of escape of all radiation modes (θmax = π/2), which clearly experiences a peak overall
enhancement at some optimal values β

′
p, opt.

Finally, our main results of the optimal overall enhancement factor which is calculated as
FSPP , opt = ηSPP

(
θmax, β

′
p, opt

)
/ηrad (1− cos θmax) at optimal values of the SPP modes β

′
p, opt for a

given original radiative efficiency ηrad with 1-D and 2-D gratings are shown in Fig. 7 for the three
different cases of collection methods that limit the maximum polar angle θmax. Assuming that a
rear reflector is used in the absence of the metal layer, for a fair comparison between the different
collection methods, we have included a factor Ω/2π = 1−cos θmax in the original radiative efficiency
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(a) (b)
Figure 5: Integrated SPP coupling efficiency by (a) 1-D and (b) 2-D grating as a function of β

′
p with

θmax = π/2, θmax = sin−1
(
1/
√

εD

)
, and NA = 1.

(a) (b)

Figure 6: The overall enhancement factor by (a) 1-D and (b) 2-D grating.

(a) (b)
Figure 7: Overall optimal SPP enhancement for bottom emission as a function of the original radiative
efficiency of the emitter at optimal value β

′
p, opt .

ηrad , where Ω is the solid angle of the collection cone for either the total internal reflection or lens
collection (Fig. 4(b)). It can be seen that the overall enhancement factor is stronger for those
emitters with smaller original radiative efficiency, and for those collection methods with smaller
collection cones, and the 1-D grating always also couples more of the SPP modes into the radiation
modes than the 2-D grating.
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5. ANALYSIS AND CONCLUSIONS

Our results shown in Fig. 7 allow us to make a few important observations. It turns out that
2-D gratings that are more difficult to fabricate offer no improvement whatsoever over simple
1-D gratings. This rather welcome result can be traced to the fact that the first order Fourier
coefficients in 2-D gratings are much smaller than in 1-D gratings. Substantial SPP enhancement
of the overall radiative efficiency can be attained only for the emitters that originally have very low
radiative efficiency. Assuming that one can deal with total internal reflection by, say, using surface
roughening or having a dome-shaped lens attached to the emitter, the SPP enhancement can be
attained only for the emitters with original radiative efficiency ηrad of less than 10% and can never
be higher than about 20. If, on the other hand total internal reflection remains a factor, the SPP can
be more helpful, as it can re-direct the emission towards the normal incidence. Then, for instance,
the enhancement by a factor of 5-10 can be attained even if the original efficiency ηrad was 5%.
This result is in excellent agreement with the experimental results of Ref. 3 for the same InGaN-Ag
material system as used in our calculations. We shall therefore make a final conclusion - SPP
enhancement of spontaneous radiation is most noticeable only if the original radiative efficiency of
the emitter is very small, far less than 0.1%. Even then, the SPP enhancement is not substantially
higher than 10 fold. For this reason it does not appear that SPP offers any advantage for light
emitting diodes, with the only possibly exception - Si emitters whose original radiative efficiency
is very low. The main application of SPP enhancement should remain as improving the efficiency
of weak photoluminescence and nonlinear processes for the purpose of detecting small amounts of
different substances.
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Abstract— Automotive applications that metamaterials are expected to effectively contribute
to are presented, and research activities of metamaterials undertaken at Toyota Central R&D
Labs (TCRL) are reviewed. They include development of leaky-wave antennas for future millimeter-
wave radar systems, dipoles for UHF band applications, and topology design optimization tech-
niques for periodic structures of metamaterials.

1. INTRODUCTION

Metamaterials are artificially constructed materials that have unusual electromagnetic properties
such as backward wave, reduced wavelength with decreasing frequency, nonlinear frequency char-
acteristic of resonances, and so on. In the view point of engineering, metamaterials having such un-
usual electromagnetic properties are expected to extend significantly the design degrees of freedom
for materials, devices, components and systems. Significant research efforts have been expended
in the development of microwave and millimeter-wave metamaterials, such as couplers, resonators,
small antennas, and beam-scanned leaky wave antennas [1–3]. In addition, there are currently
considerable interests in the development of optical metamaterials such as a negative index planar
lens or “superlens” [4, 5]. Metamaterials are expected to provide new applications, drastic improve-
ment of performance, simple architectures, low cost, and so on, in future automotive electronics
applications, as shown in Fig. 1. The automotive applications that metamaterials are expected to
effectively contribute to include beam scanning antenna systems for radars, mobile communication
antennas, novel magnetic materials for electric motors, the high-performance absorbing and shield-
ing materials for electromagnetic compatibility. Metamaterials are also expected to be applied to
optical devices such as LED headlights and night vision systems using infrared cameras. Research
activities undertaken at Toyota Central R&D Labs (TCRL) are reviewed in this paper. Two types
of metamaterial-based antennas are presented. One is a leaky-wave antenna for future millimeter-
wave radar systems that need wide scanning angle with simple architecture. The other is a dipole
for UHF band applications. The dipole provides small size, or opposite polarization to conven-
tional one. Also, design techniques are desired to maximize the performance of metamaterials. A
topology design optimization technique for periodic structures of metamaterials is presented with
an example model.
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Figure 1: Automotive applications metamaterials are expected to effectively contribute to.

2. TOPOLOGY DESIGN OPTIMIZATION

Topology optimization is a highly flexible optimization method that can simultaneously deal with
geometric and topological configuration changes [6]. Topology optimization is being used to develop
a novel method for designing the periodic microstructures of electromagnetic materials [7]. The
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design algorithm used for the variable change method is based on the density method. The main
feature involves representing the shape of a structure by the density of its micropores to allow for the
free transformation of the topology of the shape. The density of the material is translated to gradual
changes in the physical properties such as the stiffness, weight or electromagnetic permittivity.
Then, the density distribution is optimized for a desired specification by applying a mathematical
non-linear programming technique. This approach is very attractive because of its simplicity and
efficiency.

An example of a periodic electromagnetic band-gap dielectric material designed using topology
optimization is shown in Fig. 2. The initial design is of a homogenous material in which the
relative permittivity, εr, is 5. Fig. 2 shows that the microstructure is generated as the iteration
step progresses and finally either a void or a filled/solid material is produced. In this manner,
topology optimization can be used to produce new, optimized metamaterial microstructures with
a specific band-gap.
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Figure 2: Example of electromagnetic band-gap structure using topology optimization design.

3. COMPOSITE RIGHT/LEFT-HANDED LEAKY WAVE ANTENNA (CRLH LWA)

There is a greatly increased interest in the development of automotive radar sensors for adaptive
cruise control and pre-crash safety systems using a millimeter-wave band from 76 to 77 GHz. For
these systems, a field of view (FOV) covering about 20◦ over a range of 150 m is sufficient and
can be provided by most sensors on the market today. However, new developments like “stop &
go” adaptive cruise control and collision avoidance assistance systems require a broader FOV up
to 60◦, over a maximum range of 60 m in order to adequately deal with cut-in situations. A novel
structure for a frequency-independent steerable composite right/left handed leaky wave antenna
for the millimeter-wave band applications is presented [8–9]. This antenna offers the advantages of
wide beam scanning, high gain and a simple structure in the millimeter-wave band. The prototype
CRLH LWA shown in Fig. 3 was fabricated and tested in the millimeter-wave band. In the near
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future, it may be possible to realize automotive radar antenna systems with a high gain in excess
of 20 dBi by using the proposed antenna. We believe that the LHLWA is a promising design for
automotive millimeter-wave applications.

4. LEFT-HANDED DIPOLE ANTENNAS

A new concept for forming a dipole antenna using a left-handed transmission line is next de-
scribed [10]. The antenna is composed of a ladder network periodic structure of unit cells. The
unit cell has a shunt inductor and two serious capacitors. Adding capacitors to one side of the net-
work leads to out-of-phase currents with different amplitudes that produce high levels of radiation.
The antenna has a unique feature in that the wavelength decreases with the frequency. The concept
is applied to two antennas. The first is a small dipole, shown in Fig. 4(a). The straight dipole
worked in the fundamental mode. The antenna of 0.18 wavelengths in free space provided a gain
of −3.9 dBi at 547 MHz and bandwidth of 1.7% for |S11| < −10 dB. The second is an orthogonally
polarized dipole, shown in Fig. 4(b). The meandered dipole worked in the higher order mode.
Polarization orthogonal to a right-handed one was achieved at 643MHz by the induced current of
nine half wavelengths on the meander having 0.77 wavelengths in free space. These novel dipoles
offer a great promise for future automotive mobile communications.
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Figure 4: Left-handed dipole antennas.

5. CONCLUSIONS

A topology design optimization technique for electromagnetic materials, a left-handed leaky wave
antenna for millimeter-wave applications, and left-handed dipole antennas have been presented
along with some thoughts for future investigation. These have been the subjects of recent meta-
material studies at TCRL. Metamaterials will clearly open up a whole new field for automotive
electronics applications.
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Abstract— We study the lattice dynamics of the wurtzite phase of bulk group-III nitride using
the linear chains models. It is shown that the 3D oscillation problem reduces to uncoupled
linear chain equations for high symmetry directions. The relation between the 3D and 1D force
constants has been investigated. Our study helps to understand better the richness of the linear
chain models. We also show how to fit the 3D bulk force constants (and consequently the whole
dynamical matrix) from a few points, either experimental or theoretical.

1. INTRODUCTION

Many properties of solids depend on the dynamics of atoms in the lattice. Some problems demand an
appreciable knowledge of the bulk atomic oscillations. Examples are the phonon imaging [1, 2] and
the reduction of the thermal conductivity in superlattices in comparison to the bulk materials [3–5].

The three-dimensional (3D) equations of motion for the atoms in the lattice decouple along high
symmetry directions resulting in one longitudinal and two transverse oscillations which are described
by linear chain models (see [6] and references therein). The values of the bulk force constants are
estimated either from experimental dispersion relations or from theoretical calculations, and linear
chain models are employed to study the phonon modes. So far, this analysis has been carried out
for zincblende and diamond crystal symmetries. However, such an instance is of particular interest
in semiconductors with wurtzite structure as is the case of the group-III nitrides. This exact result
for the bulk is useful for the study of heterostructures. In fact, for heterostructures grown along
high symmetry directions, it is usually assumed that the force constants in each constituent layer
are equal to the bulk force constant. In this way the phonon equations of motions are obtained.

In this paper the phonon equations of motion for bulk semiconductors are revisited. As group-
III nitride are ionic materials we can separate the contribution of the macroscopic field. Moreover,
instead of finding the irreducible representation for a given direction, we consider a given number
of atoms and assume harmonic interaction between a limited number of neighbors for interaction
of microscopic character [6]. Hence, the dynamical matrix is constructed, taking into account
the symmetry of the underlying lattice. Interesting properties of the equations are found in this
way. In particular, we check explicitly how the 3D problem reduces to decoupled linear chain
equations for high symmetry directions, with the aim of obtaining the relation between the 3D and
one-dimensional (1D) force constants. To the best of our knowledge, this relation has not been
explored so far for the case of the wurtzite symmetry. We also show how to fit the 3D bulk force
constants (and consequently the whole dynamical matrix) from a few points, either experimental
or theoretical. We focus our study on wurtzite structure, and particularly on GaN .

The paper is organized as follows: In the next section we enumerate the properties of the
equations of motion that are needed in this paper. For details the reader can address to Ref. [7]
where a similar calculation are done for the diamond and zincblence structures. In Section 3 we
consider the wurtzite lattice. At the end, our main conclusions are summarized.

2. EQUATION OF MOTION AND DYNAMICAL MATRIX

The ionic character of these materials requires the inclusion of the macroscopic electric field into
the equations of motion in the reciprocal lattice [8], which are then written as

ω2eα(κ) =
∑

κ′β

Dαβ

(
κκ′,−→q )

eβ

(
κ′

)− Qk√
mk

Eα. (1)

ω is the frequency of the mode, Qk the amount of charge shared by the κ-atom within the bond.
mk is the mass of the κ-atom, and Eα is the α-component of the electric field given by

Eα = − 1
υεpp

(
qα

|−→q |
) ∑

β

(
qβ

|−→q |
) ∑

κ′

Qκ′√
mκ′

eβ

(
κ′

)
. (2)
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Here, υ is the unit cell volume, εpp is the electrical permittivity in such direction, and −→q is the
wavevector. Additionally, eα(κ) is the polarization vector and the dynamical matrix D is given by

Dαβ

(
κκ′,−→q )

=
1√

MκMκ′

∑

l′

Φαβ

(
lκ, l′κ′

)
exp

(−i−→q · [−→x (l)−−→x (l′)
])

. (3)

x(l) is the vector position of the elementary cell and Φαβ (lκ, l′κ′) are the force constants.
The invariance of the force constants under a symmetry operation S, represented by a unitary

matrix, is written in matrix form as SΦS† = Φ. The dagger (†) means the hermitian conjugate.
From these symmetry relations the specific form of the dynamical matrix can be established. Fur-
ther details of this approach are discussed in Refs. [8, 9]. In particular several useful symmetry
properties of Φα,β are discussed in these books.

2.1. The Wurtzite Structure

The most common allotropic form of the nitride semiconductors is the wurtzite. This is a close-
packed hexagonal structure with 4 atoms per unit cell (two atoms of a group III cation, and two
atoms of N). Using the symmetry of the cell it is possible to keep only two equations of motion-one
for the cation X (located at (0, 0, 0)) and one for the atom of N (located at (0, 0, uc)). The equations
will be written in the second nearest neighbor approximation. The first four neighbors are invariant
under the point group Cyz

3 . For the transformations we have the following representations

C3 =




1
2 −

√
3

2 0√
3

2
1
2 0

0 0 1


 , σyz =

(−1 0 0
0 1 0
0 0 1

)
.

The invariance of the force matrices under these transformations means that

σyzC3Φ(σyzC3)t = Φ, (4)

from which the first neighbor, l0, force-constant matrix is obtained

Φl0 =

(
α11 0 0
0 α11 0
0 0 α33

)
. (5)

Keeping in mind the symmetry of each atomic position, the particular form of the force-constant
matrix corresponding to each neighbor is analogously obtained. The dynamical matrix; that is, the
equations of motion in each symmetry direction of the reciprocal lattice, is then derived.

Table 1: The relations between the 1D force constants and the 3D force constant matrix elements.

L Mode T mode
Linear Chain 3D Parameters Linear Chain 3D Parameters

γcc −3β33 γcc − 3
2 (β11 + β22)

γaa −3γ33 γaa − 3
2 (γ11 + γ22)

γca − 1
3 (8α11+α33)− Ω γca − 1

3 (5α11+4α33)
γca1 −α33 γca1 −α11

3. NUMERICAL RESULTS

The longitudinal and the (twofold degenerated) transversal oscillation modes uncouple. The cor-
responding equations of motion can be studied as those of linear chains of atoms connected by
springs. In particular, for −→q = (0, 0, q) the symmetry of the atoms in the unit cell makes enough to
consider a diatomic linear chain. Consequently, the four oscillation branches are obtained in both
the longitudinal and transversal polarizations.
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The dispersion relations in the [0001] are given by the expressions

ω1[q] =

√
Φ1[q]+Ψ1[q]

2 −
√

(Φ1[q]−Ψ1[q])
2

2 + Υ1[q]

ω2[q] =

√
Φ2[q]+Ψ2[q]

2 −
√

(Φ2[q]−Ψ2[q])
2

2 + Υ2[q]

ω3[q] =

√
Φ2[q]+Ψ2[q]

2 +
√

(Φ2[q]−Ψ2[q])
2

2 + Υ2[q]

ω4[q] =

√
Φ1[q]+Ψ1[q]

2 +
√

(Φ1[q]−Ψ1[q])
2

2 + Υ1[q]

(6)

where,
Φ1[q] = 1

MX

(
γca + γca1 + 4γcc sin2[ qπ

2 ]
)

Ψ1[q] = 1
MN

(
γca + γca1 + 4γaa sin2[ qπ

2 ]
)

Υ1[q] = 1
MXMN

(
γ2

ca + γ2
ca1 + 2γcaγca1 cos[qπ]

)
Φ2[q] = 1

MX

(
γca + γca1 + 4γcc cos2[ qπ

2 ]
)

Ψ2[q] = 1
MN

(
γca + γca1 + 4γaa cos2[ qπ

2 ]
)

Υ2[q] = 1
MXMN

(
γ2

ca + γ2
ca1 − 2γcaγca1 cos[qπ]

)

(7)

The dispersion functions are written in terms of the force constant matrix elements through the
relations shown in Table 1. These are obtained by comparing the linear chain equations with the
uncoupled 3D ones.

Table 2: The GaN 3D force constants and their 1D equivalent for linear chains (in 105 din.cm−1).

3D Problem Linear Chain
α11 7.78 T [0001] γca 296.01
α33 −474.42 γca1 −7.78

β11 + β22 −87.42 γaa 131.14
γ11 + γ22 25.71 γcc −38.56

β33 −368.25 L[0001] γca 137.40
γ33 57.85 γca1 474.42
Ω 323.59 γaa 65.80

γcc 35.49
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Figure 1: Calculated dispersion relations of the phonon modes along Γ − A direction in the Brillouin zone
of wurtzite GaN . The filled circles are measured phonon inelastic x-rays scattering data [11].
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The dispersion relations in the 3D problem depend upon seven independent parameters: α11,
α33, β11 + β22, β33, γ11 + γ22, γ33, and Ω. For a given material, those functions are evaluated
in certain points in which the phonon frequencies of the longitudinal and transversal modes are
already known. In GaN , these are the center and boundaries of the Brillouin zone [10]. Hence, one
obtains eight independent equations. The parameters α11, α33, β11 +β22 and γ11 +γ22 are obtained
by solving the equations corresponding to the transversal modes. Then, using these values, it is
possible to calculate the remaining ones (β33, γ33 and Ω), with the help of the equations associated
with the longitudinal oscillations. Table 2 shows the numerical values. Substituting these values
in (7) analytic expression for the dispersion relations are obtained. Figure 1 shows the obtained
dispersion relations. It must be stressed that these curves resemble very closely the results for this
direction given in Ref. [10].

4. CONCLUSION

We have obtained — from the 3D bulk problem — the kind of linear chain equations that should
be used in order to obtain the phonon dispersion relations along high symmetry directions, for a
given number of neighbors in wurtzite polar crystals. In particular, we explain how to take into
account the macroscopic electric field, in order to separate the L and T oscillation branches. The
most relevant aspect is that we derive analytic expressions for these dispersion relations, which
can be of usefulness for the problems that are mentioned in the introduction. The dispersion
relations obtained for the GaN in this way reproduce with high accuracy previous experimental
and theoretical results, but with a significant simplicity.
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Abstract— In this paper we study numerically the transmission, reflection and dwell times
of phonons propagating through semiconductor multilayer structures. The tunnelling of optical
and acoustic phonon at normal incidence on multiple layers systems is analyzed. We adopt the
continuum model valid for long-wavelength oscillations. The isomorphism between acoustical
and optical propagation in heterostructures, and electromagnetic waves in transmission lines, is
analyzed. We use an impedance concept similar to the quantum-mechanical one introduced by
Khondker to calculate the transmission and reflection coefficients. This study could also be useful
for the design of phonons filters.

1. INTRODUCTION

The tunnelling of long-wavelength phonons through semiconductor heterostucture has been studied
with extent. To describe long-wave modes, we employ a continuum phenomenological model, which
has proved useful in both polar [1] and nonpolar [2] structures.

The long-wavelength phonons propagating along high symmetry directions in nonpolar semicon-
ductors are described by a simple one-dimensional differential equation [2]. In the present paper
the isomorphism between the equations that describe wave propagation in heterostructures, and
electromagnetic waves in transmission lines, is used to define an impedance similar to the quan-
tummechanical impedance one introduced by Khondker [3].

In addition, the tunnelling of optical and acoustic phonon at normal incidence on multiple layers
systems is analyzed. The wave impedance allows us to calculate the transmission and reflection
coefficients and study numerically the transmission, reflection and dwell times of phonon packets
propagating through semiconductor multilayer structures [4, 5].

The generalized concept of quantum-mechanical wave impedance has been formerly used to
design an energy band-pass filter [7]. We hope that the present work could encourage further
experimental studies and possible application such as gaussian filter for phonons [6].

The paper is organized as follows. In the next section is described our model. Section 3 is devoted
to analyse the wave transmission on a transmission line. In Section 4 we study the propagation of
phonon waves. Finally we give some conclusions.

2. LONG WAVELENGTH PHONON MODEL

We formulate the problem with the help of its one-dimensional energy density [2]

H =
1
2
ρ

∣∣∣∣
∂u

∂t

∣∣∣∣
2

+
1
2
ρω2

0|u|2 +
1
4

[
σ

∂u

∂z

∗
+ σ∗

∂u

∂z

]
. (1)

The first term in (1) represents the kinetic energy density, the second one the interaction energy
density of the phonon field with itself, and the third one the strain energy density that accounts for
the dispersive character of the oscillations. These terms depend of the atomic relative displacements
u, the linear mass density ρ, the phonon frequency at the center of the Brillouin zone ω0, the one-
dimensional strain tensor ∂u/∂z, and the stress tensor σ, which is equal to σ = −ρβ2∂u/∂z, where
β is a parameter that accounts on the behavior of the bulk phonon dispersion relation.

From (1) it is easily obtained the one-dimensional equation of motion [2]

∂2u

∂t2
= −ω2

0u− β2 ∂2u

∂z2
, (2)
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and from Equation (2) it is obtained

∂2σ

∂t2
= −ω2

0σ − β2 ∂2σ

∂z2
. (3)

The energy density flux, j, is writen in [2] as

j = −1/2 (σ∂u∗/∂t + σ∗∂u/∂t) . (4)

The stationary solution of (2) and (3) leads to a Helmholtz equation which is equivalent to both
the time-independent Schrödinger equation and the wave propagation on a transmission line. In
particular, these equations are

d2u

dz2
+ k2u = 0;

d2σ

dz2
+ k2σ = 0. (5)

In the frequency range of allowed optical oscillations, with ω < ω0, the solution for the equations
of motion are

u = A+eikz + A−e−ikz; σ = A+eikz + A−e−ikz, (6)

where k =
√

(ω2
0 − ω2).

For frequency ω > ω0 the oscillations are forbidden. The solution for the equations of motion
are

u = A+eκz + A−e−κx; σ = A+eκz + A−eκz, (7)

where κ =
√

(ω2 − ω2
0).

3. WAVE PROPAGATION ON A TRANSMISSION LINE

A transmission line is a distributed parameter network, where voltages and currents can vary in
magnitude and phase over its length. From the Kirchhoff’s voltage law and Kirchhoff’s current law
the wave equations are obtained. For the steady-state condition these equations are

d2I

dz2
− γ2I = 0;

d2V

dz2
− γ2V = 0, (8)

where γ = α + iβ is the complex propagation constant, which is a function of the frequency.
Travelling wave solution to (8) and (8) can be found as

V = V +e−γz + V −eγz; I =
V +

Z0
e−γz +

V −

Z0
eγz, (9)

where the e−γz term represents wave propagation in the z direction, and the eγz term represents
wave propagation in the −z direction. The characteristic impedance, Z0, can be defined as Z0 =
V +/I+ = −V −/I− and results a magnitude which depends of the systems’s parameters.

4. LONG WAVELENGTH PHONON TUNNELLING

It is easy to see that the equations that describe the wave propagation on a transmission line,
(8) and (8), and the equations that describe the propagation of long wavelength phonons through
semiconductor heteroestucture, (5) and (5), are isomorphic. It is also valid for the solutions of
these equations.

We consider in the following the phonons falling on a multiple-barrier structure consisting of
an alternate stacking of different layers A and B sandwiched between other materials X and Y;
X is the substrate of the superlattice and Y denotes the detector. Keeping in mind the suitable
analogies, the studied heteroestucture can be represented as a transmission line of phonon waves.
In order to introduce and define the concept of wave impedance we will consider a system formed
by two half-infinite materials, namely A1 and A2, respectively. For this system, the Equations (6),
(6), (7) and (7), can be rewritten as

u(z) = A+
(
eγz − reγ−z

)
, (10)

σ(z) = −ρβ2γA+
(
eγz + reγ−z

)
, (11)
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where γ = i
√

ω2
0 − ω2/β2, and r = (ρ2β

2
2γ2 − ρ1β

2
1γ1)/(ρ2β

2
2γ2 − ρ1β

2
1γ1) is the wave amplitude

reflection coefficient. Notice again the isomorphism between Equations (10) and (11) and the
correspondig quantum mechanical wave equations [3].

By mean of definitions Φ(z) = iσ(z) and U(z) = u(z), we can identify the characteristic
impedance as Z0 = iρβ2γ. Now, the wave impedance in any point on a transmission line is
defined as Z(z) = Φ(z)/U(z) [3]. Then, it is straight to identify that input impedance Zi is equal
to

Zi

Z0
=

ZT cosh(γd)− Z0 sinh(γd)
Z0 cosh(γd)− ZT sinh(γd)

. (12)

If a lossless line of characteristic impedance Z0 is terminated with a load impedance ZT , the
reflection coefficient at the load can be written as Γ = (ZT − Z0) / (ZT + Z0). Then r ≡ Γ.
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Notice that the stationary solutions of Equations (2) and (3) are u(z, t) = U(z)eiωt and σ(z, t) =
−iΦ(z)eiωt; then with these solutions the Equations (1) and (4) are rewritten as

H(z) =
1
2
ρω2 |U(z)|2 +

1
2
ρω2

0 U(z)|2 − 1
2
Re

[
iΦ(z)

dU(z)
dz

∗]
, (13)

j(z) =
ω

2
Re [Φ(z)U∗(z)] . (14)

The transmission coefficient, transmission time and dwell time, already defined in [4] are calcu-
lated for double barriers structures made up of different isotopes of germanium. For further details
of the calculation and the parameters employed the reader is addressed to references [2, 4–6]. In
Figure 1 these magnitudes are plotted as a function of the phonon frequencies for acoustic modes,
while in Figure 2 optical modes are considered. In the same way that in the tunnelling of elec-
trons the maximum transmission is obtained when the load impedance is equal to the characteristic
impedance (Γ = r = 0).

For the sake of completeness the input impedance as a function of the distance is plotted. See
Figure 3 for acoustic modes and 4 for the optical ones.

5. CONCLUSION

In this paper we define a characteristic impedance that depends on the parameters of the materials
and of the frequency. This impedance is related with the one-dimensional strain and stress tensors.

We took advantage of the isomorphism existing between problems in different fields of Physics
in order to transfer concepts and results from one field to another one. It is found particularly
useful the concept of impedance to describe tunnelling and reflection in multilayer systems. We
have applied this concept to the phonon tunnelling and found the relationships with Elasticity
magnitudes.

Given the mathematical analogies it is possible to formulate these problems on the basis of
quadrupole theory. It would be useful to design devices like phonon filters.
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Abstract— The wave propagation in the nanostructured porous silicon multilayers, where the
geometrical length follows the Cantor code, is presented. The total thickness of the multilayered
structure is maintained as 9000 nm. The heterostrucutres were fabricated by the porous silicon
layers having the refractive indices of 1.9 and 1.2 corresponding to the low and high porosity
respectively. The thickness of the high and low porosity layer varied from 1000 to 12 nm for
making the Cantor heterostructures up to 7th order. In the reflectance spectra of the Cantor
structure of 6th order (63 layers), two major photonic band gaps (PBG) are observed in the
visible region with a narrow resonance at 652 nm. In the Cantor structures, with order more
than 6, instead of any PBG approximately equidistant fringes are observed.

1. INTRODUCTION

PS has been extensively studied for the last 15 years [1–6]. High reflectivity multilayered struc-
tures [2], efficient visible photoluminescence [1], compatibility with standard silicon processes for
integrated optoelectronics [3], photonic applications [2, 4–6] and biosensors [7] have been major
attractions of this field. The fabrication of porous silicon by electrochemical etching of crystalline
silicon (c-Si), gives us the ability of having a wide refractive index contrast within the same ma-
terial, avoiding the problem of inter-diffusion or lattice mismatch between the layers, through an
easy and cheap process. Since we can control both, the layer thickness (through anodization time)
and refractive index (through porosity), this method can be used to study experimentally the mul-
tilayered structures. Recently, Luigi Moretti et al. [8] compared the sensitivities of resonant optical
biochemical sensors, based on both periodic and aperiodic porous silicon structures, such as the
Bragg and the Thue-Morse multilayer. The shifts of the reflectivity spectra of these devices on
exposure to several chemical compounds have been measured and the aperiodic multilayer is re-
ported to be more sensitive than the periodic one. The optical properties of several other kinds of
quasiregular systems have been investigated in different systems [9–12]. In [9] the authors presented
theoretical calculation in a Cantor photonic crystal waveguides and the optical spectra of fractal
multilayer dielectric structures has been shown to possess spectral scalability, which has been found
to be directly related to the structure’s spatial (geometrical) self-similarity. Following an example
of the work demonstrated in [8], we show our prelimnary experimental results on the relationship
between the geometry and the optical properties of the multilayers made of nanostructured porous
silicon (taking two different refractive indices), where geometrical length of the layers follows the
Cantor code and maintains the total thickness (for different orders) of the multilayered structure
as 9000 nm.

2. EXPERIMENTAL DETAILS

We have used boron doped p++ type crystalline silicon with resistivity 0.001–0.005 ohm-cm, (100)
oriented substrates for fabricating our samples. To have a better control over the interfaces and
thickness of the porous layers, anodization was performed by alternating square pulses with a
frequency of 100 Hz (Ref. Escorcia et al. PSS), with a 50% of duty cycle. The electrochemical
reaction took place at room temperature. The electrolyte with volume ratio of 3:7 of HF (48 wt%):
ethanol (98 wt%) was taken for electrochemical anodization process. The current density was
controlled by the computer. A high porosity H ( current density 50 mA/cm2, with effective refractive
index of 1.35) and low porosity (35%, current density 5 mA/cm2, with nb = 2.0), were repeated to
form the cantor type structures. The refractive indices of the pSi layers have been estimated using
reflectivity spectra of 2 microns thick single layers at 1500 nm. In addition, in order to maintain a
constant HF concentration over the interface between Si and pSi under chemical attack, during the
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etching process a rotator is used to remove the bubbles formed during the reaction and circulate
the electrolyte within the Teflon cell. Apart from the pauses during the layer formation (due to
the positive square pulses), after the formation of every layer a pause of 3 seconds was given. The
optical characterization of porous silicon mirrors was carried out by a Perkin Elmer UV-Vis-NIR
spectrophotometer (UV-3101) at 8◦ incidence. Scanning Electron Microscopy (SEM) was used to
examine the structural features of the film.

All the structures discussed in this article, have the total physical thickness as 9 microns. The
schematic of the possible 4th to 6th order cantor structures is shown in Fig. 1. The black layer
represents the low porosity layer. As shown in the figure, the 4th generation of the cantor structure
consists of 24−1 = 15 layers. Similarly 5th, 6th and 7th order have 31, 63 and 127 layers respectively.

Figure 1: Schematic diagram of the cross-section of the 4th, 5th and 6th series of the Cantor structure.
Black and white area represent the low and high porosity layer respectively.

3. RESULTS AND DISCUSSION

Figure 2 shows the measured reflectance spectrum of the 4th–7th order of the Cantor series. In
the reflectance spectra of the 4th series of Cantor (Fig. 2(a)) having 15 layers of alternating high
and low porosity, a sharp photon localization at 742 nm with a total PBG of 50 nm is observed.
The spectra is similar to a multilayer resonator cavity structure (MRC) [13] formed with a periodic
sequence of 20 alternating layers of low and high refractive index with equal optical thicknesses
(λ/4) along with a λ/2 layer in between the 20 layers. The approximate physical thickness of
the MRC structure with the similar refractive indices as taken in the present work for the Cantor
structures, is 2.49 microns. The PBG is expected to be narrower in case of Cantor structures.

Similarly one can observe that the 5th order (Fig. 2(b)) has a similar localized mode at 651 nm
with the total photonic band width of 56 nm. But additionally two more localized modes appear
in the near infrared (NIR) region with the 100 nm of full wave half maximum (FWHM) of the
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corresponding PBG. The reflectance intensity goes to almost 100% in the NIR region as compared
to 90% in the visible region. Making a similar calculation for a periodic structure, replicating the
reflectivity spectra of the 5th order Cantor structure, one can find that the total thickness of the
corresponding double MRC structure would be around 5 microns.

Figure 2: Experimental reflectance for 4 different orders of cantor structures: (a) 4th (15 layers), (b) 5th (31
layers), (c)6th (63 layers), and (d)7th (123 layers).

Figure 2(c) shows the reflectance spectra of the 6th order of the cantor series (63 layers). A PBG
of 22 nm of width (with the two shoulders of approximately 50% reflectance) is observed between
650–700 nm. The reflectance of the main peak goes up to 80%. The width of the PBG in the NIR
region reduces in this case as compared to the 5th order and appears to be an asymmetric MRC
structure. The reflection intensity too is found to reduce to 90% for the higher peak and 80% for
the lower peak. Any further increase of Cantor order doesn’t show any PBGs. For example, the
reflectance spectrum of the seventh order cantor structure (Fig. 2(d)) fails to show any PBG. But
a series of equidistant interference fringes, from 550–700 nm, with reflectance of around 30% are
observed. The reason of the absence of any PBG is the decrease in the optical thickness of the
layers beyond the interaction range of the visible and NIR wavelengths.

Analyzing all the four spectra together, one can observe that the maximum reflectance in the
NIR region is found for the fifth series. The possible reason is the physical thicknesses of the layers
(as 111 nm), which corresponds to the optical thickness of 222 nm for the refractive index of 2.
The optical thickness of 222 nm corresponds to the quarter wavelength of 888 nm. Considering the
refractive index of 1.35, the optical thickness of 150 nm, corresponds to the quarter wave length
of 600 nm. Hence the reduction in the intensity of the reflected beam for the 6th order can be
explained on the basis of the further reduction in the thicknesses of the low and high porosity
layers. The absence of PBGs in any series beyond 6th, (e.g., the 7th series in Fig. 2(d)) is justified
by the fact that the structure is dominated by the layers having the thicknesses of 12 nm (for the
7th order) or lower, which is too low for demonstrating any PBGs in the visible-NIR region.
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4. CONCLUSIONS

The relationship between the geometry and the optical properties of the multilayers made of nanos-
tructured porous silicon were analyzed, where geometrical length of the layers follow the Cantor
code maintaining the total thickness of the multilayered structure as 9000 nm. Multiple photonic
bandgap structures were observed up to 6th order. The Cantor structures with orders more than
6th (with a physical thickness of 9 microns) show the presence of low intensity equidistant fringes
in the visible region. Such structures can be further investigated for the applications in biosensors
because of the presence of the multiple PBGs of the reduced width.

ACKNOWLEDGMENT

One of the authors (V. Agarwal) acknowledge the financial support provided by CONACyT (57631).

REFERENCES

1. Canham, L. T., “Silicon quantum wire array fabrication by electrochemical and chemical dis-
solution of wafers,” Appl. Phys. Lett., Vol. 57, 1046, 1990.

2. Agarwal, V. and J. A. del Rio, “Tailoring the photonic bandgap of porous silicon dielectric
mirror,” Appl. Phys. Lett., Vol. 82, 1512, 2003.

3. Lopez, H. A. and P. M. Fauchet, “Infrared LEDs and microcavities based on erbium-doped
silicon nanocomposites,” Mater. Sci. and Eng. B, Vol. 81, 91, 2001.

4. Ghullinyan, M., C. J. Oton, Z. Gaburro, P. Bettotti, and L. Pavesi, “Porous silicon free standing
coupled microcavities,” Appl. Phys. Lett., Vol. 82, 1550, 2003.

5. Agarwal, V., J. A del Rio, G. M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert,
M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlat-
tices,” Phys. Rev. Lett., Vol. 92, 097401, 2004.

6. Sapienza, R., P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical
analog of electronic Bloch oscillations,” Phys. Rev. Lett., Vol. 91, 263902, 2003.

7. Lin, V. S.-Y., K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous
silicon-based optical interferometric biosensor,” Science, Vol. 278, 840, 1997.

8. Moretti, L., I. Rea, L. de Stefano, and I. Rendina, “Periodic versus aperiodic: Enhancing the
sensitivity of porous silicon based optical sensors,” Appl. Phys. Lett., Vol. 90, 191112, 2007.

9. Zhukovsky, S. V., A. V. Lavrinenko, and S. V. Gaponenko, “Spectral scalability as a result
of geometrical self-similarity in fractal multilayers,” Europhys. Lett., Vol. 66, No. 3, 455–461,
2004.

10. Lavrinenko, A. V., S. V. Zhukovsky, K. S. Sandomirsk, and S. V. Gaponenko, “Propagation
of classical waves in nonperiodic media: Scaling properties of an optical Cantor filter,” Phys.
Rev. E, Vol. 65, 036621, 2002.
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4Instituto de F́ısica, Universidad de Antioquia, AA 1226, Medelĺın, Colombia
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Abstract— The variational procedure, in the effective-mass and parabolic-band approxima-
tions, is used in order to investigate the combined effects of hydrostatic pressure and in-plane-
direction-applied magnetic field on the exciton states in vertically coupled GaAs-(Ga,Al) As
quantum dots. Calculations are performed for two cylindrical-shape quantum dots. The exciton
envelope wave function is obtained through a variational procedure using a hydrogenic 1 s-like
wave function and an expansion in a complete set of trigonometric functions for the electron and
hole wave functions. The anticrossing effects on the dispersion with applied magnetic field and
hydrostatic pressure of the photoluminescence peaks associated with direct and indirect excitons
have been considered.

1. INTRODUCTION

A symmetric/asymmetric coupled double quantum well (DQW) is made of two identical/different
quantum wells (QW) that are separated by a thin barrier. For the symmetric case, in flat-band
conditions, i.e., without applied electric field in the growth direction of the heterostructure, the
eigenfunctions of the DQW have well-defined symmetries. These are broken in the asymmetric
case. In this case, only transitions between electron and hole states with the same symmetry are
optically allowed. Whenever the maximum probability of the electron and hole wave functions are
distributed in the same well, the transitions are known as spatially direct transitions. The intensity
of these optical transitions is essentially given by the overlap integral of the electron and hole
single-particle envelope wave functions and temperature-dependent populations of electrons and
holes in the subbands. Also, it is certainly necessary to take into account the electron-hole (e− h)
Coulomb interaction for an appropriate description of the optical transitions in semiconducting
heterostructures. Of course, effects of the e−h Coulomb interaction are essential whenever the fine
structure of the optical spectra shows features which are within the range of the exciton binding
energy. On the other hand, the application of hydrostatic pressure results in changes of the dielectric
constant and of band structure parameters such as the energy gap and the conduction band mass.
This may result in modifications of the interband optical transitions in GaAs-based QW’s (see
Ref. [1], and references therein).

By applying an in-plane magnetic field in coupled QWs, it is possible to induce strong changes
in the excitonic-related photoluminescence (PL) spectra due to field-induced displacement of the
interwell exciton dispersion in momentum space, which leads to a transition from the momentum-
space direct exciton ground state to the momentum-space indirect exciton ground state [2–4].
The indirect exciton lifetime in coupled DQW heterostructures under applied magnetic fields has
been studied by Butov et al [2–4] and they attribute the observed results to an increase in the
magnetoexciton mass. Also, Butov et al [2–4] have studied long-lifetime indirect excitons in coupled
QWs and, at low temperatures and high exciton densities, strong deviations of the indirect exciton
PL kinetics from monoexponential PL rise/decay were observed. Parlangeli et al [5] have studied the
indirect exciton dispersion in k space by considering the simultaneous effect of in-growth direction
applied electric field and in-plane magnetic field in DQW heterostructures and found that the
PL spectra increase with the magnetic field following a quadratic behavior. Additionally, they
present measurements of the PL peak positions of both direct and indirect excitons in biased
GaAs/Ga1−xAlxAs coupled DQWs under in-plane applied magnetic fields.

In the present work we are concerned with a theoretical study of the effects of applied hydrostatic
pressure and in-plane magnetic fields on the exciton direct and indirect states in GaAs/Ga1−xAlxAs
vertically coupled double quantum dots (CDQD). The potential function profile of this kind of
systems is mathematically treated in a way that is very similar to that of the double QW. The
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theoretical framework is outlined in Section 2. Results and discussion are presented in Section 3
and finally in Section 4 we outline our conclusions.

2. THEORETICAL FRAMEWORK

The theoretical approach assumes the envelope-function and parabolic-band approximations [6].
We choose the reference system at the barrier center, with the z-axis along the growth direction of
the structure, the in-plane magnetic field in the x-direction, ~B = Bx̂, and use the Landau gauge
~A(~r) = −Bzŷ. The Hamiltonian for the exciton then takes the following form [7–9]

Ĥ =
1

2m∗
e

(
~̂pe +

e

c
~Ae

)2
+

1
2m∗

h

(
~̂ph − e

c
~Ah

)2

+Ve(ze) + Vh(zh) + Ve(ρe) + Vh(ρh)− e2

ε|~re −~rh| , (1)

where ~Ae = ~A(~re), ~Ah = ~A(~rh), and ~̂pi, ~ri, m∗
i and Vi, with i = e, h, are the momentum opera-

tors, electron and hole coordinates, effective masses and corresponding CDQD confining potentials,
respectively, e is the absolute value of the electron charge and ε is the GaAs dielectric constant.
For simplicity, the dielectric constant and the effective masses are considered the same as in GaAs
throughout the GaAs-Ga1−xAlxAs CDQW. The dependencies on hydrostatic pressure of conduction
band mass, barrier heights, and the dielectric constant are introduced according to Ref. [1].

In our model we consider two cylindrical quantum dots vertically coupled by a finite potential
barrier. In the external walls of each quantum dot we have considered an infinite potential barrier.
In the case of the radial confinement, the potentials that we consider are also infinite. It is for that
reason that in the Eq. (1), both for the electron and the hole, the potential that confines them can
be written as a sum of two potentials the first one in the z-direction and the second one in the
ρ-direction. In the case in which we consider finite barriers in all direction, this separation of the
potential in a sum of potentials only will be valid for large quantum dots where the wave functions
of each particle have a little contribution in the regions of the barriers.

In order to obtain the exciton eigenfunctions for the GaAs-Ga1−xAlxAs CDQD, we adopt the
variational scheme which consists in minimizing the functional

E(Φ) = 〈Φ|Ĥ|Φ〉 (2)

by using the variational wave functions as

Φ(~ρ, ze, zh) = Nf(ze)F (zh)g(ρe)g(ρh)e−λ r , (3)

where r =
√

ρ2 + (ze − zh)2, λ is a variational parameter, f(ze) and F (zh) are, in general, linear
combinations of the z-dependent part of the electron fi(ze) and hole Fj(zh) eigenfunctions of the
total Hamiltonian neglecting the Coulomb interaction [10], and g(ρe) and g(ρh) are the correspond-
ing in-plane wave functions. The coefficients a

(e)
i and b

(h)
j of above mentioned linear combinations

are also variational parameters satisfying the usual normalization conditions. Finally, in order to
obtain the non-correlated fi(ze) electron and Fj(zh) hole eigenfunctions, it is convenient to use the
method by Xia and Fan [11] of expansion in terms of sine functions, used in the study of electron
states in semiconductor superlattices in the presence of in-plane magnetic fields. In the variational
approach described above, the effect of the Coulomb interaction is to mix the GaAs-Ga1−xAlxAs
CDQD electron and hole-wave functions fi(ze) and Fj(zh), respectively. Here we are interested in
excitons associated to the GaAs-Ga1−xAlxAs CDQD ground state, and limit ourselves to the cases
for which only the mixing between the CDQD electron ground state f0(ze) and electron first-excited
state f1(ze) is important, whereas mixing effects for the CDQD hole states are disregarded. The
corresponding variational exciton wave functions then take the form

Φ+(~ρ, ze, zh) =
[
α f0(ze) +

√
1− α2f1(ze)

]
F0(zh)g(ρe)g(ρh) e−λ+ r (4)

and
Φ−(~ρ, ze, zh) =

[
−

√
1− α2f0(ze) + α f1(ze)

]
F0(zh)g(ρe)g(ρh) e−λ− r , (5)

where F0(zh) is the CDQD hole ground state, α, λ+ and λ− are variational parameters, and we
follow the procedure by Fox et al [10] in the process of minimizing E(Φ) [cf. Eq. (2)], using the
wave functions (4) and (5).



1140 PIERS Proceedings, Hangzhou, China, March 24-28, 2008

3. RESULTS AND DISCUSSION

In Figure 1 we present our results for the in-plane applied magnetic field dependence of the calcu-
lated PL peak transitions for two vertically coupled cylindrical quantum dots. Results are for two
different values of the hydrostatic pressure. Clearly, there is a quadratic behavior as a function of
the applied magnetic field. The vertices of the parables are shifted in energy as an effect of the
vertical and radial confinement. As the magnetic field grows the influence of the potential barrier,
which separates the two quantum dots, decreases, and the energy curves go to a linear behavior
determined by the first Landau level. This level is displaced in a value of the energy determined
by the radial confinement. We note that the energy curves grow with the increasing width of the
potential barriers. This is due to the fact that barrier width increasing implies that the two quan-
tum dots are more and more isolated and the carriers become essentially confined in the region of
a single quantum dot. Accordingly, the energy of each particle (electron or hole) becomes higher
and, as a result, the energy of the PL-peak increases.
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Figure 1: In-plane applied magnetic field dependence of the calculated PL peak for the transitions between
the first coulomb-perturbed electron states and the first heavy-hole level for a system of two couple cylindrical
quantum dots with radius R, heights L1 and L2, separated by a barrier of width Lb. Hydrostatic pressure.
(a) P = 0, and (b) 50 kbar.

In the Figure 1(b) we have considered the dimensions of the structures, but with the additional
effect of a pressure of 50 kbar. In essence, the effect of the latter is seen as a blue-shift in the
PL-peaks. This large blue-shift is mainly due to the dependence with the pressure of the band-gap
of the quantum dot material (GaAs). The dependencies with the pressure of the dimensions of the
structure modify in an non-significant value the PL-peak energies (changes are smaller than 1%).
The changes in the effective masses and the static dielectric constant with the pressure modify the
binding energy leading to its increasing with the pressure, which manifests as a red-shift in the
PL-peak. Indeed, this shift is overlapped by the dependence with the pressure of the energy gap of
the GaAs. Finally, we observe that the applied pressure makes the effects of the magnetic field to
become greater. This fact is associated with the decrease of the height of the central barrier and
with the increasing in the effective mass of the electrons.

4. CONCLUSIONS

The variational procedure, in the effective-mass and parabolic-band approximations, have been
used in order to investigate the combined effects of hydrostatic pressure and in-plane-direction-
applied magnetic field on the exciton states in vertically coupled GaAs-(Ga,Al) As quantum dots.
Calculations are performed for two cylindrical-shape quantum dots. We have observed a quadratic
dependence with the pressure of the PL-peak energy. However, for large magnetic field values, a
linear behavior can be predicted, in accordance with the variation of the Landau levels due to the
quantum confinement. Additionally, we observe that the magnetic field effects are magnified when
a hydrostatic pressure is considered on the structure.
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Abstract— We show that an internal localization mobility edge can appear around the Fermi
energy in graphene by introducing impurities in the split-band regimen, or by producing vacancies
in the lattice. The edge appears at the center of the spectrum and not at the band edges, in
contrast with the usual picture of localization. Such result is explained by showing that the
bipartite nature of lattice allows to renormalize the Hamiltonian, and the internal edge appears
because of frustration effects in the renormalized lattice. The size in energy of the spectral region
with localized states is similar in value to that observed in narrow gap semiconductors.

Only very recently a two dimensional form of carbon was obtained [1]. This material, known as
graphene has attracted a lot of research due to its amazing electrical and mechanical properties [2].
For example, electrons in graphene behave as massless relativistic fermions that satisfy the Dirac
equation [4]. Such property is a consequence of the bipartite crystal structure [5], in which a linear
dispersion relationship appears at the center of the electronic spectrum. Also, one can cite the high
mobility of its charge carriers that remains higher even at high electric-field induced concentration,
that translates into ballistic transport on a submicron scale [3] at 300◦K. These and other unusual
electronic properties of graphene makes it a promising material for building electronic devices.
However, from the point of view of applications, the use of pure graphene pose some problems.
The transmission probability of electrons across a potential barrier is always unity, irrespective of
the height and width of the barrier. This behavior is related to the Klein paradox in relativistic
quantum mechanics [2]. As a result, conductivity can not be changed by an external gate voltage,
a feature required to build a FET transistor, although a quantum dot has been used to perform
the required task [6]. In spite of all this research in pure graphene, at the moment there is not
so much knowledge in the effects of impurities in the electronic properties and its potential use
to produce gates. In a previous work [7], the density of states (DOS) of graphene with Anderson
type of disorder revealed that the linear dispersion relationship was affected [7], and recently many
electrical properties of graphene with disorder have been obtained [8]. However, the existence of
a mobility edge has not addressed. Here we show that graphene doped with impurities or with
vacancies presents a very unusual property; instead of having a localization mobility edge at the
band limits as in the usual Anderson localization, the localized states appear at the center of the
spectrum, around the Fermi energy. As we will show, this is a simple consequence of the bipartite
crystal structure, which produces a frustration effect in a renormalized. Hamiltonian that removes
one of the bipartite lattices. The observed effect can be used in certain applications, since the
mobility edge can be tuned with a given concentration of impurities.

Let us start by considering the tight-binding Hamiltonian of graphene with disorder, which can
be written as H = H0 + H1, where H0 is the pure graphene Hamiltonian given by [9],

H0 = E0

∑

i

|i〉〈i|+ γ0

∑

<i, j>

|i〉〈j|+ H1. (1)

E0 is the self-energy of carbon and γ0 is the carbon-carbon resonance integral, as given in Ref. [9].
H1 is the Hamiltonian of the perturbation due to defects,

H1 = δE
∑

i

|i〉〈i|+ δγ0

∑

<i, j>

|i〉〈j|, (2)

where we define δE ≡ EI −E0 and δγ0 ≡ γI − γ0. Here EI is the self-energy of the defects, and γI

the transfer integral between impurities (which are basically isolated in the dilute limits). When
δE À E0, the spectrum is divided in two parts, one centered around E0 and the other at E0 + δE.
This case is known as the split-band limit. The states in the sub-band around the carbon self
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energy E0, that we call the C -band, are strongly confined on carbon atoms. Furthermore, in the
limit δE À E0, it has been shown that impurity atoms can be formally removed in a tight-binding
Hamiltonian [10], and thus the C -band can be studied by using a Hamiltonian restricted to C sites
only,

HCC = E0

∑

i∈C

|i〉〈i|+ γ0

∑

i, j∈C

|i〉〈j|. (3)

This Hamiltonian describes an electron that can hop from one site to its neighbors only if both
are carbon atoms (C ). Furthermore, the problem for the C sub-band is similar to a lattice with
holes, because impurity atoms act as perfect barriers in the limit of infinite self-energy. As a result,
the results presented here are also valid for vacancies in the lattice.

Now let us study the spectrum of HCC . First it is convenient to work on a renormalized
Hamiltonian HCC , which takes advantage of the bipartite nature of the C lattice, once the I
atoms are removed. The bipartite character of the C lattice means that it can be separated in
two inter-penetrating sublattices, A and B. We define two orthogonal operators that project the
wavefunctions into each sublattice,

PA =
∑

i∈A

|i〉〈i|, and PB =
∑

j∈B

|j〉〈j| (4)

Therefore, any eigenvector |φ〉 of HCC can be written in terms of these projectors,

HCC (PA + PB)|φ〉 = E(PA + PB)|φ〉. (5)

Since HCC produces a hopping in the wavefunction between the A and B sublattices,

HCCPA|φ〉 = EPB|φ〉, and HCCPB|φ〉 = EPA|φ〉. (6)

From these equations, one can see that the spectrum is symmetric around E = E0, since
if (PA + PB)|φ〉 is an eigenvector with eigenvalue E, (PA − PB)|φ〉 is also an eigenvector with
eigenvalue −E. We can decuple the sublattices by further applying HCC to Eqs. (6),

HCC (HCC (Pi|φ〉)) = H2
CC (Pi|φ〉) = E2(Pi|φ〉), (7)

where i = A, B. Thus, the projection of an eigenvector in each sublattice is a solution of the squared
Hamiltonian. Observe that the eigenvalues of H2

CC are positive definite, and their eigenstates
are, at least, doubly degenerate. This spectrum can be regarded as the folding of the original
spectrum of HCC around E = 0, in such a way that the two band edges of HCC , are mapped into
the highest eigenvalue of H2

CC , while the states at the center of the original band are now at the
minimum eigenvalue of the squared Hamiltonian (E2). The important property of the renormalized
Hamiltonian H2

CC is that the states at the bottom of the spectrum have an antibonding nature
(the phase between neighbors is π), and we can expect that the frustration of the wavefunction can
prevent the spectrum from reaching its minimum eigenvalue in a continuous form when frustration
is present [11, 12]. In fact, frustration acts as an effective potential which leads to localization since
the wave-function tends to avoid regions of higher-frustration. The mobility edge appears when
the energy cost in localization is less than that of having amplitude in frustrated bonds. As we will
show next, this frustration augments with disorder. To do this, we observe that the Hamiltonian
H2

CC is equivalent to a renormalization of sites B in the lattice, which leads to a triangular lattice
with an effective interaction, as shown in Fig. 1(a). The new lattice contains odd rings, and when
impurities are present, there are holes, as indicated in Fig. 1(b). The corresponding Schröedinger
equation derived from H2

CC is,
(
(E −E0)2 − Ziγ

2
0

)
ci(E) = γ2

0

∑

(j, i)∈A

cj(E), (8)

where ci(E) is the amplitude of the wave-function at site i for an eigenenergy E, and the notation
(j, i) ∈ A means that the sum is taken only for carbon atoms which are first neighbours in the
new triangular lattice, i.e., those carbon atoms that were second neighbours in the original lattice.
Notice that such atoms belong to only one of the bipartite sublattices A or B. Due to the symmetry
of the problem, we can solve for any sublattice, say for example sublattice A. Finally, Zi is the
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coordination number at site i. This number goes from 0 when a carbon atom is surrounded by
impurities, to 3 in the lattice without defects. Then we can perform a variational procedure to
estimate the ground state of Eq. (8). After multiplying Eq. (8) by c∗i (E) and summing over i,

(E −E0)2 =
∑

i

Ziγ
2
0 |ci(E)|2 + γ2

0

∑

i

∑

(j, i)∈A

c∗i (E)cj(E), (9)

Figure 1: Renormalization of the graphene lattice. Atoms in the A sublattice are shown with different color
than those in the B sublattice. The new lattice that appears after renormalizing the B, is represented with
double bonds.

The first contribution is an effective self-energy while the second depends on the number of
bonds and the amplitude and phase of the wave-function. For example, in pure carbon Zi = 3.
Also, the lattice is periodic from where we can write cj(E) = ceiφj where c is an amplitude (in
fact c = 1/

√
N where N is the number of atoms), and φj is a phase. The minimal eigenvalue is

thus obtained from Eq. (8) when the phase difference between sites in the A sublattice is π. Thus,
the ground state has an antibonding nature and c∗i (E)cj(E) = −1/N . Using that there are three
second neighbours for each atom, it follows that E = E0. As a consequence, this shows that there
is no gap for pure graphene, as expected. However, the previous case reveals an interesting fact,
the zero gap is obtained due to the balance between the positive renormalized self-energy Zi and
the antibonding contribution. In pure graphene, both contributions match exactly to produce a
gapless spectrum.

Now consider the case of a finite concentration x of impurities or holes. Since an impurity
belongs to one of the bipartite sublattices, say A, there are two effects. The first is a reduction in
the average coordination number and the second is that some bonds are deleted. This coordination
effect is estimated as follows. The first term of Eq. (9) can be written as an average term plus a
correlation of amplitude-coordination,

∑

i

Ziγ
2
0 |ci(E)|2 = 〈Z〉γ2

0 + V γ2
0

∑

i

δZiδc
2
i (E) (10)

where it was used that Zi can be written as an average 〈Z〉 plus a fluctuation part δZi. A similar
procedure can be made for |ci(E)2 ≡ 〈c2(E)〉 + δc2

i (E). The average coordination number can be
obtained by observing that around a given carbon atom, there are four possible configurations:
it can be surrounded by one, two and three impurities, or it can be completely surrounded by
carbon atoms. For each configuration, there is a different coordination number Z, since impurities
act as holes. As a result, the coordination number Z has a binomial probability distribution
P (Z) = C3

ZxZ(1 − x)3−Z where C3
Z is a combinatorial factor. It follows that 〈Z〉 is the first

moment of the binomial distribution: 〈Z〉 =
∑Z=3

Z=0 ZP (Z) = 3(1 − x). The contribution of the
last term in Eq. (10) leads to the production of impurity states, since it is the correlation between
amplitude and self-energy fluctuations. Thus, the system has a mobility edge when this term
lowers the energy compared with the energy required for having an extended state with amplitude
in frustrated bonds.

The other effect is the removal of bonds that changes the second term of Eq. (9). We can
estimate this effect as follow. For low concentration of impurities x ¿ 1, most of them are isolated,
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Figure 2: Renormalization of the lattice with defects. The impurities are shown with dark color. There are
two cases: the impurities can fall in the A sublattice or in the B, as indicated in the figure. In the first case,
six bonds are deleted in the renormalized sublattice, while only three disappear in for other case.

since the probability of having two impurities as neighbours goes as x2. Thus, we will consider that
impurities are isolated. Two situations are possible. Either an impurity belongs to the renormalized
sublattice, or it can remain as shown in Fig. 2. For each impurity site that is renormalized, 3 bonds
are lost. In the other case, 6 bonds are lost for each impurity. Since they are randomly distributed
in sublattices A and B, the concentration of impurities is x on each sublattice. As a result, the
number of missing bonds is (6+3)xN , from a previous total of 3N . Using this count in Eq. (9), and
assuming no self-energy amplitude correlation Eq. (10) for an antibonding trial state, we obtain
the approximate position of the mobility edge (Ed),

(Ed − E0)2 ≈ 3γ2
0(1− x)− γ2

0(3− 9x) = 6γ2
0x,

which leads to a symmetric mobility edge separated an energy ∆ from the center of the band,

∆ ≈ ±
√

6xγ0. (11)

As a check of these ideas, in Fig. 3 we present the normalized logarithm of the inverse participation

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-1

-0.9

-0.8

-0.7

-0.6

-0.5

E (eV)

Figure 3: Logarithm of the inverse participation ratio as a function of the energy for pure graphene (line)
compared with the dope case with x = 001 (triangles) and x = 02 (squares) around the center of the spectrum
of the carbon sub-band, for a lattice with 5184 sites. Observe the rise at the center of the spectrum for the
doped case. A band of degenerate states is also observed for pure graphene. The zero corresponds to the
Fermi energy.

ratio,

α(E) =
log IP (E)

log N
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where IP (E) is the inverse participation ratio, defined as IP (E) =
∑N

i=1 ‖ci(E)‖4, which is a
well-known measure of localization. For extended states, α(E) ≈ −1, while it tends to be bigger
values when localization is present. Fig. 3 shows a comparison between pure graphene case and the
doped cases, for a tigth-binding simulation using an average of 10 lattices with N = 5184 sites. It
is worthwhile mentioning that a band of degenerated states appears in the center of pure graphene,
which has not been reported previously by other workers. They are a consequence of the local
topology of the lattice, as also happens in the square [10] and Penrose lattices, and are due to a
decoupling of the A and B sublattice at the center of the spectrum. Fig. 3 shows that the IP (E)
is in general bigger for the doped case, but at the center of the spectrum there is a clear rise in its
value, indicating a greater degree of localization. In Fig. 4 we compare Eq. (11) with the numerical
value of ∆ obtained from the localization plot, which shows a good agreement with the predicted
value.

Figure 4: Theoretical value of the mobility edge predicted from Eq. (11), indicated with a solid line, and
the value obtained from a direct diagonalization of the Hamiltonian (squares). The numerical results were
obtained from an average of 10 lattices with N = 5184 sites.

The value of γ0 is around [9] 0.9 eV or γ0 = 20 Kcal/mol. For a 1% doping, the size of the
whole localized region is around 2∆ ≈ 0.44 eV. Since light absorbed when the band-gap energy is
in the limit of the visible spectrum 1.77 eV (700 nm), the localized region in doped graphene can
be considered as similar in size as the energy gap in narrow-band-gap semiconductors.

In conclusion, we have shown that doped graphite in the split band regimen presents a mobility
edge at the center of the spectrum, an this can be useful for many devices since the position of the
mobility edge can be controlled by doping.
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Abstract— High efficiency phosphorescent blue organic light-emitting diode (OLED) was ob-
tained by incorporating small amino or hydroxyl functional group-modified polymeric nano-dot
(APND or HPND) in the hole transporting layer (HTL), poly (ethylenedioxythiophene): poly
(styrene sulfonic acid) (PEDOT:PSS). The device comprised a 1250 Å anode layer of indium tin
oxide, a 350 Å HTL of PEDOT:PSS doped with APND or HPND, a 400 Å blue emissive layer com-
posed of a molecular host of 4,4’-bis (carbazol-9-yl) biphenyl doped with 14 wt% blue dye of bis
(3,5-difluoro-2-(2-pyridyl)-phenyl-(2-carboxypyridyl) iridium (III), a 320 Å electron-transporting
layer of 2, 2′, 2′′-(1, 3, 5-benzenetriyl)-tris (1-phenyl-1-H-benzimidazole), a 7 Å electron-injection
layer of lithium fluoride and a 1500 Å cathode layer of aluminum. The resultant power effi-
ciency at 100 cd/m2, for example, was increased from 12.0 to 25.9 lm/W, an increase of 116%,
as 7 wt% APND of 8 nm in size was added. By employing 7 wt% HPND, the power-efficiency
was 21.7 lm/W. The resultant luminance markedly increased with the incorporation of the PND.
Whilst,the corresponding current density continuously decreased. These results indicate that
the marked efficiency improvement may be attributed to a better balance of carrier-injection re-
sulted from the hole-blocking-function possessed APND and the hole-trapping-function possessed
HPND, which respectively exhibited positive and negative charge on the surface. Moreover, the
chromaticity coordinate at 100 cd/m2, for example, was (0.19, 0.34), barely changed in the pres-
ence of the nano-dots. Importantly, since the nano-dot was not employed in the emissive layer,
the same concept may be applied to fluorescent blue or other OLEDs.

1. INTRODUCTION

Organic light-emitting diodes (OLEDs) are increasingly attracting interest because of their high
potential as flat-panel displays and for liquid-crystal-display backlighting and area illumination.
[1–4] These applications require highly efficient OLEDs. Numerous approaches have been reported
to improve the efficiency, such as the use of electroluminescence (EL) efficient phosphorescent
and/or fluorescent materials [4], coupled with appropriate device architectures. Efficient devices
typically possess optimized device-thickness, low carrier-injection-barrier, effective carrier/exciton-
confinement, highly efficient host-to-guest energy-transfer and balanced carrier-injection. [4–14]
Recently, the incorporation of quantum- or nano-dot in the emissive or another layer has been
found to be effective for some OLED devices. [13–18] However, the mechanism of this improvement
is not yet clear. A homogeneous distribution of the embedded nano-dots may also be crucial, which
restrains the use of a dry-process for their incorporation. In order to obtain high efficiency, OLED
devices must frequently be kept relatively thin, which would consequently limit the use of large
nano-dots.

In this letter, we present phosphorescent blue OLEDs with marked efficiency-improvement ob-
tained by incorporating small amino or hydroxyl functional group-modified polymeric nano-dot (
APND or HPND) in the hole transporting layer (HTL), poly(ethylenedioxythiophene): poly(styrene
sulfonic acid) (PEDOT:PSS). The effect of the concentration of these two polymeric nano-dot
(PND) on the electroluminescent (EL) characteristics of the resultant devices was examined. The
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resultant power efficiency at 100 cd/m2, for example, was increased from 12.0 to 25.9 lm/W, an
increase of 116%, as 7 wt% APND of 8 nm in size was added. By employing 7 wt% HPND, the
power-efficiency was 21.7 lm/W.
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Figure 1: The schematic device structure and energy-level diagram of the phosphorescent blue OLEDs.

2. EXPERIMENTAL

Figure 1 shows the schematic device structure and energy-level diagram of the phosphorescent blue
OLEDs studied. The device comprises a 1250 Å anode layer of indium tin oxide (ITO), a 350 Å
hole-injection layer of PEDOT:PSS doped with PNDs, a 400 Å blue emissive layer, a 320 Å electron-
transporting layer of 2, 2′, 2′′-(1, 3, 5-benzenetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi), a 7 Å
electron-injection layer of lithium fluoride (LiF) and a 1500 Å cathode layer of aluminum (Al). The
blue emissive layer was composed of a molecular host of 4, 4’-bis(carbazol-9-yl) biphenyl (CBP)
doped with 14 wt% blue dye of bis(3, 5-difluoro-2-(2-pyridyl)-phenyl-(2-carboxypyridyl) iridium
(III) (FIrpic). The emission area of all the resultant devices was 25 mm2 and only the luminance
in the forward direction was measured.

The resultant electro-luminescent characteristics were determined by using Minolta CS100A
luminance meter and KEITHLEY 2400 source meter. All the measurements were carried out at
the ambient condition.
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Figure 2: The schematic molecular structures of the studied HPND and APND also shown is the TEM image
of the HPND.

The PNDs were prepared by hydrolysis and condensation of sodium metasilicate. [19] To ex-
amine the doping effect, APND and HPND with size of 8 nm were synthesized. Figure 2 shows
a schematic illustration of the molecular structure and transmission electron microscopic (TEM)
image of the synthesized PND. The resultant APND or HPND also exhibited positive or negative
charge as determined by the value of their zeta potential measured with a Nano ZS ZEN-3600.

3. RESULT AND DISCUSSION

Figure 3 shows the power efficiency of the blue OLEDs with and without the incorporation of the
8 nm APND or HPND. The power efficiency increased as the PND was employed. Without the
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incorporation of PND, the power efficiency at 100 cd/m2, for example, was 12.0 lm/W. The power
efficiency became 25.9 lm/W, an increase of 116%, as APND was added. By employing HPND, the
power efficiency was 21.7 lm/W.
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Figure 3: Doping effects of the 8 nm PND on the power efficiency, current density and luminance of the blue
OLEDs.

Figure 3 also shows the effects of the employed PND on the current density and luminance of
the blue OLEDs. The current density decreased as APND or HPND was added, indicating that
the PND had effectively reduced the injection of hole-carrier. The incorporation of titanium oxide
nano-dot in a separated layer of a green OLED was found to enhance the injection of hole caused
by tunneling effect as revealed by the marked increase of current density and decrease of turn-
on voltage. [11–13] However, in the present work the turn-on voltage did not change much with
the incorporation of PND with various different concentrations, revealing the absence of tunneling
effect. The size of the PND, 8 nm, was much smaller than the 35 nm thickness of the PEDOT:PSS
HTL, so that the PND was presumably well embedded within the HTL. The turn-on voltage
described herein was defined as the voltage at which the luminance is equal to or greater than
10 cd/m2. The resultant luminance, especially at voltage between 4.5 to 6 V, did not decrease, but
increased obviously with the incorporation of APND or HPND. This indicates that higher carrier-
recombination efficiency was resulted from the addition of the PND, since its corresponding current
density was comparatively lower than that of its counterpart without PND incorporation.

The effect of concentration of PND on the EL characteristics of the blue OLEDs was shown
in Table 1. The power efficiency at 100 cd/m2, for example, increased from 12.0 to 20.3 lm/W
as 0.7 wt% APND was added. It was further increased to 25.9 lm/W as 7.0 wt% APND was
incorporated. By increasing the PND concentration to 70 wt%, the power efficiency dropped
to 15.4 lm/W. Similarly, the power efficiency was strongly depended on the concentration of the
incorporated HPND. Moreover, the chromaticity coordinate at 100 cd/m2, for example, was (0.19,
0.34), barely changed in the presence of the PND, as also shown in Table 1.

These results indicate that the marked efficiency improvement may be attributed to a better
balance of carrier-injection resulted from the hole-blocking-function possessed APND and the hole-
trapping-function possessed HPND, which respectively exhibited positive and negative charge on
the surface. Importantly, since the nano-dot was not employed in the emissive layer, the same
concept may be applied to fluorescent type OLEDs.
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Table 1: The effects of size and concentration of PND and thickness of ETL on the EL characteristics of the
blue OLEDs.

Type of
PND (wt%)

Concentration
of PND (wt%)

Driving
voltage (V)

Power efficiency
(lm/W)∗∗

CIE 1931 chromatic
coordinates (x, y)

at 100 cd/m2 max. at 100 cd/m2 at 1000 cd/m2

− 0.0 4.6 12.0 12.5 (0.19, 0.34) (0.18, 0.34)
0.7 4.5 20.3 21.1 (0.19, 0.34) (0.18, 0.34)

APND 7.0 4.5 25.9 28.4 (0.19, 0.34) (0.18, 0.34)
70.0 4.6 15.4 18.9 (0.19, 0.34) (0.18, 0.34)
0.7 4.6 18.2 18.4 (0.19, 0.34) (0.18, 0.34)

HPND 7.0 4.5 21.7 22.4 (0.19, 0.34) (0.18, 0.34)
70.0 4.6 13.6 15.3 (0.19, 0.34) (0.18, 0.34)

4. CONCLUSIONS

In conclusion, a novel small PND was synthesized and added in the hole transporting layer, PE-
DOT:PSS, to markedly improve the efficiency of phosphorescent blue OLEDs. The device effi-
ciency was strongly dependent on the concentration of the PND. The resultant power efficiency at
100 cd/m2, for example, was increased from 12.0 to 25.9 lm/W, an increase of 116%, as 7 wt% APND
of 8 nm in size was added. By employing 7 wt% HPND, the power-efficiency was 21.7 lm/W. These
results indicate that the marked efficiency improvement may be attributed to a better balance of
carrier-injection resulted from the hole-blocking-function possessed APND and the hole-trapping-
function possessed HPND. Importantly, since the nano-dot was not employed in the emissive layer,
the same concept may be applied to fluorescent type OLEDs.
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Abstract— The Linear Sampling Method (LSM) is an effective method to tackle the prob-
lem of reconstructing the shape of unknown metallic or dielectric scatterers from the knowledge
of single frequency multi-view/multi-static data. Notably, as it just requires to solve a linear
problem, its implementation is straightforward and its computational burden almost negligible.
However, no results are available in the literature to explain under which operating conditions
(e.g., the number of incident waves and receivers which has to be considered) LSM properly
works. With respect to the case of dielectric scatterers, in this communication, starting from the
physical interpretation of LSM, we provide some guidelines for its successful application. These
results are then confirmed processing experimental data from the “Marseille” data-set.

1. INTRODUCTION

The capability of retrieving in an effective way the geometrical features of unknown scatterers from
the knowledge of the scattered fields is an important issue in many applications. As a matter of
fact, not only location and shape are often the survey’s final goal, but they may also represent a
valuable starting point for quantitative imaging procedures [1].

An effective way to cope with the shape reconstruction problem is the Linear Sampling Method
(LSM) [2], which can provide reconstructions for dielectric and metallic objects without a priori
information on their physical nature and without any approximation on the scattering model.
Moreover, LSM requires a negligible computational burden, as its numerical implementation only
involves a matrix, whose size is determined by the amount of available data [2, 3].

However, despite the above mentioned advantages and the large number of examples which assess
its reconstruction capabilities against synthetic and experimental data [2–4], it is not completely
clear why and how LSM works and which are its limitations. In particular, no theoretical demon-
stration has been (yet?) given that the method can work in general [5], whereas only recently some
results concerning the resolution which can be achieved have been published [6].

A way to address these questions from a different point of view is that of reasoning on the
physical meaning of LSM. In this respect, an interpretation of LSM as applied to perfect electric
conductor targets has been provided by Shelton and Warnick [7], while the case of dielectric scat-
terers has been studied in [4], where it has been shown that LSM is related to the possibility or the
impossibility of focusing an electromagnetic wave in presence of an obstacle (i.e., the scatterer).
In this contribution, by exploiting such an analogy, we propose some guidelines to fix the number
of transmitting and receiving probes which are needed to ensure a successful application of LSM,
while reducing redundant measurements.

The paper is organized as follows. In the next section the basic concepts of the LSM are
briefly recalled as well as its physical interpretation; in Section 3 the guidelines to fix the number
of illuminations are discussed and given and, finally, in Section 4 they are proved by processing
experimental data coming from the “Marseille” data-set [9].

2. A BRIEF REVIEW OF THE LINEAR SAMPLING METHOD

Let us consider the reference scenario sketched in Fig. 1. The targets are supposed in free space
and invariant along the z-axis, while a TM polarization is assumed for the electromagnetic fields.
Ω denotes the investigated region and Σ ⊂ Ω the (possibly not connected) support of dielectric
scatterers. Measurement probes and primary sources are displaced on a circumference Γ located in
the far-zone with respect to Ω.

For a fixed frequency, in order to apply LSM, one first fixes a set of arbitrary sampling points
rp ∈ Λ ⊆ Ω and then solves, in each rp, the linear integral equation [2]:

∫

Γ
E∞(φ, θ)g(θ, rp)ds(θ) = − j√

8πkR
exp

[
−jkρ cos(φ− α) + j

π

4

]
= f (rp, φ) , (1)
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Figure 1: Reference geometry.

k being the background wave-number and E∞(φ, θ) being the far field pattern of the scattered field
as measured on Γ in the direction φ when a plane wave impinges from the direction θ [10].

The claim and the numerical observation is that the norm of the regularized (i.e., approximated)
solution of Eq. (1) will become large when rp approaches the boundary of the scatterer from inside
and will stay large when rp is outside of Σ [2]. Therefore, the geometrical features of the scattering
system (i.e., its location, size and shape) can be easily reconstructed by solving Eq. (1) ∀rp ∈ Λ
and then by plotting the L2 norm ||g|| of the solution.

When the scatterers are dielectric, it has been proved [4] that LSM is interpretable as the prob-
lem of focusing an electromagnetic field in presence of an obstacle. In particular, apart from special
cases (see [4] for a detailed discussion), solving Eq. (1) is equivalent to induce a current focused
in rp by combining the primary sources according to a function g(rp), whose L2 norm is hence
proportional to the energy of the resulting source. Since the induced current is generally expressed
as J(rp) = jωχ(rp)E(rp), χ being the contrast function and E the total internal field, any induced
current would be necessarily null if rp /∈ Σ, as χ(rp /∈ Σ) = 0. Therefore, the divergent behavior of
||g|| in those points corresponds to the impossible task of combining the primary sources in such a
way to induce a current in a location where this latter is de facto null. On the other hand, due to
intrinsic resolution limitations, the indicator ||g|| results to be actually unbounded everywhere, as
the realization of an induced current exactly localized in rp at a fixed frequency requires a primary
source of infinite energy. Therefore, in order to prevent primary sources from having an infinite
energy regardless of the sampling point, it is necessary to solve Eq. (1) in a regularized form, as also
demonstrated by Arens [5]. As a result, the desired focusing is pursued in an approximated way
since the induced current will not be exactly located in the sampling point but in an approximately
circular neighbor of it [4].

3. GUIDELINES FOR SUCCESSFUL APPLICATION OF THE LSM

Given the analogy between LSM and focusing problems, it follows that an important role in success-
ful reconstruction of shapes is played by the number of primary sources and measurement points.
As a matter of fact, if the number of transmitters is low, one could not achieve, even in the full
aperture case, the desired focused field, while if the number of receivers is low, one could not prop-
erly control that the synthesized scattered field matches to the desired one. On the other hand, an
arbitrary large number of illuminations and measurements, which would overcome these problems,
can be largely redundant and may unnecessarily increase the measurements costs. In the following,
we derive some guidelines to fix in a convenient way the number of transmitters and receivers.

Let us suppose that the radius a of the minimum circle Ξ enclosing the scatterers (and centered
at the origin of the coordinate system, see Fig. 1) is known or has been estimated using the simple
strategy described in [8]. Then, for any primary source Jp on Γ, the incident field Einc inside Ξ
can be expressed through the linear operator:

Ap : Jp(θ) ∈ L2(Γ) → Einc(r) =
−j√
8πkR

∫ π

−π
Jp(θ) exp {−jk[R + r cos(θ − α)]} dθ ∈ L2(Ξ) (2)

and useful indications on the number and kind of primary sources can be gained from the Singular
Value Decomposition (SVD) of the operator Ap. As a matter of fact, by means of this expansion,
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we can express any incident field, as:

Einc(r) = Ap[Jp] =
∞∑

n=−∞
σn

[∫ π

−π
Jp(θ)u∗n(θ)dθ

]
vn(r) (3)

wherein σn are the singular values, vn the left singular functions and un are the right singular
functions, which form a basis for the primary sources.

For the considered geometry, quantities appearing in Eq. (3) are known in a closed form [11]
and, in particular:

σ̂2
n =

σ2
n

σ2
0

=
[Jn(ka)]2 − Jn−1(ka)Jn+1(ka)

[J0(ka)]2 + [J1(ka)]2
(4)

wherein Jn is the n-th Bessel function and

un(θ) =
1√
(2π)

exp(jnθ). (5)

For several values of the radius a, the singular values σn are plotted in Fig. 2. Note, they are a fast
decreasing function of |n|, if n > ka. Such a circumstance has two interesting consequences:

• provided an upper bound is given on the energy of primary sources (as in our regularized
framework), only a finite number of terms in (3) is needed to achieve a given incident field
with any required accuracy. Fig. 2 suggests such a number is M = 2γka, with γ > 1. The
value of γ has to be fixed on the basis of the accuracy of the measurement set-up;

• the resulting M singular functions u1, . . . , uM provide the convenient set of primary sources;
however, since any linear combination of exponential functions can be turned into a Dirichelet
sampling series, an equivalent and simpler set of convenient primary sources is given by M
elementary filamentary sources uniformly spaced in angle along Γ.

Figure 2: Behavior of the normalized singular values of Ap.

In a dual fashion, to fix the number and kind of measurement probes, we can inspect the SVD
of the operator Ae, which relates the current induced in Ξ to the scattered field on Γ. However,
provided transmitters and receivers are located in the same positions, from reciprocity it follows
that the singular values of Ae are still given by Eq. (4) and its (left) singular functions are simply u∗n.
Therefore, Nm = M filamentary probes uniformly spaced in angle along Γ represent the convenient
choice for the receiving probes.

As a consequence of all the above, from the estimate of the radius of the minimum circle a, one
can foreseen success or failure of the regularized LSM, as Nv or Nm have to be at least larger than
2ka in order to properly discretize the far-field equation. On the other hand, an upper bound to
the number of probes can also be given reasoning on the factor γ. As a matter of fact, as it can be
deduced from Fig. 2, if the scatterers’ convex envelope is large with respect to the wavelength (i.e.,
in the high frequency regime) the singular values steeply decay, so that γ ≈ 1 is a convenient choice,
regardless of the required accuracy. Conversely, for scatterer enclosed in a convex envelope whose
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size is comparable to the wavelength (i.e., in the “resonant region”), the singular values exhibit
a slower decay and a larger value of γ will be needed in order to take into account the singular
values belonging to the transition region ka < n < 2ka. In particular, while the optimal choice for
γ depends on the desired accuracy, γ ≈ 2 is a generally convenient one.

4. NUMERICAL EXAMPLES

Let Es be the Nv ×Nm (Nv and Nm being the number of transmitters and receivers, respectively)
multistatic data matrix and {µn, λn, ρn} its SVD, in each sampling point rp ∈ Λ, the support
indicator is given by:

||g(rp)||2 =
N∑

n=1

(
λn

λ2
n + α

)2

|〈f , ρn〉|2 (6)

where N = min{Nv, Nm}, f is the Nm dimensional vector containing the values of the right hand
side of Eq. (1) and α is the Tikhonov regularizing parameter. According to the proposed physical
interpretation, such a parameter is the same for all sampling points [4] and it is heuristically fixed
equal to 0.01λ1.

To provide an example of the above discussed guidelines, let us consider the “Marseille” ex-
perimental data-set concerning of two plexiglass cylinders (ε = 3) of radius Rc = 0.015m. This
data-set is related to an aspect-limited configuration in which the primary source is moved along a
circumference with a 10 angular step (Nv = 36), and for each illumination, the measurement probe
is moved with an angular step of 5◦ (Nm = 49) along a 240◦ arc, which excludes the 120◦ angular
sector centered around the incidence direction. Data collected in the (1–8)GHz frequency range
with 1 GHz step and in the (8–16) GHz range with a 4 GHz step are available [9].

The radius of the minimum circle containing the scatterers is equal to a = 0.06m, therefore the
electric size of the convex envelope a/λ ranges from 0.2 at 1 GHz to 3.2 at 16 GHz. From Fig. 2
one can thus infer that LSM is expected not work at frequencies higher than 10GHz, being the
number of available sources lower than the one fixed according to the criteria in Section 3. Such an
expectation is confirmed by the result drawn in Fig. 3(a), which shows that LSM badly fails. On the
other hand, when considering data at 8GHz, as the given guidelines are better matched (γ ≈ 1.8),
the LSM indeed reconstructs the unknown shapes, Fig. 3(b), although a slight overestimation is
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Figure 3: LSM reconstructed profile. (a) 12GHz, (b) 8 GHz, (c) 5 GHz, (d) 2GHz.
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observed, possibly due to measurement noise. However, a further improvement is obtained when
considering data at the “resonant” frequency of 5 GHz, wherein, being γ > 2 and being lower the
measurement error, a very accurate reconstruction is achieved, see Fig. 3(c). Finally, it is interesting
to observe, see Fig. 3(d), the result obtained at 2GHz, when the reconstruction worsens, as the
electrical distance between the two objects is lower than the achievable LSM resolution as defined
by [6].

5. CONCLUSION

In this paper the basic concepts of the LSM and its physical interpretation have been briefly
reviewed and some guidelines for its successful application have been traced. The validity of these
guidelines has been verified against experimental data concerning multiple targets.
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Soil Dielectric Model Accounting for Contribution of Bound Water
Spectra through Clay Content

V. L. Mironov, L. G. Kosolapova, and S. V. Fomin
Kirensky Institute of Physics SB RAS, Russia

Abstract— In this paper, there was studied correlation of dielectric predictions for moist soils
with the measured values, regarding the well known and prevalent in common usage semiempirical
mixing dielectric model (SMDM) proposed by M. C. Dobson et al., on the one hand, and the
generalized refractive mixing dielectric model (GRMDM) proposed by V. L. Mironov et al., on
the other hand. The analysis is based on the measured dielectric data borrowed from the Technical
Report EL-95-34, by J. O. Curtis et al., in which the assemblage of soils measured included all of
grain-size distributions that are observed in nature, with measurements being performed over the
frequency range from 45MHz to 26.5GHz at the moistures spanning from the nearly dry samples
to the ones saturated close to total moisture capacity. The GRMDM was found to provide for
much more accurate dielectric predictions. To make the GRMDM as convenient for the users, as
the semiempirical model is, which uses only clay and sand contents as the only input parameters,
the spectroscopic parameters of the GRMDM were linked to the clay content. As a result, a
new type of mineralogy based soil dielectric model (MBSDM) was developed to provide for much
better accuracy of dielectric predictions over a broader variety of soil types, as compared to those
of the SMDM.

1. INTRODUCTION

At present, the SMDM proposed in [1–3] has become a most preferable mean for predicting the
dielectric spectra of moist soils in the microwave band. To account for frequency dispersion of
moist soil permittivity, the SMDM uses the Debye relaxation spectrum of liquid water, which is
located out of soil. Assuming soil water permittivity independent on soil type, it takes into account
the impact of soil mineralogy on moist soil dielectric spectra by modifying the dependence of soil
permittivity on volumetric moisture with the use of specific regression parameters dependent on
clay and sand contents.

Recently, a generalized refractive mixing dielectric model (GRMDM) for moist soils was de-
veloped in [4], which employs the refractive mixing dielectric model (RMDM) suggested in [5].
In comparison with [5], the RMDM was modified [4, 6] so as to distinguish between two types of
soil water (bound and free), with their permittivities being separately determined from dielectric
measurements. In addition, a methodology was suggested to derive the maximum bound water
fraction (MBWF) regarding a specific type of soil, which was first treated in [7] as the transition
soil moisture. In [4], the microwave dielectric spectra of both bound and free soil water were shown
to follow the Debye relaxation formulas, with a procedure of deriving Debye relaxation parameters
and ohmic conductivity for both bound and free types of soil water having been proposed.

As a result, dielectric spectra of moist soils appeared to be predictable for a given type of soil
as a function of moisture and temperature on the basis of spectroscopic parameters [8] relating to
dry soil and both types of soil water. In this paper, the GRMDM spectroscopic parameters were
correlated with the values of clay content, covering the whole variety of soil types presented in [1],
[9], and [10]. As a result, there was developed a mineralogy based soil dielectric model (MBSDM),
which similar to the SMDM provides for dielectric spectra predictions for moist soils using only
granulometric mineralogy data, that is, clay content by mass. This model was found to provide for
less error of predictions, compared to the SMDM, over a broader assemblage of soils.

2. THE SMDM CONCEPT

The semiempirical mixing dielectric model was developed in [1–3] on the bases of dielectric data
covering five soil types, a wide range of moisture conditions, and two frequency ranges extending
from 0.3 to 1.3 GHz and from 1.4 to 18 GHz [1]. The SMDM has the following form:

ε′m =
[
1 +

ρb

ρs
(ε′αs − 1) + mβ′

v ε′αfw −mv

]1/α

, and ε′′m =
[
mβ′′

v ε′′αfw

]1/α
, (1)



1158 PIERS Proceedings, Hangzhou, China, March 24-28, 2008

where ε′m and ε′′m are respectively the dielectric constant (DC) and loss factor (LF) of moist soil, ε′s
is the DC of soil solids, mv is the volumetric moisture content, ρb is the bulk density in g/cm3, ρs is
the specific density of the soil solids. The quantities ε′fw and ε′′fw are the DC and LF of free water,
which can be calculated with the Debye like dielectric relaxation formulas. The values α = 0.65,
β′, and β′′ are empirically determined constant. To account for moist soil conductivity [1–3], the
dielectric relaxation formulas were taken in the form

ε′fw = εw∞ +
εw0 − εw∞

1 + (2πfτw)2
, and ε′′fw =

2πfτw(εw0 − εw∞)
1 + (2πfτw)2

+
σeff

2πε0f

(ρs − ρb)
ρsmv

(2)

where ε0 = 8.854 × 10−12 F/m is the permittivity of free space, f is the frequency in Hz, εw0 and
εw∞ = 4.9 are the low and high frequency limits for the free water dielectric constants, respectively,
τw is the relaxation time for free water, σeff is the effective conductivity parameter. Expressions
for εw0 and τw are given as a function of temperature by Ulaby et al. [11, Appendix E-2]. At room
temperature (20◦C), 2πτw = 0.58× 10−10 s and εw0 = 80.1.

All the parameters in (1), (2), which were empirically determined in [1–3], are presented in
Table 1.

Table 1.

α = 0.65
ε′s = (1.01 + 0.44ρs)2

−0.062
β′ = 1.275− 0.519S

−0.152C

β′′ = 1.338− 0.603S

−0.166C

For 0.3 < f < 1.3GHz σeff = 0.0467 + 0.2204ρb − 0.4111S + 0.6614C

For 1.4 < f < 18 GHz σeff = −1.645 + 1.939ρb − 2.25622S + 1.594C

In Table 1, S and C represent in percentage the mass fraction of sand and clay, respectively. In
addition, in the frequency range from 0.3 to 1.3 GHz. the DC of moist soil, ε′m, 0.3−1.3, is to be
calculated using the equation ε′m, 0.3−1.3 = 1.15ε′m − 0.68, in which ε′m is given by expression (1).

It is worth noticing that all the SMDM input parameters relating to a given soil type are available
from the soil granulometric mineralogy data, which can be borrowed from soil databases. This is
a major advantage of the SMDM over many other models, resulting in a wide employment of that
model in the radar and radio thermal remote sensing.

3. THE MINERALOGY BASED SOIL DIELECTRIC MODEL CONCEPT

In contrast to the SMDM, exclusively employing dielectric relaxation spectrum valid for the water
located out of soil, the GRMDM suggested in [4] employs the dielectric spectra explicitly related
to either bound or free soil water. The description of this concept is given below.

In accordance with [4], the DC, ε′m, and LF, ε′′m, as a function of volumetric moisture, mv, can
be represented in the form of the RMDM:

ε′m = n2
m − κ2

m, ε′′m = 2nmκm (3)

nm =
{

nd + (nb − 1)mv, mv ≤ mvt

nd + (nb − 1) mvt + (nu − 1) (mv −mvt) , mv ≥ mvt

κm =
{

κd + κb mv, mv ≤ mvt

κd + κb mvt + κu (mv −mvt) , mv ≥ mvt.
(4)

where nm, nd, nb, nu, and κm, κd, κb, κu are the values of refractive index and normalized atten-
uation coefficient, which is understood here as a proportion of the standard attenuation coefficient
to the free space propagation constant. The subscripts m, d, b, and u in (3), (4) and further on
stand for moist soil, dry soil, bound soil water (BSW), and free soil water (FSW), respectively, and
mvt is a value of the maximum bound water fraction (MBWF) in a given type of the soil. The
latter depends on the soil mineral contents [4, 8]. The DC and LF for bound, ε′b, and free, ε′u, water
components are presented with the Debye relaxation equations

ε′b, u = ε∞ +
εb0, u0 − ε∞

1 + (2πfτb, u)2
, ε′′b, u =

εb0, u0 − ε∞
1 + (2πfτb, u)2

2πfτb, u +
σb, u

2πε0f
. (5)
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In formulas (5), the value f designates wave frequency, while the values σb, u, τb, u, and ε0b, u

are conductivities, relaxation times, and low frequency limit dielectric constants, relating to either
BSW or FSW components. The value ε0 is the DC for free space, while ε∞ = 4, 9 represents the
DC in the high-frequency limit for both types of soil water. As can be seen from Equations (3)–(5),
a certain type of moist soil, in terms of its dielectric spectra, can be completely determined via
a set of the following spectroscopic parameters: DC, ε′d, for dry soil; LF, ε′′d, for dry soil; value
of maximum bound water fraction, mvt; low frequency limit dielectric constants, ε0b and ε0u, for
bound and free soil water; relaxation times, τb, and τu, for bound and free soil water; conductivities,
σb, and σu, for bound and free soil water.

(a)

(b)

Figure 1: Correlation of the SMDM predictions, ε′p, ε′′p , for DCs (a) and LFs (b) with the measured ones,
ε′m, ε′′m, in the case of soils studied in [9]. Solid and dotted lines represent bisectors and linear fits, respectively.
Correlation coefficients, RDC and RLF, and standard deviations, SDDC and SDLF, appeared to be as follows:
R2

DC = 0.942, R2
LF = 0.882, SDDC = 3.391, SDLF = 1.695. The linear fits were found to be: ε′m =

−0.753 + 0.902ε′p, ε′′m = 1.483 + 0.881ε′′p .

For a specific type of soil, all of these parameters can be derived with the use of conventional
dielectric measurements regarding moist soils, as given in [4]. Therefore, to be employed in the
microwave remote sensing, this model requires a set of prior dielectric measurements for the soils
involved to be carried out. This is a much more laborious way to have dielectric predictions, as
compared with the SMDM, which uses for that purpose only conventional granulometric mineralogy
characteristics, namely, gravimetric clay and sand contents.
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(a)

(b)

Figure 2: Correlation of the MBSDM predictions, ε′p, ε′′p , for DCs (a) and LFs (b) with the measured ones,
ε′m, ε′′m, in the case of soils studied in both [9] and [1], [10]. Solid and dotted lines represent bisectors and
linear fits, respectively. Correlation coefficients, RDC and RLF, and standard deviations, SDDC and SDLF,
appeared to be as follows: R2

DC = 0.992, R2
LF = 0.983, SDDC = 1.259, SDLF = 0.64. The linear fits were

found to be: ε′m = −0.216 + 1.007ε′p, ε′′m = −0.01765 + 1.019ε′′p .

In this research, the GRMDM spectroscopic parameters were obtained, using the dielectric data
available in [9] and [1], [10]. These dielectric data were measured over the frequency ranges from
45MHz to 26.5 GHz, in [9], and from 1.4 GHz to 18GHz, in [1, 10], with the moistures spanning from
the nearly dry samples to the ones saturated close to total moisture capacity. The spectroscopic
parameters were derived with the use of dielectric data in the frequency ranges from 0.3 to 26.5GHz
and from 1.4 to 18GHz, relating to [9] and [1], [10], respectively. In the analysis conducted, there
were involved 11 and 4 types of soil measured in [9] and [1], [10], respectively. The clay content in
the soils varied from close to 0% to 54%. All the data available were measured in the temperature
range from 20◦C to 22◦C.The spectroscopic parameters obtained were correlated to clay contents
regarding the respective soil types. The result of correlation analysis are given in Table 2 in a form
of regression equations where the clay content, C, and relaxation times, τb and τu, are expressed
in percentages and seconds, respectively. According to the granulometric classification of soils by
the USDA, the value C was determined as a fraction by mass of the soil solids having effective size
less then 2 microns.

Further on, the formulas (3)–(5) in conjunction with the equations presented in Table 2 is
identified as the mineralogy based soil dielectric model (MBSDM), while all the values involved are
referred to as the dielectric spectroscopic parameters.
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Table 2.

nd = 1.634− 0.539 · 10−2C

+0.2748 · 10−4C2
ε0b = 79.8− 85.4 · 10−2C + 32.7 · 10−4C2 σu = 0.3631 + 1.217 · 10−2C

kd = 0.03952− 0.04038 · 10−2C τb = 1.062 · 10−11 + 3.450 · 10−12 · 10−2C ε0u = 100

Wt = 0.02863 + 0.30673 · 10−2C σb = 0.3112 + 0.467 · 10−2C τu = 8.5 · 10−12

4. THE MBSDM AND SMDM COMPARATIVE VALIDATION

To estimate the correlation between DCs and LFs predicted, using both the SMDM and MBSDM,
with the ones measured, the experimental DCs and LFs were plotted in Figs. 1 and 2 versus
predicted ones for the assemblages of soils available in [9] and [1], [10], respectively. The correlation
analysis presented in Figs. 1 and 2 signifies much better accuracy of dielectric predictions, in terms
of both the standard deviation (SD) and correlation coefficient (R2), provided by the MBSDM as
compared with those of the SMDM.

5. CONCLUSIONS

Summing up, it can be stated that the MBSDM proved to be a dielectric model capable to predict
permittivity of moist soils with good accuracy, using a clay content in the soil as the only input
parameter of granulometric mineralogy origin. From this view, the MBSDM retained accuracy of
the GRMDM, complimenting this feature with the simplicity of its application, which is as simple
as that of the SMDM.
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Monitoring of Satellite Thermal Patch Formed by A Wave Facet
Ocean Surface Water Waves

S. Nakamura
Kyoto University, Japan

Abstract— In a case of monitoring a satellite thermal patch, frequently found a wave facets
on the sea surface. Assuming a concave facet of a part of the sea surface waves, a simple model
is introduced in order to realize that the facet acts an infrared beam out of the ocean surface as
a black body. Supporting satellite thermal patterns has been obtained by a direct receiving of
the satellite signals. A note is given in relation to special spectrum of the sea surface waves.

1. INTRODUCTION

In a case of monitoring a satellite thermal patch which is reduced from a satellite signal of an
infrared band directly received at a station settled on the coast facing the ocean, it is frequently
found a set of concave wave facets on the sea surface is formed by a coupling of the two water
waves. When several conditions are satisfied, the wave facet on the sea surface can be a radiator of
infrared beam out of the ocean as a black body. The beam is possibly to have a radius of curvature
approximately same to the distance between the sea surface of the interested area and the sensor
mounted on a satellite.

In this work, a satellite thermal patch problem is concentrated to one case of coupling ocean
surface wave facet which has a focusing point or a caustics formation of the infrared beam out of
the wave just neighbor the satellite.

Supporting satellite thermal patterns has been obtained by a directly receiving of satellite signals
at a station settled on the coast facing the ocean.

2. ASSUMPTION OF OCEAN SURFACE WAVES

In order to realize a satellite thermal patch, it is assumed that an ocean surface water wave for
convenience.

When an arbitrary reference is taken in a Cartesian co-ordinates on the still sea surface as a
horizontal plane, it can be assumed to have the x and y co-ordinates on the plane and the z axis
as vertical upward positive.

Then, it is possible to consider a coupling of two water surface waves to form a set of two waves
crossing each other on the sea surface.

Now, the radiation beam out of the ocean surface as the black body can concentrate at a thermal
sensor mounted on an interested satellite. And then, the height or altitude of the satellite above
the reference H is given and the sensor axis θ referring to the vertical for a plane wave F = F (x; t),
as follows cf. Figure. 1,

H = H cos θ + F. (1)

A simplest model of the wave facet as a part of the sea surface wave is to consider a water surface
wave propagating only along or parallel to the x axis. The effect of the wave facet’s curvature is
expressed by the derivative of x for a function of the sea surface F ′.

That is,
(Z − z) = −[l/(F ′)](X − x), (2)

when F = F (x; t), and the orthogonal of the tangent F ′ at (X, Z) = (x, z) is given.
In the expression of (2), the function F can be written in a form a spectral function. For

example, a Fourier transform of F at t = t can be wtitten by a function S as follow;

S =

∞∫

−∞
F exp (−ikx) dx, (3)
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Figure 1: Model for concave facet of sea surface water wave (ds) and position of a satellite (R). (1) Inset A
for a point black body. (2) Inset B for a flat surface of the black body. (3)Main frame C for concave facet
of sea surface water wave.

At considering a coupled effect of two crossing waves, it can be seen that the effective con-
centrated beam condition at the sensor of the satellite have to be satisfied the following relation,
i.e.,

(Z − z) = −[l/(G′)](Y − y), (4)

when G = G(y; t), and the orthogonal of the tangent G′ at (Y, Z) = (y, z).

3. PHYSICAL BACK GROUND OF MODELING

We have a systematic net work of the ocean in a global scale formed by the nations in order to
monitor directly continuously by using the research vessels, ships and boats under an international
co-operative operation projects.

The scientific oceanographers have learned about the ocean surface waves for more than one
hundred years by this time. On the other hand, the field of “Hydrodynamics” has a theoretical
knowledge about the water surface waves in the deep or shallow waters. This knowledge helps us
to understand what is processes of the water surface waves in the sea.

This leads us to consider a concave facet of the sea surface waves which can radiate an infrared
beam out of the ocean as a black body. That is, i.e., the ocean surface is assume as a radiator of
infrared beam.

When all of the infrared beams out of a concave facet of the interested water surface waves
concentrates at the sensor mounted on a satellite, the sensor on the satellite finds a concentrated
beam signal to reduce an apparently high temperature on the sea surface.

The satellite monitored beam signal and an anomaly of the sea surface temperature can be well
related at an applying Stefan-Boltzmann’s criteria for a black body problem.

In this work, what is important is the following relation between total radiation intensity B and
surface temperature T of a considering black body, i.e.,

B = σ T 4, (5)

where the notion σ is a constant.
The following expression can be obtained what relation is between dB and dT ;

dB/B = 4dT/T. (6)
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What above noted is useful for the author’s model introduing in this work.

4. SUPPORTING THERMAL PATTERNS

There have been obtained several monitored sea surface thermal patterns at a station on the coast
facing the ocean. This station can only receive the satellite thermal signal at the time of the passage
above the station on the polar orbit. Nevertheless, we have no data of the sea surface temperature
at that time though a series of the routine observations gives us a collection of the directly observed
result during the time period covering that time.

At present, it should be referred to the available data. In future, a data obtained by a more
advanced technique. If so, we may expect a much more advanced reference might be taken as a
reference.

5. APPARENTLY ANOMALY OF SEA SURFACE TEMPERATURE

In this work, the author introduces a model for a concave facet on the sea surface. This concave
facet can be a part of the sea surface water waves. Assuming the ocean surface as a black body,
the facet can be an infrared beam radiator which has a focus just neighbor the sensor mounted
on the interested satellite. When the concentrated infrared beam out of the facet with its focus
just neighbor the satellite, the concentrated beam is related well related to an apparently high
temperature which looked as an anomary in a thermal pattern on the sea surface. Then, this
work tells that the concentration of the infrared beam out of the water surface wave is effectively
controlled by the function F and G. In other word, the interested spectral pattern for the function
F and G governs the curvature of the facet with a concave shape as a part of the sea surface waves.

6. CONCLUSION

The author notes what effect of a concave facet of the sea surface waves is. For this purpose, a simple
model is introduced with some assumptions. The ocean surface is taken as a black body radiating
infrared beam. The satellite polar orbital track hit just neighbor the focus of the facet of the sea
surface waves. The curvature of a concave wave facet in a part of the sea surface waves can be
described by a special derivative of the function F expressing the sea surface pattern. Then, it can
be seen that the spectral pattern of the sea surface waves controls the waves facet’s normal line to
hit the satellite located near the focus of the wave facet. With the consideration of the curvature of
the facet, the model in this work can be expressed by an application of Stefan-Boltzmann’s criteria.
That is, the infrared beam concentration controls the anomaly of the sea surface temperature in
the satellite thermal pattern reduced from the directly monitored at a station on the coast.
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Monitoring of Satellite Thermal Patch on the Ocean Surface
Generated by Strong Wind Duration in Mid-night

S. Nakamura
Kyoto University, Japan

Abstract— This work concerns monitoring thermal plateau on the ocean surface generated
by a strong wind duration in mid-night time of a cold season. This problem was raised first
at a satellite thermal monitoring of a data set directly received signals at the satellite passing
time just above the station of a system for receiving the satellite signal directly. There has been
introduced a physical model for our understanding of a thermal high in a part of the reduced
thermal pattern. The author has considered to introduce an application of Stefan-Boltzmann’s
criteria for a reasonable model with a radiation of an infrared beam out of the earth’s surface.

1. INTRODUCTION

A problem of a satellite thermal patch on the earth surface is introduced, especially, on the sea
surface. One of the effective monitoring techniques is a satellite thermal monitoring of the earth’s
surface by using a polar orbital satellite. It seems in the author’s understand that the recent
scientific researches are strongly concentrated for the global processes of the earth’s natural envi-
ronmental factors as well as of the artificial factors reduced referring to the satellite monitored data
set in a scale of a month or a year for “Climate Change”.

For these twenty years, the author has reported about a sporadic satellite thermal pattern on
the earth which have had been monitored by a simple system for receiving signals from a satellite
directly at a station settled on the earth’s surface.

2. THERMAL PATTERN ON THE SEA SURFACE

In this work, the author introduces what had been found on the thermal patterns of the earth’s
surface which have been reduced by processing the satellite signal directly received.

Referring the data set of the earth’s surface thermal pattern covering the station settled on
the coast facing on the northwestern Pacific, it is easily found some apparently abnormal high
temperature in some thermal pattern. The pattern has had been monitored even at a normal
operation of the system.

3. MODELING AND STEFAN-BOLTZMANN’S CRITERIA

The author has considered that there might be some physical conditions for reducing a patch of an
apparently high temperature on the earth’s surface in a thermal pattern reduced out of the directly
received satellite signals processing.

The author here introduces a physical model for realizing these thermal patterns. These thermal
patterns are, for example, the thermal pinnacle, thermal plateau and thermal basin.

Briefly, an application of Stefan-Boltzmann’s theoretical criteria for electromagnetic beam radi-
ation out of a black body is introduced in order to demonstrate that this criteria can be helpful at
physical understanding of the thermal pattern on the earth surface.

The application of Stefan-Boltzmann’s criteria for the considering thermal pattern should be
effective for the earth’s surface to be assumed as a black body, when a coupled effect of a concave
earth’s surface which concentrates the beam radiation out of the earth surface, i.e., the sea surface
or the land surface at a sensor mounted on a satellite.

Reflection of the solar beam in the infrared band out of the earth is effective for this work, and
the beam in the visible band is not effective in fact.

4. STEFAN-BOLTZMANN’S CRITERIA FOR RADIATION

When the earth’s surface can be assumed to be black body, the surface of the black body radiates
an electromagnetic radiation beam normal to the surface.

An application of Kirchhoff’s physical criteria for radiation is helpful us to realize the model at
our physically reasonable understand.

Planck’s radiation law tells us that several physical factors help to formulate the law to describe
the relation between the intensity of radiation out of the black body’s surface in a unit time for a
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unit area. The specific factors are Planck’s constant h, propagation speed c of electromagnetic ray
as a wave, Boltzmann constant k and absolute temperature T of the black body. Then, Planck’s
formula gives a relation for a interested wave length λ of the wave length and the radiation intensity
B1, that is,

B1 = [2hc2/λ5]
[
(exp(F1)− 1)−1

]
, (1)

where,
F1 =

[
hc(λkT )−1

]
. (2)

Total radiation intensity B is obtained by integration of B1 for 0 > λ < ∞.
Considering λ ν = c (the notation ν is frequency of the interested beam), total radiation flux B

is obtained as follow;
B = πB1 = σT 4. (3)

This relation of B and T is called as Stefan-Boltzmann’s law for what the author interested in is
simply expressed as noted above process, the relation of B and T is written a simple form.

Now, for the author’s interested problem, what is important is to know a relation of dB and
dT . This relation can be reduced easily and written as,

dB/B = 4dT/T. (4)

5. CONCAVE FACET OF SEA SURFACE WAVE

On the ocean (Oxy), it is observe usually a complicate form of the sea surface waves.
Assuming an arbitrary function of the sea surface at time t as,

F = F (x, y; t), (5)

where,the sea surface height above a reference is expressed by the notation z.
Then, a mathematical manipulation gives what the author aimed to get the spectral form.

Assuming a Fourier transform of the Function F , as written following form,

F = Fx(x, kx; t)Fy(y, ky; t), (6)

with wave number kx and ky for the x and y component respectively, and,

[Sx, Sy] =

∞∫

0

Fx(x, kx; t)exp(ikx)dx

∞∫

0

Fy(y, ky; t)exp(iky) dy. (7)

Then, the spectral expression S of the sea surface pattern can be described, i.e.,

S =

∞∫

0

∞∫

0

Sx(x, kx; t)Sy(y, ky; t)exp(−ikx)exp(−iky)dxdy, at t = t (8)

Now, the radiation beam out of the black body as the ocean surface can concentrate at a thermal
sensor for the infrared band, when the height of the satellite above the reference H is given and
the sensor axis angle is θ and F = F (x; t) for a plane wave,

H = H cos θ + F (9)

Considering a radius of geometrical curvature for a concave sea surface facet as a part of the
interested sea surface water waves in the thermal pattern, here, the concave facet of the sea surface
at (x, z) in an orthogonal frame of OZX can be expressed as a function of F ′ (writing F ′ = ∂F/∂x),
and can be expressed in the frame of OZX as following:

(Z − z) = −[1/(F ′)][X − x] (10)

for a simplest case of F = F (x; t) instead of the case of (5).
This helps us to realize that a concave facet of sea surface water wave is effective to concentrate

the infrared beam out of the sea surface as a black body at the sensor mounted on the satellite.
This concave wave facet was introduced first for a pixel at a thermal pinnacle. Thermal patch

group in a satellite thermal pattern is found as a thermal plateau or a thermal basin in a satellite
thermal pattern under a natural condition.
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6. MONITORED THERMAL PATTERNS

Now, the author introduces an example of the sea surface thermal patterns obtained by the author’s
directly monitored sea surface thermal patterns at the couple of the NOAA satellite passage above
the monitoring station.

In Figure 1, the pattern at the top shows a thermal plateau (30 ◦C at “P”) appeared just after
the sea surface waves grown or matured after several hours strong winds. The sea surface waves
were generated by the wind effects on the sea surface water. In other words, the winds caused
to make an ensemble of the concave facets of the sea surface waves. This must be a key to form
a thermal plateau in the thermal pattern on the sea surface. One of the thermal pinnacles was
at the location of the red mark off the Offshore Tower settled for the operation of Oceanographic
Observation of Kyoto University.

A reference of the sea surface temperature 15 ◦C was obtained at “T”. This is surely a main
cause to form the thermal plateau even in the mid-night of the cold season.

As for the case shown at the top of Figure 1, the relation dB/B = 4dT/T is for dT = 30 − 15
and T = 273 + 15, then, dB/B = 4× (15/288) = 0.208. This means that the concentration rating
of the infrared beam out of the ocean surface is evaluated as 0.208, or that the value of the beam
intensity exceeds as much as 0.208 than that of the reference. This means 1.208 time at the sensor
mounted on the satellite comparing to the beam intensity on the sea surface.

In the case of Figure 1, decay of the sea surface water waves might be several hours. The thermal
pattern sown at the bottom is normal, so that the next satellite thermal pattern in morning could
be taken to be consistent to the sea surface temperatures observed by the research ships in the
interested ocean area.

Figure 1: Sea surface thermal patterns obtained by directly satellite monitoring. Top: at 0247-JST on
1996 December 19 (NOAA-14), [showing a thermal plateau of the beams in the infrared band]. Bottom: at
0710-JST on 1996 December 19 (NOAA-12), [showing a thermal pattern found usually in the infrared band].
Note: the local time JST = GMT(UT)+9 hours.

In Figure 1, the atmospheric conditions on the sea surface were caused to find patches of the
thermal pattern on the sea surface, even though it is understood that the coast of the northwestern
Pacific can be demonstrated as a thermal boundary in the thermal pattern of the coastal zone.

The monitored satellite thermal pattern after the direct receiving of the satellite signals is one
of the supporting example for the model introduced in this work. Even though, there are left many
problems to be solved at considering a more detailed evaluation of a thermal pattern on the sea
surface in the shadow side zone as well as that in the sunny side zone.

The model supports well the satellite thermal plateau under a condition of a strong wind duration
mid-night in cold season, when the atmospheric column between the ocean surface and the sensor
mounted on the satellite. In this work, no interest of polarity or interferrometic problem is for the
beam radiated out of the ocean surface. The author has taken that polarity and interference as the
minor factors of considered. Hence, no consideration is in the sight of the author for a system or a
problem as seen for SAR data.
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7. CONCLUSIONS

Monitoring of satellite thermal pattern, especially a thermal plateau found mid-night in, a cold
season is introduced. A model introduced in this work is a model of radiation out of the sea surface
which is assumed as a black body with an assumed condition of curvature of a concave wave facet on
the sea surface water. Combined effect of radiation out of the ocean and the wave facet curvature
on the sea surface water, it easy to see that a satellite thermal plateau monitored directly is well
supported by the model even when the thermal plateau is found under a condition of a strong wind
duration mid-night in cold season.
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Study of a Circular Disc Monopole Ultrawide-band Miniature
Antenna

Lingling Zhong, Bo Sun, Jinghui Qiu, and Ning Zhang
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Abstract— Study of a novel planar circular disc monopole ultrawide-band antenna fed by
coaxial line is presented in this paper. The radiator, ground plane and the feeder equipment of
the antenna are placed on the same plate. The special structure reduces the spatial volume, and
it is used to realize the miniaturization of the antenna. The basic theory and design method
are analyzed, and detailed exploration is conducted to determine the antenna’s properties. The
current distributions, return loss, radiation patterns and gain of the antenna are discussed. In
addition, the time domain performance of the proposed antenna is also evaluated in simulations.
The research results show that this kind of planar antenna can radiate and receive short pulse
signals without distortion. The 10 dB return loss bandwidth is from 2.5GHz to 55 GHz. And
it can realize near omnidirectional pattern in the H-plane. It is a real planar structure and
can really reduce the spatial volume. On this basis, the structure of the planar circular disc
monopole antenna is improved. The radiator moves around the upper edge of the ground plane.
The new structure reduces the antenna height to a certain degree and it is used to achieve further
miniaturization. Analyses are conducted to determine the novel antennas’ properties. The result
of study indicates that the improved antenna can realize good bandwidth performance as the
planar circular disc monopole antenna, and it has low-cost, simple structural characteristics.
The novel miniature antenna and the improved type are suitable for the wireless communications,
satellite communications and mobile communications systems with good prospects.

1. INTRODUCTION

With the development of RF (Radio Frequency) technology and UWB equipment, there has been
considerable research effort put into ultrawide-band antenna. In recent years, monopole antennas
are the focus of UWB antenna. Several broadband monopole configurations, such as circular,
square, elliptical, pentagonal and hexagonal, have been proposed so far [1–4]. However, they are
not planar structures as the ground planes are perpendicular to radiators.

In this paper, a novel circular disc monopole antenna fed by coaxial line is proposed. It is a real
planar structure. The radiator, ground plane and the feeder equipment of the antenna are placed
on the same plate. This reduces the spatial volume to a great degree. And then the structure of
the planar circular disc monopole antenna is improved. Its structure reduces the antenna height
and further miniaturization is realized.

2. BASIC THEORY OF THE PLANAR CIRCULAR DISC MONOPOLE ANTENNA

The proposed planar monopole is illustrated in Figure 1. Copper can be chosen as the material,
and its thickness d ≈ 1mm. The sheet is cut as a disk with radius r. Ground plane is composed of
two pieces of rectangle metal (length of side is m and n), and they are placed on the same plane
with the circular radiator. The antenna is fed by a coaxial line. Core of the coaxial is exposed out
as the feed point, and the outer metal is connected with ground planes. The lower end of the disk
is adopted as the feed point. The height of the feed gap is h.

Theoretically, circular disc monopole with radius r could be equivalent as cylindrical monopole
with height l and radius a. Its first resonant frequency can be determined by equating the area of
the circular disk to that of the cylindrical monopole, and equating the height of the disk 2r to the
height of the cylindrical monopole l, i.e., πr2 = 2πal, 2r = l [5]. The length of monopole for real
input impedance is given by

l = 0.24λF (1)
where F = (l/a)/(1 + l/a).

From the above equations, the first resonant frequency of the circular disc monopole is given by

f =
3.2
r

(2)

where l and r are in centimeters.
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Figure 1: Geometry of the planar circular disc monopole.

3. SIMULATED RESULTS AND ANALYSIS OF THE PLANAR CIRCULAR DISC
MONOPOLE ANTENNA

A dimension of the proposed circular disc monopole antenna is chosen, i.e., r = 10.7mm, m = n =
16.4mm, h = 0.6mm, and d = 1 mm. And the corresponding first resonant frequency is 3 GHz.
The simulation of the antenna is performed using the CST Microwave Studio package which utilizes
the finite integration technique for electromagnetic computation [6].

3.1. Current Distributions

Current distribution at 3GHz is showed in Figure 2. The current is mainly distributed along the
edge of the disc. As circular disc monopole could be equivalent as infinite dipole antennas, and all
of them have the same feed point, the disc dimension mainly defines the first resonant frequency [7].
Besides the disc, current is distributed on the upper edge of the ground plane. The portion of the
ground plane close to the disc acts as the radiating structure. Figure 3 shows the return loss for
different dimensions of the transverse length of the ground plane m (return loss at 3 GHz is showed
in the block). With increase of m, the first resonant frequency decreases.

A m

8.44
9.69

7.19

5.94
4.69

3.44

2.19

0.938

10

0

Figure 2: Simulated current distributions at 3 GHz. Figure 3: Simulated return loss curves for different
m.

3.2. The Effect of the Height of the Feed Gap Between the Feed Point and the Ground Plane

The simulated return loss curves for different feed height h are presented in Figure 4. Lots of
simulations demonstrate that h would influence the return loss and bandwidth to a great extent. For
circular disc monopole, the ground plane serves as an impedance matching circuit. Consequently,
it tunes the input impedance and hence the 10 dB return loss bandwidth by changing h [8]. With
the increase of h, the first resonant frequency decreases at lower frequencies. When f = 3 GHz, the
return loss is less than −15 dB.
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Figure 4: Simulated return loss curves for different
h.
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Figure 5: Simulated return loss of the planar an-
tenna.

3.3. Return Loss

Simulated return loss of the circular disc monopole from 0GHz to 60 GHz is showed in Figure 5.
The 10 dB return loss bandwidth is from 2.5 GHz to 55 GHz, and 15 dB bandwidth is from 10 GHz
to 28 GHz. As a result, the circular disc monopole antenna has bandwidth ratio of 20 : 1 at least.

3.4. Radiation Patterns and Gain

Radiation patterns and gain are important factors to evaluate the performance of the UWB antenna.
The simulated normalized radiation patterns at 3 GHz, 6GHz and 10 GHz are plotted in Figure 6.
It is noticed that the simulated E-plane (x-y plane) pattern is like a traditional monopole, and the
H-plane (x-z plane) pattern is near omnidirectional. The radiation patterns are steady within the
bandwidth 3–10 GHz.
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Figure 6: Simulated normalized radiation patterns of the planar antenna. (a) E-plane, (b) H-plane.

Figure 7 illustrates the simulated maximum gains of the proposed antenna. It is shown that the
maximum variation of the gain is 6 dB within the frequency range 3–60 GHz. With the increase of
the frequency, the maximum gain increases too. When f = 50 GHz, the maximum gain is greater
than 5 dB.

3.5. Time Domain Performance

Apart from the consideration of the 10 dB return loss bandwidth and radiation patterns, a good
time domain characteristic is an essential requirement for an UWB antenna. Flat group delay time
indicates all frequencies are delayed for the same time. This is conducive for the maintenance of
the signal waveform. Figure 8 is the simulated group delay curve of the planar antenna. The curve
is nearly constant throughout all the bands. This ensures the planar circular disc monopole can
radiate and receive short pulse signals without distortion.
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Figure 7: Maximum gains of the planar antenna.
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4. IMPROVED CIRCULAR DISC MONOPOLE MINIATURE ANTENNA

On the basis of the foregoing statements, the structure of the planar circular disc monopole antenna
is improved. The radiator moves around the upper edge of the ground plane φ, as Figure 9 shows.
This reduces the height of the antenna to a certain degree. It is favorable for the miniaturization
of the antenna. The return loss for φ = 10◦, φ = 30◦ and φ = 45◦ are plotted in Figure 10
respectively. It can be seen from the figure that the improved antenna is able to achieve good
bandwidth characteristics as the planar circular disc monopole antenna.
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Figure 9: Geometry of the improved UWB antenna. Figure 10: Return loss of the improved UWB an-
tenna.

5. CONCLUSIONS

The novel planar circular disc monopole antenna is investigated detailedly in this paper. The basic
theory and design method are analyzed and research results show that this kind of planar antenna
can radiate and receive short pulse signals without distortion. The 10 dB return loss bandwidth
is from 2.5 GHz to 55GHz. And it can realize near omnidirectional pattern in the H-plane. It is
a real planar structure and can reduce the spatial volume. On the basis, the disc of the planar
circular monopole moves around the upper edge of the ground plane a certain angle. The result
of study indicates that the improved antenna reduces the height and can realize good bandwidth
performance, and it has low-cost, simple structural characteristics. The novel miniature antenna is
suitable for wireless and satellite communication system.
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Abstract— On the basis of the superposition of beams, a group of virtual sources that generate
a sinh-Gaussian wave is identified. A closed-form expression is derived for the sinh-Gaussian wave,
which, in the appropriate limit, yields the paraxial approximation for the sinh-Gaussian beam.
From this expression, the paraxial approximation and the nonparaxial corrections of all orders
for the corresponding paraxial sinh-Gaussian beam are determined.

1. INTRODUCTION

The propagation of electromagnetic beams in optical systems has long been of interest and in some
cases exact analytical solutions of the paraxial wave equation have been obtained. For many years
the most general analytical solutions in Cartesian coordinates have been in the form of Hermite-
Gaussian functions in which the arguments of both the Hermite-polynomial factor and the Gaussian
factor are complex [1], and the real-argument Hermite-Gaussian beams are a special case of the
complex-argument beams [2]. About ten years ago, an alternative set of complex Cartesian beam
solutions of the paraxial wave equation was obtained in the form of sinusoidal-Gaussian beams
which reduce to conventional rectangular waveguide modes in an appropriate limit [3]. Sinusoidal-
Gaussian beams can be used as an alternative basis set for propagation of arbitrary electromagnetic
beams and as solution modes in novel laser resonators, and exhibit different propagation behavior
from real-argument beams [3–5]. Thus such beams are needed for the more general propagation
studies. Virtual source method, a rigorous method of treating the beams in and beyond the
paraxial limit, which was pointed out by Deschamps and systematically developed by Shin and
Felsen [6, 7], is widely applied to investigate characterization and propagation of beams within and
beyond the paraxial regime [8–12]. Here we choose a sinh-Gaussian (ShG) beam from sinusoidal-
Gaussian beams as an example and develop this approach to study the propagation properties of
a ShG beam in and beyond the paraxial region. The key to this problem is how to determine a
configuration of the suitable virtual sources to yield the desired ShG beam. In this paper, based
on superstition of beams, a group of virtual sources required for generation of the scalar ShG wave
is introduced, a closed-form expression is derived for the ShG wave and from this expression the
paraxial approximation and all-order nonparaxial corrections are determined.

2. THE VIRTUAL SOURCES TO YIELD THE SHG BEAM

Assume that the field distribution of ShG beam at the z = 0 plane is characterized by [3]

Ep (ρ, 0) = exp
[
−ρ2

w2
0

]
sinh (Ω0x) sinh (Ω0y) , (1)

where subscript p stands for the paraxial approximation, ρ = (x, y) is a position vector at the
transverse plane, w0 is the waist width of the Gaussian amplitude distribution, and Ω0 is the width
parameter associated with the sinh part at the z = 0 plane. Eq. (1) can be written alternatively as

Ep (ρ, 0) =
exp

(
a2

2w2
0

)

4

{
exp

[
−

((
x− a/2

w0

)2

+
(

y − a/2
w0

)2
)]

+ exp

[
−

((
x + a/2

w0

)2

+
(

y + a/2
w0

)2
)]

− exp

[
−

((
x− a/2

w0

)2

+
(

y + a/2
w0

)2
)]

− exp

[
−

((
x + a/2

w0

)2

+
(

y − a/2
w0

)2
)]}

, (2)

with a = Ω0w
2
0, which implies that a ShG beam can be produced simply by superposition of four

decentered Gaussian beams with the same waist width and the first two being in-phase and anti-
phase with the last two, whose centers are located at the positions (a/2, a/2, 0), (−a/2,−a/2, 0),
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(a/2,−a/2, 0), and (−a/2, a/2, 0), respectively. From this point of view, in the physical space
z > 0, in order to construct a scalar ShG beam that propagates along the z axis of a rectangular
coordinate system (x, y, z), we can reasonably assume that the beam is generated by four point
sources of strength Sex with the first two being in-phase and anti-phase with the last two situated
at (b, b, zex), (−b, −b, zex), (b, −b, zex), and (−b, b, zex), respectively. For z > 0, the scalar
wave function E(ρ, z) that describes the beam, satisfies the homogeneous Helmholtz equation.
Proper choice of Sex, zex, and b yields the desired beam. The wave function E(ρ, z) satisfies the
inhomogeneous Helmholtz equation

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

)
E (ρ, z) = −Sexδ (z − zex) [δ (x− b) δ (y − b) + δ (x + b) δ (y + b)

−δ (x− b) δ (y + b)− δ (x + b) δ (y − b)] , (3)

where k is the wave number. From Eq. (3), the Fouriertransform E(q, z) of the wave function
E(ρ, z) obey

[
d2

dz2
+

(
k2 − u2 − v2

)]
E (q, z) = −Sexδ (z − zex) {exp [−i(u + v)b] + exp [i(u + v)b]

− exp [−i(u− v)b]− exp [i(u− v)b]} , (4)

where

E (ρ, z) =
1

4π2

∫∫
E (q, z) exp (iρ · q) dq, (5a)

E (q, z) =
∫∫

E (ρ, z) exp (−iρ · q) dρ (5b)

are the Fouriertransform pair, q = (u, v) is a spatial frequency vector, dρ = dxdy and dq = dudv.
Unless otherwise stated, all integrations extend from −∞ to +∞.

The solution of Eq. (4) is given by [13]

E (q, z) =
iSex

2ξ
exp [iξ (z − zex)] {exp [−i(u + v)b] + exp [i (u + v) b]

− exp [−i(u− v)b]− exp [i(u− v)b]} (6)

for Re(z − zex) > 0, where ξ = (k2 − u2 − v2)1/2. On substituting Eq. (6) into Eq. (5a), we obtain

E(ρ, z) =
1

4π2

∫∫
exp (iρ · q)

iSex

2ξ
exp [iξ (z − zex)] {exp [−i(u + v)b] + exp [i [u + v] b]

− exp [−i(u− v)b]− exp [i(u− v)b]} dq (7)

for Re(z− zex) > 0. As Seshadri pointed out [12], the domains of u and v are extended to complex
values, and the radiation condition is used to select the proper branch of ξ. Also, E(q, z) is an
analytic function of the complex variable (u2 + v2)1/2.

Let us first recover the standard paraxial description. To obtain the contributions for u2+v2 <<
k2, we expand ξ for small u2 + v2 and retain the leading term for the amplitude factor and the first
two terms for the phase factor in Eq. (7). In this approximation, Eq. (7) becomes

E(ρ, z) =
1

4π2

∫∫
exp (iρ · q)

iSex

2k
exp [ik (z − zex)] exp

[
−i

q2

2k
(z − zex)

]
{exp [−i(u + v)b]

+ exp [i(u + v)b]− exp [−i(u− v)b]− exp [i(u− v)b]} dq. (8)

Evaluating the integrals in Eq. (8), we obtain

E (ρ, z) =
Sex exp [ik (z − zex)]

4π (z − zex)

{
exp

[
ik

(x− b)2 + (y − b)2

2 (z − zex)

]
+ exp

[
ik

(x + b)2 + (y + b)2

2 (z − zex)

]

− exp

[
ik

(x− b)2 + (y + b)2

2 (z − zex)

]
− exp

[
ik

(x + b)2 + (y − b)2

2 (z − zex)

]}
. (9)
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External to z > 0 and at its boundary is the input plane z = 0. To generate the ShG beam
for z > 0, in the paraxial approximation, we assume the input distribution to be Eq. (1) or (2).
We determine Sex, zex, and b by the requirement that E(ρ, z) given by Eq. (9) for z = 0 reduce to
Ep(ρ, 0) as given by Eq. (1) or (2), with the result that

b = a/2, (10)

zex =
ikw2

0

2
= iz0, (11)

Sex = −πzex exp
(

a2

2w2
0

+ ikzex

)
= −iπz0 exp

(
a2

2w2
0

− kz0

)
. (12)

Substituting Eqs. (10)–(12) into Eq. (9) yields the paraxial approximation to E(ρ, z):

Ep(ρ, z) = − iz0

z − iz0
exp

(
a2

2w2
0

+ ik

(
z − a2

4 (z − iz0)

))
exp

(
ik

ρ2

2 (z − iz0)

)
sinh

(
ikax

2 (z − iz0)

)

× sinh
(

ikay

2 (z − iz0)

)
. (13)

Further, from Eqs. (1) and (13), we can obtain the transformation equations of the parameters that
characterize the propagation of the ShG beam, as follows:

q(z)−1 =
q(0)−1

1 + zq(0)−1
, (14)

Ω(z) =
Ω0

1 + zq(0)−1
, (15)

w(z) = w0

[
1 + (z/z0)2

]1/2
, (16)

R(z) = z
[
1 + (z0/z)2

]
, (17)

where q(z) = 1
R(z) + 2i

kw(z) and Ω(z) are, respectively, the q-parameter associated with the Gaussian
part and the width parameter associated with the sinh part of the beam at the plane z, and w(z)
and R(z) are the spot size and the radius of curvature of the phase front of the Gaussian part at
the plane z, respectively. The above paraxial results are consistent with the ones in Ref. [3].

3. THE NONPARAXIAL CORRECTION OF ALL ORDERS FOR THE
CORRESPONDING PARAXIAL SINH-GAUSSIAN BEAM

In a similar manner, by use of Eqs. (10)–(12), the exact expression for E(ρ, z) is obtained from
Eq. (7):

E(ρ, z) =
z0

4π

∫∫
exp (iρ · q)

exp
(

a2

2w2
0
− kz0

)

2ξ
exp [iξ (z − iz0)]

{
exp

[
−i

(u + v)a
2

]

+exp
[
i
(u + v)a

2

]
− exp

[
−i

(u− v)a
2

]
− exp

[
i
(u− v)a

2

]}
dq. (18)

Eqs. (18) and (13) represent the ShG wave and the corresponding ShG beam, respectively. In
view of Eq. (11), the sources in Eq. (3) are outside z > 0. Therefore, for z > 0, Eq. (18) is the
exact solution to the homogeneous equation corresponding to Eq. (18). The exact solution reduces
to the correct paraxial approximation in the appropriate limit but contains all the nonparaxial
contributions and the evanescent waves. All the contributions can be summed up, that is, the
integral in Eq. (18) can be evaluated analytically.

Recalling the Fouriertransform formulas [14]

i

2π

∫∫ exp
[
ik

(
k2 − u2 − v2

)1/2
z
]

(k2 − u2 − v2)1/2
exp [i (xu + vy)]dudv =

exp
[
ik

(
x2 + y2 + z2

)1/2
]

(x2 + y2 + z2)1/2
, (19)

∫∫
exp [−i (ux0 + vy0)]F (u, v) exp [i (ux + vy)] dudv = f (x− x0, y − y0) , (20)
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with F (u, v) being the Fouriertransform of f (x, y), evaluation of the integral in Eq. (18) yields

E(ρ, z) = − iz0

4
exp

(
a2

2w2
0

− kz0

) [
exp (ikr1)

r1
+

exp (ikr2)
r2

− exp (ikr3)
r3

− exp (ikr4)
r4

]
(21)

with

r1 =
[(

x− a

2

)2
+

(
y − a

2

)2
+ (z − iz0)

2

]1/2

, (22a)

r2 =
[(

x +
a

2

)2
+

(
y +

a

2

)2
+ (z − iz0)

2

]1/2

, (22b)

r3 =
[(

x +
a

2

)2
+

(
y − a

2

)2
+ (z − iz0)

2

]1/2

, (22c)

r4 =
[(

x− a

2

)2
+

(
y +

a

2

)2
+ (z − iz0)

2

]1/2

, (22d)

which implies that a ShG wave can be regarded as superposition of four complex-source-point
spherical waves corresponding to four decentered paraxial Gaussian beams. In other words, the
exact solution of the ShG wave given by Eq. (21) can be separated into a paraxial part and a
nonparaxial part for all z > 0 by expanding such complex-source-point spherical waves near the z
axis in power series and grouping together equal powers of parameter f , namely,

E (ρ, z) = E(0) (ρ, z) +
∞∑

n=1

f2nE(2n) (ρ, z) , (23)

where f = 1/(kw0), E(0) (ρ, z) = Ep (ρ, z) standing for the paraxial ShG beam, E(2n) (ρ, z) (n ≥ 1)
standing for the nth-order correction to the ShG beam. Couture and Belanger showed that the
paraxial Gaussian beam became the complex-source-point spherical wave when all-order corrections
were made [15]. Following the simila but inverse reasoning as Couture and Belanger in appendices
A abd B of Ref. [15], however, here, applying the generating function for the spherical Bankel
function of the first kind, from this exact solution of the ShG wave, the all-order corrections to the
ShG beam can be obtained immediately as follows:

E(0)(ρ, z) = E
(0)
1 (ρ, z) + E

(0)
2 (ρ, z)− E

(0)
3 (ρ, z)− E

(0)
4 (ρ, z) (24)

E(2n)(ρ, z) = E
(2n)
1 (ρ, z) + E

(2n)
2 (ρ, z)− E

(2n)
3 (ρ, z)− E

(2n)
4 (ρ, z) (25)

E
(0)
j (ρ, z) = − i

4
exp

(
a2

2w2
0

+ ikz

)
Q exp

(
iQρ2

j

)
, (26)

E
(2n)
j (ρ, z) = (−1)n(Qρj)2nLn

n

(−iQρ2
j

)
E

(0)
j (ρ, z), (27)

valid for |Qρjf |〈1, where j = 1, 2, 3, 4, the dimensionless variables are defined as

Q =
(

z

z0
− i

)−1

, (28)

ρ2
1 =

(x− a/2)2 + (y − a/2)2

w2
0

, (29)

ρ2
2 =

(x + a/2)2 + (y + a/2)2

w2
0

, (30)

ρ2
3 =

(x + a/2)2 + (y − a/2)2

w2
0

, (31)

ρ2
4 =

(x− a/2)2 + (y + a/2)2

w2
0

, (32)
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and Ln
n(α) is the associated Laguerre polynomial

Ln
n(α) = (2n)!

n∑

m=0

(−α)m

m!(n−m)!(n + m)!
. (33)

It is easy to verify that E(0)(ρ, z) = Ep(ρ, z) satisfies the paraxial wave equation, and successive
correction E(2n)(ρ, z) is related to the previous one E(2n−2)(ρ, z) through a differential recurrence
relation obtained by Agrawal and Lax [16]. Furthermore, setting x = y = 0 in Eqs. (24)–(27) yields
the all-order corrections to the ShG beam on the z axis as

E(0)(0, 0, z) = 0, (34)

E(2n)(0, 0, z) = 0. (35)

Eq. (35) reveals that the nonparaxial corrections to the ShG beam on the z axis do vanish.

4. CONCLUSIONS

In this paper, based on superposition of beams, a group of virtual sources required for generation
of a ShG wave has been obtained. A closed-form expression for this ShG wave is derived. From the
expression of this ShG wave, in the appropriate limit, the paraxial approximation and the all-order
nonparaxial corrections for the corresponding ShG beam are determined. Because the complex-
source-point spherical wave has a very simple mathematical form, it should be used more widely
to deal with very strong focusing of laser beams. Finally, we mention that this treatment method
can be employed to study propagation properties of the other Sinusoidal-Gaussian beams in and
beyond paraxial region.
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Abstract— This paper describes a method, which can be used for creating map of magnetic
field. Method has a great usage in magnetic resonance tomography, when we need to get in-
formation about homogeneity and characteristics of magnetic field inside the working space of
the MR tomograph. The main purpose of this article is to describe basic principles of magnetic
resonance phenomenon and mathematical method of Legendre polynoms which can be used for
signal processing of FID (Free Induction Decay) signal obtained from tomograph detection coils.
In the end of my article is experimental solution of magnetic field and models of magnetic field
created by Matlab.

1. INTRODUCTION

Magnetic resonance tomography is an imaging technique used primary in medical setting to produce
high quality images of the human body [2]. Lately, medical science lays stress on the measuring
of exactly defined parts of human body, especially human brain. If we want to obtain the best
quality images we have to pay attention to homogeneity of magnetic fields, which are used to scan
desired samples inside the tomograph. We should know how to reduce inhomogeneity, which can
cause misleading information at the final images of samples [5]. Our theory was proved during
experiments solved by NMR team at Institute of Scientific Instruments of Academy of Sciences in
Brno. Generally, inhomogeneity of magnetic fields at magnetic resonance imaging cause contour
distortion of images. This paper presents the experimental method, which can easily create the
map of electromagnetic induction at any defined area inside the magnetic resonance tomograph.
The coefficients of Legendre multinomial, which are computed using measured values of magnetic
induction at exactly defined discrete points are used for creating map of magnetic field. If we know
these coefficients, we are able to compute magnetic induction at any point of defined area. At the
ideal case, there should be no difference between measured data and approximated data.

2. MR PRINCIPLES

In quantum mechanics, spin [2] is important for systems at atomic length scales, such as individual
atoms, protons or electrons. One of the most remarkable discoveries associated with quantum
physics is the fact, that elementary particles can possess non zero spin. The spin carried by each
elementary particle has a fixed value that depends only on the type of particle, and cannot be
altered in any known way. Particles with spin can possess a magnetic dipole moment, just like
a rotating electrically charged body in classical electrodynamics. The main principle of magnetic
resonance spectroscopy and magnetic resonance imagining is, that radiofrequency fields (RF pulses)
excite transitions between different spin states in a magnetic field.

The information content can be retrieved as resonance frequency, spin to spin couplings and
relaxation rates. We can imagine, that protons are rotating along their axes and there is also a
wobbling motion called precession, that occurs when a spinning object is the subject of an external
force. Thanks to the positive charge of protons and its spin, protons generate a magnetic field
and gets a magnetic dipole moment. If the protons are placed in a magnetic field, the magnetic
moment will do precessional motion about the direction of magnetic field with specific frequency.
This frequency is called Larmor frequency and can be described by the Larmor Equation [2]

Ω = γ ·B (1)

where Ω [MHz] is the frequency of precession, [MHz/T] is the gyro magnetic ratio and B is
strength of external magnetic field. Pulse sequence is a pre-selected set of defined RF and gradient
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pulses, usually repeated many times during a scan. Pulse sequences control all hardware aspects
of the measurement process. At the x-y plain, there is scanning coil, which is used for scanning of
FID signal

time frequence

Figure 1: Fid signal and MR spectrum.

After excitation pulses, the spins has tendency to minimize transverse magnetization and to
maximize longitudinal magnetization. The transverse magnetization decays toward zero with char-
acteristic time constant T2 and the longitudinal magnetization returns towards maximum with a
characteristic time constant T1.

3. INHOMOGENEITY CORRECTION

Magnetic resonance, which has a great performance in soft tissue imaging, is very sensitive to
magnetic field inhomogeneities. The large value of gyro magnetic coefficient causes a significant
frequency shift even for few parts per million (ppm) field inhomogeneity, which causes distortions
in both geometry and intensity of the MR images. In this article, we will mainly concentrate on
mapping of basic magnetic field inside the working space of tomograph, which is distorted by itself.

Figure 2: Principle of inhomogeneity correc-
tion.

Figure 3: Correction gradient X2Y2.

In fact the principle of inhomogeneity correction is very simple, as we can see on Fig. 2. The
blue trace shows a magnetic field of coil, which is used for creating homogeneous magnetic field
(theoretically homogeneous), but this field is in praxis inhomogeneous. If we will have a map of
this inhomogeneous field, we will apply shim field, which is opposite to inhomogeneous field. In
best case, we will gain homogeneous field as a result.

Real map of the inhomogeneous field is much more complicated than our example. In this case
we need to create a set of shim fields, which will be able to trace real map. We can see an example
of this correction shim field generated in Matlab on Fig. 3.



Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, 2008 1181

Figure 4: 3D map on the surface (measured values).

4. LEGENDRE POLYNOMS THEORY

If we want to determine the magnetic induction values in the specific points of measured area, we
should use Legendre multinomial [4] which are defined according to Equation (2)

Pn(z) =
1 · 3 · 5 · . . . · (2n− 1)

n!
·
[
zn − n(n− 1)

2(2n− 1)
zn−2 +

n(n− 1)(n− 2)(n− 3)
2 · 4(2n− 1)(2n− 3)

zn−4 − . . .

]
(2)

Legendre multinomial of zero and first order

P0(z) = 1 (3)
P1(z) = z = cos υ (4)

Legendre multinomial of higher order are defined according to recursion formula

Pn+1(z) = [(2n + 1) · z · Pn(z)− n · Pn−1(z)]/(n + 1) (5)

Now we can define functions associated to Legendre multinomial, which are derivation of Leg-
endre multinomial

Pm
n+1(z) = [(2n + 1) · z · Pm

n (z)− (n + m) · Pm
n−1(z)]/(n−m + 1) (6)

Pm+2
n (z) =

2 · (m + 1) · z√
1− z2

· Pm+1
n − (n−m) · (n + m + 1) · Pm

n (z) (7)

Magnetic field induction can be approximated at any point of measured area. These points can
be selected using spherical coordinates [r, θ, ϕ,], so we can define approximation formula as follows

Ba(r, θ, ϕ) =
NK∑

k=0

·
m=k∑

m=0

·rk · Pm,k(cos θ) · [Am,k cosm · ϕ + Bm,k sinm · ϕ] (8)

where NK is the highest order of Legendre multinomial for chosen approximation, Amk a Bmk are
unknown coefficients. NK is defined according to sampling theorem and depends on number of
measured points Nb:

Nk =
Nb

2
− 1 (9)

Coefficients Amk a Bmk is then possible to find like the minimum value of this formula:

Ψ = min
Nm∑

i=1

(Bim −Bia)2 (10)
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where Bm are measured values of magnetic induction at the desired area (circle, sphere, cylinder)
and Ba are approximated values of magnetic induction. This method is known as Least Square
method.

Figure 5: 3D map on the surface (computed values).

5. EXPERIMENTAL RESULTS

All values of magnetic induction on following figures are presented at [µT] unit. Fig. 2 shows
three-dimensional map of the field on the surface of sphere, which is created only from measured
values. Fig. 3 is map created from computed values, it means values which were computed during
minimum searching (least square method) in Matlab. At the Fig. 4 and Fig. 5 is a comparison
using 2D contour plot.

Finally if we want to get values of magnetic field induction inside the sphere, we use computed
coefficients. Then we generate new coordinates of desired points inside the sphere and compute
map of the field. This map can be any slice through the sphere as we can see in the Fig. 6.

Figure 6: Contour map of the field (measured val-
ues).

Figure 7: Contour map of the field (computed val-
ues).
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Figure 8: Slice through the sphere (measured values).

6. CONCLUSION

We proposed a method for magnetic field mapping and approximation on the basis of measured
values along specific area. As we can see from results, the map created from measured and computed
values are quite similar. Future work can be directed towards minimization of differences between
measured values of magnetic induction and approximated values, so we can obtain exact coefficients
for approximation inside the sphere.
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Abstract— This paper presents information about design of light sources, which is intended
for commercial use. Required properties were continuous spectral characteristic with respect to
active wavelength area, 3D light characteristics. Design of light source on basis R-FEM method [5]
consists of classical used light source, as well as experimental results, are presented. The light
source was designed, optimized and tested for the research activity.

1. INTRODUCTION

In the past, in Lighting Engineering, the elementary projection method and other geometrical op-
tical methods were used for the modeling of illumination [6–9]. There are described a radiosity
methods well suited to dynamic changes while requiring less memory compared to classical hier-
archical radiosity. The light originating at emitters and arriving at a receiving input surface is
stored on separate meshes, each one corresponding to an emitter-receiver pair. These meshes are
called interaction meshes and facilitate the handling of dynamic changes since for each input sur-
face the surfaces illuminating it can be determined very quickly. The interesting application of
radiosity method is in a new three-dimensional model applicable for characterizing the propagation
characteristics for microcellular communications. For microcellular communication, the working
frequency is about 1.7–2.0GHz. The wavelength is about 15–18 cm. In essence, these wavelengths
are comparable with the dimensions of cavities such as windows, balconies, etc. on buildings. The
source [8] get a computer graphics algorithm for simulating the propagation of light and its interac-
tion with matter on a massively parallel computer is presented. This algorithm, called the tagged
shooting method, is designed for a virtual machine containing a great number of simple communi-
cating processors arrayed into a cubical three-dimensional lattice. The algorithm is similar in spirit
to the classical progressive refinement radiosity method designed for more conventional comput-
ers but is not an adaptation of that technique to massive parallelism. Its known the methods [9]
which implements radiosity using stochastic raytracing, which affords both instruction-level and
data parallelism.

Today, new directions in the modeling of lighting systems are emerging. These new directions
start from the Computer Graphics modeling methods and from new methods of numerical modeling
used for the CAD/CAE solution of technical problems from different industrial sectors. The main
applications are in architectural engineering and domestic architecture. Computer Graphics allows
us to use the method of Global illumination. The goal of global illumination is to generate realistic-
looking images of objects and scenes, which may or may not exist in reality, by simulating the way
light is transported. The Global illumination method is based on the light transport mechanism in
the real world. The light transport mechanism can be expressed in terms of BRDF (Bi-directional
Reflectance Distribution Function) of each element, and the most common and practical way is
dividing the BRDF into seculars and diffuse components. Mathematically, Global illumination
is a problem of solving numerical equations concerned with the convergence, convergence speed
and whether the solution converges the right answer. The Radiosity and Ray-tracing methods
are used to calculate energy propagation in each iteration step. The BRDF of the geometrical
element is important as regards the efficiency of each method. If the BRDF is ideally diffused,
the Radiosity method will converge and it will converge to right the answer. However, the Ray-
tracing algorithm works more efficiently in calculating seculars reflection, refraction and caustic
surfaces. The Radiosity and Ray-tracing algorithms can be measured in two aspects, namely the
accuracy and efficiency in BRDF simulation, and the rendering speed. (for more information see
reference [1]). Into paper is used the R-FEM method, which was created within the framework
dissertation thesis [4] as novel numerical simulation method.

2. THE DESIGN BY R-FEM METHOD

The R-FEM method is a new direction in the modeling of lighting systems [3–5]. It utilizes the
similarity between physical models. This paragraph demonstrates the usage of analogy between
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different physical models for the modeling of light problems, detailed described in PhD thesis [4].
The R-FEM method is able to solve tasks that fulfill the condition λS ¿ max(D) ∧ λS < 10.
max(D), where λS is the source of light wavelength and D is one of the geometrical dimensions
of the modeling task. It can be used for to model more complicated physical problems than the
methods mentioned up to now. An example of a more complicated physical problem, which we can
solve by the R-FEM method, is the modeling of light intensity distribution in interior or exterior
spaces with non-homogeneous environment, where the light has passed through some impure air
(e.g., filled with smoke, fog, mist, vapour, dust, etc.).

  

Figure 1: Geometrical configuration source of the light.

In technical praxis we often encounter conjugate problems. A necessary part of the design
process during the development and measurement of light sources is the modeling and experimental
verification of results. The most accurate mathematical models of the sources of light include models
based on the radiation principle. One possibility is to use standard one — purpose programs while
another possibility offers the usage of sophisticated numerical methods, among them the finite
element method, for example the ANSYS program. The ANSYS program uses standard program
tools such as modeling, discretization into a net of elements, solvers, evaluation, and interpretation
of the results. The crux of the whole problem lies in the transformation of thermal field quantities
into optical quantities. This can be done using the general rules described in [4]. In the following
text the basics of modeling the primitive light problem are described. The verification of the model
of light source is done via experiment and then it continues to the hollow light guide problems and
it was also verified by experiment (for more information, see references [3–5]). The geometrical
situations that were modeled and verified is shown in the Fig. 1.

Figure 2: Geometrical configuration source of the light.

3. NUMERICAL MODELING

The formulation of the basic thermal model is based on the first law of thermodynamics

q + ρ c v · divT − div(k gradT ) = ρc

(
∂T

∂t

)
(1)

where q is the specific heat, ρ is the specific weight, c is the specific solidification heat, T is the
temperature, t is the time, k is the coefficient of calorific conduction, v is the velocity of flow.
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This model can, with respect to the application of Snell’s principles and according to the Stefan-
Boltzmann principles, heat transfer by way of radiation between surfaces with relative indexes i, j
is formulated as be simplified into the form

qri = σ εi Ai,j Si(T 4
i − T 4

j ) (2)

where qri is the specific heat transferring from surface with index i, σ is the Stefan-Boltzmann
constant, εi is the emissivity of surface, Ai,j is the projection factor of surface with index i to
surface with index j, Si is the area of surface with index i, Ti, Tj are the temperature of surfaces
i, j.

When the projection factor is determined, it is possible to use the Galerkin principles for con-
verting this problem into model (1). The mathematical problem is solved by classical numerical
method, finite element method (FEM) [3]. The result of modeling by the R-FEM method is shown
in the Fig. 3.

    

Figure 3: The result of the R-FEM method-lighting intensity E(lx).

4. VERIFICATION THE R-FEM BY EXPERIMENT

The results of the experimental verification by LED sensor is given in Fig. 4. There are differences
between the values obtained by modeling, Fig. 3 and experimental measurement, Fig. 5, ranging
from 5–15%, depending on the distribution of the net of elements. When the elements of the net
are of a lower density, the differences are also lower. This problem requires the net of elements to
be optimized.
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Figure 5: The experiments with light system.

5. CONCLUSION

This article describes design source of light, which is intended for commercial use. Required prop-
erties were continuous spectral characteristic with respect to active wavelength area, 3D light
characteristics. Design of light source consists of classical used source of light, as well as experi-
mental results, are presented. The light source was designed, optimized and tested for the research
activity.
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Abstract— The paper describes the magnetic resonance imaging method applicable mainly in
MRI and MRS in vivo studies. There is discussed and solved the effect of changes of magnetic
fields in MR tomography. This article deals with the reverse reconstruction results obtained
from the numerical simulation of MR signals by various techniques, which will be usable for the
experimental results verification.

1. INTRODUCTION

Nuclear Magnet Resonance (NMR) is well known diagnostic non-destructive and non-invasive
method [2–6]. It is used to investigation of the materials properties. One of the often use of
NMR is medical application [8, 11]. The magnetic resonance imaging (MRI) is used to the propel
a ferromagnetic core. The concept was studied for future development of microdevices designed to
perform minimally invasive interventions in remote sites accessible through the human cardiovascu-
lar system. A mathematical model is described [3] taking into account various parameters such as
the size of blood vessels, the velocities and viscous properties of blood, the magnetic properties of
the materials, the characteristics of MRI gradient coils, as well as the ratio between the diameter of
a spherical core and the diameter of the blood vessels. Other paper [4] present a MRI-compatible
micromanipulator, which can be employed to provide medical and biological scientists with the
ability to concurrently manipulate and observe micron-scale objects inside an MRI gantry. The
micromanipulator formed a two-finger micro hand, and it could handle a micron-scale object using
a chopstick motion. The material engineering use the NMR too. For example NMR logging is
an advanced method in formation evaluation and oil field production. It can provide the porosity,
permeability, bound water volume, free fluid volume and oil viscosity. NMR logging is playing more
and more important roles in oil and gas exploitation.

 

(a) (b)

Figure 1: The sample of two MRI results, the right results (a), the results with imaging loss.

The results of the NMR method and signal processing are sensitive to used materials with
extreme differences like a susceptibility, conductivity and also permeability from the macroscopic
view to the mater. It is going to deformations and it makes the NMR can not be use. The Fig. 1
shows information losses effect.

The paper brings the design of the hybrid numerical-experimental inverse method, which can
reduce influence of the materials with extreme differences of the properties. The inverse methods
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are used in different applications [1, 7]. There is problem with task nonlinearity. It is described
in [1]. The authors develop two nonlinear inverse methods to reconstruct the conductivity profile
from electromagnetic induction (EMI) measurements: the improved two-step inverse method based
on the extended Born approximation (EBA) and the combination of the EBA and the contrast
source inversion (CSI) method. In the first method, the nonlinear problem is recast as a two-step
linear inversion and is solved by using the extended Born approximation. The application of inverse
method in the NMR techniques is in the temperature measurements, for the direct identification
of the surface heat flux. The temperature measurements are not always possible considering an
aggressive environment or an inaccessible zone. That is why an inverse method has been developed:
the direct problem with the unknown boundary condition (wall heat flux) is solved by adding an
observation equation given by temperature measurements on the opposite face of the wall [7].

The next step is to find simply model for numerical modeling and NMR experiment-verification.
There can be changed material properties and next experimentally measured. The idea of increase
of MRI is in the hybrid experimental and numerical inverse method. The numerical results are
used in the MRI experimentally obtained data. The application of numerical results to the NMR
post-processing can much more increase the final images.

2. GEOMETRICAL MODEL

Fig. 2 describes the simply geometry for the numerical modeling. On both sides, the sample is
surrounded by the referential medium. During the real experiment, the reference is represented
by water, which is ideal for obtaining the MR signal. As shown in Fig. 2, in the model there are
defined four volumes with different susceptibilities. The materials are defined by their permeabilites
: material No. 1 – the medium outside the cube (air), χ = 0, material No. 2 – the cube walls (sodium
glass), χ = −11, 67.10−6, material No. 3 is the sample material (sodium glass), χ = −11, 67.10−6,
quartz glass, χ = −8, 79.10−6, the simax glass (commercial name), χ = −8, 82.10−6, material
No. 4 is the medium inside the cube (water with nickel sulfate solution NiSO4, χ = −12, 44.10−6).
The permeability rate was set with the help of the relation µ = 1 + χ. For the sample geometry
according to Fig. 1, the geometrical model was built in the system. In the model there was
applied the discretization mesh with 133584 nodes and 126450 elements, type Solid96 (Ansys).
The boundary conditions (1) were selected for the induction value of the static elementary field to
be B0 = 4, 7000T in the direction of the z coordinate (the cube axis) – corresponds with the real
experiment carried out using the MR tomograph at the Institute of Scientific Instruments, ASCR
Brno.

 

Figure 2: The sample geometry for numerical mod-
eling.

Figure 3: The geometrical model in the system an-
sys.

3. NUMERICAL ANALYSIS

The numerical modelling was realized using the finite element method (FEM) together with the
Ansys system and described in paper [11]. As the boundary condition, there was set the scalar
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magnetic potential ϕm by solving Laplace’s equation on the geometrical model in Fig. 3

∆ϕm = div µ(−gradϕm) = 0 (1)

together with the Dirichlet boundary conditon

ϕm = konst. on the areas Γ1 and Γ2 (2)

and the Neumann boundary condition

un · gradϕm = 0 on the areas Γ3 andΓ4. (3)

 

Figure 4: Elementary configuration of the MR mag-
net for the 200MHz tomograph, ISI ASCR.

 

Figure 5: The measured preparation. The prepara-
tion seating in the tomograph.

4. NUMERICAL MODEL

The numerical modelling results are represented in Fig. 3 and Fig. 7. The numerical modelling
results were then used for the representation of the module of magnetic induction B along the
defined path. For the model meshing, the element size selected as optimum was 0, 5.10−3 m. The
boundary conditions ±ϕ/2 were set to the model edges, to the external left and right boundaries
of the air medium, as represented in Fig. 1. The excitation value ±ϕ/2 was set using again the
relation (21). This is derived for the assumption that, in the entire area, there are no exciting
currents, therefore there holds for the rot H = 0 and the field is irrotational.

Consequently, for the scalar magnetic potential ϕm holds

H = −gradϕm (4)
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Figure 6: The magnetic flux density B pattern, without sample material.
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The potential of the exciting static field with intensity H0 is by applying (4)

ϕm =
∫

~H0 · ~uzdz = H0 · z (5)
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Figure 7: The magnetic flux density B pattern, with sample material.

5. EXPERIMENTAL VERIFICATION

The experimental measuring was realized using the MR tomograph at the Institute of Scientific
Instruments, ASCR Brno. The tomograph elementary field B0 = 4, 7000T is generated by the
superconductive solenoidal horizontal magnet produced by the Magnex Scientific company. The
corresponding resonance frequency for the 1 H cores is 200 MHz. The Fig. 6 bring the numerical
results of simply model solution without tested material. In the Fig. 7. is shoed result of numerical
model with the tested material. The different of these results is showed in Fig. 8. The final result
very good correspond with the theoretical conditions publicated in the thesis [10].
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6. CONCLUSION

The numerical modelling and analysis of the task have verified the experimental results and, owing
to the modificability of the numerical model, we have managed to advance further in the experimen-
tal qualitative NMR image processing realized at the ISI ASCR. This numerical and experimental
models showed the possibility of inverse hybrid use.
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PhD Thesis, FEKT, VUT v Brnĕ, Údolńı 53, 602 00, Brno, 2006.

11. Fiala, P., E. Kroutilova, M. Steinbauer, M. Hadinec, and K. Bartusek, “The effect of non-
homogenous parts into materials,” PIERS Online, Vol. 3, No. 5, 1245–1249, 2007.



Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, 2008 1193

Numerical Modeling of Electromagnetic Field a Tornado

P. Fiala, V. Sadek, and T. Kriz
Department of Theoretical and Experimental Electrical Engineering

Brno University of Technology, Kolejni 2906/4, 612 00 Brno, Czech Republic

Abstract— This study deals with the numerical model of both the physical and the chemical
processes in the tornado. Within the paper, a basic theoretical model and a numerical solution
are presented. We prepared numerical models based on the combined finite element method
(FEM) and the finite volume method (FVM). The model joins the magnetic, electric and current
fields, the flow field and a chemical nonlinear ion model. The results were obtained by means of
the FEM/FVM as a main application in ANSYS software.

1. INTRODUCTION

The full electromagnetic-hydro-dynamic (EMHD) model of a tornado is a coupled problem in which
there are coupled the electric, magnetic, fluid flow fields, electric circuit and chemical (dynamical
ions) models. This model was built with the combined finite element methods (FEM) and the finite
volume methods (FVM).

A more complete understanding of tornado-genesis must be developed before the feasibility of
mitigation by heating fine structure, such as cold downdraft regions, can be determined. Also,
the present severe storm diagnostic capability and numerical simulation codes are not yet suitable
for real-time assessment of electromagnetic heating results. It is suggested that their be used in a
tornado-genesis mitigation system:

• Real-time calculations. It would be desirable to predict the development faster than real-time
to be able to provide better targeting.

• Continuously updated with fresh data from diagnostic systems. Validation using extensive
field data.

• Nested grid calculations down to 58 meters or less in horizontal grid dimensions.
• Ability to calculate heating patterns with complex electromagnetic heating beam geometry.
• Inclusion of important microphysics considerations.

The diagnostics must also be capable of real-time operation, a one-second or less response time.
It is generally known [1–7] that the tornado produces characteristic sferics of its own. In this
regard, Jones [1] reported that the 10 kHz sferics associated with the tornado, but observed prior
to the occurrence of the tornado, were much more intense than those associated with ordinary
thunderstorms. Furthermore, after the tornado forms, a shift in the sferics frequency response is
reported from low frequencies (app. 10 kHz) to high frequencies. Jones [2] reported that tornados
have characteristic waveforms, and that there is a significant correlation between the number of
sferic flashes at 150 kHz and the occurrence of tornados. Jones [3] also concludes that the flashing
rate is a good indication of the intensity of the storms, and has given a tentative storm classification
system based upon the flashing rate. Huebner et al. [6] were able to show that a variation of the
sferic frequency spectra of tornados with respect to storms does exist. However, they were unable
to confirm all of the predictions made by Jones.

According the last work of Kikuchi [9, 10] is possible to build model EMHD for numerical
simulation of transient effects in the tornado. The examples of different tornado are showed in
Fig. 1.

2. MATHEMATICAL AND NUMERICAL MODEL

Electromagnetic part is derived from Maxwell equations

rotH = JT , (1)
divB = 0, divD = ρ (2)
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Figure 1: Different type of tornado body.

where H is the vector of magnetic field intensity, B is the magnetic flux density, JT is the vector
of total current density, D is the electric flux density , ρ is the electric charg density.

rotE = −∂B

∂t
, (3)

divJT = −∂ρ

∂t
, (4)

where E is the vector of electric field intensity. Vector functions of electric, magnetic field are
expressed by means of a scalar electric φe and vector magnetic potentials A. Final current density
from (4) JT is influenced by velocity v of the flowing ion solution and outer magnetic field

JT = γ(E + v ×B)− ∂(εE)
∂t

+ γ
mdv

q dt
. (5)

where m is particle mass, q is the electric charge, γ is the conductivity of parts tornado body from
the macroscopic view.

The model from relations (1) to (5) was solved by finite element methods (FEM) [11] with

(a)
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10km 

5km 

130 m 

(b)

Figure 2: (a) Basic geometrical dimensions of the first tornado model (left) in meters and its FEM model
(right); (b) Basic geometrical dimensions of the second tornado model.

ANSYS system. The geometrical model was built with two modifications. First of them is simply
geometrical model, showed in Fig. 2(a).

e>0

e>0

e<0

e<0

H0 60 A/m

H0 60 A/m

ϕ

ϕ

ϕ

ϕ

~

~

Figure 3: Boundary and initial condition of EHD and EMHD tornado model, scalar electric potential ϕe,
magnetic field intensity H0.

The parametrs of the first tornado can be written as a several parameters. We have used the
bold signed parameters. Vnitrni rychlost: 100–190 km/h, rychlost otaceni: 72–720 km/h, vnejsi
prumer: 10–100 m, vnitrni prumer: 15–30.48m, rychlost pohybu: 0–120 km/h, výs̆ka: 50–500m.

3. NUMERICAL SOLUTION FEM/FVM

The numerical model was prepared by means of ANSYS tools [11] and main FEM/FVM solution
was solved with APDL program over ANSYS system. In the Fig. 3 we can see boundary condition

        
(a) (b)
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(e) (f)

(c) (d)

Figure 4: Simply solution of EHD tornado model, displacement of a vector electric field intensity (a) and
its module (b), displacement of a magnetic field intensity module (c), positive charge moving, t = 0.5 ps (d),
positive charge moving, t = 2.0 ps (e), positive charge moving, t = 6.5 ps (f).

for basic solution of electric charge moving. This model definition is not so perfect expression of
tornado state. There are only 50 points where were different electric charge placed and started the
transient EHD effect. A first results from the model are showed in the figure Fig. 4. Therefore was
built full EMHD tornado model according of (1) to (5) condition. The model is under the test just
now. Both model was solved for time interval from t ∈ 〈1.10−12, 1.10−2〉 sec. Then we can observe
the ions moving trend and changing of electromagnetic field in the tornado body during the time
interval.

4. CONCLUSION

This work deals with EHD and EMHD numerical tornado model. There is basic mathematical and
numerical description in the article and first results of electromagnetic field distribution and ions
moving in the critical part of tornado body. Such analysis could be used for understanding of time
state and time dependent of tornado effects in the breadth time interval observation. On the two
different tornado geometrical model was tested the EHD and EMHD numerical model.
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Abstract— This contribution compares five different solutions of the characteristic impedance
of the strip-centered coaxial line (SCCL) - two different strategies of boundary element method
(BEM-1, BEM-2), numerical evaluating of the Schwarz-Christoffel integral (NSC) and two dif-
ferent solutions based on conformal mapping method (CMM-1, CMM-2).
All these methods are quasi-static; therefore here presented results (all methods) are valid for
wavelengths longer than the longest electrical dimension of the SCCL – diameter of the surround-
ing electrode. On higher frequencies occur not-TEM modes.
The aim of this work is to compare different methods for one structure analysis – to learn about
their properties, advantages and disadvantages. The results and gained experiences should be
applied to other projects in the future.

1. INTRODUCTION

A lot of different electronic equipments have to work together. Unfortunately the differences of
their power levels are over 200 dB very often. Coaxial structures are widely used because of their
good shielding effect, which suppress the fields around strong distortion sources (e.g., transmitting
antenna feeder) and protect sensitive parts of receivers, measurement inputs of the equipments etc.

Whereas coaxial line (two concentric cylindrical electrodes) is widely known, strip-centered
coaxial line (SCCL, see Fig. 1.) is mentioned rarely (founded only in very special literature like [1–
3]).

D

Figure 1: Strip-centered coaxial line – cross section.

A B C

Figure 2: Analyzed part of SCCL.

Bongianni [2] also highlights a number of microwave applications which require the miniatur-
ization of coaxial cable. In some medical, delay line or microelectronic application, the radial size
is a major constraint and must be minimized. As a cable dimensions decreases, however, the loss
increases because of skin effect. The central strip has a larger effective area as an equivalent circular
inner conductor of the coaxial line.

The SCCL structure also offers a very attractive occasion of matching to microstrip line, coplanar
waveguide, etc.

Stronger and stronger numerical methods consequently confine an application of the analytical
methods on basic technical praxis. The main advantage of the analytic method occurs during the
synthesis of the transmission lines, when we can directly specify dimensions of the structure from
its required electrical parameters.

In the other hand, numerical methods are universal contrary to analytical solutions, each limited
only to one strictly defined type of the transmission line.

The SCCL structure has two planes of symmetry – one perpendicular and one parallel to central
strip. One quarter of cross section (Fig. 2.) is sufficient for all our analysis. The characteristic
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impedance of this quarter is 4 times bigger than the characteristic wave impedance of the whole
SCCL structure.

2. BOUNDDARY ELEMENT METHOD (BEM-1, BEM-2)

The boundary element method (BEM) [4] is based on integral Maxwell’s equations (Laplace’s
equation is solved along boundary of the structure only). We need values of the field intensity just
along PEC’s for characteristic impedance determination according formula below:

Z0 =
1
4

A∫
D

dE

B∫
A

dH

=
120π

4
U

B∫
A

Eydx

, (1)

where U is voltage between conductors and Ey is electric field y-component along central electrode.
The boundary ABCD (Fig. 2) is divided into boundary elements, with Dirichlet’s condition

along PEC (AB and CD) and Neumann’s condition along PMC (BC and DA). The vectors of
potentials in all boundary elements and the vectors of their gradients (both vectors partly known
and partly not known) are mutually tied by two matrices H and G, built up according the rules of
BEM.

The task was solved in Matlabr again. Two different strategies were tested.
BEM-1 is based on constant number of boundary elements (n = 50) per one basic element. The

flat inner electrode is divided onto n = 50 elements, the round outer electrode is divided also onto
n = 50 elements and both the magnetic walls are also divided each into n = 50 pieces. That means
total sum of all boundary elements is 4n = 200. The lengths of element are not the same, especially
in case of |AB| 6= |BC|.

The strategy BEM-2 is limited on rational ratios k = |AB|/|AC| and based on equidistant
division of the border (except outer electrode CD). The inner electrode AB is divided to k times n
pieces, the continuing magnetic wall BC into (1− k) times n pieces, the outer electrode CD into n
elements and wall DA also into n elements. Of course, the product kn must be a integer number.
On the ground of calculation in wide range of k, the number of elements was n = 100.

3. NUMERICAL SOLUTION OF THE SCHWARZ-CHRISTOFFEL INTEGRAL (NSC)

Schwarz-Christoffel method is a conformal mapping which transforms upper half complex plane
z = x + jy (and in some modifications also 1st quadrant of the complex plane, circle, rectangle or
infinite strip) to an interior of a polygon in complex plane w = u + jv. The mapping is given as

dw

dz
=

n∏

i=1

(z − zi)
αi

π
− 1

, (2)

where zi are points on real axis in z-plane belong to vertices of the polygon in w-plane, αi are
internal angles of the polygon and n is a number of polygon vertices.

A formula for the transform is given as Schwarz-Christoffel integral

w =

z∫

0

n∏

i=1

(z − zi)
αi

π
− 1

dz, (3)

but only rare cases are possible analytically integrated, integral (3) is too complicated usually.
Hence, this integral is necessary to evaluate numerically. There is a free Matlabr toolbox for it on
the web [5].

This method is based on polygons, so the arc CD must be approximated by a piecewise broken
straight line with N vertices. The accuracy is better for higher N , but the time consumption
rapidly grows simultaneously. N = 20 is very good compromise. The main part of the m-file is

p = polygon([0; k; exp(linspace(0, -i*pi/2, N)]);
f = rectmap(p, [1 2 3 length(p)]);
m = modulus(f);
Zsc = 30*pi/m;
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4. CONFORMAL MAPPING METHOD (CMM-1, CMM-2)

CMM-1 is borrowed from [1–3]. All these sources refer on the same method splited up two models,
one for characteristic impedances higher then Z0 = 30π/

√
εr, is the formula given as

Z0 =
60√
εr

log
2D

W
(4a)

and for lower impedances is formula

Z =
15π2

√
εr

1

log
(

2
D + W

D −W

) . (4b)

All the symbols are described on Fig. 1.
There is a bit chicken-to-egg problem here because it is necessary to know characteristic impedance

in order to choose between (4a) and (4b). Both equations pass quite close according Wadell [3], but
about the accuracy report neither Hilberg [1] nor Wadell [3], unfortunately. Bongianni [2] compares
this method with his experimental results. His measured values in a graph are very close to the
theoretical curve.

Second conformal mapping method CMM-2 is originated in [6]. Method is based on analyti-
cal solution of Schwarz-Christoffel integral according [7] and [8]. The result of basic mapping is
degraded for higher ratio k by a shape distortion, so a conformal correction of the curved part is
described in [6]. The wave characteristic impedance of the SCCL is here for whole the range given
as

Z0 =
60√
εr

argtanh 4

√
D2 −W 2

D2 + W 2
. (5)

Table 1: Strip-centered coaxial line – results of 5 different types of analysis.

Z0[Ω]

k BEM-1 BEM-2 NSC CMM-1 CMM-2

0.01 651.46 323.41 317.86 317.89 317.89

0.05 273.26 223.21 221.31 221.33 221.33

0.1 206.83 180.75 179.71 179.74 179.74

0.2 152.71 138.64 138.11 138.16 138.14

0.3 122.83 114.10 113.73 113.83 113.75

0.4 96.53 96.63 96.34 96.57 96.32

0.5 82.89 82.91 82.66 82.63 82.58

0.6 71.42 71.39 71.17 71.19 70.95

0.7 60.98 61.15 60.94 60.98 60.47

0.8 51.48 51.38 51.17 51.22 50.25

0.9 41.03 40.89 40.64 40.70 38.78

0.95 34.44 34.24 33.89 33.98 31.05

0.99 26.14 25.39 24.57 24.73 19.67

5. CONCLUSIONS

Results of all here mentioned methods are shown in Tab. 1. Characteristic impedances are calcu-
lated for free space (εr = 1).
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BEM-1 with constant number of element along every part of closed boundary curve ABCDA
is in good agreement with other methods in range k ∈<0.4; 0.8>, outside this interval grows the
deviation - extremely for k < 0.2. The reason is in great disproportion between lengths of elements
along central strip AB and the rest part of the boundary curve BCDA. For improvement of the
result is necessary to pay greater number of the boundary elements and very longer computer time.
Strategy BEM-1 is not very successful and authors do not recommend it to future application.

BEM-2 with dynamically allocated number of element according its dimension and constant
(approximately) length of the elements is markedly better, results copy other method results with
only marginal differences. The disadvantage of this method is a various number of elements along
central strip AB and along magnetic wall BC, which complicates the computer program (task was
solved in Matlabr. Advantage is a reliability of the result.

NSC method based on numerical solution of the Schwarz-Christoffel integral also very well
copies the values of both CM methods. The integration step is very small, standard value is 10−5

and is a optional parameter, so the result error is marginal. The main reason of small deviation is
the approximation of the arc CD by a piecewise broken line. If the number of parts along this arc
is higher than 20, the time consumption and computer memory waste will enormously grow with-
out significant influence on the accuracy, what was been experimentally recognized. This method
combines the advantages of conformal mapping method (direct description of the global parame-
ters like characteristic impedanc.) and numerical method (ability to solve fast every structure).
Disadvantage of this method is its limitation for 2D tasks. That’s why only quasi-static problems
with quasi-TEM wave can be solved.

CMM-1 is the only one method taken from the independent literature [1–3]. Bongianni [2]
compares this analytical method with his consistent experimental results. This method has only one
disadvantage – chicken-and-the-egg problem with splitting into two partly-valid models mentioned
above.

CMM-2 is derived by author on the basis of the Schwarz-Christoffel integral. Results are in
great agreement with other methods (except BEM-1). Compared to CMM-1, the main advantage
of this method is one model for the whole range of shape parameter k. Only algebraic methods
are necessary for the derivation of the synthesis equation. The only one disadvantage is more
complicated mathematical model than CMM-1.

In the end we can come to the conclusion that better results we obtain with equidistant elements
with BEM than with constant number of them along variable electrodes. Analytical models based
on CMM are such accurate as the method used in its derivation. NSC method collects advantages,
but sometimes disadvantages of both, analytical and numerical methods.
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Abstract— The article describes numerical model of basic structures in quantum physics.
It was tested on the basic configuration of the electron beam and it was verified in Institute of
Scientific Instruments Academy of Sciences of the Czech Republic experimentally. We had prepare
the numerical model which was based on the particle theory. We prepared model which respects
classical Electrodynamics. Numerical results were evaluated. The second model was prepared in
respect to theory of wave packet (Louis de Broglie and Material Wave Theory (MWT)) and solved
again. Results of both models were the similar, same in their quality, we evaluated electric field
intensity E on the electron impact area, and they corresponded with results from experiments.

1. INTRODUCTION

R. P. Feynman once said that, according to him, it was reasonably possible to presume that
nobody could understand quantum physics [1]. In another one of his many comments, the physicist
expressed the opinion that quantum physics was merely a working hypothesis and it would remain
so.

In order to attempt — in modeling the H2O elementary molecule and the subsequent high quan-
tity of H2O in the electric field — to obviate the problems resulting from quantum mechanics [1], a
simple task was created and solved using the finite element method [2]. The main reason consists
in the fact that, using the above hypothesis [1], it is not possible to formulate the problem with
a finite number of the degrees of freedom (the problem of a variable quantity of particles) or the
problem of relation between the electric field and the particles (a Lorentz force effect and tran-
sitory stages of elementary particles, dynamic behaviour of particles and other items). Referring
now back to the main task, the first step consisted in creating a numerical model based on the
quantum mechanics hypothesis with an elementary model in the form of a diffusion equation — the
Schrodinger equation. The numerical model simulated the reality that had been experimentally
verified in the 1960s. Then, we created a numerical model that is rather more complicated in terms
of formulation: the formulation in question is realized using the telegraph equation, therefore it is
a diffusion equation complemented with an element with second partial derivative. This model —
based on the Material Wave Theory (MWT) first published by de Broglie — is however capable of
solving transient conditions and the dynamics of the elementary structure of matter. The testing [1]
has proved that the model is applicable. Nevertheless, there were certain variations in the testing
due to the failure to simulate for identical conditions the task formulated with the help of quantum
mechanics and the telegraph equation. Here, the conditions were merely approximate. Yet, based
on the surprisingly proximate results, these models are being refined and they are expected to reach
a substantially higher degree of conformity.

At this point we would like to attempt to briefly describe the formulated hypothesis, the model
of the basic elements of matter behaviour, which is based on solving partial differential equations
of a dimension higher than the diffusion equation — the Schrödinger equation.

2. HYPOTHESIS

The working hypothesis for quantum mechanics, based on the reduced diffusion equation

∆u = Cs1
∂u

∂t
+ Cs2u + Cs3 (1)

where u is the function or the functional, Cs1,2,3 the constants. The modified relation and well-
known as the Schrödinger equation

∆u = Cs1
∂u

∂t
+ Cs2u (2)
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is suitable for solving tasks in quantum mechanics. This working hypothesis is applicable in solving
stationary conditions of models. It does not, in itself, concern dynamics or transient processes
of the u function. The resulting form of solution, after satisfying the boundary and the starting
conditions plus the relation (2) solvability conditions, can be written as, for example,

u = Csv1e
F (2a)

where F is the function or the functional, Csv1 is the constant. The relation (2a) is therefore a
mere form of non-periodical solution (damped solution — diffusion). It is not the real wave form,
despite being asserted to be such for the quantum wave character of the existing hypothesis.

For any case of analysis of transient processes in the conditions of quantum physics particle
position shift, the model according to relation (1) is not suitable for the description of the tran-
sient processes. The numerical solution gives a robust model, which does not render in a wholly
objective manner the change of condition, dynamics or other effects that are currently measurable
or recordable.

For that reason, a working hypothesis was proposed for the field of numerical modeling of the
dynamic condition of basic elements of matter. The hypothesis is based on a model with a higher
dimension of time variation of the functional u, namely on the telegraph equation formed as

∆u = Ct0
∂2u

∂t2
+ Ct1

∂u

∂t
+ Ct2u + Ct3 (3)

This model shows more respect for the system dynamics and the simplified form of the model is
the wave equation (without damping)

∆u = Cw0
∂2u

∂t2
(4)

The above hypothesis based on relation (3) or, alternatively, relation (4), quite paradoxically offers
— for the numerical field of modeling — an easier solution, albeit of a more complicated model,
using the numerical apparatus. After satisfying the boundary and starting conditions plus the
relation (3) solvability conditions, the solution can be written in the form of a periodical damped
wave written as

u = Ctv1e
F (t)eF (Ω) (4a)

where Ω is the space for which the relation (3) was formulated, t is time.
As a result of the proposed hypothesis there occurs a shift in the field of quantum physics (QF).

Based on relations (3) and (4) it is possible to assume that the elementary phenomenon of quantum
physics solution is an electromagnetic wave. According to the current QF hypothesis, a particle is
a consequence of the wave interference phenomenon. It is possible to assume that the basic element
of matter is an electric charge and its motion. Further, it is also possible to claim — according
to [2] and [4] — that

ρ2
e = ρg (5)

where ρe is the electric charge density and ρg is the specific mass.

3. EXPERIMENTS

For the proposed QF hypothesis of relation (3), a task is sought to either prove some of the
conjectures resulting from the solution of relation (3) or to overcome some of the working solutions
to the QF hypothesis based on the model according to relation (2).

The QF hypothesis based on the solution of the Schrodinger equation asserts that particles are
of a dual character, namely they at times behave as particles and, at other times, as a wave.

Therefore, we will utilize the assertion that a beam of emitting electrons actually is the particles.
If we used yet another source of the beam of electrons with different kinetic energy and if both
the beams intersected in space and time (interaction, intersection), then, according to the laws of
Newtonian physics, there should occur the interaction of particles, and the deflection in those with
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Figure 1: Interaction of two beams of electrons.

lower energy should be more prominent that in those with higher energy. For the task drawing see
Fig. 1.

Figure 1 shows the source of a beam of electrons with higher dynamics particles (energy W1);
the source of a beam of electrons with lower dynamics particles than in beam 1 is marked in red
and the energy W2. The coincidence angles are marked as θinp and the beam number index 1 or 2.
The resulting beam is supposed to show deflection of θout. According to the current QF hypothesis,
the energy of the impinging particle is

W =
1
2
mv2 (6)

where m is the particle mass, v its medium velocity. Let us assume that the particle features
constant weight in different velocity of movement. Then, in coincidence according to relation (6)
there occurs the deflexion of beam in the direction of the ray with the higher-energy particles. If
me = 9.10938188e-31 kg is assumed, then the impact velocity of the first beam will be

v1 =
√

2 ·W1

me
(7)

for the voltage on the electrodes of the electron beam U1 = 1kV, W1 = 1.602176462e-16 eV,
v1 = 18.755373Mm/s, U2 = 1.5 kV, W2 = 2.403264693e-16 eV, v2 = 22.970547Mm/s. Assuming
that θinp1 = θinp2 is the angle

θout = arctan
(

v1 · sin θinp1 − v2 · sin θinp2

v1 · cos θinp1 + v2 · cos θinp2

)
(8)

where x is the electron beam source distance from the coincidence point. In this case, the impact
angle is θout = 5.76◦, θinp1 = θinp2 = 45◦.

W1 Laser -W2 

out 

inp2 
inp1 

1 2 

x 

x 

θ

θ θ

Figure 2: Interaction between a beam of electrons and an electromagnetic wave.

Let us assume an identical task configuration according to Fig. 1 and propose a different
experiment, with one of the sources being a continuous monochromatic laser — the source of
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the electromagnetic wave. The laser features the wave length of λ = 633 nm, the frequency of
f = 4.7361e14Hz. According to the current QF theory, relation (2) is the frequency of the electron
beam 1 and 2. According to the relation

f =
W

h
(9)

where h is the Planck constant h = 6.62606876e-34 Js. Then, the beam 1 frequency is f1 =
2.417989e17Hz and the beam 2 frequency is f2 = 3.62698e17Hz. According to the classical theory
there occurs the interference of waves. Laser with the energy of W = 3.13817e-19 eV ought to
perform the deflexion of the beam of electrons 1 to the angle θout = 42.46◦. With the help of this
experiment it is possible to clarify the character of both sources. Therefore, a beam of electrons
is the source of electromagnetic waves. If the task assumptions are proved to be correct, the laser
version should be recorded on frequency f1 − f = 2.41325e17Hz.

4. CONCLUSION

On the basis of the above described experiments, the model of basic particles will be built. This
study described and analyzed the experiments to provide the verification of the novel theory. The
activity is connected with the research plan FRVS CR No. MSM 0021630513 ELCOM, No. MSM
0021630516. The proposed experiments are verified and the conclusion suggested should clarify the
problem of whether the proposed working hypothesis — according to relation (3) — can be used
for modelling the dynamics of the basic elements of matter. The aim of this research is description
and numerical modelling of the water molecule behaviour in the electric field, with known effect
intensity E. The behaviour is experimentally tested the NMR spectrometer.
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Abstract— Chasmas are a generalization of plasmas, i.e., the condition of quasi-neutrality is
dropped. That means that in chasmas the quasi-neutrality may be (strongly) violated over dis-
tances many times the Debye length which requires special circumstances (double layers, electric
fields, . . .). The question arises what the meaning is of a shielding length in chasmas. It was
demonstrated that the so-called chasma (angular) frequency has an expression similar to the
plasma frequency: ω2

c = |n− − n+|e2/εm−. However, this chasma frequency plays a role as well
in the equilibrium (or steady state) as in the stability. Similarly for the chasma equilibrium we
obtained a kind of Debye length λ2

c = 2εkBT/|n− − n+|e2, where the difference of the densities
occurs in contrast to the shielding length λ2

D = εkBT/(n−+n+)e2, for a chasma equilibrium, sup-
posing that the temperature of electrons and ions is the same, that the ions are only once ionized
and that the kinetic energy is much larger than the potential energy. This means that the chasma
shielding length is much the same as the Debye length and that (λDωp)2 ≈ (λcωc)2 ≈ kBT/m−.
We expect those features to be relatively universal, up to factors of order unity, in spite of the
great variety of chasmas.

1. INTRODUCTION

In a plasma one has by definition quasi-neutrality in volumes which have dimensions larger than the
Debye length or at least a few times the Debye length. In some situations one has no quasi-neutrality
over many times the Debye length. E.g., in certain discharges or in the multipactor effect [1–3]
(secondary electron resonance discharge) in the cavities of linear accelerators. It is expected that
chasmas occur too in certain extended double layers with currents and magnetic fields playing a
role in the solar convective zone and solar atmosphere or in the terrestrial atmosphere. Callebaut
and Knuyt [4–7] investigated theoretically the steady state, using an approach based on a singular
integro-differential equation, cf. [8–10] and [11–19] as well.

However, the question of the relevant parameters for chasmas arises, in particular: is the shield-
ing length the same as for plasmas?

We investigate first the chasma equilibrium (Section 3). Next we deal with the shielding length
(Section 4), followed by the conclusion (Section 5).

2. CHASMA EQUILIBRIUM

Most chasmas occur as a steady state or a state in motion, as the net charge requires special
conditions to be contained. But here we consider the chasma equilibrium without motions or
supplementary forces. Suppose a box with isolating walls in which electrons and ions are enclosed.
Suppose the electrons and the ions have the same uniform temperature T and that recombination
may be neglected. How is the spatial distribution of the densities and the corresponding electric
potential for this chasma equilibrium?

The basic equations here are the Boltzmann and the Poisson equations:

n− = n−0 exp
(

eϕ

kBT

)
, n+ = n+0 exp

(−eϕ

kBT

)
, (1)

ε∆ϕ = e(n− − n+). (2)

ε is the electric permittivity and equals in vacuum 8.8542 × 10−12 C/Vm; kB is the Boltzmann
constant (1.3807 × 10−23 J/K). We assume that ε is constant which is a reasonable hypothesis.
However, as some other quantities are varying in space an extension may be to have ε in tensorial
form. The number density of the electrons is n−, which depends on the space coordinates, at the
origin it is n−0, where the potential ϕ is supposed to vanish; the electron charge is −e and their
mass is m−. For the ions, supposed ionized once only and all of the same mass, the same notation
applies, but with a + sign replacing everywhere the − sign corresponding to the electrons. Pressure
terms are neglected here.
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We now consider for simplicity the 1-D case: a plane-parallel chasma, infinite in 2 directions.
The x-axis is chosen perpendicular to the walls. Equations. (1)–(2) yield upon elimination of n−
and n+:

d2ϕ

dx2
=

e

ε

(
n−0 exp

(
eϕ

kBT

)
− n+0 exp

(−eϕ

kBT

))
. (3)

This differential equation is highly nonlinear.
2.1. One Kind of Charges
In the case n+0 = 0 we found the following solution:

ϕ =
−2kBT

e
ln

(
1 +

x

λ−

)
, n− =

λ2−n−0

(λ− + x)2
, λ− =

(
2εkBT

n−0e2

)1/2

, (4)

λ− looks like the Debye length in plasmas (up to a factor 2.) However λ− appears already in
the chasma equilibrium itself, without external influence of a charge or potential. (Moreover, in
Section (3.2) it becomes clear that the real structure of λ− is different from the one of λD.) The
potential is zero at the origin, but its derivative is not. To avoid singularities we must require
x + λ− > 0 on the other hand for x > 0 there is no limit where the (isolated) wall is placed.
Similarly when n−0 = 0 the solution given in Equation (4) applies with e replaced by −e. Note the
singular solution of Equation (3) with n+0 = 0 (very similar to the regular one):

ϕ =
−2kBT

e
ln

x

λ−
, n− =

λ2−n−0

x2
. (5)

2.2. Both Species: Series Development
We choose the origin in the middle between the plane-parallel (isolated) walls, which we suppose to
be at the same potential, so that the situation is symmetric with respect to the middle plane. The
extension is easy but requires more algebra. We try a series development for ϕ in Equation (3).
Put:

eϕ

kBT
= a2x

2 + a4x
4 + a6x

6 + . . . , (6)

A =
e2n−0

εkBT
, B =

e2n+0

εkBT
. (7)

This yields

a2 =
A−B

2
, a4 =

A2 −B2

24
, a6 =

A−B

720
[(A + B)2 + 3(A−B)2], (8)

a8 =
A2 −B2

56× 720
[(A + B)2 + 33(A−B)2], (9)

etc. If n−0 = n+0 then ϕ = 0 and we recover the plasma case. If n−0 ≈ n+0, then the series
converges rather fast. We may rewrite a2 as

a2 =
e2(n−0 − n+0)

2εkBT
≡ λ−2

c , (10)

where λc is similar in structure to the Debye length for plasmas, but involves the difference of the
charge densities. However, it appears already in the equilibrium. It has clearly to do with the
non-quasi neutrality, but is not a proper shielding length in the same sense as the Debye length
itself. λc is a measure of the distance over which the chasma is roughly uniform. Note that λc is
infinite for a plasma.

3. SHIELDING

Suppose e.g., that an extra isolated charge is introduced in the chasma: how will the charge
distributions alter themselves? We take here the simple case that a grid at a given potential Φ0 is
introduced e.g., at the origin. Equation (3) becomes now

d2 (ϕ + Φ)
dx2

=
e

ε

[
n−0 exp

(
e (ϕ + Φ)

kBT

)
− n+0 exp

(−e (ϕ + Φ)
kBT

)]
, (11)



1208 PIERS Proceedings, Hangzhou, China, March 24-28, 2008

or, provided
eΦ

kBT
<< 1, to a fair approximation:

d2 (ϕ + Φ)
dx2

=
e

ε

[
n−

(
1 +

eΦ
kBT

)
− n+

(
1 +

−eΦ
kBT

)]
. (12)

Using Equation (3) for the equilibrium in (12) yields:

d2Φ
dx2

=
e2(n− + n+)Φ

εkBT
. (13)

In the vicinity of the origin the density is constant. The condition for this is that x << λc. In
this approximation we have the solution for equation

Φ = Φ0 exp (−|x|/λD) . (14)

The shielding length is given by

λ2
D =

εkBT

e2(n−0 + n+0)
. (15)

λD becomes the λD for plasmas when the densities of the positive and negative particles are the
same, so a different notation seems unnecessary. The condition to treat n− − n+ as a constant is
x << λc according to Equation (10). We usually have λc >> λD so that the approximation is valid
in a reasonable range.

3.1. Homogeneous Chasma in Steady State
We know from the studies using the singular integro-differential Equations (2–5) that steady states
exist in which both n+ and n− are constant. Clearly the above analysis of the shielding can be
repeated. However, this is not an equilibrium but a steady state with flows of electrons and ions,
requiring a somewhat adapted treatment. Preliminary calculations show that the essence of the
results above remains valid. Still the question of the universality of the expression for λD remains
as chasmas exits in widely different situations. In [11] we obtained the so-called chasma (angular)
frequency:

ω2
c =

e2|n+0 − n−0|
εm−

. (16)

Although similar to the plasma frequency, its meaning is different: this is an entity occurring in
the steady state, and as such occurring in the stability analysis too, while the plasma frequency,
although constituted by equilibrium quantities, appears in the perturbation analysis only.

4. CONCLUSION

We studied the chasma equilibrium. A new parameter, the chasma length, λc, is introduced. Over
this distance the chasma may be approximated as uniform. It matches the previously introduced
chasma frequency, ωc. Both are similar to λD and ωp, but use the difference of the densities instead
of the sum. For the shielding length we obtained λ2

D = εkBT/(n− + n+)e2, which generalizes the
Debye length, but hardly differs from it. We have (λDωp)2 ≈ (λcωc)2 ≈ kBT/m−.
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Abstract— The exact solution for the evolution equation of ideal magnetohydrodynamics
(MHD) for a given velocity profile and a given initial magnetic field was obtained by Callebaut
and coworkers [1–4] This allows the exact calculation of the other electromagnetic quantities,
in particular of the neglected term, the displacement current, and thus to verify the MHD-
approximation and possibly to make an iteration i.e., to pass from MHD to Post-MHD. This
paper continues previous work on Post-MHD [5] where spherical coordinates and an involved
differential rotation profile were used in view of the application to the Sun. Here we give the rel-
evant solution of the evolution equation in Cartesian coordinates. Two very simple illustrations
are considered to give a clear insight. The drift velocity is calculated too. It turns out that this
represents a kind of Lenz law, i.e., it opposes the driving motion. The drift velocity is maximal
and equal but opposite to the driving velocity when the magnetic field component in the direction
of the velocity vanishes. As a side result the question of quasi-neutrality is considered (cf. the
concept of non-quasi-neutral plasmas or “chasmas”).

1. INTRODUCTION

Callebaut and coworkers [1–4] solved the equation of evolution for the magnetic field, H, in ideal
(i.e., assuming perfect conductivity) magnetohydrodynamics (MHD), together with the conserva-
tion of flux:

∂tH = rot(v ×H), (1)
divH = 0, (2)

in spherical coordinates (r, ϑ, ϕ) in the case that the velocity, v, has an azimuthal component
only and depends on r and ϑ only. (Meanwhile the last restriction can be dropped.) We have
B = µH with µ , the magnetic permeability, taken as constant; µ = 4π10−7 kgm/C2 (or henry/m)
in vacuum; SI units. The use of spherical coordinates in [1–3] was obvious: the aim was to generate
magnetic field from the differential rotation in the Sun and other heavenly bodies. However,
the spherical coordinates and the complex differential rotation obscure somehow what is really
happening. Cartesian coordinates, (x, y, z), are much simpler to handle and may give a better
insight. Moreover, in view of testing the theory by experiments it is probably easier in a plane-
parallel case or rectangular tubes. Of course cylinders have other advantages too [4] and the sphere
has no problems with the ‘ends’, so all cases have to be investigated.

Having an exact and simple analytic solution allows to verify the consistency of the MHD theory.
It allows to calculate easily the remaining electromagnetic quantities like the (MHD) current density
j =rotH, the electric field E, the displacement field D, the electric charge ρ and the displacement
current ∂tD. The ratio of the magnitudes of j and ∂tD is crucial to know the approximation
involved in MHD and possibly to apply a Post-MHD analysis [5], using e.g., an iteration.

The study is interesting too in view of recent research on non-quasi-neutral plasmas or chas-
mas [6–8]. See [9–11] too. There are two mayor kinds of chasmas: more or less permanent ones
like equilibria and steady states (e.g., some discharges and double layers) and rather transient ones,
e.g., occurring during instabilities or changing situations. It is clear that a change in e.g., frequency
due to some non-quasineutrality gives different information about the plasma/chasma quantities
like density, etc. In particular a slight change in the resonant heating frequency can decrease the
heating by an order of magnitude and more.

The plan of the paper is as follows. In Section 3 we give the relevant solution of Eqs. (1) and (2)
in Cartesian coordinates followed by simple illustrations. In Section 4 we calculate the remaining
electromagnetic quantities and check the consistency of MHD. Section 5 gives the conclusions.
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2. RELEVANT SOLUTION OF THE IDEAL MHD EVOLUTION EQUATION IN
CARTESIAN COORDINATES

2.1. General Case when v Has One Component
The x-axis is chosen perpendicular to the (isolating) walls, plane-parallel or of rectangular cross-
section. The velocity is parallel to the walls in the y-direction v = (0, v(x, y), 0). We suppose that
v is independent of time although the generation of magnetic field requires energy; a pump may
compensate for this loss. However, the generalization to v(x, y, z, t) is possible but is left away in
view of the clarity. Omitting infinite and periodic solutions we obtained the following solution for
H:

Hx = ∂zψ, Hy = t
∂(v, ψ)
∂(x, z)

+ Hy(0), Hz = −∂xψ, (3)

with Hy(0) = Hy(x, z, t = 0). Hence Hx and Hz are derived from a stream function ψ(x, z). They
do not depend on time. On the other hand Hy grows linearly with time as can be expected on
physical grounds (the stretching of the field lines does not change in time). Moreover the growing
part of Hy contains the Jacobian

J = (∂xv)∂zψ − (∂zv)∂xψ = Hx∂xv + Hz∂zv =
∂(v, ψ)
∂(x, z)

, (4)

J contains the derivatives of v and ψ. The product of tJ is a general feature in all coordinate
systems (up to possibly an additional factor, e.g., r−1 in spherical coordinates).
2.2. The Simplest Case
We take the initial magnetic field uniform and perpendicular to the plane-parallel walls H0 =
(H0, 0, 0) and ψ = H0z. We obtain

H = (H0, tH0∂xv + Hy(0), 0). (5)

Hence in this case the growth of Hy is purely proportional to the initial magnetic field and the
gradient of the velocity. Physically speaking the expression for Hy is obvious. It is the purest
case possible. For an experiment one may take ∂xv = constant to make the situation easy and the
results clear.
2.3. Both Gradients Involved
Consider ψ = H1x + H2z with H1 and H2 constants. The solution reads

H = [H2, t(H2∂xv −H1∂zv), H1]. (6)

It is obvious that both contributions to the growth can cooperate or counteract each other. There
is no growth when H2∂xv −H1∂zv = 0, which happens when v = v(H1x + H2z). The particular
case v = C(H1x + H2z) with C a constant may be interesting for an experiment.

3. CHECKING THE CONSISTENCY OF MHD

For the MHD current density we simply have

j = rotH = [−t∂zJ, (∂xx + ∂zz)ψ, t∂xJ.] (7)

Note that the x- and z-components of j grow linearly with time, while the y-component remains
constant; for H it is just the opposite.

For the Lorentz-force density we obtain

L = j×B = −µ
(
(∂xψ)∆ψ + t2J∂xJ, t[(∂xψ)∂zJ + (∂zψ)∂xJ ], t2J∂zJ + (∂zψ)∆ψ

)
. (8)

L contains terms which increase quadratically and linearly with time unless J = constant.
For the electric field we obtain:

E = −v ×B = µ(−vHz, 0, vHx) (9)

Thus
rotE = −µ[0, ∂x(vHx) + ∂z(vHz), 0] = (0, −µJ, 0), (10)
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which equals −∂tB as it should be. Next we have D = εE and

divD = −εµ[∂x(vHx)− ∂z(vHz)] = ρ, (11)

with ε the electric permittivity which equals 8.8542× 10−12 C/Vm) in vacuum. The charge density
is of the order of εµ = c−2 with c the velocity of light. Thus ρ is usually negligible except for very
fast changes as Alfvén observed in funding MHD. Reconsidering the simplest case (Section 3.2) we
obtain ρ = εµ∂xv which is proportional to the field and to the gradient of v. However, reconsidering
Section 3.3 we may end up with both signs in the contributions to ρ or even zero according to
the specific situation. Usually the MHD approach turns out to be excellent. Next we have the
displacement current ∂tD = 0. However, the picture changes if we include the drift velocity as
known in plasma physics.

Crossed E and H fields cause a drift velocity in a plasma (this applies to both kinds of charges):

vD =
E×B

B2
=

[−vHx(tJ + Hy(0)), v(H2
x + H2

z ), −vHz(tJ + Hy(0))
]

H2
x + ((tJ + Hy(0))2 + H2

z

. (12)

For t = 0:

vD =

[−vHxHy(0), v(H2
x + H2

z ), −vHzHy(0)
]

H2
x + (Hy(0))2 + H2

z

. (13)

Hence for Hy(0) = 0 we have vD = v. More generally we have vD = v for tJ = −Hy(0). In
view of the x- and z-dependence this does usually not happen at all places at the same time.
With increasing time vD will ultimately vanish. The drift velocity is maximal when E and B
are perpendicular and vanishes when they are parallel. If we include the drift velocity then the
displacement current does not vanish, but it remains at best a term of the order of c−2. Still for
very fast changes it may become comparable and even exceed the MHD current.

As the drift velocity affects the free charges only the effect on a conducting liquid will be small.
However, the effect on a strongly ionized plasma will be large as long as the field component in
the direction of the motion is small. Once this component dominates (thus E nearly parallel to
B) vD becomes smaller and smaller. This is surprising since the other components nor the motion
change. The various cases may be put to the test in experiments. Clearly the switching on of a
magnetic field in a moving fluid or the putting in motion of a fluid in an existing magnetic field
needs special investment. This suggest the need to investigate the effect of resistivity as well as the
time dependence of the driving velocity which must decrease by creating a magnetic field, unless
some energy source is present.

4. CONCLUSION

We gave the relevant solution of the ideal MHD evolution equation in Cartesian coordinates in
the case that v has only one component, depending on the ‘other’ coordinates. Previous results
in spherical and cylindrical coordinates are confirmed: the growth of the magnetic field is in the
direction of the velocity and linear in time and proportional to a Jacobian involving the velocity
and the ‘other’ components of the field. Two simple case are considered to give a clear insight.

Next we calculated the remaining electromagnetic quantities and checked the consistency of
the MHD approach. Moreover the charge turns out to be negligible (of order εµ as realized by
Alfvén). The displacement even vanishes in this case, making the MHD approach seemingly perfect.
However, we calculated the plasma drift velocity and found that it vanishes for large time and that
it exactly equals the driving velocity when the component of the magnetic field in the direction
of the velocity vanishes. Including the drift velocity leads to a contribution of the displacement
current of order c−2, but for some rapid changes it may become relevant. This investigation is of
interest to the study of non-quasi-neutral plasmas or chasmas too.
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Abstract— Chasmas are a generalization of plasmas, i.e., the condition of quasi-neutrality is
dropped. In an accompagnying paper [13] the chasma equilibria were investigated and a shielding
length for chasmas was introduced which generalizes the Debye length: λ2

D = εkBT/(n−+n+)e2.
However, two other relevant quantities occurred in the equilibrium analysis: the chasma angular
frequency: ω2

c = |n− − n+|e2/εm−, and the associated length representing the distance over
which a chasma may roughly have constant densities: λ2

c = 2εkBT/|n− − n+|e2, where the
difference of the densities occurs in contrast to the plasma frequency and the Debye length, but
satisfying (λDωp)2 ≈ (λcωc)2 ≈ kBT/m−. Now the perturbation of these chasma equilibria
is investigated. In the case that the densities are roughly constant we obtain the dispersion
relation which generalizes the one for plasmas, involving the plasma and the chasma frequencies.
Previous studies for the stability of a steady state chasma gave not the same results so that
further improvement of both cases is desirable.

1. INTRODUCTION

In a plasma one has by definition quasi-neutrality in volumes which have dimensions larger than the
Debye length or at least a few times the Debye length. In some situations one has no quasi-neutrality
over many times the Debye length. e.g., in certain discharges or in the multipactor effect [1–3]
(secondary electron resonance discharge) in the cavities of linear accelerators. It is expected that
chasmas occur too in certain extended double layers with currents and magnetic fields playing a
role in the solar convective zone and solar atmosphere or in the terrestrial atmosphere. Callebaut
and Knuyt [4–7] investigated theoretically the steady state, using an approach based on a singular
integro-differential equation, [8–10]. (See [11–18] too.) They showed in 1-D, 2-D and 3-D that the
ion density is constant provided the producing beam density is constant. Later Callebaut et al. [11]
investigated the situation using the conventional approach involving all the basic equations, which
then allowed to do an approximate perturbation analysis in which the steady state motions of the
particles were not taken into account. They introduced the so called chasma angular frequency ωc.
(See below).

In an accompanying paper [13], we investigated chasma equilibria, distinct from the chasma
steady states considered previously. Moreover, the generalization of the Debye length for chasmas
was introduced, together with another characteristic length λc over which a chasma equilibrium
may have constant densities. λc and ωc have the same structure as the generalized λD and ωp, but
use the difference of the densities instead of the sum. The relation (λDωp)2 ≈ (λcωc)2 ≈ kBT/m−
was obtained.

In Section 3 we give first the basic equations and next recall the expressions for the chasma
equilibria given in reference [13]. Next we consider perturbations of the chasma equilibria, in
particular in the region where the densities and the potential are approximately constant (Section 4),
followed by the conclusion (Section 5).

2. BASIC EQUATIONS AND CHASMA EQUILIBRIA

The basic equations here are those of continuity, momentum, Poisson and the polytropic one. They
read, using a condensed notation

∂tn∓ +∇(n∓v∓) = 0, (1)

m∓n∓(∂tv∓ + v∓.∇v∓) = −∇p + e(n− − n+)∇ϕ, (2)

ε∆ϕ = e(n− − n+), (3)

p = p− + p+ = (n− + n+)kBT = K−n
Γ−
− + K+n

Γ+
+ , (4)

where the index — stands for quantities related to the electrons (charge−e) and + for the ions (once
ionized, all of the same mass m+). The density, velocity, potential and pressure are represented by n,
v, p and ϕ respectively. ε is the electric permittivity and equals in vacuum 8.8542×10−12 C/Vm; kB

is the Boltzmann constant (1.3807× 10−23 J/K). The absolute temperature is T . K∓ are constants
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and so are the polytropic exponentials Γ∓. If the ions are mono-atomic we have Γ− = Γ+ = 5/3
for adiabatic cases. For the equilibrium quantities (still depending on the coordinates) we use the
index 0. In equilibrium we have v = 0 and obtain:

0 = −∇p0 + e(n−0 − n+0)∇ϕ0, (5)
ε∆ϕ0 = e(n−0 − n+0), (6)

p0 = p−0 + p+0 = (n−0 + n+0)kBT0 = K−n
Γ−
−0 + K+n

Γ+

+0, (7)

In [13] we obtained in the 1-D case (a plane-parallel chasma, infinite in 2 directions; the x-axis
perpendicular to the walls) an asymmetric solution (useful near a boundary)

ϕ0 =
−2kBT0

e
ln

(
1 +

x

λc

)
, n−0 =

λ2
cn−0(0)

(λc + x)2
, n+0 = 0, p0 = n0(0)kBT0,

λc =
[

2εkBT0

(n−0(0)− n+0(0))e2

]1/2

, (8)

and a symmetric solution (obtained as a series development)

ϕ0 =
kBT0

e

∞∑

s=1

a2sx
2s, a2 = λ−2

c , a4 =
e4

24(εkBT0)2
(
n−0(0)2 − n0+(0)2

)
, a6 = . . . , (9)

n∓0 = n∓0(0) exp

(
±

∞∑

s=1

a2sx
2s

)
, p0 = (n−0 + n+0)kBT0, (10)

where we have adapted the notation of Ref. [13] and replaced λ− by its more general expression
λc, taken at the origin. Note that Eq. (5) is satisfied although n∓ and ϕ were obtained using the
Boltzmann equation. However, in the perturbed momentum equation we shall use the two fluid
approximation instead of the one fluid one.

3. PERTURBING THE CHASMA EQUILIBRIUM

Writing X = X0 + X1 for each variable and linearizing yields:

∂tn∓1 + ∂x(n∓0v∓1) = 0, (11)

m∓n∓0∂tv∓1 = −∂xp1 ± en∓0∂xϕ1 ± en∓1∂xϕ0, (12)

ε∂xxϕ1 = e(n−1 − n+1), (13)

p1 = Γ−K−n
Γ−−1
−0 n−1+Γ+K+n

Γ+−1
+0 n+1 = (Γ−n−1 + Γ+n+) kBT0 = c2

−sm−n−1+c2
+sm+n+1. (14)

We eliminate v∓1:

−m∓∂ttn∓1 = −∂xxp1 ± e∂x(n∓0)∂xϕ1 ± en∓0∂xxϕ1 ± e∂x(n∓1)∂xϕ0 ± en∓1∂xxϕ0. (15)

Now we eliminate p1, ∂xxϕ1 and ∂xxϕ0:

−m∓∂ttn∓1 = −m−c2
−s∂xxn−1 −m+c2

+s∂xxn+1 ± e∂x(n∓0)∂xϕ1 ±(
e2n∓0/ε)(n−1 − n+1

)± e∂x

(
n∓1)∂xϕ0 ± (e2n∓1/ε

)
(n−0 − n+0). (16)

The condition to treat n−0, n+0 and ϕ0 as a constants is x << λc. In the symmetric case
we have usually λc >> λD so that the approximation is valid in a reasonable range. With this
approximation and putting

n∓1 = C∓ exp[i(ωt + kx)], (17)

with C∓ arbitrary constants we obtain

m∓ω2n∓1 = m−c2
−sk

2n−1+m+c2
+sk

2n+1±
(
e2n∓0(0)/ε

)
(n−1 − n+1)±

(
e2n∓1/ε

)
(n−0(0)− n+0(0)) .

(18)
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These are 2 relations between n−1 and n+1. The compatibility condition yields the dispersion
equation:

[
ω2 − c2

−sk
2 − e2 (2n−0(0)− n+0(0)) /εm−

] [
ω2 − c2

+sk
2 − e2 (2n+0(0)− n−0(0)) /εm+

]
=

=
[
c2
−sk

2 − e2n+0(0)/εm−
] [

c2
+sk

2 − e2n−0(0)/εm+

]
. (19)

This is a bi-quadratic equation in ω and a quadratic one in k. In the usual case that m+ >> m−
it simplifies to
[
ω2−c2

−sk
2−e2(2n−0(0)−n+0(0))/εm−

]
ω2 =

[
c2
−sk

2−e2n+0(0)/εm−
] [

c2
+sk

2−e2n−0(0)/εm+

]
=

= (m−/m+)
[
c2
−sk

2 − e2n+0(0)/εm−
] [

c2
−sk

2 − e2n−0(0)/εm−
] ≈ 0. (20)

In the plasma case we recover the well known dispersion relation ω2 = c2−sk
2 + e2n0/εm−. In the

case of an electron-positron chasma we obtain:

=
[
c2
sk

2 − e2n+0(0)/εm−
] [

c2
sk

2 − e2n−0(0)/εm−
]
. (21)

For the electron-positron plasma this reduces to ω2 − 2csk
2 − 2e2n0/εm− and ω2 = 0.

Recalling that the chasma frequency ωc was defined in previous work [11] as

ωc =

√
e2(n−0(0)− n+0(0))

εm−
, (22)

(which satisfies the relation: (λcωc)2 = 2kBT/m−) we may rewrite the relevant part of the disper-
sion relation (20) as

ω2 = c2
−sk

2 + e2(2n−0(0)− n+0(0))/εm− = c2
−sk

2 + ω2
−e + ω2

c . (23)

(We omit subtleties related to n+0 − n−0 being positive or not.) Often ω−e >> ωc and the change
with the plasma dispersion relation is small. However, in an experiment a small change in ω can
have drastic effects e.g. when resonance effects are involved as in the case of h.f. heating.

We may neglect the pressure terms in Eq. (23) provided

k2 << e2(2n−0(0)− n+0(0))/εΓ−kBT0. (24)

On the other hand we must have kλc > 1 in order to have several wavelengths in the region where
the densities are constant. Multiplying both sides of Eq. (24) with λ2

c leads to the conditions to
neglect the pressure terms in the dispersion relation:

1 < (kλc)2 <<
2(2n−0(0)− n+0(0))
Γ−(n−0(0)− n+0(0))

. (25)

both conditions may be satisfied if n−0(0) ≈ n+0(0). e.g., in the plasma case there is no problem.

4. CONCLUSION

We have studied the perturbation of a chasma equilibrium considered in paper [13] In the region
where we may consider the densities and the potential to be approximately constant we obtained
a dispersion equation which is bi-quadratic in ω, but quadratic in k. If m+ >> m−, it simplifies
considerably. However, the chasma dispersion relation contains new combinations of frequencies
based on differences between the densities of electrons and ions. Even in the approximation m+ >>
m−, ωp occurs in combination with ωc, the so-called chasma frequency.

Most of all we have to realize that the previous analysis applies to the region where the densities
are approximately constant, i.e; over a region of the order of λc, which is large if the densities do not
differ much. However, the neighboring regions, where the densities are not constant, may not only
alter the oscillation frequency, but may even have a destabilizing effect on the whole chasma. In
fact in an analysis of a steady state chasma, (as occurring in the multipactor effect in accelerators)
we obtained nearly always instability. However, it must be mentioned that the analysis there was
approximate because the steady state motions were neglected in the perturbation theory. Clearly
still many generalizations are possible.
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Usefulness of a Universal Electric-cusp Type Plasma Reactor in
Basic Studies and a Variety of Applications in Dust Dynamics,

Ionization and Discharge Physics Based on Electrohydrodynamics

H. Kikuchi
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Abstract— A universal electriac-cusp type plasma reactor designed more than a decades ago
by the present author has successfully been in operation for the last coupe of years and has been
proved useful for basic studies and a variety of applications in dust dynamics, ionization and
discharge physics, including laboratory simulation of universe, atmospheric and space electricity
and plasmas, based on ‘Electrohydrodynamics (EHD)/Electromagnetohydrodynamics (EMHD)’.
This paper aims to present the structure and operation of this plasma reactor and to show how this
device is useful for basic studies and applications, citing a number of examples. The new device is
a square box with two lead electrodes (15mm in diameter and 5 cm in interval) inside, suspended
2.75 ∼ 5 cm above a metallic plate. When a tiny object or dust grain, conducting or dielectric,
is placed in the cusp center, electric field line merging toward it occurs from the four or two
poles, inducing or polarizing electric charges on its surface or in its volume, negative or positive
facing positive or negative poles, respectively. Then a catastrophe occurs, namely zero-electric
field without the object or dust suddenly tends to sufficiently high electric fields, almost infinity,
around it. We are now ready to be advanced to one of entirely different two directions, depending
upon the background gas pressure. One is the case of energy transfer from fields to kinetic energy
leading to dust dynamics in a pair of electric mirror for the background gas pressure below the
breakdown threshold, and the other is the case of energy transfer from fields to ionization resulting
in an electric discharge for the background gas pressure beyond the breakdown threshold. First
we deal with the former case. When an uncharged dust grain, conducting or dielectric, is placed
onto the center of a quadrupole, dust starts moving between conjugating mirror points and is
going back and forth undulating the mid-plane. If a dust grain is negatively or positively charged
its motion in periodic cusps and mirrors in the midplane of a quadrupole forming an electric
mirror. Next we proceed to three dimensional motion of an uncharged or charged dust grain not
in the ecliptic plane of a quadrupole, Then the dust grain is going to helical motion due to helicity
generation of an electric quadrupole. The second case when the background gas pressure is beyond
the breakdown threshold leads to a variety of electric discharge phenomena, laboratory evidence
of ‘electric cusp-mirror and reconnection model’ as well as the first case and provides basic studies
of ionization and discharge processes, laboratory simulations of universe, atmospheric and space
electric electricity and plasma phenomena, applications to industrial plasmas, including plasma
processing, new material production such as diamond, electric precipitator and so on.

1. INTRODUCTION

A universal electriac-cusp type plasma reactor was designed more than a decades ago by the present
author [1] The device is a square box with two lead electrodes (15 mm in diameter and 5 cm in
interval) inside, suspended 2.75 ∼ 5 cm above a metallic plate as shown in Fig. 1. When a tiny
object or dust grain, conducting or dielectric, is placed in the cusp center, electric field line merging
toward it occurs from the four or two poles, inducing or polarizing electric charges on its surface or in
its volume, negative or positive facing positive or negative poles, respectively. Then a catastrophe
occurs, namely zero-electric field without the object or dust suddenly tends to sufficiently high
electric fields, almost infinity, around it.

2. OCCURRENCE OF A CATASTROPHE: DUST AND/OR OBJECT-RELATED
ELECTRIC RECOMMECTION

Then we are ready to advance to entirely different two situations, depending upon the background
gas pressure as illustrated in Table 1. Namely, the casee. of the background gas pressure is below
the threshold 1. The other is case of the background gas pressure beyond the threshold as illustrated
in the right column of Table 1 that leads to ‘electric discharge’ (main discharge or return stroke)
through a sequence of those processes.
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Figure 1: Universal electric-cusp type plasma reactor. Ob-
ject at the cusp center.

Table 1.

Figure 2: Helical motion of an un-
charged dust grain not in the ecliptic
plane of a quadrupole.

Figure 3: Electric discharge from positive and negative electrodes to
a mesa-type lead placed at a cusp center on a copper plate. Above
bright light is a real discharge, while lower weak light is its image.
The voltages of electrodes are ±21KV both and discharge current
is around 590 µA. The mesa diameter is 5mm. It is interesting to
compare flat discharge to mesa-type object with sharp discharge
to hemisphere in Fig. 4. Also, neither direct discharge between
two electrodes nor electrodes to copper ground occurred because of
more electric field merging from both electrodes to object.
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3. LABORATORY EVIDENCE OF ELECTRIC RECONNECTION MODEL BY
DUST-AND/OR OBJECT-RELATED ELECTRIC RECONNECTION BY DUST
DYNAMICS IN AN ELECTRIC QUADRUPOLE AND DUST-AND/OR
OBJECT-RELATED ELECTRIC DISCHARGE AND ITS VARIETY OF APPLICATIONS
INCLUDING ELECTRIC DISCHARGE PHENOMENA, BASIC STUDIES OF
IONIZATION AND DISCHATGE PROCESSES, LABORATORY SIMULATIONS OF
UNIVERSE, ATMOSPHERIC AND SPACE ELECTRIC ELECTRICITY AND PLASMA
PHENOMENA, INDUSTRIAL PLASMA PROCESSING, NEW MATERIAL
PRODUCTION SUCH AS DIAMOND, ELECTRIC PRECIPITATOR AND SO ON.

A variety of above dust dynamics and electric discharge observations by a universal electric-cusp
type plasma reactor are typically shown in Figs. 2–4.

Figure 4: Electric discharge ftpm positive and negative electrodes to a hemispherical lead with double ion
needles electroplated and directed to electrodes which placed at a cusp center on a copper plate. Above bright
light is a real discharge, while lower weak light is its image. The voltage of both electrodes are ±21KV and
discharge current is around 500 µA. The length of needle is 5.5 mm. It may be interesting to place object
not at a cusp center on a copper plane and to how the discharge behaviour changes. So we typically choose
a couple of cases: (i) Object is placed not a cusp center but still inside a cusp region on a copper plane; (ii)
Object is placed not a cusp center but inside a cusp region on a copper plane; (iii) Object is placed not a
cusp center but outside a cusp region on a copper plane on a copper plane; (iv) Object is placed not a cusp
center but just below the positive electrode on a copper plane.

Figure 5: Electric discharge from positive and negative electrodes to a mesa-type lead shifted 1.5 cm left
from a cusp center. Above bright light is a real discharge, while lower light is its image. The voltages of both
electrodes are ±21KV and discharge current is around 560µA. Mesa diameter is 5 mm. Note that object is
still inside a cusp region.
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Figure 6: Electric discharge between two positive and negative electrodes for a hemispherical lead shifted
4 cm right from a cusp center. Above bright light is a real discharge, while lower weak light is its image.
The voltages of both electrodes are ±21KV and discharge current is around 320µA. Note that discharge
from positive and negative electrodes to hemispherical lead no longer occurs because object is outside a cusp
region.

Figure 7: Electric discharge between two electrodes for hemispherical lead placed just under positive elec-
trode. Above bright light is a real discharge, while lower weak light is its image. The voltages of both
electrodes are ±21 KV and discharge current is around 400 µA. Discharge from positive and negative elec-
trodes to object no longer occurs because object is outside a cusp region.

4. CONCLUSION

A universal electriac-cusp type plasma reactor designed more than a decades ago by the present
author has successfully been in operation for the last coupe of years and has been proved useful
for basic studies and a variety of applications in dust dynamics, ionization and discharge physics,
including laboratory simulation of universe, atmospheric and space electricity and plasmas, based on
‘Electrohydrodynamics (EHD)/Electromagnetohydrodynamics (EMHD)’. In particular, structure
and operation of the novel universal electric-cusp plasma reactor are described in detail.

Specific usefulness are cited below:

(1) Basic studies of dust dynamics and its applications;
(2) Basic studies of ionization and discharge physics;
(3) Laboratory simulation of universe, atmospheric and space electricity and plasmas;
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(4) A variety of industrial applications, including plasma processing, new material production
such as diamond, and electric precipitator.
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Abstract— The dispersion relation for magnetoplasmon excitations in a single layer and a pair
of parallel layers of graphene is calculated in the random-phase approximation. Our formalism
is valid for integer filling factor. The graphene layers are embedded in a dielectric medium
and a strong perpendicular quantizing ambient magnetic foeld is applied. We present numerical
results for the for magnetplasmon excitation energies as a function of the in-plane wave vector.
Our numerical calculations show that for a graphene layer, there is a collective mode which is
not Landau damped by the particle-hole excitations. This magnetoplasmon has a negative as
well as a positive group velocity for different ranges of wave vector at fixed magnetic field. For
bilayer graphene, the magnetoplasmon mode is split by the inter-layer Coulomb interaction into
a symmetric (in-phase) and antisymmetric (out-of-phase) oscillatory mode. A discussion of the
plasmon instabilities associated with these layered structures is presented.

1. INTRODUCTION

Recent advances in fabrication techniques have made it possible to produce graphene, which is
a two-dimensional (2D) honeycomb lattice of carbon atoms forming the basic planar structure in
graphite [1, 2]. Graphene has stimulated considerable theoretical interest as a semi-metal whose
electron effective mass may be described by an unusual massless Dirac-fermion band structure.
Several novel many-body interactions in graphene have been investigated [3]. In recent experiments,
the integer quantum Hall effect (IQHE) has been reported in graphene [4–6]. The quantum Hall
ferromagnetism in graphene has been investigated from a theoretical point of view [7]. Graphene
has a number of interesting properties as a result of its unusual band structure which is linear
near two inequivalent points (K and K ′) in the Brillouin zone. The single-electron quantum states
near K and K ′ are described by a Dirac-type equation, where the wave functions are spinors
because of the two-point basis of the honeycomb lattice. In the presence of a magnetic field, the
graphene structure shifts both the Shubnikovde Haas oscillations [8] as well as the step pattern of
the IQHE [9]. Both these effects have recently been reported experimentally [4, 5]. The spectrum
of plasmon excitations in a single graphene layer embedded in a material with effective dielectric
constant εb in the absence of an external magnetic field (B = 0) was calculated in [10].

In this paper, we calculate the nonlocal dielectric function and the dispersion equation for
magnetoplasmons in a single graphene layer and for a pair of spatially separated graphene layers.
The charge carriers may be either electrons or holes. A strong perpendicular magnetic field B is
apllied. The calculations are carried out in the random-phase approximation (RPA).

2. MODEL FOR GRAPHENE LAYER AND DISPERSION EQUATION FOR
MAGNETOPLASMONS

Let us consider electrons in a single graphene layer in the the xy plane in a perpendicular magnetic
field B parallel to the positive z axis. The effective-mass Hamiltonian for noninteracting electrons
in one valley in graphene in the absence of scatterers is given by the following equation. Here, we
neglect the Zeeman splitting and assume valley energy degeneracy, describing the eigenstates by
two pseudospins [9, 10]. We have

Ĥ(0) = vF

(
0 π̂x − iπ̂y

π̂x + iπ̂y 0

)
, (1)

where π̂ = −i~∇ + eA, −e is the electron charge, A is the vector potential, vF =
√

3at/(2~) is
the Fermi velocity with a = 2.566Å denoting the lattice constant, and t ≈ 2.71 eV is the overlap
integral between nearest-neighbor carbon atoms [9].
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In the Landau gauge, A = (0, Bx, 0), the eigenfunctions ψα(r) of the Hamiltonian Ĥ(0) in
Eq. (1) are labeled by the set of quantum numbers α = {ky, n, s(n)}, where n = 0, 1, 2, . . . is the
Landau level index, ky is the electron wave vector in the y direction, and s(n) which is defined by

s(n) =
{

0 (n = 0),
±1 (n > 0), (2)

labels the conduction (+1) and valence (−1 and 0) band, respectively. The two-component eigen-
function ψα(r) is calculated and given by [9]

ψα(x, y) =
Cn√
Ly

exp(ikyy)
(

s(n)in−1Φn−1(x + r2
Bky)

inΦn(x + r2
Bky)

)
, (3)

where rB =
√
~/eB is the magnetic length, and Lx and Ly are normalization lengths in the x and

y directions, respectively. We have

Cn =
{

1 (n = 0),
1/
√

2 (n > 0), (4)

and

Φn(x) =
(
2nn!

√
πrB

)−1/2 exp

[
−1

2

(
x

rB

)2
]

Hn

(
x

rB

)
, (5)

where Hn(x) is a Hermite polynomial. The eigenenergies depend on the quantum numbers n and
s only and are given by

εα = s(n)εn = s(n)
~vF

rB

√
2n, (6)

for which successive levels are not equally spaced. We also note that the ratio of the Zeeman
term ∆EZ(B) to the separation between adjacent Landau levels ∆EL(B) is negligible at High
magnetic field. For B = 10 T, we have ∆EZ(B)/∆EL(B) ≈ µBB/(

√
2~vF r−1

B ) ≈ 5 × 10−3. Here,
µB = e~/(2me) is the Bohr magneton with me denoting the free electron mass. Therefore, the
contributions to the single-electron Hamiltonian from the Zeeman splitting and very small pseu-
dospin splitting caused by two valleys in graphene may be neglected, as done in [9, 11, 12]. We
assume energy degeneracy for the two possible spin projections and two graphene valleys described
by pseudospins.

We now derive an expression for the dielectric function of a graphene layer in the presence
of a perpendicular magnetic field. We use RPA [13] following the procedure described in [14].
The response of the system to a weak external perturbing potential φext(r, t) acting at the space-
time point (r, t) can be obtained by calculating the density matrix from its equation of motion
i~∂ρ̂/∂t = [Ĥ, ρ̂], where Ĥ is the total Hamiltonian which includes electron-electron interactions.
For a weak perturbation, we write ρ̂ = ρ̂0 + ρ̂1 and Ĥ = Ĥ0 − eφ, where ρ̂0 is the equilibrium
density matrix and ρ̂1 its perturbation, Ĥ0 is the unperturbed Hamiltonian and φ(r, t) is the total
scalar potential given by φ(r, t) = φext(r, t) + φin(r, t). In this notation, φin(r, t) is the induced
electric potential due to the external perturbation φext(r, t). In the basis set given by Eq. (3), we
have

< α|ρ̂0|α >= gsgvf0(εα)δαα′ , < α|H0|α >= εαδαα′ , (7)

where f (0)(εα) is the occupation factor of the state |α〉 determined by the Fermi-Dirac distribution
function. We have f0(εα) = (exp[εα/(kBT )] + 1)−1 if the energy is measured from the Fermi level,
kB is the Boltzmann constant and T is temperature. Also, gs = 2 and gv = 2 are the spin and
graphene valley degeneracies. Substituting Eq. (7) into the equation of motion for the density
matrix, and solving the resulting equation in lowest order, we obtain

< α|ρ̂1|α′ >= gsgve
f0(εα)− f0(εα′)
~ω + εα − εα′

< α|φ|α′ >, (8)
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where ω is the frequency.
We take account of screening due to the background medium by assuming that the graphene

layer is embedded in a material with effective dielectric constant εb and take εb = 2.5 in our
calculations assuming that the medium is SiO2 on one side and air on the other. Poisson’s equation
is

∇2φin =
4πe

εs
Tr [ρ̂1] δ(z), (9)

where εs = 4πε0εb and
Tr [ρ̂1] =

∑

αα′
|α >< α|ρ̂1|α′ >< α′|. (10)

Substituting Eq. (8) into Eq. (10), and Eq. (10) into Eq. (9), and Fourier transforming Eq. (9),
and introducing the in-plane wave vector q, we have φ(q, ω) = φext(q, ω)/ε(q, ω), where ε(q, ω) is
the dynamic dielectric function in RPA [13] given by ε(q, ω) = 1 − Vc(q)Π(q, ω), where Vc(q) =
2πe2/(εsq) is the 2D Coulomb interaction and Π(q, ω) is the 2D polarization function given by

Π(q, ω) =
gsgv

2πr2
B

∞∑

n=0

∞∑

n′=0

∑

s(n),s′(n′)

fs(n)n − fs′(n′)n′

~ω + εs(n)n − εs′(n′)n′
Fs(n)s′(n′)(n, n′, q), (11)

where Fss′(n, n′) is a form factor arising from the overlap of eigenstates and is given by

Fss′(n, n′, q) = C2
n1

C2
n2

[
−q2r2

B

2

]n1−n2 1
|(n1 − n2)!|2

×
(

s1(n1)s2(n2)
∣∣∣∣
(n1 − 1)!
(n2 − 1)!

∣∣∣∣ +
∣∣∣∣
n1!
n2!

∣∣∣∣
)

. (12)

At T = 0 K, there will be NL filled Landau levels in the valence band in Eq. (11) with fn− = 1
for 1 ≤ n ≤ NL and s(n) = −1. For the highest filled Landau level, we have n = 0, f0− = ν,
where ν is the filling factor of that Landau level. Since the wavefunction of an electron in graphene
depends on the guiding center kyr

2
B, the number NL of completely filled Landau levels, except the

highest level (n = 0, and ν are given by 2πr2
Bn2D = NL + ν, where n2D is the 2D electron density,

NL is an integer, and 0 ≤ ν < 1. We consider the n = 0 Landau level as belonging to the valence
band, and we set f0+ = 0 at all temperatures. We note, that at T = 0 K, the occupation of the
Landau levels in the empty conduction band is given by fn+ = 0.

At high temperatures or weak magnetic field, when the separation between Landau levels is
small, and kBT À ~vF /rB, the occupation of the Landau levels is given by the Fermi-Dirac
distribution function fn, s(n) = (exp[εn,s(n)/(kBT )] + 1)−1 for n > 0 if the energy is measured from
the Fermi level. To simplify our numerical calculations, we assume that the highest Landau level
in the valence band is completely full and all other valence levels are empty. Furthermore, we
will assume that the magnetic field is sufficiently high that the Landau level separation is large.
Consequently, we will take only a few terms in the polarization sums since transions to higher
levels have smaller oscillator strengths [10]. Furthermore, since the separation between Landau
levels decreases as n increases and is ∝ 1/

√
n, it is reasonable to include the Landau levels with

1 < n ≤ 3 in our calculations.
The magnetoplasmon dispersion relation for a single graphene layer may now be calculated nu-

merically by seeking the zeros of the dynamical dielectric function, i.e., ε(q, ω) = 0 where ε(q, ω) is
defined above and the polarization function Π(q, ω) is obtained from Eq. (11). The magnetoplas-
mon dispersion relation fora single graphene layer with the highest valence band full and all others
empty at T = 0 K is presented in Fig. 1.

Our numerical calculations show that there is a negative group velocity for qrB > 1 which is
caused by magnetic field. The magnetic field also causes the negative group velocity of magneto-
plasmons in a two-dimensional electron gas (2DEG) [17]. The horizontal straight line corresponds
to the particle-hole mode excitation energies. There is no Landau damping of the magnetoplasmon
branch outside this particle-hole mode region. The effect of the Coulomb interaction is to split off
a single-partcle excitation into a collective mode. The dependence of Vc(q) on wave vector leads
to the variation of the magnetoplasmon energy with wave vector. For large q, vc(q) → 0, leading
to little effect of the Coulomb interaction on the single-particle excitation energy for qrB À 1 in
Fig. 1.
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Figure 1: The normalized magnetoplasmon excita-
tion energy as a function of wave vector, in units of
r−1
B , in a single graphene layer. We chose T = 0 K,

only one valence band is full and all others are
empty, and transitions to the two lowest conduction
bands are included in the sums for the polarization
function.

qrB

0 1 2 3 4 5 6

ω
/(

v
F
/r

B
)

0.0

0.4

0.8

1.2

1.6

2.0

Figure 2: The normalized magnetoplasmon excita-
tion energy at T = 0K as a function of the in-plane
wave vector q measured in units of r−1

B for bilayer
graphene with separation D = rB . Only the highest
Landau level in the valence is occupied and com-
pletely full.

3. MAGNETOPLASMONS IN BILAYER GRAPHENE

The possibility of having electrons and holes that are spatially separated in two parallel graphene
layers separated by an insulating slab of SiO2 in the presence of a perpendicular magnetic field has
been proposed in [18]. The graphene sheets are surrounded by insulators of dielectric constants
ε1 and ε2 above and below the graphene layers, respectively. The insulator between the layers
has dielectric constant ε3. The charge carriers, which may be either electrons or holes, could be
controlled as they are in coupled quantum wells (CQWs) [19-22] by laser pumping (far infrared in
graphene).

The spatial separation of charge carriers in different graphene layers can be achieved by applying
an external electric field. Furthermore, the spatially separated carriers can be created by varying the
chemical potential, using a bias voltage between a pair of graphene layers, or between gates located
near the corresponding graphene sheets. The ratio of the external voltage Vext to the interlayer
separation D required to create spatially separated electrons and holes in graphene layers with the
2D density n2D = 1011 cm−2 is given by Vext/D = 4πen2DD/εs = 4.021× 104 V/cm. Here, εb = 4.5
is the dielectric constant of SiO2. Since the critical electric field Ecr for dielectric breakdown in
SiO2 is Ecr ≈ 106 V/cm, we conclude that the external electric field for spatially separated electrons
and holes is less than the critical electric field for dielectric breakdown in SiO2.

We may calculate the dispersion equation in the RPA for magnetoplasmons in bilayer graphene
when there is no inter-layer hoping using the same methods employed for semiconducting systems
employed by the authors in [15, 23–25]. The layers are in the planes z = 0 and z = D. The
spectrum of magnetoplasmons is obtained in RPA by solving the following equation [15, 23]:

(
2Vc(q)Π11(q, ω)− ε1

εb
− coth(qD)

)(
2Vc(q)Π22(q, ω)− ε2

εb
− coth(qD)

)
=

1
sinh2(qD)

, (13)

where Πjj(q, ω) is the polarization function of the charge carriers on the first j = 1 or the second
j = 2 graphene layer defined by Eq. (11) and Vc(q) = 2πe2/(εsq). We observe that in the limit
qD À 1, Eq. (13) reduces to the dispersion equation for magnetoplasmons in a single graphene layer.
Clearly, the sign of the charge carriers within the plasma has no effect on the dispersion equation
of the magnetoplasmons of a two-component system [23]. If Π11(q, ω) = Π22(q, ω) = Π(q, ω), and
ε1 = ε2 = εb, then we get from Eq. (13):

[(2Vc(q)Π(q, ω)− 1)(1− exp(−2qD))− (1 + exp(−2qD))] = ±2 exp(−qD). (14)

The spectrum of magnetoplasmons in two spatially separated graphene layers when only the
highest valence band is occupied and D = rB is presented on Fig. 2. The results of our numerical
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calculations for bilayer graphene show there is a symmetric and antisymmetric magnetoplasmon
mode for bilayer graphene. The originally degenerate magnetoplasmon mode in each layer of an
isolated single graphene layer is shifted from their value by the inter-layer Coulomb interaction. The
more energetic mode above the particle-hole mode region is the antisymmetric mode in which the
charge density fluctuations in each layer oscillate out of phase with each other. The less energetic
mode is the symmetric mode for which the density fluctuations are in phase. For a range of wave
vectors the group velocity is negative due to magnetic field analogous to the magnetoplasmon modes
in a single graphene layer. In the theory for charged particle energy loss, there is transfer of energy
to the collective modes only when the charged particle velocity has the same value as the phase
velocity of the collective mode. Plasma instabilities associated with these layered structures will
be explored as a source of electro-magnetic radiation.
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Diagonalization of Translation Operators for Elastic Wave Equations
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Abstract— It shows that the dyadic Green’s function of elastic wave equations can be factorized
in terms of vector translators. The diagonalization of translation operators for elastic wave
equations is presented. This result is important in applying the fast multipole method to elastic
propagation in complex media.

1. INTRODUCTION

Elastic wave equations are difficult to solve because they are composed of longitudinal waves and
transverse waves propagating at different speeds. Furthermore, for some boundary conditions,
longitudinal waves produce transverse waves on reflection, and vice verse [1]. This difficulty has
been overcome by solving the integral formulation of the elastic waves [2]. This integral formulation
also facilitates the use of the fast multipole method (FMM) [3–5] to solve the problems of elastic
wave scattering.

The crucial step in the FMM for solving the wave equations is the diagonalization of the transla-
tion operators [3–7]. Recently, the diagonalizations of the translation operators have been extended
to vector and general tensor cases [8, 9]. It can be shown that the longitudinal waves and transverse
waves are translated separately [9, 10]. Thus, the diagonalization of the translation operators of the
longitudinal waves and transverse waves can be treated separately. However, since Hansen (vector)
spherical harmonics and multipole fields are complete sets, it will be shown that the translation
operators of the longitudinal waves and transverse waves can be diagonalized simultaneously.

In Section 2, we will introduce compact notations for vector Hansen spherical harmonics and
multipole fields, which one can express the vector addition theorem for elastic waves in terms of. In
Section 3, we will show that the dyadic Green’s function of elastic wave equations can be factorized
in terms of vector translators. Then, in Section 4, the derivation of diagonalization of translation
operators for elastic wave equations is presented.

2. VECTOR ADDITION THEOREM FOR ELASTIC WAVES

The addition theorem transforms the wave functions from one coordinate system into another. One
can refer to [11] for the references and details on addition theorem. In this Section, we shall write
the vector addition theorem in terms of Hansen multipole fields in compact notations.

2.1. Hansen Spherical Harmonics and Multipole Fields
Hansen (vector) spherical harmonics can be defined as [1, 12]

PJM (k̂) = −iekYlm(k̂),BJM (k̂) = i
∇αYlm(k̂)√

l(l + 1)
,CJM (k̂) = iek ×BJM (k̂), (1)

where ∇α is defined by ∇α = eθ
∂
∂θ + eϕ

sinθ
∂

∂ϕ . One can refer to [11] for the physical meanings of
subscripts J,M, l,m in the viewpoint of angular momentum.

Let VJM (k̂) = [CJM (k̂) BJM (k̂) PJM (k̂)]. It can be shown [9] that Hansen spherical harmonics
satisfy the completeness

∑

JM

VJM (k̂)VT
JM (k̂′) =

∑
ν

e[1]
ν e∗[1]

ν δ(k̂ − k̂′), (2)

and the orthogonality
∫

dk̂VT
J ′M ′(k̂) · VJM (k̂) = [I]3×3δJJ ′δMM ′ , (3)
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where [I]3×3 is a 3× 3 identity matrix. In the above, e[1]
ν are the irreducible unit tensors for vector

fields (eigenvectors of the spin 1) [13], which satisfy the orthogonality relationship

e∗[1]
ν · e[1]

ν′ = δνν′ , (4)

where the values of ν or ν ′ are integers from −1 to 1.
In order to describe the divergence and curl properties of the vector fields, Hansen (vector)

multipole fields are introduced by 1

MJM (r, k) =
1√

J(J + 1)
∇×

[
rh(1)

l (kr)Ylm(r̂)
]
,

NJM (r, k) =
1
k
∇×MJM (r, k),

LJM (r, k) =
1
k
∇

[
h

(1)
l (kr)Ylm(r̂)

]
. (5)

Hansen multipole fields MJM (r, k) and NJM (r, k) describe solenoidal waves and LJM (r, k) de-
scribes longitudinal waves.
2.2. Vector Addition Theorem
Since we apply the vector addition theorem to elastic wave equations, which include the longitudinal
and transverse waves, we shall write them in one setting.

Let UJM (r, ks, kc) = [MJM (r, ks) NJM (r, ks) LJM (r, kc)], and

[Ψl′′m′′(R, ks, kc)] =

( Ψl′′m′′(R, ks) 0 0
0 Ψl′′m′′(R, ks) 0
0 0 Ψl′′m′′(R, kc)

)
, (6)

where

Ψl′′m′′(R, k) = h
(1)
l′′ (kR)Yl′′m′′(R̂), (7)

and ks and kc are the wave numbers of the transverse and longitudinal waves, respectively. Assum-
ing r = r′ + R, the vector addition theorem 2 for elastic wave equations reads

UJM (r, ks, kc) =
{ ∑

J ′M ′ UJ ′M ′(r′, ks, kc)[βJ ′M ′,JM (R, ks, kc)], r′ > R,∑
J ′M ′ <gUJ ′M ′(r′, ks, kc)[αJ ′M ′,JM (R, ks, kc)], r′ < R.

, (8)

with the translators

[αJ ′M ′,JM (R, ks, kc)] =
∑

l′′m′′

4πiJ
′+l′′−J [G(J ′M ′|JM |l′′m′′)][Ψl′′m′′(R, ks, kc)], (9)

[βJ ′M ′,JM (R, ks, kc)] =
∑

l′′m′′

4πiJ
′+l′′−J [G(J ′M ′|JM |l′′m′′)]<g[Ψl′′m′′(R, ks, kc)]. (10)

The <g operator implies taking the regular part of the function, that is, replacing h
(1)
l by jl.

[G(J ′M ′|JM |l′′m′′)] is a 3× 3 matrix defined by

[G(J ′M ′|JM |l′′m′′)] =
∫

dk̂VT
J ′M ′(k̂) · VJM (k̂)Y ∗

l′′m′′(k̂). (11)

The matrix [G(J ′M ′|JM |l′′m′′)] can be considered a generalization of the Gaunt coefficient with
the elements

[G(J ′M ′|JM |l′′m′′)] =

[
G11 G12 G13

G21 G22 G23

G31 G32 G33

]
(12)

1In this paper, the normalizations and phase factors for Hansen spherical harmonics and multipole fields are different from [9].
2In this paper, we limit our discussion to the spherical Hankel function h

(1)
l and spherical Bessel function jl. It is easy to

extend vector addition theorem to include the spherical Hankel function h
(2)
l and spherical Neuman function yl [9].
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One can refer to [9] for the evaluations of the elements of the matrix [G(J ′M ′|JM |l′′m′′)]. Since

P∗
J ′M ′(k̂) ·BJM (k̂) = 0,P∗

J ′M ′(k̂) ·CJM (k̂) = 0 (13)

holds for all J ′M ′, JM , we have

G13 = G31 = G23 = G32 = 0. (14)

The property (14) means that the solenoidal waves (MJM (r), NJM (r)) and longitudinal waves
(LJM (r)) are translated separately 3, so the wave numbers can be different for the solenoidal waves
and longitudinal waves in elastodynamics.

3. DYADIC GREEN’S FUNCTION OF ELASTIC WAVE EQUATIONS

In this section, we shall express the dyadic Green’s function of elastic wave equations in terms of
Hansen multipole fields. Then we factorize it in terms of the vector field translator.

Assuming r < r′, we can express the scalar Green’s function G(r, r′, k) in terms of spherical
harmonics [14, 15]

G(r, r′, k) = ik
∑

lm

jl(kr)Ylm(r̂)h(1)
l (kr′)Y ∗

lm(r̂′). (15)

Coupling e[1] and e∗[1] to both sides of (15) gives tensorial Green’s function in terms of Hansen
multipole fields as [9]

Ḡ(r, r′, k) = ik
∑

JM

[<gMJM (r, k)M∗
JM (r′, k) + <gNJM (r, k)N∗

JM (r′, k)

+<gLJM (r, k)L∗JM (r′, k)
]
. (16)

The dyadic Green’s function of elastic wave equations can be defined as

G̃(r, r′, ks, kc) =
1
µ

[
Ḡ(r, r′, ks)− ∇′∇

k2
G(r, r′, ks)

]
+

1
2µ + λ

∇′∇
k2

G(r, r′, kc), (17)

where µ and λ are the Lamé constants. Substituting (15) and (16) into (17) and using the definition
of LJM (r, k) (5), we have

G̃(r, r′, ks, kc) =
∑

JM

{
iks

µ

[<gMJM (r, ks)M∗
JM (r′, ks) + <gNJM (r, ks)N∗

JM (r′, ks)
]

+
ikc

2µ + λ
<gLJM (r, kc)L∗JM (r′, kc)

}
. (18)

Let

[χ] =




iks

µ 0 0
0 iks

µ 0
0 0 ikc

2µ+λ


 . (19)

Equation (18) can be written in a compact form

G̃(r, r′, ks, kc) =
∑

JM

<gUJM (r, ks, kc)[χ]UT
JM (r′, ks, kc). (20)

Assuming r′ = r′′ +R, r′′ < R, and applying (8), we can factorize the dyadic Green’s function (20)
in terms of the vector field translator

G̃(r, r′, ks, kc)

=
∑

JM

<gUJM (r, ks, kc)[χ]
∑

J ′M ′

[αJ ′M ′,JM (R, ks, kc)]T<gUT
J ′M ′(r′′, ks, kc). (21)

3This fact has been discussed in [10], but here our discussion based on the generalization of the Gaunt coefficient is more
rigorous and fundamental.
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4. DIAGONALIZATION OF THE VECTOR ADDITION THEOREM FOR ELASTIC
WAVE EQUATIONS

The diagonalization of the translation operators is the crucial step in the fast multipole method for
solving the wave equations [3–5]. We shall derive the diagonal form of the translation operators of
the longitudinal waves and transverse waves simultaneously.

Letting

[e(R, ks, kc)] =




eiksk̂·R 0 0
0 eiksk̂·R 0
0 0 eikck̂·R


 , (22)

and using the Rayleigh plane-wave expansion formula

eik·r =
∑

lm

4πilYlm(r̂)jl(kr)Y ∗
lm(k̂), (23)

one can write the translator as

[βJ ′M ′,JM (R, ks, kc)] = iJ
′−J

∫
dk̂VT

J ′M ′(k̂) · VJM (k̂)[e(R, ks, kc)]. (24)

In a fast multipole algorithm, the translator can be factorized by

[αJM,J ′M ′(Rij , ks, kc)] =∑

J1M1,J2M2

[βJM,J1M1(Rip, ks, kc)][αJ1M1,J2M2(Rpp′ , ks, kc)][βJ2M2,J ′M ′(Rp′j , ks, kc)] (25)

Using (24) and (9), we compute (25) as

[αJM,J ′M ′(Rij , ks, kc)] =
∑

J1M1,J2M2

iJ−J1

∫
dk̂VT

JM (k̂) · VJ1M1(k̂)[e(Rip, ks, kc)]

×
∑

l′′m′′

4πiJ1+l′′−J2 [Ψl′′m′′(Rpp′ , ks, kc)]
∫

dk̂′VT
J1M1

(k̂′) · VJ2M2(k̂
′)Y ∗

l′′m′′(k̂′)

×iJ2−J ′
∫

dk̂′′VT
J2M2

(k̂′′) · VJ ′M ′(k̂′′)[e(Rp′j , ks, kc)]. (26)

Using (2) and (4), we have the following formula
∑

J1M1

VJ1M1(k̂)VT
J1M1

(k̂′) ·
∑

J2M2

VJ2M2(k̂
′)VT

J2M2
(k̂′′) =

∑
ν

e[1]
ν e∗[1]

ν δ(k̂ − k̂′)(k̂′ − k̂′′). (27)

Plugging (27) into (26), we arrives at the diagonalization of the translators

[αJM,J ′M ′(Rij , ks, kc)] =
∫

dk̂
∑

ν

iJ [e(Rip, ks, kc)][α̃(Rpp′ , ks, kc)]VT
JM (k̂) · e[1]

ν

e∗[1]
ν · VJ ′M ′(k̂)i−J ′ [e(Rp′j , ks, kc)] (28)

with

[α̃(Rpp′ , ks, kc)] =
∑

l′′m′′

4πil
′′
[Ψl′′m′′(Rpp′ , ks, kc)]Y ∗

l′′m′′(k̂). (29)

Note that [α(Rpp′ , ks, kc)] is a diagonal 3× 3 matrix, whose nonzero entries are same as that in the
diagonalization of the scalar addition theorem.
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5. CONCLUSION

Compact notations for vector Hansen spherical harmonics and multipole fields are introduced to
simplify the expression of the vector addition theorem. We have shown that the dyadic Green’s
function of elastic wave equations can be factorized in terms of vector translators. The diagonal-
ization of translation operators for elastic wave equations is obtained.

There has been growing interest in elastic wave propagation in complex media, e.g., periodic
composite media [16]. The diagonalization of the translation operators facilitates in applying FMM
to study elastic propagation in complex media, in particular for some cases where large number of
unknowns are needed.
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Finite Element Method Simulation of Photoinductive Imaging for
Cracks
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Abstract— In this paper, the numerical simulations of photoinductive imaging (PI) method
have been performed using the finite element method (FEM) with the 2D transient to characterize
corner cracks at the edge of a bolt hole. The PI imaging results have higher spatial resolution
in the area of the defect in 2D models as compared with the conventional eddy current (EC)
images. The FEM simulation results of 0.5-mm rectangular defects are showed and analyzed.
The dependencies of PI signals on EC frequencies and temperature of the thermal spot are also
examined. The results demonstrate that the PI method is applicable to examine the geometric
shape of corner cracks.

1. INTRODUCTION

Crack detection and sizing is a critical issue in quantitative nondestructive evaluation (NDE). The
ultrasonic method is used predominantly to detect subsurface discontinuities, while the EC method
is effective for surface cracks. However, one of the main disadvantages of conventional eddy current
method is the low spatial resolution, which is constrained by the size of eddy current probes. The
PI method is a hybrid NDE technique that combines eddy current and laser-based thermal wave
methods. The use of a focused laser beam provides the method with a microscopic resolution while
using eddy current pickup sensors.

Moulder et al. [1] showed that this new technique dramatically increased image resolutions, and
could be used to calibrate and characterize eddy current probes [2–4]. The method experimentally
showed the high-resolution capability inherent in this technique by adapting a photoinductive sensor
developed for a fiber optic probe to an existing photoacoustic microscope [2]. The same method
will work equally well to characterize cracks on thick metals. Determining the crack dimensions is
the interesting detection of a corner crack on the surface surrounding a bolt hole, such as depth
and length [5].

In this article, we use the finite element method to simulate the photoinductive imaging (PI)
technique for bolt-hole cracks inspection. Based on the simulation results, we also discuss the
effects of EC frequencies and temperature of the thermal spot, and compare the PI results with
EC images for a 0.5-mm triangular notch.

2. THE PHOTOINDUCTIVE IMAGING METHOD

Photoinductive mapping of eddy current fields interacting with cracks is a newly devised technique
that is similar to photothermal (PT) imaging. The physical principles underlying it are illustrated
in Fig. 1, which shows the coil of an eddy current probe carrying a current placed in close proximity
to the specimen surface. A focused laser beam generates a localized hot spot on the specimen surface
from above. The temperature fluctuation causes a local change in the electrical conductivity, which
in turn induces a change in the impedance of the eddy current probe. The electrical conductivity
of specimen is given by the expression:

σ =
1

[ρ0(1 + α(T − T0))]
(1)

where ρ0 is the resistivity at temperature T0, and α is the temperature coefficient of the resistivity.
T0 is the temperature 293 K, and T is the actual temperature in the specimen sub-domain.

The PI effect can be calculated as follows. The dependent variable in this application mode
is the azimuthal component of the magnetic vector potential, A, which conforms to the following
relation:

(jωσ − ω2ε)A +∇× (µ−1∇×A) =
σVloop

L
, (2)
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where ω denotes the angular frequency, σ the conductivity, µ the permeability, ε the permittivity,
L the length, and Vloop the voltage applied to the coil. The conductivity outside the coil is zero.
According to the constitutive relation (C.R.), the current density (Je) can be calculated as follows.

Je = σE = −σ

(
∇V +

∂A
∂t

)
, (3)

where E is the electric field intensity. The electric potential (V ) is obtained from Faraday’s law.
The defining equation for the magnetic vector potential A is a direct consequence of the magnetic
Gauss’law. The induced current (I) in the coil is calculated by the integration of current density
in the cross-sectional area (s) of the coil:

∫

S

Je · ds = I. (4)

Figure 1: Inspection geometry of the photoinductive
field measurement technique.

Figure 2: The actual size geometry of the 2D model
for PI imaging method. (the bold dotted line is the
laser point path).

3. SPECIMEN AND SIMULATION

The specimens used for this study are titanium blocks (Ti-6Al-4V) with 6-mm bolt holes. The
notch is 0.5 mm in both length and depth and 0.2 mm in width. The coil probe (inner diameter
= 2.54 mm, outer diameter = 4.1mm, and length = 0.76 mm) was inserted in the bolt hole with
the coil firmly positioned flush with the edge of the bolt hole. The actual size geometry of the 2D
model for PI imaging method is shown in Fig. 2. The probe was operated at a range of frequencies

Figure 3: The simplified 2D model for comparing
the characteristics of PI imaging method and EC
imaging method.

Figure 4: The diffusion of heat from laser beam and
eddy current density distributions. EC frequency,
600 kHz; laser temperature, 500 ◦C (773 K).
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from 200 kHz to 1MHz. The temperature produced by laser beam was at a range of from 100 ◦C
to 500 ◦C. The simulations were implemented using the COMSOL MultiphysicsTM software. In
this work, we use the simplified 2D model for comparing the characteristics of PI imaging method
and EC imaging method (Fig. 3). We designed the coil that with a height equal to or greater than
the depth of the notch. This is to make sure that the eddy currents surround the whole notch
and so that the depth information can be revealed. The distance between the specimen and the
coil (diameter = 1 mm, length = 0.76 mm) was 0.1mm. In the case of EC scan that without the
laser point, the coil is moving along the x-axis and cross the notch on specimen. In the PI scan,
the coil is fixed right on the center of the notch and the laser is moving in the same direction as
the previous case. The uniform scan plan with closely spaced scan lines so that flaw orientation
and scan spacing would not affect the outcome was assumed. To calculate the impedance edance
(∆Z = Vloop/I) of the coil in the simulations, the total induced eddy current of the coil can be
obtained by carrying out sub-domain integration of the total current density for the cross-section
of the excited coil.

4. RESULTS AND DISCUSSION

The simulation results using the PI imaging method and the conventional EC imaging method
are presented and compared in this section. The simulation results of the signals interaction
with various temperature and frequency will be first presented. The effects of eddy current were
compared by varying the coil excitation frequency from 200 kHz to 1 MHz and the laser beam
temperature from 100 ◦C to 500 ◦C. The diffusion of heat from laser beam and the eddy current
density distribution around the crack are shown in Fig. 4. The temperature fluctuation causes a
local change in the electrical conductivity of the specimen and the current density of the specimen.
The lines indicate the contour of induced current density on the coil and the specimen. Figs. 5 and
6 show the signal of coil impedances with EC method and PI method, respectively. The center
point of the rectangular notch is 0 mm in x-axis, as shown in Figs. 5 and 6. Fig. 5 is the EC image
signals of a 0.5-mm rectangular notch at 600-kHz EC frequency, without laser beam. Fig. 6 is the
PI image signals of a 0.5-mm rectangular notch at the same EC frequency and 300 ◦C laser beam
temperature. Because the length of the flaw is less than the diameter of the probe, the flaw scan
produces a double-peaked response [6]. As shown in the Figs. 5 and 6, both figures conform to this
phenomenon. Comparison of flaw impedance measured with two detection method for rectangular
notch, the resolution of PI signal is higher than the EC signal. There is a higher sharp edge in PI
signal than in EC signal.

Figure 5: The flaw impedances of EC signal for a 0.5-
mm rectangular notch in Ti-6A1-4V. EC frequency,
600 kHz.

Figure 6: The flaw impedances of PI signal for a 0.5-
mm rectangular notch in Ti-6A1-4V. EC frequency,
600 kHz; laser temperature, 300 ◦C.

The effects of EC frequency on the PI imaging signals and EC imaging signals for transverse
scans across a 0.5-mm long and 0.2-mm wide notch are shown in Figs. 7 and 8, respectively. In
order to clearly exhibit the crack’s effect, the impedance difference between signals with crack and
without crack is reported. As shown in Fig. 7, the eddy currents around the crack are more uniform
at lower frequencies. But higher EC frequencies generate a stronger PI signal. Fig. 8 illustrates
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Figure 7: Images with different EC frequency. (EC
scan without the laser beam).

Figure 8: PI imaging signal with different frequency.
Laser temperature, 300 ◦C.

the signal amplitude is increased when higher eddy current frequencies are applied, and therefore
the better crack images are obtained by increasing the eddy current frequency. Furthermore, the
impedance difference for 200-kHz case is reversed on the notch area. That may due to deeper skin
depth and lower current density on the surface of specimens. For the rectangular notches in this
titanium alloy, eddy current frequencies above 200 kHz are more suitable for imaging the cracks.

Figure 9 shows that the peak amplitude of PI imaging signals varies with laser point temperature
for transverse scans across a 0.5 mm long and 0.2 mm wide notch. There is the same process to
clearly display the crack’s shape. When lower laser beam temperatures are applied, the peak
amplitude of signal is decreased. Because reducing the temperature will generates higher current
density and deeper penetration on the surface of this specimen. That makes the eddy currents
around the crack are more uniform at lower laser temperature.

Figure 9: PI imaging signal with different laser point temperature. EC frequency, 600 kHz.

5. CONCLUSIONS

The FEM simulation results demonstrate the feasibility of photoinductive imaging method when
applied to the detection of corner cracks. The EC frequency and laser beam temperatures affect
PI signal amplitude and resolution. The PI images have higher spatial resolution in the area of
the defect in 2D models when compared with the conventional EC images. The higher PI signal
amplitude can be obtained by increasing the laser beam temperature.
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Abstract— The staggered grid algorithm was originally invented for achieving better stability
and efficiency in the finite difference time domain (FDTD) method for modeling the electromag-
netic wave propagation. Seismologists extended the staggered grid approach to the pseudospectral
time domain (PSTD) scheme to model seismic wave propagation. However, no detailed formu-
lation of the staggered grid approach for electromagnetic (EM) simulations has been explicitly
discussed. We present the staggered grid PSTD for EM simulations by shifting the spatial deriva-
tives halfway between 2 adjacent nodes and making the Nyquist wave number a non-zero pure
real value of −π/∆x. By doing this, the Nyquist information of the original spatial function is
preserved, and the differentiation operator is more stable. In the Fourier domain, adding trigono-
metric factors in the classic Fourier coefficients is equivalent to the staggered grid approach in the
original space domain. A staggered grid PSTD algorithm makes the time marching more stable,
and numerical dispersion is suppressed for models with sharp contrasts in material properties.
In this paper, we have applied the staggered grid PSTD method to 2.5D electromagnetic wave
propagation simulations using the real Fourier transform. We discuss this method and apply it
to model a Ground Penetrating Radar (GPR) system.

1. INTRODUCTION

The staggered grid scheme was first proposed by Yee [1] for achieving better accuracy and higher
stability in modeling electromagnetic (EM) wave propagation using the finite difference time do-
main (FDTD) method. It is a robust and well studied algorithm and has been widely used in the
EM research community. Meanwhile, in the pseudospectral time domain (PSTD) method, which
theoretically only needs two grids per wavelength [2] for EM wave simulations, the field values and
material properties [2] are collocated at the same nodes (non-staggered) for simplicity. The great
success of the staggered grid scheme in FDTD made a few researchers [3–8] turn their attention
to trying to apply the staggered grid scheme for the PSTD method as applied to seismic wave
propagations. It has been demonstrated that using a staggered grid in the PSTD scheme made
the time marching more stable and suppressed numerical dispersion for models with large contrast
in material properties. To the best of the author’s knowledge, there is no detailed discussion on
the application of the staggered grid PSTD to model the electromagnetic wave propagations in the
published literature. This paper discusses staggered grid PSTD for EM for the 2.5D problem [9, 10]
and the unsplit stretched coordinate perfectly matched layer (PML) absorption boundary condi-
tions [11].

The staggered grid scheme is realized by shifting the spatial derivatives of the electric or magnetic
field halfway between 2 nodes and makes the Nyquist wave number a non-zero pure real value of
−π/∆x [7]. By doing this the Nyquist information of the original spatial function is preserved and
the differentiation operator is more stable. In the Fourier domain, adding trigonometric factors
in the classic Fourier coefficients is equivalent to the staggered grid approach in the original space
domain [7] with minimal increase of computational cost.

The staggered grid PSTD algorithm development presented in this paper was associated with
the use of the unsplit stretched coordinate PML [11] which is based on the PML scheme [12]. The
3D spreading decay of the spherical wave excited by a point source was precisely preserved for the
case of medium Physical properties is invariant in one of the horizontal directions, by adapting a
2.5D simulation scenario.

Finally, the efficacy of the staggered grid PSTD was illustrated by modeling a subsurface dis-
crimination system like GPR using simple geometries.
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2. THE 2.5D MAXWELL’S EQUATIONS WITH A PML FORMULATION

The electromagnetic (EM) wave propagation in isotropic, inhomogeneous media with the current
density source J is governed by the Maxwell equations

∇×H = ε
∂E
∂t

+ σE + Js

∇×E = −µ
∂H
∂t

(1)

where the dielectric permittivity ε(r), magnetic permeability µ(r), and electric conductivity σ(r)
are all spatially dependent. Js is the source current. With the introduction of the stretched
coordinate perfectly matched layer (PML) technique as the absorption boundary condition [12]
used to truncate the model domain is

∇̂ =
1
ex

∂

∂x
x̂ +

1
ey

∂

∂y
ŷ +

1
ez

∂

∂z
ẑ

and
eη = aη + i

ωη

ω
, (η = x, y, z)

Thus, the full 3D Maxwell’s Equations (1) in a Cartesian coordinate system can be written as

aηε
∂E
∂t

+ (aησ + ωηε)E + ωησ

∫ t

−∞
Edt =

∂

∂η
(η̂ ×H)− J

aηµ
∂H
∂t

+ µωηH = − ∂

∂η
(η̂ ×E) (2)

In the following analysis we adapt the un-split stretched coordinate PML approach [11] as the
absorption boundary condition. For a 2.5D problem, i.e., the 3D spherical wave generated by a
point source propagating through a 2D medium, proper mathematical treatment of the numerical
simulation problem leads to significant reduction in demands of computational resources such as
memory and computational time. In the following discussion and development, we assume the
medium is inhomogeneous in the xz-plane and homogeneous in one of the horizontal directions,
say the y-direction; i.e., the dielectric permittivity ε(r), magnetic permeability µ(r), and electric
conductivity σ(r) are functions of only x and z.

ε = ε(r) = ε(x, z), µ = µ(r) = µ(x, z), σ = σ(r) = σ(x, z)

Furthermore, we assume that the imposed point current sources are all in the y = 0 plane. De-
pending on the source polarization, the current sources and the corresponding field components
may be an even or odd function about the y = 0 plane [9]. For example, the total electric field E
can be expressed as E = Ee + Eo, with Ee the even function and Eo the odd function, which are
defined as

Êe(x, ky, z, t) =
∫ ∞

−∞
E(x, y, z, t) cos(kyy)dy

Êo(x, ky, z, t) =
∫ ∞

−∞
E(x, y, z, t) sin(kyy)dy

Ĥe(x, ky, z, t) =
∫ ∞

−∞
H(x, y, z, t) cos(kyy)dy

Ĥo(x, ky, z, t) =
∫ ∞

−∞
H(x, y, z, t) sin(kyy)dy (3)

using the cosine and sine functions in the real Fourier transform. Here ky is the Fourier integration
parameter equivalent to the wave number in y-direction. For simplicity in the following discussion
we focus on the case of the electromagnetic fields generated by a current dipole source in y-direction
and in the y = 0 plane (Jy = Jye). It can be shown that this current source excites only the field
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components of (Exo, Eye, Ezo, Hxe, Hyo, Hze). Using the unsplit stretched coordinate PML [11],
the 2.5D Maxwell equations in components form are

ε[axaz
∂Êxo

∂t
+ (azωx + axωz)Êxo + ωzωxÊ∗

xo] + σ(axÊxo + ωxÊ∗
xo)

= azaxkyĤze + (azωx + axωz)kyĤ
∗
ze − ax

∂Ĥyo

∂z

ε[axaz
∂Êye

∂t
+ (azωx + axωz)Êye + ωzωxÊ∗

ye] + σÊye (4)

= ax
∂Ĥxe

∂z
+ ωx

∂Ĥ∗
xe

∂z
− az

∂Ĥze

∂x
− ωz

∂Ĥ∗
ze

∂x
− Jye

ε[axaz
∂Êzo

∂t
+ (azωx + axωz)Êzo + ωzωxÊ∗

zo] + σ(azÊzo + ωzÊ
∗
zo)

= az
∂Ĥyo

∂x
+ ωz

∂Ĥ∗
yo

∂x
− azaxkyĤxe − (azωx + axωz)kyĤ

∗
xe

for the equations originated from the Ampere’s law and

µ[az
∂Ĥxe

∂t
+ ωzĤxe] =

∂Êye

∂z
− ky(azÊzo + ωzÊ

∗
zo)

µ[azax
∂Ĥyo

∂t
+ (axωz + azωx)Ĥyo + ωzωxĤ∗

yo] = az
∂Êzo

∂x
+ ωz

∂Ê∗
zo

∂x
− ax

∂Êxo

∂z
− ωx

∂Ê∗
xo

∂z
(5)

µ[ax
∂Ĥze

∂t
+ ωxĤze] = ky(axÊxo + ωxÊ∗

xo)−
∂Êye

∂x

for the equations derived from the Faraday’s law. The asterisk ‘∗’ symbol in Equations (4) and (5)
denotes integration of the corresponding EM component with respect to time. Note that the
transformed variables, i.e., the EM field components with a ‘ ˆ ’ hat are the Fourier transform of
the corresponding component and are generally complex.

In actual calculations, the Fourier integration parameter ky must be discretized. This dis-
cretization can be achieved by assuming the source-medium configuration to be periodic along
the y-direction. A repetitive length of Ly along y-direction gives ky = n∆ky = 2πn/Ly (n =
1, 2, 3, . . . , N). By now it is clear that the Fourier integration parameter ky is nothing more than
the wave number in y-direction. Using a generic parameter of Uη, we can get the EM components
in the real physical domain as [9]

Uη(x, yd, z, t) =
1
Ly

N∆ky∑

ky=−N∆ky

Ûη(x, ky, z, t)e−ikyyd (6)

The truncation of the wave number summation is controlled by the shortest wavelength or the
largest wave number of the EM wave simulated, i.e., we have

kmax = N∆ky ≥ 1.1
2πfmax

vmin
(7)

3. STAGGERED GRID PSTD ALGORITHM USING THE REAL FOURIER
TRANSFORM

In the vertical-xz plane, the spatial derivative of an EM component on a traditional collocated grid
system with PSTD calculations was realized by the Fourier transform and inverse Fourier transform
pair in the wave number domain along one particular direction. For example, the spatial derivative
of the y-component of the electric field with respect to x-direction can be expressed as

∂Ey

∂x
= FFT−1

x (ikxFFTx(Ey)) =
∫ ∞

0
ikx

(∫ ∞

−∞
Ey(x, y, z)e−ikxxdx

)
eikxxdkx (8)
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Figure 1: The non-staggered grid (a) and staggered grid for a 2D example applied to the EM fields.

However, on a staggered grid system, the spatial derivative of the electric field with respect to
x-direction should be evaluated halfway between two grid points at 4x/2 to match the location of
the magnetic components, exactly as used in the FDTD scheme as shown in Figure 1.

Thereafter, for the same spatial derivative using the PSTD approach the differentiation can be
written as

∂Ez

∂x
=

∫ ∞

0
ikxeikx

∆x

2

(∫ ∞

−∞
Ez(x, y, z)e−ikxxdx

)
eikxxdkx

=
∫ ∞

0
ikxeikx

∆x

2 Êz(kx, y, z) · eikxxdkx ≈
kxN∑

kx=0

ikxeikx
∆x

2 Êze
ikxxdkx (9)

where KxN is the Nyquist wave number, and the sum affects only the inverse Fourier transform.
Here, the spectral differential operator (ikx) used in non-staggered grid computations was replaced
by ikx exp(ikx(∆x/2)) for staggered grid computations [5]. No extra memory storage is required
in the staggered grid computation. Using the real discrete Fourier transform Equation (8) can be
expressed as [7]

∂

∂x
[f((n +

1
2
)∆x)] =

N

2∑

l=0

A1(l∆k) cos(
2πnl

N
) +

N

2
−1∑

l=0

B1(l∆k) sin(
2πnl

N
) (10)

where
A1(l∆k) = (l∆k) cos(πnl

N )B(l∆k)∓ sin(πnl
N )A(l∆k)

B1(l∆k) = (−l∆k) cos(πnl
N )A(l∆k)± sin(πnl

N )B(l∆k)

and A(l∆k) and B(l∆k) are the original Fourier coefficients defined as

A(l∆k) = 1
N

N−1∑
n=0

f(n∆x) cos(2πnl
N ), for l = 0, N

2

A(l∆k) = 2
N

N−1∑
n=0

f(n∆x) cos(2πnl
N ), for l = 1, 2, 3, . . . , N

2 − 1

B(l∆k) = 2
N

N−1∑
n=0

f(n∆x) sin(2πnl
N ), for l = 1, 2, 3, . . . , N

2 − 1

4. NUMERICAL EXAMPLE

The effectiveness of the staggered grid approach on suppressing the numerical dispersion is illus-
trated by the following 2 numerical realizations. Figure 2(a) shows the spatial first derivative of
a one-point impulse using non-staggered grid and staggered grid PSTD with 256 sampling points.
Obviously, the first spatial derivative using staggered grid PSTD greatly suppresses the ringing
caused by numerical dispersion shown in the derivative using non-staggered grid approach. For a
5-point Gaussian impulse, as shown in Figure 2(b), the ringing shown in the non-staggered grid
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derivative is much less than its 1-point impulse counterpart. And the derivative using staggered
grid PSTD is extremely adequate and no observable ringing exits at all. This comparison can also
be extrapolated to infer that the staggered grid approach are particularly useful for model domains
containing high contrast boundaries that act as secondary diffraction sources corresponding to a
short duration impulse.
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Figure 2: The 1-point impulse (bottom curve), its first derivative using non-staggered grid PSTD (middle
curve), and the non-staggered grid and the first derivative using staggered grid PSTD (top curve) for the
1-point impulse (a); and the similar test using a 5-point Gaussian impulse (b).

5. CONCLUSION

A numerical algorithm for the simulation of EM wave propagation using the staggered grid PSTD
calculation in a 2.5D model domain has been derived. The model domain was truncated using the
unsplit stretched coordinate PML as the absorption boundary condition. To improve the numerical
efficiency, the real FFT was employed. The approach was illustrated by an example in TE mode
that most ground penetrating radar surveys commonly use, which is consistent with the case of
y-direction symmetric situation that the components of Ey, Hx, and Hz are even functions and Ex,
Ez, and Hy are odd function about the y = 0 plane. The 2.5D approach preserved the fidelity of
the EM geometric spreading.
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Abstract— The paper demonstrates the modelling of the interaction mechanism between the
biological tissues and electromagnetic field at mobile communication frequency ranges. The im-
plementing of modified FDTD numerical method using frequency scaled FDTD with Floquet
periodic boundary conditions and modified PMLs, the microdosimetric modelling of bioelectro-
magnetic interactions at cellular level, is established. In order to include the membrane effect
on the biological tissues model in the analysis, the LE-FDTD is exploited to embed the lumped
element cell-membrane model on the surface of the proposed tissue model in the FDTD com-
putational domain. A new different structures of biological tissues are modeled and discussed,
this includes a cluster of cylindrical cells. In order to imitate the effect of periodic replication of
assemblages, Floquet periodic boundary conditions are imposed on the proposed model. Thus,
the analysis of a large structure of cells is made more computationally efficient than the modeling
of the entire structure. The total field distributions were shown in the context.

1. INTRODUCTIO

The interest in diagnostic and therapeutic applications of RF/microwaves in Medicine and in the
assessment of possible health hazards due to EM radiation have stimulated the development of
research streams in both modelling and experiments for evaluating EM power deposition in the
interior of the human body or biological system. In order to establish precisely the required safety
standard for regulating human exposure to EM waves, different aspects of studying the prob-
lem such as tissue level [1–6], cell level [7] and ionic level [8] have been carried out theoretically
and experimentally. In this particular research area, the Finite-Difference Time-Domain (FDTD)
method has been a overwhelming majority of the numerical techniques to solve various of different
electromagnetic problem due to its simplicity and capable to handle complex geometry.

This paper is devoted to investigate the EM field distribution over the new proposed cylin-
drical cells equivalent tissue model by using modified FDTD numerical technique. Different EM
approaches have been used to analyze this problem, in particular, the lumped-element FDTD has
been implemented to model the cell’s membrane. This was achieved with the use of Hodgkin-
Huxley (HH) model and the Floquet theorem, in order to mimic the infinite model of the tissue
and in turn to reduce the computational time. Due to the analysed structure under consideration is
considerably smaller than the wavelength of mobile communication frequency GSM900/GSM1800
and also the time steps required for GSM900/GSM1800 frequency involves some millions of itera-
tions, therefore, quasi-static FDTD is exploited to perform the computation of the analysis. The
electric field distribution along the centre of the analysed various structures are discussed in which
the computational results are found in well agreement with the previous published results [4, 6].

2. SUMMARY OF THE METHOD

Figure 1 shows a simple geometry for the elucidation of three-dimensional periodic boundary im-
plementation. As can be observed, the periodic boundaries are imposed on the x- and y-sides of the
structures, while modified Absorbing Boundary Conditions (ABCs) [6] are applied to truncate the
space lattice along z-axis. The coordinate points (io, jo, ko) and (iN , jM , kp) denote a space point
in a uniform rectangular lattice, where io, jo, ko are the smallest lattice grid number in x, y, z direc-
tion respectively and iN , jM , kp are the largest lattice gird number in x, y, z direction respectively.

Consider the problem space is filled with the lossless medium (σ = 0, εo εr and µ = µo) and
normal incident plane wave is propagating along z axis. The tangential electric fields distribution
on plane i0, iN , j0 and jM are illustrated in Fig. 2. As can be seen, the red arrows are representing
the tangential electric field components which are located on edge of the surface plane, while the
black arrows are indicated as the rest of the tangential electric field components which are located
on the surface plane. It should be noted that the explanation of the implementation method of the
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Figure 1: Geometry used in the analysis of 3-D infinite periodic structure illuminated by a normal incident
plane wave.

periodic boundary condition into FDTD computation domain in the following context, are based
on the normal incidence methods [9, 10], therefore, it is only applicable when the normal incidence
plane wave is used. For the sake of simplicity and consistency of explanation of updating equations
for the periodic boundary condition on the surfaces of the geometry shown in Fig. 1, the updating
equations of the tangential electric components (Ex, Ez and Ey) which are not on the edge of
the surface will be firstly to be discussed, and subsequently, the updating equations of the edged
tangential electric component (Ez) are demonstrated.

(a) (b)

Figure 2: (a) Location of Ez(→) and Ey(↑) components in plane i = i0 and iN , (b) Location of Ez(→) and
Ex(↑) components in plane j = j0 and jM .

Figure 3: Location of the edged tangential component (Ez).

Consider the four surfaces planes at i = i0, iN and j = j0, jM , in which the floquet periodic
boundary condition should be applied as shown in Fig. 1. From Fig. 2(a), the 3D updating equations
for the tangential electric components (Ey and Ez) which are not located on the edge of surface
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plane i = i0 and iN , can be stated in the following forms:

En+1
y (i, j, k) = En

y (i, j, k) +
∆t

ε∆

(
H

n+ 1
2

x (i, j, k + 1/2)−H
n+ 1

2
x (i, j, kp − 1/2)

+H
n+ 1

2
z (i− 1/2, j, k)−H

n+ 1
2

z (i + 1/2, j, k)

)
(1)

En+1
y (iN , j, k) = En+1

y (i, j, k) (2)

En+1
z (i, j, k) = En

z (i, j, k) +
∆t

ε∆

(
H

n+ 1
2

y (i + 1/2, j, k)−H
n+1/2
y (iN − 1/2, j, k)

+H
n+ 1

2
x (i, j − 1/2, k)−H

n+ 1
2

x (i, j + 1/2, k)

)
(3)

En+1
z (iN , j, k) = En+1

z (i, j, k) (4)

where ∆t is the time increment and ∆ is the space lattice increment.
As for the 3-D updating equations for the tangential components (Ex and Ez) which are not

located on the edge of the surface at plane j = j0 and jM as shown in Fig. 2(b), can be derived as
follows:

En+1
x (i, j, k) = En

x (i, j, k) +
∆t

ε∆

(
H
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2
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2
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n+ 1

2
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2
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)
(5)

En+1
x (i, jM , k) = En+1

x (i, j, k) (6)

En+1
z (i, j, k) = En

z (i, j, k) +
∆t

ε∆
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
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2
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
 (7)

En+1
z (i, jM , k) = En+1

z (i, j, k) (8)

As for the case of the edged tangential electric components (Ex, Ey, Ez) on plane i = i0, iN
and j = j0, jM , and due to the Ex and Ey components are on the edge of the absorbing boundary
conditions as shown in Fig. 2(a) and (b), therefore, they are assumed to be updated by the ABC
updating equations. It should be noted that the only edged Ez tangential components will be
considered here for the periodic boundary condition. According to Fig. 3, due to the presence of
normal incidence plane wave, hence, four equations of Ez tangential components can be updated
simultaneously. This can be simply done by using the following modified updated equations:

En+1
z (i, j, k) = En

z (i, j, k) +
∆t

ε∆

(
H

n+ 1
2

y (i + 1/2, j, k)−H
n+1/2
y (iN − 1/2, j, k)

+H
n+ 1

2
x (i, jM − 1/2, k)−H

n+ 1
2

x (i, j + 1/2, k)

)
(9)

En+1
z (iN , jM , k) = En+1

z (i, j, k) (10)
En+1

z (iN , jM , k) = En+1
z (i, j, k) (11)

En+1
z (i0, jM , k) = En+1

z (i, j, k) (12)
(13)

3. SIMULATION AND RESULTS

A stack of ten cylindrical cells was investigated, as shown in Fig. 4. The radius and height of the
each cell were considered to be 10µm and 20µm respectively. A plane wave of 100 V/m, propagating
in the z-direction and polarized in the x-direction was used as excitation source. Note that the
incident plane wave excitation was applied on a plane lying between the PML region and the outer
limit of the FDTD grid. The PML, shown in Fig. 4, was 6 FDTD elements wide, the grading factor g
was 10.1383 and the grid structure was effectively extended to infinity in the x- and y-directions, by
imposing the Floquet boundary condition along the x and y axes. The Floquet periodic boundary
condition plays an important role to mimic the presence of an extended 3-dimensional structure of
biological cells, simulating connected tissue. The FDTD problem space was 220× 20 × 20 FDTD
elements of size 1µm while a discretization time step δt of 1.3 femtoseconds was chosen to drive
the FDTD computation, to meet the requirements of the Courant stability criterion.

The shape of the living cells can be so diverse. In order to have better understanding on
the effects of EM field interaction with different geometries of biological tissues, a cluster of such



Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, 2008 1247

cylindrical cells model of the tissue is proposed for the present work. This analysis is performed
in which the material properties unchanged as in the case of spherical and cubical cell structures,
as in [6]. Fig. 5 describes the 2D view of electric filed distribution of the proposed cylindrical-cell
tissue at 10 GHz, while the electric field distribution along the centre of the analysed structure is
shown in Fig. 6, where the Fig. 7 are the amplified version of the Fig. 6.

Figure 4: The three-dimensional view of the sim-
ulated cubical structures in FDTD computational
domain.

Figure 5: Modulus of the electric field on xz-plane at
intermediate frequency 10 GHz (logarithmic scale).

Figure 6: Penetration of electric field along z axis,
through the centre of the simulated structure.

Figure 7: Penetration of electric field (enlargement
of Fig. 5).

The loading effect of the HH model into the cylindrical-cell tissue has also been studied. Fig. 8
demonstrates the difference of 15% in field magnitude with and without the presence of HH model
in the proposed simulated structure. The results show consistent difference with the previous
spherical- and cubical-cells tissue simulated structures [6].

The comparison of the field distribution of spherical-, cubical- and cylindrical- cells tissue model,
through the centre of the analysed structure, is elucidated in Fig. 9. The peak field on the membrane
of the cylindrical structure is found to be about 1.7 times higher than in the cytoplasm, which is

Figure 8: Electric field distribution along z-axis,
through the centre of the simulated cubical-cell
structure in Fig. 3, incorporating Hodgkin-Huxley
model and driven at 2400 MHz.

Figure 9: Comparison of field values of three differ-
ent simulated structures at 900MHz.
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distinct with the previous two models [6]. As can be noticed, the peak field value of this cylindrical
model is higher than the cubical model and lower than the spherical model, whereas the peak field
value on the cytoplasm is the about the same as in the spherical model and double the value found
in the cubical structure.

4. CONCLUSIONS

The combination of quasi-static FDTD, an arbitrarily-oriented lumped element membrane model,
the modified Berenger’s absorbing boundary condition and the Floquet periodic boundary condition
represent a significant advance in verisimilitude of biological cell modeling, is demonstrated. By
adopting the proposed methodology, it permits the computationally-efficient FDTD method to
model small cell size object with reasonable computing time and accuracy.
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Abstract— In this paper, a new effective optimization algorithm called PGHA is presented,
which combines in the most effective way the properties of two of the most popular evolution-
ary optimization approaches now in use for the optimization of electromagnetic structures, the
Particle Swarm Optimization (PSO) and Genetic Algorithms (GA). Some improved genetic mech-
anisms based on non-linear ranking selection, competition and selection among several crossover
offspring and adaptive change of mutation scaling are adopted in the paper to overcome the
drawbacks of standard genetic algorithm. Furthermore, the proposed algorithm is successfully
applied to design a linear array with ten elements and a circular array with thirty one elements
and obtain the desired beam forms. We try to use a modified Bernstern polynomial to reduce the
number of variables when calculating the circular array, and simulation results show the abroad
foreground of PGHA in the antenna array design.

1. INTRODUCTION

The global synthesis of antenna arrays that generate a desired radiation pattern is a highly nonlinear
optimization problem. Pattern synthesis is known as the process of choosing the parameters of an
antenna array to produce desired radiation characteristics. Many analytical methods have been
proposed for its solution. Examples of analytical techniques include the well-known Taylor method
and the Chebishev method [1]. However, analytical or calculus-based methods are generally unable
to optimize problem with precedence constraint. To this end, stochastic methods are necessary [2, 3]
in order to efficiently deal with large nonlinear search spaces and to extend the analysis.

Advantages of evolutionary computation are the capability to find a global optimum, without
being trapped in local optima, and the possibility to face nonlinear and discontinuous problems,
with great numbers of variables. Genetic Algorithms (GA) [4] have proven to be a useful method of
optimization for difficult and discontinuous multidimensional engineering problems. A new method
of optimization, Particle Swarm optimization (PSO) [5], is able to accomplish the same goal as GA
optimization in a new and faster way. Since PSO and GA both work with a population of solutions,
combining the searching abilities of both methods seems to be a good approach. The purpose of
this paper is to investigate the foundations and performance of the two algorithms when applied
to the design of two antenna array designs.

2. A HYBRID OF GENETIC ALGORITHM AND PARTICLE SWARM OPTIMIZATION

Genetic Algorithm [6] is an iterative stochastic optimizer that works on the concept of survival of
the fittest motivated by Darwin, using methods based on the mechanics of natural genetics and
natural selection to construct search and optimization procedures that best satisfies a predefined
goal. Floating-point GA uses floating-point number representation for the real variables and thus is
free from binary encoding and decoding. It takes less memory space and works faster than binary
GA. To overcome the drawbacks of standard genetic algorithm such as prematurity and easily
trapping in local optimum, some improved genetic mechanisms are adopted in the paper, such as
non-linear ranking selection [7], different from the conventional algorithm in which two parents only
produce two offspring, the new heuristic crossover operators defined below:

First, it produces three chromosomes from two parents IA and IBaccording to the following
mechanisms:

I1 = rIA + (1− r) IB (1)

I2 = (1− r) IA + rIB (2)

I3 =
IA + IB

2
(3)
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where r is uniform random number in [0, 1]. Then, among I1 to I3, the two with the largest fitness
value are used as the offspring of the crossover operation.

The mutation operator is defined as follows: For a parent p, if variable pk was selected at random
for this mutation, the result is: p̄ = (p1 · · · p̄k · · · pn) where

p̄k ∈
{

max
(

pk − µ
pmax

k − pmin
k

2
, pmin

k

)
, min

(
pk + µ

pmax
k − pmin

k

2
, pmax

k

)}
(4)

where pmax
k , pmin

k are upper and lower bounds of pk respectively, µ decreased with the increase of
iterations.

µ (τ) = 1− r[1−(τ/T )]b (5)

where r is uniform random number in [0, 1], T is the maximum number of iterations, τ is the current
iteration number, b is the shape parameter.

Particle Swarm Optimization is one of the more recently developed evolutionary technique, and it
is based on a suitable model of social interaction between independent agents (particles) and it uses
social interaction knowledge (also called swarm intelligence) in order to find the global maximum
or minimum of a genetic function [8]. While for the GA the improvement in the population fitness
is assured by pseudobiological operators, such as selection, crossover and mutation, the main PSO
operator is velocity update:

~vi (τ + 1) = w~vi (τ) + c1φ1 (~pi (τ)− ~xi (τ)) + c2φ2 (~pg (τ)− ~xi (τ)) (6)

~xi (τ + 1) = ~xi (τ) + ~vi (τ + 1) (7)

where

~vi (τ) = particle velocity

~xi (τ) =particle variables

φ1, φ2 = independent uniform random numbers

c1, c2 = learning factors

~pi = local best solution

~pg =best global solution

w = wmax − wmax − wmin

T
· τ

where wmax and wmin is maximum and minimum value of the weighting factor respectively. T is
the maximum number of iterations, τ is the current iteration number.

The PSO algorithm updates the velocity vector for each particle then adds that velocity to the
particle position or values. Velocity updates are influenced by both the best global solution and
the best local solution in the present population. The advantages of PSO are that it is easy to
implement and there are few parameters to adjust. Our PGHA consists essentially in a strong
co-operation of the two evolutionary algorithms described above, since it maintains the integration
of the two techniques for the entire run.

In each iteration the population is divided into two parts and they are evolved with the two
techniques respectively. They are then recombined in the updated population, that is again divided
into two parts in the next iteration for another run of genetic or particle swarm operators.

3. PROBLEM FORMULATION

In amplitude-phase synthesis of the linear array, the far field array factor of this array can be
written as

F (θ) =
N∑

n=1

an exp(j(n
2π

λ
d sin θ + βn)) (8)

where n the element number, λ the wavelength, βn the excitation current phases of the elements, an

the excitation current amplitudes of the elements, j the imaginary, d is the inter-element spacing,
and θ is the polar angle of far-field measured from broadside (−90◦ to +90◦).
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We try to use a modified Bernstein polynomial [9] to reduce the number of variables when
calculating the circular array. The modified Bernstein polynomial is

F (U) =





B1 +
1−B1

AMA (1−A)M(1−A)
UMA (1− U)M(1−A) , 0 ≤ U ≤ A

B2 +
1−B2

AMA (1−A)M(1−A)
UMA (1− U)M(1−A) , A ≤ U ≤ 1

(9)

where B1, B2, M , A are parameters in the polynomial, B1 and B2 specify the left and right
endpoints F (0) and F (1) respectively, while increasing M sharpens and narrows the peak of
F (U). For θ = 90◦, the far field array factor of the circular array is

E(90◦, φ) =
N∑

n=1

F (U)n exp
(

j
2π

λ
r (cos (φ− βn)− cos (βn))

)
(10)

where F (U)n is the nth excitation amplitude, being the nth equal sampling point value of F (U).
βn is the excitation current phases of the elements, and r is the circle radius of the array.

A key point of optimization is the construction of the target function. In this paper, the fitness
function to be maximized for array optimization problem can be expressed as follows:

Fitness =
1

α× |MSLL− SLVL|+ γ × |Fo (θ)− Fd (θ)| (11)

where MSLL the highest sidelobe level, SLVL the desired sidelobe level, and Fo (θ) and Fd (θ) are,
respectively, the pattern obtained by using PGHA and the desired pattern. The values of α and
γ should be selected by experience such that the fitness function is capable of guiding potential
solutions to obtain satisfactory array pattern performance with desired properties.

4. NUMERICAL RESULTS

With the aim to validate the effectiveness of the developed technique, two examples are considered
here. Firstly, we consider a uniform linear array of 10 isotropic elements spaced 0.5λ along x-axis

Figure 1: Linear array geometry.
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Figure 2: (a) Radiation pattern for the linear array, (b) Excitation amplitude distribution for the linear
array, (c) Excitation phases in degree for the linear array.
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in order to generate a sector beam as illustrated in Fig. 1. In the amplitude-phase synthesis, the
phase is limited to 0 or π. Fig. 2(a) shows the normalized absolute power patterns in dB. Fig. 2(b)
shows common amplitude distribution and Fig. 2(c) shows the phase distributions in degree.

Then, we consider a circular array of 31 isotropic radiators spaced 0.5λ apart along a circle of
radius 6 wavelengths as illustrated in Fig. 3. To reduce the number of variables, we try to use a
modified Bernstein polynomial according to Eq. (9). Fig. 4(a) shows the normalized absolute power
patterns in dB. Fig. 4(b) shows the optimized distribution.

Figure 3: Circular array geometry.
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Figure 4: (a) Radiation pattern for the circular array, (b) Excitation amplitude distributions for the circular
array.

5. CONCLUSIONS

An optimization method for the synthesis of linear array pattern and circular array pattern functions
has been proposed and assessed. In order to take advantage of the peculiarities of these two methods,
the proposed algorithm integrates the main features of GA and PSO into the optimization process.
Results clearly show a very good agreement between the desired and synthesized specifications for
the two cases. Since the algorithm proposed in this paper is reliable and effective and this feature
makes it suitable for a wider application in electromagnetics.
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Abstract— Due to dramatic progress in microfluidic devices and their applications, the devel-
opment of microfluidic systems become more and more pertinent in recent years, such as fluidic
activation devices, micro-sensors and micro-pumps. In this research, micro-electro-mechanical
fabrication technologies are employed to fabricate an innovative valve-less micro-pump under
magnetic control. The micro-coil is fabricated by electroforming and utilized to generate control
force. Prior to fabrication of micro-pump, commercial software CFD-RC and ANSOFT are used
first to simulate the performance of the designed micro-pump. CFD-RC is to observe the flow
field and pressure in the micro-channel, and ANSOFT to evaluate if the magnetic force is suffi-
cient enough to activate the membrane of the micro-pump. Finally, the micro-pump is equipped
with a personal computer, in which dSPACE simulation module DS1104 is embedded, to realize
the closed-loop micro-system.

1. INTRODUCTION

The micro-pump plays an important role in the microfluidic devices because it can provide consid-
erably precise flow rate. Therefore, it becomes more popular in medical applications, e.g., micro
total analysis system ([1, 2]) and Lab-on-a-chip [3]. In recent years, a wide variety of valve-less
micro-pumps have been developed. Berg proposed a two-stage peristaltic micro-pump for applica-
tions in microfluidics [4]. It mainly consists of an air blister, air tubes and a chamber. However,
Berg’s micro-pump needs a certain of additionally-added gas as the driving force. Xu proposed
a micro-pump actuated by NiTi/Si composite diaphragm [5]. The actuation diaphragm performs
reciprocating motion by applying the elastic force of NiTi thin-film. An oxygen micro-pump, whose
actuation power is generated via the chemical production of oxygen gas, was proposed by Choi [6].
The oxygen gas is produced by decomposition of hydrogen peroxide under aid of catalyst. Never-
theless, the generation of oxygen is hardly controlled quantitatively.

In this report, an innovative valve-less micro-pump actuated by magnetic force is presented.
The magnetic force is induced via the micro-coil and interacts with a stationary magnetic field
generated by the permanent magnet to control the vibration of membrane. The magnetic force
is controlled by the coil current. Due to the feedback control strategy, the pumping rate can be
actively regulated to adjust the flow rate.

Microcoil

Membrane

Tube

PM

Chamber

Figure 1: Sketch of the proposed micro-pump. Figure 2: Magnetic field between PM and micro-coil.

2. FABRICATION PROCESS

The micro-pump under an actuation mechanism driven by magnetic force is manufactured via
micro-electro-mechanical fabrication technologies. The micro-pump consists of a circular chamber
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with nozzle/diffuser elements, a membrane and a set of micro-coil, as depicted in Fig. 1. A NdFeB-
type permanent magnet is tightly bonded with the membrane so that the motion of the membrane
can be controlled by the magnetic field (see Fig. 2). The strength (i.e., the flux density) of the
magnetic field is adjusted by the current in the electroformed micro-coil fabricated on the other
wafer (i.e., the bottom chip of Fig. 1). In order to avoid overheating of the micro-coil and ensure it
can generate sufficient magnetic force enough to activate the membrane, the commercial software
ANSOFT is employed to verify the dimensions of micro-coil and estimate the maximum magnetic
force induced by coil current. The induced magnetic flux intensity is shown in Fig. 2.

2.1. Microfluidic Channel

The microfluidic channel is made of Polydimethylsiloxane (PDMS). The fabrication process is
illustrated in Fig. 3. The process is started with coating a thin SU-8 about 50µm thick, on a glass
wafer, as shown in Fig. 3(a). The circular chamber with nozzle/diffuser is defined and developed
as shown in Fig. 3(b). The PDMS is uniformly spin-coated and then baked at 70 ◦C for 4 hours, as
illustrated in Fig. 3(c). After natural cooling under room temperature, the micro-channel is formed
by molding, as shown in Fig. 3(d). Eventually, tubes are inserted as the inlet and the outlet of the
microfluid, as shown in Fig. 3(e).

(a)

(b)

(c)

(d)

(e)

Glass substrate SU-8 50 PDMS

Figure 3: Outlines of the fabrication process of microfluidic mechanism.

2.2. Mechanical Membrane

The membrane is also made of PDMS. A sensing element, in which a permanent magnet is em-
bedded, is attached with the membrane for detecting the vibration of the membrane, as shown in
Fig. 4.

2.3. Micro-electromegnetic Actuation

The micro-coil is fabricated by electroforming technology. Photoresist SU-8 is employed to define
the patterns of micro-coil. Prior to electroform process, a bed layer whose material is superior
for electric conduction is required. The bed layer utilized in the research is the alloy of chromium
(Cr) and gold (Au), whose width are 200 Å and 1000 Å respectively. Because Au can hardly be
electroformed on the glass substrate intimately, a very thin layer of Cr is coated by electroforming on
the glass substrate at first as the interface between Au and glass substrate. Au possesses excellent
conductivity so that Au is chosen as the main material of bed layer. In this study, the KMPR is
adopted as the thick-film photoresist. The N-methyl pyrrolidone (NMP) is used to remove KMPR



1256 PIERS Proceedings, Hangzhou, China, March 24-28, 2008

Figure 4: Diagram of the sensing element.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: Outlines of the fabrication process of micro-coil.

after electroforming. It is noted that removing the photoresist after electroforming can improve the
dissipation of heat generated by micro-coil.

The fabrication process of micro-coil is illustrated in Fig. 5. Cr and Au are electroformed on
the glass substrate. KMPR is coated on the wafer by spin coater, as illustrated in Fig. 5(a) and
Fig. 5(b). After soft bake, the wafer is under exposure about 90 seconds. Afterwards the wafer
is soaked in TMAH about 5 minutes for photo development, as illustrated in Fig. 5(c), and then
cleaned by ionic water. Before photolithography, the wafer has to be under hard bake at 150 ◦C
for 3 minutes to enhance the adhesion of photoresist. The micro-coil, which is made of copper, is
electroformed on the wafer, as illustrated in Fig. 5(d). In order to remove the undesired photoresist
after electroforming, the wafer is soaked in NMP about 3 minutes, as illustrated in Fig. 5(e).
Eventually, the wafer is soaked in etching solution to remove the undesired alloys of Au and Cr,
as illustrated in Fig. 5(f). The micrograph of micro-coil is shown in Fig. 6. By stacking the micro-
coil, the membrane and the microfluidic channel in sequence, the micro-pump is accomplished, as
illustrated in Fig. 7.

3. EXPERIMENTAL RESULTS

The micro-pump is equipped with a personal computer to realize the closed-loop control system.
An eddy current type gap sensor is employed to measure the vibration of membrane. The PID
controller is designed and implemented with dSPACE simulation module DS1104 which consists of
a set of 16-bit A/D and D/A convertors with conversion speed of 2µs and 10µs respectively. Fig. 8
is the block diagram of closed-loop PID control system. Fig. 9 and Fig. 10 are the forced response
of the closed-loop micro-pump. The command is a sinusoidal signal. From Fig. 9 and Fig. 10, the
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Figure 6: Micrograph of micro-coil. Figure 7: Picture of the proposed micro-pump.

PID 

Controller

Power

Amplifier

Proposed

Micropump

Gap
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Reference

 

+

Figure 8: Block diagram of closed-loop PID control system.

amplitude of membrane can be successfully controlled by tuning the amplitude of the commands.
In another words, the flow rate can be precisely adjusted by the feedback control loop by giving an
appropriate reference.
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Figure 9: Forced response under sinusoidal com-
mand with amplitude 2 µV.
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Figure 10: Forced response under sinusoidal com-
mand with amplitude 6 µV.

4. CONCLUSION

A valve-less micro-pump has been successfully fabricated by applying electroforming and MEMS
technologies. The pump mainly consists of a microfluidic channel, a membrane and a set of micro-
coil. The microfluidic and membrane are both made of PDMS. The outstanding property of PDMS
is that it possesses low Young’s modulus, and therefore PDMS is popularly used as the material
of the vibratory membrane. For the fabrication of micro-coil, the electroforming technology is
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adopted. Commercial software ANSOFT is employed to simulate the performance of the designed
micro-pump. The PID controller is implemented via dSPACE simulation module DS1104. The
efficacy of micro-pump under closed-loop control by magnetic force is verified. The amplitude of
vibratory membrane can be successfully controlled by tuning the amplitude of the commands so
that the flow rate can be precisely adjusted.
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Abstract— MEMS varactors are one of the important passive MEMS devices. Their applica-
tions include use in VCOs, tunable impedance matching networks, tunable filters, phase shifters,
and true time delay lines. The shunt capacitive structure has been employed in most of the
conventional MEMS varactor designs because of its simplicity. However, the capacitance ratio of
this conventional shunt capacitive MEMS varactor is limited to 1.5 because of the MEMS Pull-
In effect, which happens when the deflection between the MEMS top and bottom metal plates
increase beyond 1/3 of the airgap between the two metal plates. At that time, the top metal
plate will quickly snap down. This effect is the major limitation in MEMS varactor designs and
can cause nonlinearity and mechanically instability. In order to eliminate this Pull-In effect, the
author employed the so-called MEMS extended tuning range structure. This structure utilizes
a variable height top metal beam with separate actuation parts. The airgap between the center
part of the top beam and the bottom plate has been designed to be less than 1/3 of the airgap
between the top beam and the bottom actuation pads. When DC bias is applied to the actuation
parts, the entire top beam will move down together. Consequently, before the Pull-In effect
happens at the actuation parts, the center part has already traveled through its entire tuning
range, which means that the capacitive ratio of this kind of MEMS varactor can go to infinity.

A fabrication process employing a GaAs substrate has been designed based on surface micro-
machining technology. The maximum capacitance ratio of the designed MEMS extended tuning
range varactor is 5.39 with a Cmax value of 167 fF. Based on this MEMS varactor design, a
Ka-band MEMS varactor based distributed true time delay line has been designed. This dis-
tributed true time delay line includes a high impedance CPW transmission line with 70 Ω un-
loaded impedance at 28 GHz and eight MEMS extended tuning range varactors based on the
varactor design periodically loaded on the CPW line. The testing results show that a 56◦ phase
delay variation has been achieved at 28 GHz. The measured insertion loss at 28 GHz is −1.07 dB
at the up-state and −2.36 dB at the down-state. The measured return losses, S11 and S22, are
both below −15 dB at 28 GHz and below −10 dB over the entire tested frequency range of 5 GHz
to 40 GHz.

1. INTRODUCTION

MEMS varactors are one of the important passive MEMS devices. They have considerable ad-
vantages compared with other semiconductor devices, including low loss, very high Q at mm-wave
frequencies, high power handling capability, low power consumption, and high IIP3. The RF
MEMS varactor can be employed in a phase shifter or true time delay line design to replace the
GaAs Schottky varactor diode for low-loss, broadband, and high frequency applications in mod-
ern communication, automotive and defense applications. It can also be used in low loss tunable
circuits including matching networks, tunable filters, and low noise oscillators.

2. RF MEMS EXTENDED TUNING RANGE VARACTOR

Conventional RF-MEMS varactors usually employ a shunt parallel plate capacitor whose capac-
itance is determined by the spacing between a fixed bottom plate and a movable suspended top
plate. Electrostatic actuation occurs when an electrostatic force is created by applying a DC voltage
between the capacitor plates, thereby displacing the movable plate toward the fixed plate. How-
ever, this shunt capacitance MEMS varactor structure suffers from the so-called Pull-In effect [1].
It happens when the displacement between the two metal plates exceeds 1/3 of the entire air-
gap. At that moment, the electrostatic attraction force loses balance with the mechanical restoring
force and that causes the two metal plates to quickly snap into contact. The Pull-In effect is the
major limitation in MEMS varactor designs. It will cause nonlinearity and mechanical instability
of the MEMS varactors. In order to avoid the snap down, the designed capacitance ratio of the
conventional MEMS capacitive varactor is usually set to 1.2 to 1.5 [2].
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Figure 1: Model of a MEMS extended tuning range varactor structure.

In order to eliminate this Pull-In effect, one approach is to employ the so-called MEMS extended
tuning range structure [3]. This structure, as shown in Figure 1, utilizes a variable height top metal
beam E1 with separate actuation parts E3. The airgap between the center part of the top beam
E1 and the bottom plate E2 has been designed to be less than 1/3 of the airgap between the top
beam E1 and the bottom actuation pads E3. When DC bias is applied to the actuation parts, the
entire top beam E1 will move down together. Consequently, before the Pull-In effect happens at
the actuation parts, the center part has already traveled through its entire tuning range, which
means that the capacitive ratio of this kind of MEMS varactor can theoretically approach infinity.

A MEMS extended tuning range varactor has been designed at 28 GHz on a GaAs substrate by
using the Ansoft HFSS and Agilent ADS simulation tools. Figure 2 shows the designed five-mask
fabrication process. The most important and difficult step in building this extended tuning range
structure is to form the variable height top metal beam E1. Here, it has been realized by spinning
two layers of photoresist continuously with different masks to pattern, see Figure 2(c) and (d). The

Figure 2: Fabrication process steps.
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first step (Figure 2(a)) is to evaporate 0.7µm of gold to form the signal lines and actuation pads
using a gold lift-off process. The second step (Figure 2(b)) is to use PECVD to deposit 3000 Å of
Si3N4 and to use dry Reactive Ion Etching (RIE) to form the dielectric layer between the bottom
and top metal beams. The third step (Figure 2(c)) is to spin 1µm thick photoresist and pattern
the anchor points. The fourth step (Figure 2(d)) is to spin another 2µm thick photoresist layer
and pattern the anchor points and the center lower beam E2. The fifth step (Figure 2(e)) is to
electroplate 2µm of gold and use photolithography to form the upper beam E1. The final step
(Figure 2(f)) is to use a dry etch to remove the sacrificial layer and release the whole structure.

Top beam 

CPW transmission line 

Figure 3: SEM picture of a MEMS extended tuning
range varactor.

Figure 4: On-wafer C-V testing results.

Figure 3 shows an SEM picture of one of the fabricated MEMS varactors. On-wafer mea-
surements by using an HP 4279A C-V meter have been employed and the results show that the
maximum capacitance ratio is 5.39 with a Cmax value of 167 fF (see Figure 4).

Figure 5: SEM picture of a MEMS varactor based
true time delay line.

sLline

sCline CVaractor

s

Figure 6: Equivalent circuit of unit section LC lad-
der network.

3. RF MEMS VARACTOR BASED TRUE TIME DELAY LINE

RF MEMS varactor based true time delay line technology employs a distributed LC ladder structure
by parallel loading the MEMS varactors on high impedance coplanar waveguide (CPW) transmis-
sion lines. Figure 5 shows an SEM picture of a portion of one of the fabricated MEMS extended
tuning range varactor based true time delay lines. The unit section equivalent circuit of the dis-
tributed LC ladder network is shown in Figure 6. When the operation frequency is far below the
Bragg cutoff frequency of the LC ladder network, the group velocity remains essentially constant
as the frequency is varied [4].
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This MEMS varactor based true time delay line comprises 8 MEMS extended tuning range
varactors loaded on a 70 Ω CPW transmission line operated at 28 GHz. The on-wafer testing
results show that the insertion loss at 28 GHz is −2.36 dB in the down-state; the return loss, S11

and S22, are both below −15 dB at 28GHz (see Figure 7). The measurement phase delay is 56◦ at
28GHz (see Figure 8).

R
e
tu

rn
 L

o
s
s
 (

d
B

) 

S21 

S11 

S22 

Freqency (GHz)

Figure 7: Measured down-state S-parameters of the
MEMS varactor based true time delay line.
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Figure 8: S21 phase delay.

4. CONCLUSIONS

A novel RF MEMS extended tuning range varactor structure has been employed to eliminate the
Pull-In effect of the conventional MEMS varactor designs. On-wafer measurement results show
that the maximum capacitance ratio is 5.39 for the extended tuning range MEMS varactors. A
28GHz proof-of-principle MEMS varactor based true time delay line design employed the MEMS
extended tuning range varactor structure. The maximum phase delay is 56◦ with a usable range
extending from 5 to 40GHz over which the line has demonstrated both low insertion loss and high
return loss.
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Abstract— In circuit theory, impedance is used to characterize input/output. For waves,
in addition to impedance with lump entities, an additional parameter, the wave impedance or
characteristic impedance of the transmission medium which involves the propagation constant,
needs to be considered. Electromagnetic waves are considered as ‘true waves’ because the energy-
momentum relation is linear allowing a wave packet to maintain at all time, and in any frame
of reference. However, for electrons, a Gaussian packet spreads because of the non-linear E-
k dispersion, as well as the fact that k, the de Broglie wave vector, depends on the frame of
reference. In spite of these concerns that electron, perhaps, is not really a wave, we present the
concept of wave impedance of electrons. Within a finite mean free path, the propagation of an
electron in a quantum wire of quantum waveguide in general can be characterized by the wave
impedance.

1. INTRODUCTION

Before we touch on the need to introduce the concept of wave impedance, let us review what is in-
volved with electromagnetic waves. In circuit theory, we deal with lump elements, such as resistors,
capacitors and inductors. For a given input/output, the totality of the system, even involving op-
erational amplifier, for example, may be represented by an equivalent circuit. If a transmission line
is placed between input and output terminals, propagation down the transmission line represented
by a wave-impedance is often all is necessary to describe the reflection and transmission from the
input to the output. Let us ask what are the meaningful measurements needed to characterize
the input/output. For example, the current flow in a diode as a detector, or the voltage at the
control gate of a MOSFET can be determined with just these parameters mentioned. When the
lump elements consist of tunnel junction or a quantum dot, obviously the wave nature of elec-
tron should be involved, particularly if something more than a single tunnel junction such as a
superlattice or multiple quantum wells or simply a long Quantum Wire, QWire. It is then obvious
we need to introduce the concept of wave impedance for electrons [1], to clarify or to expand on
various concepts, a universal conductance defined by Landauer [2], contact conductance defined by
S. Datta [3], and the wave conductance defined by Tsu [4], and by T. Datta and Tsu [5]. Basically,
we need to distinguish the difference between an open and closed system. A transmission line is
an open system, with the conductance per spin given by G0 = 2e2/h, while for a close system,
the conductance per spin is given by Gc = e2/h. Extending the transmission medium from 1D to
3D, the wave impedance Z0 involves even fractions somewhat reminiscent to fractional quantum
Hall constant. Which one of these definitions is most applicable to a given measurement will be
examined.

2. LANDAUER CONDUCTANCE FORMULA

It was noted that conductance consists of discrete components depending on the number of lon-
gitudinal modes, as well as transverse degree of freedom [1]. In the Tsu-Esaki expression for the
resonant tunneling [6], integration was performed over the transverse degree of freedom first, noting
that the 2D-DOS for unbounded case is simply m∗/π~2. Let us instead integrate over the longitu-
dinal direction first, dk` or dE`. Defining the function F (E) ≡ 2

∑
t

[1 + exp(E + Et)/kBT ], then

the net tunneling current between two contacts given by Mitin-Kochelap-Stroscio 1999 [7] becomes

I =
2e

L

∑
t

∑

k`

1
~

dE`

dk`
{F (E + eV −EF )− F (E −EF )}. (1)

And with T → 0, and V → 0, F (E+eV −EF )−F (E−EF ) → eV ∂(EF −E), then the conductance
G = ∂I/∂V , from (1) becomes the Landauer’s conductance formula

G = 2 G0

∑
t

|T |2(EF , Et), (2)
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in which the conductance per spin, G0 = e2/h = 38.6µS, referred to by Landauer as the universal
conductance [2, 8], with its inverse Z0 = 25.9 kΩ, and by S. Datta 1995 [3], as contact conductance.
Both will be discussed more in detail after the section on the wave impedance of electron.

3. ELECTRON QUANTUM WAVEGUIDE (EQW)

Let us take the electron quantum waveguide shown in Fig. 1, the propagating wave-vector kz

including the potential energy eV is given by [9]

k2
z =

2me

~2
(E + eV )− k2

t nm. (3)

The transverse momentum vector ktmn of the mode (m, n) is given by

Figure 1: Section of an electron waveguide embedded in an infinite potential barrier on all sides. The applied
potential is 0 for z < 0, and V for z > 0.

k2
tnm = (

mπ

a
)2 + (

nπ

b
)2 ≡ k2

c , (4)

and Et, mn = (~2k2
c )/2m, we see that the transverse energy is nothing but the energy at the cutoff

propagation vector, kc as in usual waveguide case. The density of states, DOS for a cross-sectional
area A is

DOS =
1
A

∑
n, m

∫ kzM

0
dkz, (5)

where kzM is the maximum value for a given set (m, n), E and eV . Below cutoff, kz is purely
imaginary, propagation is not possible. At T = 0, E = EF , above cutoff, the current density with
two spins is given by

I =
2e

2π

∑
n, m

∫ kzM

0

1
~

∂E

∂kz
dkz =

2e

h

∑
n, m

(EF + eV )− Et, mn. (6)

At
m = n = 0, I00 = 2

e

h
(EF + eV ),

and for

eV00 + EF > 0, G00 =
∂I00

∂V
= 2

e2

h
≡ 2G0;

and at
m = 1, n = 0, I10 = 2

e

h
(EF + eV )− Et, 10,

and for

eV10 + EF > Et, 10, G10 =
∂I10

∂V
= 2

e2

h
≡ 2G0;

etc. resulting in G = G00 + G10, continuing to the general case of (m, n), G = ∂I
∂V is

G =
∑
n, m

2G0θ(EF + eV − ~2k2
tnm/2m), (7)

in which θ is the unit step function, having a series of steps depending on how many modes, (m, n)
are included. With a negative sign for e, +eV becomes −eV in (7). The factor of 2 in front of
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G0 is for the two spins. Thus for spin polarized case, there should be G0(+1/2) and G0(−1/2)
without the factor 2. It is important to recognize that for single mode operation, only one step
in G appears. The origin of these extra modes is due to the inclusion of modes (m, n) coming
from the incident electrons having transverse energy. In free space, we simply take a = b = ∞,
then G = G0θ(EF − eV ), which ensures that the potential of the waveguide is below that of EF .
Otherwise no transmission is possible from the source of electrons at the energy range of E = 0
to EF . It is important to recognize that an incident electron with transverse energy can enter the
waveguide, without transverse-longitudinal scattering, only the longitudinal energy contributes to
conductance. What is this conductance? From the derivation, clearly it is an input conductance,
what Datta 1995 referred to as contact conductance. What happens to the output impedance?
The setup of the problem implicitly assumes the output end is terminated in its own characteristic
impedance. What happens to the sending end? Since all transverse modes forming the allowed
modes entering the EQW are assumed to be uncoupled, reflection coefficient of each mode is zero
for the planar boundary conditions.

The quantized conductance steps in units of 2e2/h for the transport of electrons in constricted
geometry was first pointed out by Landauer and misleadingly referred to as ballistic behavior or
even some mechanism of energy loss in these systems [2, 8]. We shall show that these conductance
steps are entirely a wave phenomenon similar to the propagation of an E&M wave through free
space with a wave impedance of 377Ω. Unlike photons where it is quite simple to direct the wave
in a given direction, however, electrons on a Fermi surface are in all directions. Thus, multimode
operation dominates over a single mode operation in general. It should be apparent that this sum
of modes is totally controllable by the potential V as in tunable filters.

4. WAVE IMPEDANCE OF ELECTRON

Shortly after the publication on the electron waveguide [4], T. Datta was asked by Tsu to work
jointly on a generalized formulation of the electron wave impedance based on the original definition
by Schelkunoff for electromagnetic waves [10]. The primary reason was to dispel the issue addressed
by Landauer about the real conductance implying losses. Principally, in electromagnetics, the wave
impedance in free space, η = (µ/ε)1/2 = 36.6Ω. In reality, the concept of wave impedance manifests
in the transport of energy whether to a load with reflection and dissipative losses, or simply flowing
on. Although electrons are not pure waves, with entanglement due to Pauli’s exclusion principle, the
differential equation, at least represented by the Schrödinger equation, is a typical wave equation,
thus, should have similar wave impedance, even for sound. As long as we are dealing with a
lossless case, the conductance is purely real. Reflection and transmission, consequences of boundary
conditions in sections where the differential equation is piece-wise analytic, are handled through
the use of impedance matching at these boundaries identical to the role of impedances in circuit
theory. Although wave impedance shares some common notion with impedance in a lump network,
the two are definitely not the same.

Following Datta-Tsu 2003 [1, 5], the wave impedance is defined via a plane wave normalized in
a volume AL, with the area A transverse to the direction z, of length L. However, in solids, L must
be less than the mean free path Λ, otherwise waves have no meaning. Then

E =

L∫

0

dz

b∫

0

dy

a∫

0

dxψ∗Hψ =
~2k2

0

2m
, (8)

and

I = e

b∫

0

dy

a∫

0

dx
~

i2m
(ψ∗ψz − ψψ∗z) = e

~kz

mL
, (9)

where H is the kinetic energy operator. To get an expression for impedance in units of ohm, we
need to divide E in Eq. (8) by the charge to obtain the potential V . The impedance Z = V/I, so
that

Z =
~

2e2

k2
0L

kz
=

~
2e2

k0L√
1− k2

c/k2
0

, (10)

in which kc is given by Eq. (4). Furthermore, along the direction of propagation, unlike the
sine dependences in the x and y directions, the wave function dependence on z is exp(ikzz), a



1266 PIERS Proceedings, Hangzhou, China, March 24-28, 2008

propagating function, therefore, periodic boundary conditions must be applied, i.e., kzL = 2`π,
with ` being any integer. Then Eq. (10) becomes

Z = Z0`
[
1− k2

c/k2
0

]−1
, with Z0 = h/2e2. (11)

The factor [1−k2
c/k2

0]
−1, is not present in G for the EQW. However, in deriving the conductance

of EQW, we allow electrons with transverse energy to enter the waveguide, although only the
longitudinal energy contributes to the conductance. Here, an incident electron having transverse
degree of freedom applies to an electron incident at an angle from the impedance along the z-axis.
Since our formulation does not allow the transverse energy to be channel into the z-direction, for
comparison with the derivation for EQW, we should have taken an electron having energy only
in the z-direction. Then kz = k0 and the factor [1 − k2

c/k2
0]
−1 does not appear. However with

Z0 = h/2e2, Z−1
0 = 2G0, which is a factor of 2 larger than the derivation for EQW. There must

be a satisfactory explanation for the factor of 2. Let us invoke the difference between open and
close systems. An open system, (a) consists of an input to a tunnel junction or quantum well on
the left, and an output to a similar thing to the right, with a long transmission line or quantum
wire between the two; and a closed system, (b) consists of two contacts connecting a resonant
tunneling diode or quantum well. Thus we recognize that (a) is represented by the solution of the
wave impedance, or EQW. Therefore, Z0 = h/2e2, or G0 = 2e2/hper spin, which is a factor of
two larger than the Landauer conductance. Now, as we recognize that (b) is nothing but putting
two Z0 in series, or ZC = 2Z0. Then Gc = G0/2. To summarize, the conductance per spin
for the wave impedance treatment is twice the value for that treated by Landauer, which was
originally obtained by Tsu and Esaki for tunneling between two contacts held at their respective
Fermi levels. Considering as a closed system, it was pointed out simply that the potential seen by
the tunnel junction eV = (µR − µL)/2, therefore Z0 = h/e2 [1]. Let us conclude by pointing out
that the correct way to treat the case where a signal is applied to a transmission line, or in our
case, the quantum wire or quantum wave guide is discussed in this work. The treatment by using
the resonant tunneling approach as first shown by Tsu and Esaki [6], or Landauer [2], really only
applies to lump circuit as in circuit theory, treating the junction as a lump element. However, it
is important to recognize that whatever treatment is considered, it is the wave nature of electrons
gives rise to this conductance per spin given by e2/h per spin. The so-called universal conductance
is really a wave conductance for a closed system. We may call it an input conductance [1], or a
contact conductance [3], or a universal conductance [2], what it matters is the fact that it is a wave
impedance entirely similar to the wave impedance of an E&M wave, which is not at all similar to
the impedances of lump elements such as a resistance and capacitance.

Let us discuss another important point with the electron wave impedance. In a solid, L must be
less than the mean free path, or L ≤ Λ, with Λ the mean free path or the coherent length of electron.
Otherwise, the wave nature loses its meaning. Let us define a minimum kzm ≡ 2`π/Λ for ` = 1,
corresponding to the lowest energy of the electron. The longer is the mean free path Λ, the lower is
the allowed lowest energy and its corresponding lowest k-vector. What happens to the conductance
for ` = 2, 3, . . . The higher orders correspond to higher energy states which has a larger phase space
for scattering leading to higher losses, or in less pronounced conductance oscillations. Or simply
the transmission at resonance is lower. Only in free space with infinitely long coherence length, the
conductance corresponding to higher `′s are allowed. Note that in electromagnetic case, the set of
indices (`, m, n) are always canceling each other because the k-vector and the photon energy are
linear. Therefore, the wave impedance for E&M is always isotropic in free space. However, it is
not always so in wave impedance for electrons.

5. WAVE IMPEDANCE IN 3D

In arbitrary direction of propagation, and using periodic boundary conditions for all three direc-
tions, the wave impedance in an unbounded free space is given by

Z`, m, n = Z0Ξ`, m, n,

where

Ξ`, m, n =




`2

L2
+

m2

a2
+

n2

b2

`

L2
+

m

a2
+

n

b2


 . (12)
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Even with L = a = b, the function Ξ`, m, n listed below consists of fractions except in one dimensional
case, reminding the fractional quantum numbers in the fractional Hall effects [11], Note that there
are degeneracy in 3D case. Suppose there is only one electron traversing the space, one can
always pick one of the axes of the cube to align with the direction of propagation, then the wave
impedance will be given by the fourth column marked 1-D. Now, a second electron is propagating
in a direction not collinear with the first. Since we cannot align the coordinates with both, the
complicated impedances will appear at the detector. Therefore in principle, these fractional terms
will enter into the observed. For interacting electrons, the simplest may be just the Coulomb term
e2/rij , the situation is obviously very complex. Quantum number dependence of Ξ`, m, n in 1, 2 & 3
dimensions is listed in Table 1. Note that many fractions are involved. As in the wave impedance of
E&M waves, when various photons are coupled, for example, in a photonic crystals, it is debatable
what simplification, if any, the concept of wave impedance may provide. Under what circumstances
the concept of wave impedance may help to identify processes is remain to be discovered.

Table 1: Quantum number dependence of Ξ`, m, n in 1, 2 & 3 dimensions.

` m n 1D 2D 3D

1 1 1 1 1 1

2 1 1 - 5/3 3/2

2 2 1 - - 9/5

2 2 2 2 2 2

3 1 1 - 5/2 11/5

3 2 1 - - 7/3

3 2 2 - 13/5 17/7

3 3 1 - - 19/7

3 3 2 - - 11/4

3 3 3 3 3 3

4 1 1 - 17/5 3

4 2 1 - - 3

4 2 2 - 10/3 3

4 3 1 - - 13/4

4 3 2 - - 29/9

4 3 3 - 25/7 17/5

4 4 1 - - 11/3

4 4 2 - - 18/5

4 4 3 - - 41/11

4 4 4 4 4 4

6. CONCLUSIONS

The pre-factor for the conductance per spin G0 = e2/h for a closed system is double for an open
system, with 2G0. Whenever tunneling is involved, conductance is given by the wave impedance
or wave conductance. The so-called universal conductance, input conductance, or contact conduc-
tance, describe the very same wave conductance of a closed system having right and left contacts.
What led Landauer to assume that the contact is reflection-less? Generally contacts are nearly
reflection-less at resonance but the details are accounted for by the transmission term rather than
the ‘pre-factor’ G0. Why then is the tunneling at resonance seems to be related to G0? This is
because tunneling as in Fabry-Perrot interferometer, at resonance, the transmission coefficient is
nearly unity in a lossless system. Experimental data gives unity for the transmission is because at
low temperatures without phonons, different modes from different transverse degree of freedoms
are nearly independent. As soon as longitudinal and transverse momenta are mixed, these equal
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steps of conductance are smeared. But why in the case of Si-QD that Nicollian and Tsu worked
on showed conductance jumps in units of G0 even at room temperatures? The answer lies in the
fact that, for size ∼ few nm, the quantized energies are so far apart, being almost unaffected by
phonons, a primary contributor for mixing of modes [12].

ACKNOWLEDGMENT

One of us, Ray Tsu, would like to thank Lee Casperson for some stimulating discussions regarding
the wave nature of electrons.

REFERENCES

1. Tsu, R., Superlattice to Nanoelectronics, Chapter 11, Elsevier, 2005.
2. Landauer, R., Phil. Mag., Vol. 21, 863, 1970.
3. Datta, S., Electronic Transport in Mesoscopic Systems, Cambridge Univ. Press, 1995.
4. Tsu, R., Advanced Semiconductor Heterostructures, 221, Eds. M. Dutta & M. Stroscio, World

Sci., Singapore, 2003.
5. Datta, T. and R. Tsu, QWI LANE2.19.Nov. 2003, http://arXiv.org/cond-mat/0311479, 2003.
6. Tsu, R. and L. Esaki, Appl. Phys. Lett., Vol. 22, 562, 1973.
7. Mitin, V. V., V. A. Kochelap, and M. A. Stroscio, Quantum Heterostructures, Cambridge

University Press, Cambridge, 1999.
8. Landauer, R., IBM J. Res. Devlop., Vol. 1, 223, 1957.
9. Tsu, R., Advanced Semiconductor Heterostructures, 221, Eds. M. Dutta & M. Stroscio, World

Sci., Singapore, 2003.
10. Schelkunoff, S. A., B. S. T. J., Vol. 17, 17, 1938.
11. Chakraborty, T. and P. Pietilainen, The Fractional Hall Effects, Springer, 1988.
12. Tsu, R., Microelectronic J., MEJ 2184, 2007.



Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, 2008 1269

A New Definition of Capacitance of Few Electron Systems

Tim LaFave Jr.1 and Raphael Tsu2

1Department of Physics and Astronomy, University of Iowa, Iowa, IA 52242, USA
2Department of Computer and Electrical Engineering

University of North Carolina at Charlotte, Charlotte, NC 28223, USA

Abstract— Due to the discreteness of electronic charges in a nanoscale system, capacitance
is defined in terms of the total interaction energy of N -electrons confined in a dielectric sphere.
Specifically, the distribution of N -electrons is obtained from minimization of the total interaction
energy including Coulomb, polarization and the self-polarization terms. And recently, by includ-
ing the formation energy, the work done on the system, the capacitance agrees with the case
when N = 1 and N = ∞. While Schrödinger equation is crucial in dealing with kinetic energy, it
is the Poisson equation that allows properly accounting for spatial symmetry properties resulting
from the discrete nature of electrons.

1. INTRODUCTION

When considering nanoscale systems the spatial symmetry properties of electrons play a role in the
characterization of its electronic properties. These symmetry properties are most important for
systems consisting of few electrons since the resulting potential landscape shapes its electrostatic
boundary conditions. While the quantum mechanical Schrödinger equation provides an accurate
evaluation of kinetic energy, here a classical electrostatic interactions model is demonstrated to
provide the total electrostatic potential energy using only the Poisson equation to properly account
for spatial symmetry properties resulting from the discrete nature of electrons. Within this model,
the N -dependent expression of capacitance is written

C(N) ≡ Q

VTOT (ri)
= N

Q

V (N)
=

(Ne)2

E(N)
(1)

with the N -dependent energy given by this interactions model,

E(N) = e [φC(N) + φP (N) + φS(N)] = EC(N) + EP (N) + ES(N) + W (N) (2)

where subscripts C, P and S correspond to electrostatic Coulomb, polarization and self-polarization
interactions, respectively. The total interaction energy may then be written,

EI(N) = EC(N) + EP (N) + ES(N)

and W (N), the total work done on the dielectric system, is the total formation energy. Eq. (1)
agrees with the conventional capacitance when N = 1 and in the conducting limit when N → ∞,
as the dielectric constant also tends to infinity.

The confinement of electrons to nanoscale systems is crucial to the development of current and
near future materials and devices. We have previously demonstrated variation of the classical
electrostatic capacitance of dielectric spheres consisting of few electrons [1], a resulting equilibrium
configuration consistent with the classical single shell Thomson model [2–7], and derived a new
time-independent, electrostatic capacitance expression concurrent with the fundamental definition,
C ≡ Q/V [2, 7], based on spatial symmetry of electrons. The validity of the discrete charge dielectric
(DCD) model is substantiated by its agreement with existing models in necessary limits and a
correspondence to electron orbital symmetry differences inherent to natural atomic systems [7].

The DCD model is based on the interaction properties of charges and charge distributions within
a dielectric system. The work needed to perform this redistribution was previously shown [2] as
being precisely equal in magnitude to the self-polarization interaction energy of all electrons in the
system. In more common terms, this energy is formation energy. An evaluation of the formation
energy is necessary to obtain the true spatial distribution of electrons at equilibrium from which
the absolute ground state energy of the system is obtained.

The Coulomb interaction acts to maintain separation of electrons, pushing them as far apart as
the “box” in which they reside will allow. The “box” in which the electrons of our model reside
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is an electrostatic potential well provided solely by the formation of induced sheets of charge at
the dielectric interface of a uniform dielectric sphere. For the purpose of simplicity the dielectric
function of the media inside and outside the sphere are constant. Inside the sphere, ε = 12, while
outside ε′ = 4. In practical terms these values may represent a uniform silicon sphereembedded in
a uniform silicon dioxide medium.

2. THE FORMATION ENERGY

In the absence of any excess (or “free”) electrons, the medium is electrically neutral. However, with
the insertion of an electron, the inherent dipoles of the medium become polarized such that there
will appear a net charge at the dielectric interface. The medium presents an electric resistance to
the electron just as the electron presents an electric resistance to the medium. Once the electron and
medium come to equilibrium, the electron is located at the origin of the sphere forming a spherically
symmetry equipotential landscape. The total energy in the system derives from the interaction of
the electron with the potential presented by the charged sphere and the interaction resulting from
the polarization of dipoles in the once-neutral dielectric material. The self-polarization energy may
be written simply as

ES(ri) = eφ(ri)−W

where e is the charge of an electron, ri, is its location and W is the formation energy associated with
the surface charge. The formation energy is obtained by integration over the potential function
with respect to the charge,

W =

∞∫

0

φ(ri)dq =
e2

8πε0εa

∞∑

l=0

(ε− ε′)(l + 1)
[ε′ + l(ε + ε′)]

(ri

a

)2l
=

eφ(ri)
2

. (3)

This is justified if dq → 0, assuming the formation of a net surface charge from the polarization of
numerous dipole elements. Hence, the formation energy results from one-half of the total interac-
tion, eφ(ri), which may be obtained by solution of the electrostatic Poisson equation [8]. The total
potential energy of the single electron system is then

E(ri, N = 1) = eφ(ri) = W + ES(ri). (4)

Upon minimization of E(ri, N = 1), ri = 0, and the ground state energy is obtained,

E0(N = 1) = eφ(0).

Half of the total ground state energy is associated with the electron, the other half with the
induced surface charge. Had the minimization of energy been performed with respect only to the
self-polarization interaction energy the electron would still be located at the origin.

In general, the total energy in the system is given by

E(N) = EI(N) + W (N)

with W (N) being the summation of the work done by all N electrons in the system as individually
evaluated as in Eq. (3)

W (N) =
N∑

i=1

Wi.

Note that in Table 1 for N = 1, minimization is unnecessary as the electron is at the origin. The
left side shows minimization without the total formation energy W (N), while the right side gives
minimization of the total interaction energy with the formation energy term. Although inclusion
of W (N) in the minimization scheme is for consistency when N is large so that the result should
converge to that of the conventional expression. The value for E0(N) is less than E1

0(N) indicating
even if we did not use the correct way by physical considerations the lower minimized value would
have led to the correct formalism.

A system consisting of two electrons will be in equilibrium when the electrons are on either side
of the origin, ri = rj = b. A sphere radius of a = 10 nm is chosen to arguably exclude magnetic
moment interaction energy [2, 7]. Minimization exclusively with respect to self-polarization yields
b = 0.6321a and a total system energy of EI(N) = 0.11145 eV. Minimization with respect to the
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Table 1: Left-Data for minimization with respect to the interaction energy, EI(N), with E1
0(N) =

[EI(N)]MIN + W (N) and Right-Data for minimization to the total system energy E0(N) = [EI(N) +
W (N)]MIN.

Minimization with respect to EI(N) Minimization with respect to EI(N)+W (N)

N b EI(N) W (N) E1
0(N) b EI(N) W (N) E0(N)

(a) (eV) (eV) (eV) (a) (eV) (eV) (eV)

1 0.0000 0.01200 0.01200 0.02400 0.0000 0.01200 0.01200 0.02400

2 0.6321 0.08157 0.02988 0.11145 0.5270 0.08253 0.02750 0.11003

3 0.7271 0.20794 0.05032 0.25825 0.6313 0.21019 0.04478 0.25497

4 0.7740 0.38988 0.07282 0.46269 0.6884 0.39369 0.06359 0.45727

5 0.8030 0.63195 0.09703 0.72898 0.7248 0.63752 0.08357 0.72108

6 0.8237 0.92871 0.12294 1.05164 0.7518 0.93623 0.10478 1.04101

7 0.8387 1.28777 0.15005 1.43782 0.7714 1.29743 0.12678 1.42421

8 0.8507 1.70248 0.17856 1.88104 0.7875 1.71443 0.14981 1.86424

9 0.8604 2.17603 0.20825 2.38428 0.8007 2.19038 0.17370 2.36408

10 0.8684 2.70848 0.23899 2.94747 0.8116 2.72541 0.19829 2.92371

total system energy yields b = 0.5270a, and a total ground state energy of E0(N) = 0.11003 eV.
Data for 1 ≤ N ≤ 10 are provided in Table 1. The ground state energy for N = 10, for example,
obtained by minimizing with respect to the total energy of the system is 24 meV lower than having
minimized with respect to the interaction energy alone.

3. CAPACITANCE MEASUREMENTS

The familiar approach of measuring the capacitance of a system is to measure a potential difference
between two metal plates directly in contact with the dielectric medium. However, in such a system,
the metal plates predominantly define the potential well within which electrons are confined. In
this case, the symmetry of excess electrons is quenched by the shape and size of the metal plates,
and capacitance is a constant.

Another approach of measuring capacitance is with an electrometer that measures the electric
potential some distance away from the device itself. An example of this is evident in Ref. 9. Through
induction then, the influence of the electrometer on the symmetry of excess electrons in the system
may be minimized. The nanoscale device of interest might be a semiconducting dielectric sphere
embedded in an insulating medium that may be charged by electrons by means of tunneling. The
electrometer may detect an electron’s presence at such a “dot” when a sharp rise in potential is
observed. This potential results from unique sources of charge within the device itself. In a dot
charged with a single electron, two unique charge sources are available: the electron and the surface
charge. With present technology, the electrometer is unable to distinguish between the electron
and the surface charge. Therefore, if the electron moves away from the origin of the sphere, the
electrometer is unable to distinguish if it is the electron’s motion or the change in the magnitude
of the surface charge that results in a change in potential at its location. In a classical sense,
however, such a change would not be predicted as the conventional capacitance model assumes
that all charge is spherically symmetric within the system — either a single charge at the origin or
an infinitely divisible surface charge. The conventional capacitance expression,

CCONV =

Q∫

0

φdq =
Q2

2E

represents the total charge in a many electron system (Q = Ne) while the surface charge is implicitly
included with the electrostatic potential appearing in the energy, E. The factor of 1/2 appears
as a consequence of assuming that electrons are infinitesimally small and do not repel each other
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(hence, the integration over q). However, the factor of 1/2 in the conventional expression is argued to
derive from an average over the total potential of a many-electron system in the presence of metallic
contacts. For the case of few electrons, however, the expression is misleading. In particular, we
demonstrate that the total energy in a single electron sphere is E when it is connected and 2E
when it is isolated, or unconnected.

The capacitance of a system must be defined with respect to an equipotential. The symmetry of
a connected single electron device is relatively simple as the equipotential landscape is well defined
by the metal surfaces. The difference between the capacitance of a connected and unconnected
single electron system has been shown [10] to be a factor of 1/2. In particular, a connected single
electron system has the capacitance,

CC =
e2

2E

as in the conventional expression. This is not surprising, as the conventional capacitance for spheres
has been supported by numerous experimental measurements, particularly for many-electron sys-
tems, but also by single-electron Coulomb blockade studies [11]. For the single electron case, the
equipotential symmetry is the same as though the charge were uniformly distributed at the sphere’s
surface. However, for an unconnected system, free from metallic contacts, the capacitance can be
shown to be [10]

CU =
e2

E
= 2CC .

To rectify this difference, it is worth noting that a single electron in a dielectric sphere involves
a self-polarization interaction and an interaction of surface charge formation of equal magnitude.
Together, these two energy components constitute the total system energy. In previous work we’ve
shown that the single electron case agrees with the conventional capacitance if only half of the
total energy of the system (the self-polarization interaction energy) is included. The model con-
sidered here is an unconnected sphere, and consequently agrees with the unconnected capacitance
expression as it includes both interaction and formation energy components.

4. MONOPHASIC CAPACITANCE

In cases of more than one electron, symmetry must play a central role in a definition of capacitance
as the equipotential landscape is defined by the spatial configuration of electrons. A new expression
for capacitance has emerged from the DCD model, coined the monophasic capacitance [2, 7] to
distinguish it as an electrostatic capacitance resulting from unique spatial symmetries of electrons
at equilibrium defined within a given phase of the system. In previous work [2], the monophasic
capacitance was shown to agree with the classical model in a conducting limit as well as for the
single electron case (in both conducting and dielectric cases).

17

27

37

47

57

67

77

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 3 6 3 8

Electron Number, N

C
a

p
a

c
it

a
n

c
e

 [
e

2
]

Mo nophasic (unconnected)

Conventional (conn ected)

Conventional (unconnected)

Figure 1: The monophasic capacitance, connected and unconnected conventional capacitance.
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The monophasic capacitance expression,

C(N) =
(Ne)2

EI(N) + W (N)
=

Q2

E0(N)
(5)

differs from the conventional expression only by a factor of 1/2. In the single electron case, the dif-
ference between a connected and unconnected system is attributed to the inclusion of the formation
energy in the monophasic definition as a consequence of having derived the capacitance from the
average total electrostatic potential experienced by each electron which forces an evaluation with
respect to the total energy in the system rather than merely the interaction energy associated with
electrons themselves. Since E0(N) = 2ECONV for a single electron system, then EI(N) = 2ECONV

indicating that the conventional expression, as written, includes only an evaluation of the interac-
tion energy when the system is connected. When connected, 2ECONV implies the inclusion of the
formation energy in the single electron case (the only spherically symmetric possibility). In the
case of many electrons, the factor of 1/2 is also consistent depending upon whether the system is
connected or not.

The monophasic capacitance is inherently more detailed than the conventional capacitance ex-
pression, having explicitly included the formation energy, W (N). In Figure 1, the conventional
capacitance of both connected and unconnected systems is shown using only the interaction energy
EI(N) derived from the DCD model. The monophasic capacitance, including both interaction and
formation energy, is also shown. In the single electron case, the monophasic capacitance for an un-
connected dielectric sphere agrees with the connected conventional capacitance indicating an error
in the connected conventional expression unless the denominator (2E) is taken as the total energy
of the system including formation energy (as required for an unconnected system). As well, the
unconnected conventional capacitance for the single electron case demonstrates the complication of
merely changing the conventional expression by a factor of 1/2. However, as N becomes large, the
monophasic capacitance tends toward the unconnected conventional capacitance, as the formation
energy becomes a smaller fraction of the total energy in the system as shown in Figure 2.
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Figure 2: The confining interactions of polarization and self-polarization give rise to a significantly greater
energy component than the repulsive Coulombic interaction. The formation energy, however, represents a
very small fraction of the total energy in the system, becoming negligible as N →∞.

5. DISCUSSION

As a system, the confining interactions give rise to polarization and self-polarization energy compo-
nents. The interactions that counter confinement are Coulombic in nature. The formation energy
represents an interaction similar to the Coulombic interaction as it results from the polarization of
numerous dipoles within the medium. In regions where the medium cannot balance this interaction,
a net charge appears — at the interface. As the number of excess electrons increases, the energy
needed to form a charged dielectric structure significant enough to confine all the electrons becomes
a smaller fraction of the total energy in the system as shown in Figure 2. On the other hand, the
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energy resulting from interactions that counter the repulsive Coulomb interaction is greater than
the Coulombic interaction energy itself (Figure 2).

The formation energy may arguably be related to a potential gate or switch that must be
raised or lowered to allow electrons to flow in and out of the system. This energy may then be
unrecoverable as it is inherent to the system. Knowledge of the formation energy is necessary to
determine the true equilibrium configuration of electrons in the system.

In an unconnected system free of metallic contacts the equipotential landscape is a complex
three-dimensional surface dependent only upon the spatial symmetry of the electrons themselves.
Such is the case with biological, chemical and atomic systems. This inherently makes for a dif-
ficult task in defining capacitance. However, the monophasic capacitance definition reveals the
significance of the underlying principles of electronic charge interactions, the crucial role of forma-
tion energy, and the imperative exploitation of the symmetry properties of discrete charges. The
monophasic definition resorts to an average electrostatic potential to circumvent complications of
evaluating a complex three-dimensional equipotential surface.

Here we have demonstrated the value of the DCD model by illustrating the significance of the
electrostatic formation energy. As nanoscale devices are fabricated and utilized, the spatial sym-
metry properties of electrons becomes central to an understanding of such devices. Unfortunately,
the conventional capacitance expression is misleading, as it does not bear out these symmetry
properties.

While metallic contacts are universally applied to provide well-defined equipotential surfaces
in order to rigidly define input and output, it is not generally recognized that they also serve to
minimize effects due to the discreteness of electronic charge. Indeed, metallic contacts effectively
diminish the potential of fully exploiting symmetries afforded by the discrete nature of electrons.
As electronic devices shrink to the nanoscale, it is doubtful that metallic contacts will remain in
their traditional role. An example is the impossibility of applying coaxial shielding of transmission
lines. Perhaps the answer lies in replacing metallic contacts by super-ionic dielectrics in nanoscale
devices. However, it is remarkable that living organisms function exceptionally well in the absence
of metallic contacts. Perhaps the motivation of using an average electrostatic potential in our
definition of capacitance may be universally adopted within studies of living organisms.
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Abstract— Quantum graphs are networks of one-dimensional wires connected at nodes. The
interest for such structures increased these recent times with the development of nano-scale
technology. We focus our attention on star graphs made of n edges with one junction. The related
bosonic fields propagate in the bulk, either freely or submitted to a four-fermion interaction, and
interact at the vertex, which can be considered as a defect. Hereafter, a quantum field theoretical
framework is developed and applied to the computation of physical quantities, such that the
electric and spin conductance. More precisely, our approach combines results from the spectral
theory of the Schrodinger operator on quantum graphs with an algebraic technique for dealing
with quantum fields with defects (impurities). At the vertex, all possible interactions preserving
unitarity are taken into account, but special attention is given to scale-invariant ones, which lead
to the critical properties of the system. Then bosonisation and vertex operators on quantum
graphs are investigated to solve exactly, for scale invariant boundary conditions, the four-fermion
bulk interaction (Tomonaga-Luttinger model). At this point, we are in position to derive the
charge and spin transport, and establish a simple relationship among them.

1. INTRODUCTION

First applied for describing electron transport in organic molecules, quantum wires appeared more
recently in the study of one-dimensional electron gas. These networks of junctions and wires are
very thin — of the order of few nanometers. For this reason such devices, which are now created
and tested in laboratory, are fairly well modeled by graphs. Among others, the most interesting
physical problems concern the charge and the spin transport. The fact that these problems can
be investigated in depth by means of quantum field theory (QFT) is our basic motivation for the
construction and the study of quantum fields on graphs, such a program being also interesting from
the mathematical point of view.
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Figure 1: A star graph Γ with n edges.

For simplicity, we consider below graphs of the type shown in Fig. 1. They are called star graphs
and represent the building blocks for generic graphs. Each point P in the bulk Γ \ V of the graph
Γ belongs to some edge Ei and can be parametrized by the pair of coordinates (x, i), where x > 0
is the distance of P from the vertex (junction) V along Ei. The embedding of Γ and the relative
position of its edges in the ambient space are irrelevant in what follows.

Hereafter, we review some previous works [1], [2], [3] on QFT on star graphs. The paper is
basically constituted by two parts. We start in Section 2 by setting the framework, describing some
specific properties of quantum fields on graphs related to symmetries and boundary conditions.
Special attention is devoted to the scale invariant boundary conditions, which define in the physical
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terminology the so called critical points of the system. Our construction is based on the point-
like character of the boundary interactions at the vertex, the theory of self-adjoint extension of
Hermitian operators on graphs [4] and the algebraic technique [5] for dealing with defects in QFT.
Then this approach is used in Section 3 for solving the Tomonaga-Luttinger model on Γ and
answering some basic questions left open in the pioneering work by Nayak and collaborators [6].
We derive here both the charge and spin conductance and establish a simple relationship among
them. We conclude briefly mentioning some perspectives before limiting as much as possible the
set of references, due to the lack of allowed space (the interested reader will find a more complete
list in [3]).

2. THE FRAMEWORK

2.1. The Field ϕ and Its Dual ϕ̃

The massless scalar field ϕ on Γ is defined by the equation of motion
(
∂2

t − ∂2
x

)
ϕ(t, x, i) = 0, x > 0, i = 1, . . . , n, (1)

the initial conditions (canonical commutation relations)

[ϕ(0, x1, i1), ϕ(0, x2, i2)] = 0, (2)
[(∂tϕ)(0, x1, i1), ϕ(0, x2, i2)] = −iδi1i2δ(x1 − x2), (3)

and the vertex boundary condition

n∑

j=1

[Aijϕ(t, 0, j) + Bij(∂xϕ)(t, 0, j)] = 0, ∀t ∈ R, i = 1, . . . , n, (4)

A and B being in general two n × n complex matrices. Clearly the pairs {A, B} and {CA, CB},
where C is any invertible matrix, define equivalent boundary conditions. The results of [4] for the
operator −∂2

x on Γ imply that the Hamiltonian of the system is self-adjoint, provided that

AB∗ −BA∗ = 0, (5)

where we denote by ∗ the Hermitian conjugation, and the composite matrix (A, B) has rank n.
The general solution of these constraints on {A, B} is

A = C(I− U) and B = −iC(I+ U) (6)

where C is an arbitrary invertible matrix and U is any unitary matrix.
The problem of quantizing (1) with the initial conditions (2, 3) and the boundary condition (4)

has a unique solution. It can be written in the form

ϕ(t, x, i) =
∫ ∞

−∞

dk

2π
√

2|k|
[
a∗i (k)ei(|k|t−kx) + ai(k)e−i(|k|t−kx)

]
, (7)

where {ai(k), a∗i (k) : k ∈ R} generate the reflection-transmission (boundary) algebra [5] corre-
sponding to the boundary condition (4). This is an associative algebra A with identity element 1,
whose generators {ai(k), a∗i(k) : k ∈ R} satisfy the commutation relations

ai1(k1) ai2(k2)− ai2(k2) ai1(k1) = 0, (8)
a∗i1(k1) a∗i2(k2)− a∗i2(k2) a∗i1(k1) = 0, (9)

ai1(k1) a∗i2(k2)− a∗i2(k2) ai1(k1) = 2π [δi1i2δ(k1 − k2) + Si1i2(k1)δ(k1 + k2)]1, (10)

and the constraints

ai(k) =
n∑

j=1

Sij(k)aj(−k), a∗i (k) =
n∑

j=1

a∗j (−k)Sji(−k). (11)

Let us mention that two kinds of representations of A have been constructed and applied to
physical situations: the Fock representation F(A) and the Gibbs representation Gβ(A) at inverse
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temperature β∼ 1/T . This last one has been used to determine the Casimir energy density on Γ
and the correction to the Stefan-Boltzmann law, due to the interaction at the vertex V [1].

Now, the S-matrix in (10, 11) equals [4]

S(k) = −[(I− U) + k(I+ U)]−1[(I− U)− k(I+ U)] (12)

and has the following simple physical interpretation: the diagonal element Sii(k) is the reflection
amplitude on the edge Ei, whereas Sij(k) with i 6= j is the transmission amplitude from Ei to
Ej . Being fully characterized by the S-matrix (12), the vertex V can be viewed as a sort of point-
like defect. It is not surprising therefore that the algebra A, appearing in the context of QFT
with boundaries or defects [5], applies in the present case as well. A provides a simple algebraic
description of the boundary value problem at hand and defines convenient coordinates in field space.

We assume in what follows that U is such that
∫ ∞

−∞

dk

2π
eikxSij(k) = 0, x > 0. (13)

This condition guarantees the absence of bound states and implies the canonical commutation
relations (2, 3).

By construction (12) is unitary S(k)∗ = S(k)−1 and satisfies Hermitian analyticity: S(k)∗ =
S(−k).

The dual field ϕ̃ is defined in terms of ϕ by the relations

∂tϕ̃(t, x, i) = −∂xϕ(t, x, i), ∂xϕ̃(t, x, i) = −∂tϕ(t, x, i), x > 0, i = 1, . . . , n, (14)

which imply that (
∂2

t − ∂2
x

)
ϕ̃(t, x, i) = 0, x > 0, i = 1, . . . , n (15)

as well. The solution is

ϕ̃(t, x, i) =
∫ ∞

−∞

dk ε(k)
2π

√
2|k|

[
a∗i (k)ei(|k|t−kx) + ai(k)e−i(|k|t−kx)

]
, (16)

where ε(k) is the sign function. Both ϕ and ϕ̃ are local fields, but we stress that they are not
relatively local. This feature is fundamental for bosonization.

The invariance of the equations of motion under time translation implies the conservation of the
energy momentum tensor {θtt(t, x, i), θtx(t, x, i)} and the associated Kirchhoff’s rule

n∑

i=1

θtx(t, 0, i) = 0 (17)

is satisfied by construction. This equation guarantees energy conservation (no dissipation)and
represents a meeting point between boundary conformal field theories and the concept of scale
invariance on a star graph with n edges, n bigger than 1.

The equations of motion (1, 14) are also invariant under the transformations

ϕ(t, x, i) 7−→ ϕ(t, x, i) + c, ϕ̃(t, x, i) 7−→ ϕ̃(t, x, i) + c̃, c, c̃ ∈ R, (18)

which implies the conservation of the currents

jν(t, x, i) = ∂νϕ(t, x, i), j̃ν(t, x, i) = ∂νϕ̃(t, x, i), ν = t, x. (19)

These currents have a deep physical meaning. In fact, in the framework of bosonization jν and j̃ν

control the charge and spin transport respectively. It is therefore crucial to check the relative Kirch-
hoff’s rules. Using the solution (7) and the constraints (11) one finds that jx satisfies Kirchhoff’s
rule if and only if

n∑

j=1

Sij(k) = 1, ∀ i = 1, . . . , n, k ∈ R. (20)
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Analogously, for j̃x one finds
n∑

j=1

Sij(k) = −1, ∀ i = 1, . . . , n, k ∈ R. (21)

From (20) and (21) one draws the important conclusion that Kirchhoff’s rule cannot be satisfied
for both jν and j̃ν simultaneously.
2.2. Scale Invariance
Our system is scale invariant if and only if

S(k) = S(ρ−1k) ∀k, ρ ∈ R, (22)

which, combined with (12), implies that S is k-independent. Then

S∗ = S−1 S∗ = S St = S (23)

The classification of these S-matrices (critical points) is now a simple matter. Indeed, one easily
deduces from above that the eigenvalues of S are ±1. Let us denote by p the number of eigenvalues
−1. The values p = 0 and p = n correspond to the familiar Neumann (SN = I) and Dirichlet
(SD = −I) boundary conditions respectively. For 0 < p < n the scale-invariant S-matrices depend
on p(n− p) ≥ 1 parameters.

The conditions (20) and (21) have a simple impact on the scale invariant S-matrices. Requiring
(20), one eliminates the Dirichlet point (p = n) and is left only with p(n − p − 1) parameters for
0 < p < n.

The case n = 3 is an instructive example. Indeed, imposing (20) one is led for p = 2 to the
isolated critical point

S2 =
1
3

( −1 2 2
2 −1 2
2 2 −1

)
, (24)

which is invariant under edge permutations. For p = 1, one gets instead one-parameter family

S1(α) =
1

1 + α + α2

( −α α(α + 1) 1 + α
α(α + 1) α + 1 −α

α + 1 −α α(α + 1)

)
, α ∈ R, (25)

which is not invariant under edge permutations for generic α.
Analogous considerations apply to the case when, instead of the Kirchhoff’s rule (20), one

imposes (21). In conclusion, we see that the currents jν and j̃ν nicely illustrate the obstructions
which may appear when symmetries on R are lifted to Γ.
2.3. Vertex Operators
We introduce first the right and left chiral fields

ϕi, R(t− x) = ϕ(t, x, i) + ϕ̃(t, x, i), ϕi, L(t + x) = ϕ(t, x, i)− ϕ̃(t, x, i). (26)

Defining the chiral charges as

Qi, Z =
1
4

∫ ∞

−∞
dξ ∂ξϕi, Z(ξ), Z = R, L. (27)

we introduce a family of vertex operators parametrized by ζ = (σ, τ) ∈ R2 and defined by

v(t, x, i; ζ) = zi q(i; ζ) : exp
{
i
√

π [σϕi, R(t− x) + τϕi, L(t + x)]
}

:, (28)

where the value of the normalization constant zi ∈ R will be fixed later on,

q(i; ζ) = exp
[
i
√

π (σQi, R − τQi, L)
]
, (29)

and : · · · : denotes the normal product in the algebra A. For later use we take any ζ = (σ > 0, τ)
with σ 6= ±τ and set

ζ ′ = (τ, σ). (30)
Then we define

V(t, x, i; ζ) = ηiv(t, x, i; ζ), V(t, x, i; ζ ′) = η′iv(t, x, i; ζ ′), (31)

where {ηi, η′i} are the so called Klein factors.
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3. THE FOUR-FERMION INTERACTION ON Γ

In this section we introduce and investigate non-trivial bulk interactions on Γ. We focus on the
Tomonaga-Luttinger (TL) model which captures the universal features of a wide class of one-
dimensional quantum many-body systems called Luttinger liquids. More precisely, it will be enough
for our purposes to analyze the (TL) model for special values of the coupling constants and Fermi
velocity (namely g+ = −g− ≡ gπ > 0 and vF = 1). The classical equations of motion of this
system, known as a Thirring model, can be written in the following matrix form

i(γt∂t − γx∂x)ψ(t, x, i) = 2πg[γtJt(t, x, i)− γxJx(t, x, i)]ψ(t, x, i), (32)

where

ψ(t, x, i) =
(

ψ1(t, x, i)
ψ2(t, x, i)

)
, γt =

(
0 1
1 0

)
, γx =

(
0 1
−1 0

)
, (33)

and
Jν(t, x, i) = ψ(t, x, i)γνψ(t, x, i), ψ ≡ ψ∗γt. (34)

is the conserved vector current. The number of edges n is arbitrary.
Let us at this point mention that our approach is different from the one of [?], where using

instanton gas expansion and strong-weak coupling duality on a star graph with n = 3 edges, Nayak
and collaborators established the existence of a critical point in which the electric conductance G
is enhanced1 with respect to that on the line, namely

G =
4
3
Gline. (35)

This inspiring result, which has been confirmed more recently by different authors, raises some
interesting open problems:

(i) existence of other critical points and their classification;

(ii) behavior under edge permutations;

(iii) is enhancement of the conductance universal or reduction is possible as well?

(iv) what is the law governing the spin transport?

These questions are answered in the rest of the paper. The main idea behind our analysis is
to modify the boundary conditions in such a way that they become linear after bosonization. We
show that this is indeed possible and, applying the results of Section 2, in our case the model can
be solved exactly. All critical points can be classified and their characteristic features are easily
investigated.
3.1. The Thirring Model on Γ and Its Solution
For quantizing the above defined Thirring model, we set σ > 0 and

ψ1(t, x, i) =
1√
2π
V(t, x, i; ζ), ψ2(t, x, i) =

1√
2π
V(t, x; ζ ′). (36)

In order to have canonical fermions we require

σ2 − τ2 = 1, (37)

implying σ 6= ±τ .
The quantum current Jν is constructed by point-splitting and satisfies:

Jν(t, x, i) = − 1
(σ + τ)

√
π

∂νϕ(t, x, i) = − 1
(σ + τ)

√
π

jν(t, x, i), (38)

Because of (38) the quantum equation of motion takes the form

i(γt∂t − γx∂x)ψ(t, x, i) = − 2g
√

π

(σ + τ)
: (γt∂tϕ− γx∂xϕ) ψ : (t, x, i). (39)

1A possible explanation [?] of this result is based on the so-called Andreev reflection.
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Now, using the vertex realization (36) of ψ, one easily verifies that (39) is satisfied provided that

τ(σ + τ) = g. (40)

Combining (37) and (40) one determines σ and τ in terms of the coupling constant:

σ =
1 + g√
1 + 2g

> 0, τ =
g√

1 + 2g
. (41)

We generated above a solution of the Thirring model on Γ satisfying the boundary conditions

Jx(t, 0, i) = −
n∑

k=1

SikJx(t, 0, k), (42)

This boundary condition (42) describes the dissipationless splitting of the charge current at the
junction x = 0. It is quadratic in the fermion field ψα, but linear in ϕ. This fundamental difference
with respect to the boundary conditions adopted in [?] is the crucial novelty allowing to solve the
model exactly.

Let us discuss now the spin-transport. It is well known that there is no true spin in one space
dimension (and therefore on Γ) because there are no space-rotations. Nevertheless, one can associate
a “spin” −1

2 to ψ1 and 1
2 to ψ2. This assignment is not only formal, because there exists a conserved

current describing the transport of this quantum number. In fact, one can also construct an axial
current such that

J̃ν(t, x, i) = − 1
2(σ − τ)

√
π

∂νϕ̃(t, x, i) = − 1
2(σ − τ)

√
π

j̃ν(t, x, i), (43)

which is indeed conserved. Moreover,

[
J̃t(t, x, i), ψα(t, y, j)

]
=

{ −1
2δ(x− y)δijψ1(t, y, j), α = 1,
1
2δ(x− y)δijψ2(t, y, j), α = 2.

(44)

We turn finally to the critical points. As already discussed in Section 2.2, the critical points
are fully classified. If one requires in addition the conservation of the charge associated with the
electric current (38), one must impose the Kirchhoff’s rule (20). In this way, besides the Neumann
point, the remaining critical points for n = 3 are S2 and S1(α), defined by (24, 25). We will see in
the next section that S2 is precisely the critical point discovered by Nayak and collaborators in [?].
The one-parameter family S1(α) is new and is not invariant under edge permutations for generic
α. This statement clarifies points (i) and (ii) at the beginning of this section.
3.2. Charge and Spin Transport
In order to derive the electric and spin conductance, we couple the system to a classical external
field Aν(t, x, i) by means of the substitution

∂ν 7−→ ∂ν + iAν(t, x, i) (45)

in Eq. (32). The resulting Hamiltonian is time dependent. The conductance can be extracted
from the expectation value 〈Jx(t, x, i)〉Aν

, more precisely, from the linear term of the expansion of
〈Jx(t, x, i)〉Aν

in terms of Aν . This term can be computed by linear response theory which gives
for the conductance tensor

Gij = Gline (δij − Sij) , (46)

where
Gline =

1
2π(σ + τ)2

=
1

2π(1 + 2g)
(47)

is the conductance on the line R.
The simple expression (46), describing the electric conductance of the Thirring model at a

critical point, has a number of remarkable properties. As expected, it satisfies the Kirchhoff’s rule
n∑

j=1

Gij = 0, i = 1, . . . , n, (48)
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provided that (20) holds, i.e., the electric charge is conserved. The conductance Gii of the edge Ei

is enhanced with respect to Gline if Sii < 0 and reduced if Sii > 0. In particular, at the critical
point (24) one reproduces the result (35) of [?]. Note that enhanced conductance is associated with
attractive Casimir force and vice versa.

The properties (23) of the S-matrix imply |Si
i | ≤ 1, leading to the simple bound

0 ≤ Gii ≤ 2Gline, (49)

where we have used that Gline is positive. Another constraint on the diagonal elements of G is the
sum rule

TrG = 2pGline, (50)

p being the number of eigenvalues −1 of S.
Inserting the new family of critical points (25) in (46) we conclude that both enhancement and

reduction of the conductance with respect to the line are possible. This fact is illustrated by the
plots in Fig. 1 and answers the question (iii) from the beginning of this section.

Away of criticality the conductance takes the form

Gij(ω) = Gline [δij − Sij(ω)] , (51)

where S is given by (12) and ω is the frequency of the Fourier transform Âx(ω, i) of the external
field Ax(t, i) applied to the system. Since Sij(ω) are in general complex, away from criticality the
system admits non-trivial inductance as well. Let us compare for instance a star graph with n = 2
edges to an impedance Z (ω), characterized by the condition Z (1) = R + iL. The ingoing electric
currents I (ω, i) = 〈Jx(ω, i)〉Aν

can be expressed in the form
(

I (ω, 1)
I (ω, 2)

)
=

(
Z−1 (ω) −Z−1 (ω)
−Z−1 (ω) Z−1 (ω)

)(
Âx(ω, 1)
Âx(ω, 2)

)
. (52)

Confronting this relation with (51) and using the explicit form (12) of S (ω) one finds

Z (ω) = R + iωL, (53)

so that the most general impedance, which can be obtained for n = 2, has a real component
R = G−1

line and a generic inductive component iωL depending on boundary conditions. Following
the above procedure, one can analyze all the admittances characterizing star graphs with n > 2
away of criticality.

Finally, to answer the last question (iv), we investigate the spin transport governed by the dual
current (43). In this case one should evaluate the expectation value 〈J̃x(t, x, i)〉Aν

. The result for
the spin conductance tensor is

G̃ij = G̃line (δij + Sij) , (54)

where
G̃line =

1
4π(σ2 − τ2)

=
1
4π

. (55)

We see that the spin conductance differs from the electric one. In particular, the conservation of
the electric charge (20) spoils the Kirchhoff’s rule for G̃ij . Therefore, the spin is not a conserved
quantum number in this case. Alternatively, one can impose the Kirchhoff’s rule (21), which
guarantees spin conservation but breaks down the charge conservation.

Comparing (46) and (54), one discovers a simple but deep interplay between charge and spin
transport: enhancement of the electric conductance corresponds to reduction of the spin conduc-
tance and vice versa. This feature clearly shows an effective separation in the dynamics of the
charge and spin degrees of freedom of the model.

4. OUTLOOK AND PERSPECTIVES

The content of the above investigation can be generalized in several directions, which can certainly
help a better understanding of the physics of quantum wires. Among others, we have in mind the
study of generic graphs, integrable and more involved bulk interactions, finite temperature systems
and dissipative phenomena at the vertex.
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Abstract— Intensity and frequency noises associated with microwave intensity modulation of
semiconductor lasers are theoretically investigated in both time and frequency domains. The
modulation dynamics is classified into six distinct types. The noise spectra are higher when
the laser emits pulses than when its signal varies continuously with time. Under low-frequency
strong modulation, the low-frequency noise is most enhances as the laser emits irregular spike-like
pulses.

1. INTRODUCTION

The behavior of semiconductor lasers under high-speed modulation is attractive for both study and
application. Small-signal sinusoidal GHz modulation is employed to reduce optical feedback noise
in optical disc systems [1]. Under large-signal modulation, laser pulses as short as a few picoseconds
can be obtained [2] for use in time resolved dynamical studies and for carrying information at high
bit rates in optical communication systems [3]. The noise performance of semiconductor lasers is
an important criterion of the performance of such applications. Intensity and frequency noises of
semiconductor lasers stem from intrinsic intensity and phase fluctuations associated with quantum
transitions of electrons between the valence and conduction bands [4].

Evaluation of relative intensity noise (RIN) and frequency noise (FN) under modulation is based
on solving the laser rate equations augmented by a sinusoidal current source and Langevin noise
sources. The nonlinear nature of the equations happens to induce inconsistence of the time variation
between the optical signal and the exciting electrical signal. Forms of inconsistence include irregular
signals, period multiplication, or even chaos [5, 6], which may deteriorate laser noise. Several
groups investigated regular and irregular dynamics and determined the corresponding modulation
conditions [7–9]. Kao and Lin [9] showed that including the noise sources in the rate equations act
as a virtual Hopf precursor for period doubling. Determining the noise properties of the induced
regular and irregular dynamics is necessary to help laser-based system designers to choose operation
conditions with optimum noise performance. Yamada and Higashi [1] applied a small-signal model
to predict RIN and its variation with modulation parameters. However, such a model is unsuitable
to investigate laser dynamics under large-signal modulation.

In this paper, we investigate semiconductor laser dynamics under sinusoidal intensity modulation
and characterize the corresponding frequency spectra of RIN and FN. We classify these dynamics
into six types with distinct dynamic characteristics in both time and frequency domains. These
types are “continuous periodic signal (CPS)”, “continuous periodic signal with relaxation oscillation
(CPSRO)”, “continuous periodic signal with period doubling (CPSPD)”, “periodic pulse (PP)”,
“periodic pulse with relaxation oscillation (PPRO)”, and “periodic pulse with period doubling
(PPPD)”. The classification is achieved in terms of the time characteristics of the pulse, phase
portrait and frequency spectra of RIN and FN. Variations of the low-frequency (LF) RIN and FN
with both modulation frequency and index are also presented. We show that the GHz regime of
both RIN and FN is higher when the signal is pulsed than when it varies continuously with time.
The LF noise is most enhanced when the laser emits irregular spike-like pulses under low-frequency
strong modulation.

In the next section, the theoretical model of laser modulation dynamics is given. The results of
classifying laser dynamics and evaluation of noise are given in Section 3. The conclusions appear
in Section 4.
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2. THEORETICAL MODEL OF LASER MODULATION DYNAMICS

Analog modulation of semiconductor lasers is described by the following stochastic rate equations
of the photon number S(t), optical phase θ(t) and injected electron number N(t)

dS

dt
= (A−BS −Gth)S +

aξ

V
N + FS(t) (1)

dθ

dt
= 2π∆v(t) =

αaξ

2V
(N −N)S + Fθ(t) (2)

dN

dt
=

1
e
I(t)−AS − N

τe
+ FN (t) (3)

where ∆v(t) is the shift of the lasing frequency, Gth is threshold gain, and N is the time average
of N(t). A and B are coefficients of linear and nonlinear gain, respectively, and are given in terms
of N as

A =
aξ

V
(N −Ng) (4)

B =
9
2

π~c
ε0n2

aV λ

(
ξτin

~

)2

aR2
cv(N −NS) (5)

a is the tangential gain coefficient, Ng is the electron number at transparency, Ns is an electron
number characterizing B, ξ is the field confinement factor in the active layer whose volume is V
and refractive index is na respectively, α is the linewidth enhancement factor, τe is the electron
lifetime, Rcv is the dipole moment and λ is the emission wavelength. ε0 and c are the dielectric
constant and speed of light in free space, respectively.

The modulating injection current I(t) is assumed sinusoidal consisting of bias and modulation
components,

I(t) = Ib + Im cos(2πfmt) (6)

where Ib and Im are the bias and modulation currents; they define the modulation index m = Im/Ib.
fm is the modulation frequency. The terms FS(t), Fθ(t) and FN (t) are Langevin noise sources
describing the intrinsic fluctuations on S(t), θ(t) and N(t), respectively. These noise sources have
Gaussian statistics and are δ-correlated. Techniques of instantaneous generation of these noise
sources can be found in [4].

3. NUMERICAL RESULTS AND DISCUSSION

Rate Equations (1)–(3) are solved numerically by the fourth-order Runge-Kutta method. The laser
is assumed to be biased above the threshold level Ith, Ib = 3Ith. The integration is achieved over 512
cycles of period T = 1/fm using an integration step of ∆t ∼ 5 ps. Both RIN and FN are calculated
as the fast Fourier transforms of fluctuations on S(t) and ∆v(t), respectively [4], employing the
longer half of their temporal trajectories. This ascertains that the laser transients are discarded and
the output is stabilized. In the calculations, Fabry-Perot 1.55µm-InGaAsP lasers are considered
whose parameters have the following typical values. a = 7.85 × 10−12 m3s−1, ξ = 0.2, α = 4,
V = 60µm3, na = 3.56, Ng = 5.31×107, Ns = 4.05×107, τe = 2.83 ns. R2

cv = 8.575×10−57 C2m2,
and Gth = 7.817× 1010 s−1. The corresponding threshold current is Ith = 3.17mA. The relaxation
frequency of the unmodulated laser is fr0 = 5.14GHz, which lies in the microwave region of the
electromagnetic spectrum.

3.1. Dynamic Types of Laser Modulated Signal
Characteristics of the investigated dynamic types of modulation are illustrated in Fig. 1. The figure
illustrates the time variation of S(t), (S(t) vs N(t))-phase portrait, and spectra of RIN and FN.
Both S(t) and N(t) are normalized by their biased values Sb = 5 × 105 and Nb = 5.61 × 107,
respectively. Figs. 1(a)–(d) correspond to the CPS type which occupies the lower range of m at a
given frequency fm. Fig. 1(a) shows that S(t) varies continuously and regularly, and the portrait
1(b) indicates a single loop whose thick border is manifest of fluctuations. The spectra of RIN
and FN in Figs. 1(c) and (d), respectively, are characterized by the frequency fm = 1.2fr0 with a
much lower noise peak at fr0. The LF-part of noise is flat with LF-RIN = −151 dB/Hz and LF-FN
= 1.1 MHz.
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Figure 1: Characterization of the modulation types: (a)–(d) CPS, (e)–(h) CPSRO, (i)–(l) CPSPD, (m)–(p)
PP, (q)–(t) PPRO, and (u)–(x) PPP, by time variation of S(t), (S(t)–N(t)) portrait, and spectra of RIN
and FN, respectively.

When fm is low, the CPS type is developed to CPSRO with the increase of m. This brings the
gain under Gth in the lower cycles of current exciting relaxation oscillation over the long period
T . This type is characterized in Figs. 1(e)–(h). The time trajectory of S(t) is superposed by a
relaxation sub-peak, and the phase portrait indicates a main loop attached with a smaller one
referring to the superposing sub-peak. The noise spectra of Figs. 1(g) and (h) are characterized by
both fm and fr0. LF-RIN and LF-FN are little higher than those of the CPS type.

The third type characterizing continuous signals is the CPSPD type. It dominates the operating
regime of high-frequency (fm > 1.3fr0) and strong (m ≥ 1.2) modulation. As Fig. 1(i) shows, the
signal exhibits period doubling, which is identified in the phase portrait of Fig. 1(j) with the double
loop. The spectra of RIN and FN in Figs. 1(k) and (l), respectively, are characterized by fm and
its half-harmonic. The low-frequency noise components are almost in the same level of the CPS
and CPSRO types.

The laser intensity happens to discontinue giving rise to regular and irregular pulses. The PP
type is preferred to generate short pulses. It appears when 0.7fr0 ≤ fm ≤ 1.1fr0 with m > 0.5. The
latter induces a switching effect associated with turn-on delay of S(t), and the former corresponds
to modulation period T comparable to or shorter than the setting time of the relaxation oscillation.
This combined effect generates the discontinuous pulses. Fig. 1(m) shows the periodic pulses of
S(t). The portrait 1(n) refers to a single loop; it is broad around S(t) ≈ 0 and gets narrower with
the increase of S(t). As shown in Figs. 1(o) and (p), the GHz regime of the noise is higher than
those of continuous signals. On the other hand, the LF-RIN is less than −150 dB/Hz at 0.002fr0,
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and increases with frequency. The LF-FN is flat with a level as high as 1 GHz indicating worse
coherency.

The noisiest type is PPRO which follows the CPSRO type with the increase of m beyond 0.6.
It is characterized by periodic and discontinuous relaxation oscillations. This is shown in Fig. 1(q),
which demonstrates spike-like pulsation. The phase portrait 1(s) shows a big loop representing
the spikes and a child loop referring to the sub-relaxation oscillation peaks. The influence of noise
sources appears in Fig. 1(q) as unequal spikes and in Fig. 1(s) as different paths (attractors) of the
big loop. This type corresponds to the spike generation predicted by Lee et al. [10]. The GHz regime
of noises in Figs. 1(s) and (t) are highest showing peaks at the modulation frequency fm = 0.2fr0

and its multiples. The LF-RIN increases with frequency from RIN< −140 dB at 0.002fr0. FN is
flat with a level as high as 100 GHz indicating deterioration of laser coherency.

Figures 1(u)–(x) characterize the PPPD type. It happens to appear under high-frequency (fm ≥
fr0) and strong (m > 1) modulation. As given in Fig. 1(u), the pulses of S(t) has period doubling.
The phase portrait 1(v) shows a double-loop referring to the two unequal peaks of S(t). The
multiple paths of each loop are manifest of laser fluctuations. Both noise spectra in Figs. 1(w) and
(x) are characterized by fm = 0.9fr0 as well as its half-harmonic. The RIN spectrum is high in the
GHz regime, but its LF-components increase with frequency from less than −140 dB at 0.002fr0.
Similar to the PPRO type, the LF-part of FN is flat with levels about 100GHz. The simulated
period doubling dynamics were observed in experiment by Henery et al. [8].

3.2. Variation of Low-frequency Noise with Modulation Index and Frequency

Variations of the LF-components of both RIN and FN with m are plotted in Figs. 2(a)–(c), when
the modulation frequency is much lower than fr0 (fm = 0.1fr0), comparable to fr0 (fm = 0.9fr0),
and higher than fr0 (fm = 1.6fr0), respectively. The shown noise data are averaged over frequency
components less than 0.08fr0. Fig. 2(a) shows that under low-frequency modulation, the noises are
lowest under both continuous wave (CW) (at very weak modulation) and the CPS type, increase
when the CPSRO type is excited, and are enhanced when m > 0.65 under the PPRO type. Both
LF-RIN and LF-FN are pronounced when m > 1.4 because the pulse exhibits the first overshot
(spike) of relaxation oscillations accompanied with smaller discontinuous shots. That is, the noise
performance and laser coherence are worst in this regime of modulation. When fm = 0.9fr0,
Fig. 2(b) shows that both LF-RIN and LF-FN are higher under the PP type than under the CPS
type. When m = 1.2, the periodic pulses are irregular with unequal heights which pronounces
the noise levels as shown in the figure. The noise levels in Fig. 2(c) are comparable to those of
continuous signals in Figs. 2(a) and (b). It is clear that the levels of RIN and FN in the regime of
PPPD are higher than those in the regimes of CPS and CPSRO.
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Figure 2: Variations of the average LF-RIN and LF-FN with m when (a) fm = 0.1fr0, (b) fm = 0.9fr0, and
(c) fm = 1.6fr0.

4. CONCLUSIONS

RIN and FN of semiconductor lasers are characterized under microwave sinusoidal intensity mod-
ulation. The noise spectra are higher when the laser emits pulses than when its signal varies
continuously with time. The LF-components of FN are almost flat. The LF-RIN is also flat when
the signal is continuous. When the signal is pulsed, the LF-RIN increases with frequency. The
LF-noise is lowest when the signal is continuous and periodic under weak and moderate modu-
lation. The LF-noise is most enhanced and the laser coherency deteriorates under low-frequency
(fm < 0.4fr0) strong (m > 0.6) modulation where the laser emits irregular spike-like pulses.
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Abstract— The electronic structure of a delta-doped quantum well of Si in GaAs matrix is
studied for different temperatures. The calculation is carried out self-consistently in the frame-
work of the Hartree approximation. The energy levels and the mobility trends are reported for
various impurity densities. The apparent contradictory temperature dependence of the mobility
reported between Zheng and Gurtovoi et al. [1, 2] can be explain by means of the temperature
variation of the electronic structure. Values of 1.9 and 0.9 are obtained for the ratio of the mo-
bility at 300K and 77 K corresponding to impurity densities of 5× 1012 cm−2 and 3× 1012 cm−2,
respectively, in excellent agreement with the experimental ones, 2.1 and 0.85.

1. INTRODUCTION

There are several experimental works in which an enhancement in the transport properties of
double and triple delta-doped quantum wells in different materials is reported [1–5]. Moreover,
there are apparent contradictory reports in Si delta-doped GaAs wells [1, 2]. In one case, Zheng
et al. [1] measured the mobility of single and double delta-doped wells as a function of temperature
finding an increase in the mobility by a factor of 2.5 from 77 K to 300 K. This result was quite
surprising, since in this kind of systems is expected a broad mobility peak near the liquid nitrogen
temperature [6–8]. Not only is amazing the increase in the mobility, it is also amazing the factor,
2.5. Motivated for the unexpected results of Zheng and collaborators [1], Gurtovoi and coworkers [2]
accomplished transport measurements also in single and double delta-doped systems, however they
never found the trend observed by Zheng et al. It is important to mention that the only difference
between both experiments was the doping level. So, a natural question arises, what could be the
explanation for such so contradictory results?, taking into account that a change in the doping level
only modify the electronic structure.

On the other hand, from the theoretical point of view there are few works dealing with tempera-
ture effects and transport properties in delta-doped systems [9–14]. However, none of these reports
is aimed to explain the apparent contradictory results found by the abovementioned experimental
groups [1, 2].

The aim of the present paper is to explain both experiments, showing that the changes in the
electronic structure are the responsibles of the apparentcontradiction.

2. METHODOLOGY

The calculation is performed in the framework of the Envelope Function Approximation (EFA).
Thus,

− ~2

2m∗
d2

dz2
Fi(z) + V (z)Fi(z) = EiFi(z). (1)

Fi(z) is the z-dependent envelope function, Ei is the i-th energy level and m∗ are the corresponding
effective mass.

The spatial band bending is described by the Poisson equation. The energy origin is taken at
z = 0 (V (0) = 0) and the electric field tends to zero when z tends to infinity. Integrating twice and
using the Fubini-Lebesgue theorem to change the order of integration, the Poisson equation adopts
a simple form, i.e.,

V (z) =
4πe

εr

∫ z

0
(z − χ)ρe(χ)dχ +

2πe2

εr
n2D|z|, (2)

n2D is the bidimensional impurity concentration (ρimp = n2Dδ(z)), ρe is the free charge density in
the well region and εr is the dielectric constant. The charge density, ρe(z), is given by

ρe(z) = −em∗kBT

π~2

∑

i

ln
[
1 + exp

(
EF −Ei

kBT

)]
|Fi(z)|2, (3)
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where EF is the Fermi level and n is the occupation number. For non vanishing temperatures,
all levels are, in principle, occupied. Nevertheless, if the system is locally neutral, the continuous
part of the spectrum may be considered empty. Then, the sum in (3) is extended only up to the
value of the occupation number in the band. At the same time, the charge neutrality requires that
en2D = − ∫∞

−∞ ρe(χ)dχ. Thus, the Fermi level is given implicitly by:

en2D =
em∗kBT

π~2

n∑

i=1

ln
[
1 + exp

(
EF −Ei

kBT

)]
(4)

These calculations, which consist of the simultaneous solution of the Schrödinger and Poisson
equations, tend to be rather awkward and furthermore, on occasion present divergence. They are
carried out in an iterative manner, that is, using in each step an input potential, the charge density
is calculated and with this, an output potential is calculated. The input potential of the following
iteration will be a mixture of the input and output potentials from the step of the previous iteration.
One of the key issues in obtaining the quickest convergence, and of course, non-divergence, is this
mixture. In this section, we will discuss a method which we have developed for the mixture after
some experience in self-consistent calculations. The ideal self-consistent calculation is that in which
the input and output potentials are identical. Let us imagine that we construct a bidimensional
space formed by input potential at point z on the x-axis and the output potential at the same point
z on the y-axis, the self-consistent solution would be when the point were exactly above the line
with slope 1. If V m in(z) (V m out(z)) is the input (output) potential in step m of self-consistency,
in general the point in the space will not be above the line with slope 1, we will construct a straight
line with the two points from the previous steps and with the intersection of these points on the
said line, we will obtain the following input potential. In what follows, we will suppose that the
zero of energies is placed at the origin. The mixture was made in the following manner.

V (m+1) i(z) = A(z)V m in(z) + (1−A(z))V m out(z) (5)

where

A(z) =

8
>>><
>>>:

V m out(z) − V (m−1) out(z)

V m out(z) − V (m−1) out(z) − V m in(z) + V (m−1) in(z)
if ∆V m(z) ∆V (m−1)(z) ≤ 0

˛̨
V m in(z)

˛̨

V m in
max (∞)

β in other case

9
>>>=
>>>;

(6)

where V m in
max (∞) is the absolute value of the maximum value of the input potential in step m ,

β = 1− m
nmax

where nmax is the maximum number of iterations proposed to be carried out, it changes,
but is usually nmax ∼ 200 and ∆V m(z) = V m in(z) − V m out(z)(∆V (m−1)(z) = V (m−1) in(z) −
V (m−1) out(z)). The first part of the equation for A(z), demands that both points (that correspond-
ing to step m and that corresponding to step (m− 1) be on both sides of the line in order to avoid
divergence. The second part of the equation for A(z), at the origin, V (m+1) i(0) = V m out(0), so
that the input potential of step m+1 slowly begins to differentiate itself from the output potential
from step m as it distances itself from the origin.

With the self-consistent values of the electronic structure we calculated the relative mobility
between T = 77 K and T = 300K following the ideas stated in [13, 14],

µrel =
µT=300K

µT=77 K
=

kBTNi
∑nNi

i=1 ln
[
1 + exp

(
ENi

F − ENi
i

kBT

)] ∫ |FNi
i (z)|2|z|dz

kBTR
∑nR

i=1 ln
[
1 + exp

(
ER

F −ER
i

kBT

)] ∫ |FR
i (z)|2|z|dz

We have used the following values as input parameters: m∗ = 0.067m0; m0 being the free
electron mass, εr = 12.5, and n2D = 3 × 1012 cm−2 and n2D = 5 × 1012 cm−2. As a convergence
criterion we have taken the depth of the well to vary less than 0.01 meV for two consecutive steps.

Gurtovoi et al. [2] shown that if the mobility of a group of electrons in higher subbandas is in-
creased, the measured concentration will decrease and be lower than the net subband concentration.
These authors also shown that the product of the sheet concentration and mobility is a more realis-
tic criterion to evaluate the sample quality. On the other hand, the double well system at a certain
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interwell distance behaves like a single well one, so in the specific case of Gurtovoi and collaborators
this criteria is reached at 350 Å. However, in single quantum wells with n2D = 3× 1012 cm−2 they
observed that the measured concentration is very different for 77 K and 300 K. In the double delta
doped quantum well is also observed a little variation of the concentration for interwell distances of
380 Å and 580 Å. In principle, the carrier concentration should remain unchanged with a variation
of the interwell distance since the impurity density is always the same. The observed variations
can be due to the experimental error, so, we will compared our results to the Gurtovoi data for
the above mentioned interwell distances, 380 Å and 580 Å, since seems to be the data with higher
accuracy. For both distances the mobility decreases with temperature, with relative values of 0.81
and 0.88, respectively. Taking into account that the electronic structure is the same in both cases,
we can averaged these results and consider that the relative mobility for a single delta-doped well
with an impurity concentration of 3 × 1012 cm−2 is 0.85. The relative mobility in our theoretical
calculation gives 0.9.

Zheng et al. [1] grown a variety of double and single delta-doped quantum wells, the impurity
concentration in all samples was n2D = 5× 1012 cm−2. Despite all data reported by these authors
we are interested only on the results presented for the single delta-doped wells. In this system, the
Hall mobility was measuredand an increased of 2.5 from 77 K to 300 K was obtained. In the case
of a double delta-doped well with an interwell distance of 400 Å the Hall mobility is enhanced by
a factor of 1.7. So, using the same average procedure as in the data reported by Gurtovoi et al. [2],
with the purpose of taking into account (of some way) the experimental error, we can talk of an
increase in the Hall mobility of 2.1. In our theoretical computations this factor is 1.9.

In summary, the Hall mobility in single delta-doped wells presents an enhancement with temper-
ature of 0.9 and 2.1 for impurity concentrations of n2D = 3× 1012 cm−2 and n2D = 5× 1012 cm−2,
respectively. Our results give values of 0.85 and 1.9. All this shown that the delta-doped wells
present a completely different behavior for different impurity concentrations. So, the study of these
systems can not be generalized readily. Indeed, the report of Gurtovoi et al. [2] assumes that the
data presented by Zheng and colleagues [1] can be faulty, however as we already demonstrated here
both experimental works are correct and the apparent discrepancies can be explain by the change
in the electronic structure.

Si delta-doped GaAs QW’s have a quite different behavior with respect to B delta-doped Si
QW’s [11], contrary to what should be supposed. In the case of B delta-doped Si wells the electronic
structure changes dramatically with temperature, for example the number of levels passes from 7 to
13 from cero Kelvin to room temperature, while in the system reported here the trend is opposite,
i.e., the number of levels remains practically unchanged, Figs. 1 and 2. The Fermi level (measured
from the band bottom) goes down about 70meV from 0K to 300 K for B delta-doped Si wells, while
in Si delta-doped GaAs wells this dropping is only the half, 30 meV. Two other features that present
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important changes with temperature, in B delta-doped Si wells, are the energetic distance between
levels and the potential depth, while in Si delta-doped GaAs wells the inter-level energy-distance is
practically unchanged and the potential depth presents a little increase with temperature, Figs. 1
and 2.

There are also experimental evidence in p-type delta-doped quantum wells in GaAs that supports
the behavior observed here. Noh et al. observed that the resistivity behaves quite different for
different impurity densities [15, 16]. Obviously, the results obtained in the present paper can not
explained the mentioned experimental data, but, these works pointed out that a surprising behavior
of the mobility with temperature for n-type delta-doped wells in GaAs is possible.

3. CONCLUSION

In summary, Si-delta-doped GaAs systems present a notably different behavior with temperature as
compared to B-delta-doped quantum wells in Si. Despite the similarities in both systems (both due
to planar doping) the behavior with temperature is quite different, which argue that it is not possible
to extrapolated the trends from one system to another. All seems to indicate, in contradiction with
intuition, that each quantum well will attend a particular behavior with temperature.
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Evaluation of Leakage Losses in Optical Bragg Waveguides
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Abstract— Using a ray-optics model, we analyze with numerical examples the transmission
characteristics of a practical optical Bragg waveguide that contains truncated Bragg reflectors.
In particular, by treating the truncated Bragg reflector as a perturbation of an infinite peri-
odic structure, we derive an explicit expression for the calculation of the leakage losses of the
waveguide.

1. INTRODUCTION

An optical Bragg waveguide, also known as a one-dimensional photonic bandgap waveguide, can
be formed by placing a low-index guiding layer between two Bragg reflectors, which are periodic
structures consisting of alternating high- and low-index layers [1–5]. A Bragg reflector reflects light
over certain optical frequency bands, which are referred to as forbidden bands or bandgaps [1–
5]. Light in these bands can be trapped in the guiding layer of the waveguide and thus form the
guided modes of the waveguide, regardless of the fact that the guiding layer has a lower refractive
index than the surrounding cladding. Optical Bragg waveguides exhibit many unusual properties,
such as strong wavelength-dependence transmission, giant dispersion effects, and sharp polarization
discrimination, which can find new applications in optical signal transmission and processing. An
ideal optical Bragg waveguide consists of a Bragg reflector that is made up of infinite multilayer
stacks of alternating refractive indices (an infinite periodic structure). A practical optical Bragg
waveguide, however, has a truncated Bragg reflector (a finite periodic structure), which unavoidably
introduces leakage losses. It is therefore of fundamental importance to calculate the leakage losses
caused by a truncated Bragg reflector for the design and fabrication of such waveguides. In general,
the leakage losses are calculated by numerical methods [6, 7], such as the finite-difference time-
domain method and the transfer-matrix method, which are time consuming and provide limited
physical insight. In this paper, we present an analytical expression for the evaluation of the leakage
losses in an optical Bragg waveguide that contains a guiding layer sandwiched between two identical
truncated Bragg reflectors. Our method of analysis is based on a ray-optics model [5] together
with a perturbation analysis. Using our method, we analyze a number of Bragg waveguides and
determine how the leakage losses in these waveguides depend on the number of the periods in the
Bragg reflector.

2. METHOD OF ANALYSIS

Figure 1 shows the configuration of a symmetric optical Bragg waveguide, which consists of a
guiding layer with refractive index ng and thickness dg sandwiched between two identical truncated
Bragg reflectors. Each Bragg reflector is made up of N periods of multilayer stacks of alternating
refractive indices n1 and n2 with corresponding thicknesses d1 and d2, where n1 > n2 ≥ ng. The
period of the multilayer structure is Λ = d1 + d2. The refractive index of the outermost medium
is assumed to be n2. The index profile of the waveguide varies only in the x direction, as shown
in Fig. 1; it is invariant in the y and z directions. Light is assumed to propagate along the z
direction with a propagation constant β. The effective index of the light wave is neff = β/k0, where
k0 = 2π/λ is the free-space wavenumber with λ being the free-space optical wavelength.

In the ray-optics model [5], the light wave bounces back and forth along the z direction. When
the Bragg reflector has an infinite number of periods, light within the bandgaps of the Bragg
reflector undergoes complete reflection and can be trapped in the guiding layer. To be a guided
wave, the field pattern must be invariant in the z direction, which implies that a standing wave
must be set up in the x direction. The total phase shift acquired by the wave traveling over a
round trip in the x direction between the two boundaries of the guiding layer must be equal to an
even number of π, which is known as the transverse resonance condition. The phase shift acquired
by the wave in the guiding layers over a distance of dg is kgdg, where kg = k0(n2

g − n2
eff )1/2 is the

x-component of the wave vector. The transverse-resonance condition is then expressed as [5].

2kgdg + 4φ = 2mπ, for m = integers, (1)
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Figure 1: Refractive-index profile of a Bragg waveguide formed with two identical truncated Bragg reflectors.

where 2φ is the phase shift acquired at the boundary between the guiding layer and the Bragg
reflector. For a semi-infinite Bragg reflector (N = +∞), the reflection phase 2φ is a real number
and the corresponding reflectivity r is 100% [5]. The range of optical frequencies that satisfy Eq. (1)
is governed by the bandgap of the Bragg reflector, which is given by the condition |χ| > 1 with
χ = cos(k1d1) cos(k2d2)− (1/2)(K1/K2 + K2/K1) sin(k1d1) sin(k2d2), where ki = k0(n2

i − n2
eff )1/2,

and Ki = ki for the TE polarization and Ki = ki/n2
i for the TM polarization (for i = 1, 2) [5]. By

solving Eq. (1), we can find the effective indices of all the guided waves within the bandgaps [5].
The effective indices are real and the guided modes are lossless.

In the practical situation where the Bragg reflector is finite, the reflectivity r is always smaller
than unity in magnitude, which accounts for the leakage loss, and the reflection phase 2φ be-
comes a complex number. To see these, we apply the transfer-matrix method to the multilayer
structure [1, 4, 5] and derive the reflectivity r as

r = exp(i2φg)
1 + Ψ (1−K2/Kg) exp(−iφg)
1 + Ψ (1 + K2/Kg) exp(iφg)]

(2)

with

Ψ =
sinKΛ

sinNKΛ
exp(iNKΛ)

2T21

∣∣∣∣
cosφg

cosφ0

∣∣∣∣ exp(iφ0), (3)

where φg = tan−1(K2/Kg tanφ0), exp(i2φ0) = [exp(−iKΛ) − T11]/T12, Kg = kg for the TE
polarization and Kg = kg/n2

g for the TM polarization, K = cos−1(χ)/Λ is the Bloch wavenum-
ber of the wave propagating in an infinite Bragg reflector [1, 5], T11 = exp(−ik2d2) cos(k1d1) −
i(1/2)[(K1/K2)+(K2/K1)] sin(k1d1)}, and T12 = exp(ik2d2){i(1/2)[(K2/K1)−(K1/K2)] sin(k1d1)}.
The reflection phase 2φ, defined as r = exp(i2φ) [5], can be solved from Eq. (2). It can be shown
from Eq. (2) that 2φ is a complex number and, as a result, Eq. (1) admits a complex effective
index, denoted as neff = neffr + i · neffi . The real part neffr governs the phase velocity of the wave
propagating along the z direction, which can be obtained from the real part of Eq. (1) by setting
neffi = 0 (since |neffi | ¿ |neffr |), while the imaginary part neffi gives the leakage loss, which can be
obtained from the imaginary part of Eq. (1).

Within the bandgaps (i.e., when |χ| > 1), the Bloch wavenumber is a complex number given by
K = nπ/Λ± iξ/Λ, where n = 1, 2, 3, . . . is the bandgap order and ξ = |Im[cos−1(χ)]| is the decay
rate of the Bloch wave along the infinite periodic structure [5]. Eq. (3) can be written as

Ψ =
χ(1− 1/χ2)1/2

exp(2Nξ)− 1
1

T21

∣∣∣∣
cosφg

cosφ0

∣∣∣∣ exp(iφ0). (4)

In the case N = +∞, we have Ψ = 0 from Eq. (4) and recover the lossless result r = exp(i2φg) [5].
In the case of a finite yet sufficiently large N , we have exp(2Nξ) À 1 and hence Ψ ¿ 1. The finite
periodic structure can then be treated as a perturbation of the infinite periodic structure. We thus
have r = exp[i(2φg + δ)] with

δ ∼= K2

Kg

cos2 φg

cos2 φ0

2(χ2 − 1)
|T21|2

exp(−2Nξ)
[

Im(T11)
χ(1− 1/χ2)1/2

+ i

]
. (5)

By denoting the effective index of the guided mode in the ideal Bragg waveguide as n
(g)
eff and

expanding Eq. (1) with kg
∼= k

(g)
g + [neff − n

(g)
eff ] · k′g and 2φ ∼= 2φ(g) + [neff − n

(g)
eff ] · 2φ′g + iδ, where
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k
(g)
g = kg(neff = n

(g)
eff ), φ(g) = φ(neff = n

(g)
eff ), k′g = dkg/dneff and φ′g = dφg/dneff , we obtain the

effective index of the corresponding leaky mode as neff = n
(g)
eff + δ/(−2φ′g − k′gdg). By writing

neff − n
(g)
eff = ∆neffr + i · neffi , we have

∆neffr = G exp(−2Nξ)
Im(T11)

χ(1− 1/χ2)1/2
(6)

and
neffi = G exp(−2Nξ) (7)

with

G =
K2

Kg

cos2 φg

cos2 φ0

2(χ2 − 1)
|T21|2

1
(−2φ′g − k′gdg)

(8)

k′g = −kgneff /(n2
g − n2

eff ) (9)

2φ′g =
neff

n2
g−n2

eff

sin 2φg− 4kgneff

n2
g−n2

eff

{
d1

2r1g

1

1−(eiKΛ)2

∣∣∣∣
cosφg

cosφ1

∣∣∣∣
2[

1+
1

k1d1
sin k1d1 cos (k1d1−2φ1)

]

+
d2

2r2g

(
eiKΛ

)2

1− (eiKΛ)2

∣∣∣∣
cosφg

cosφ0

∣∣∣∣
2 [

1 +
1

k2d2
sin k2d2 cos (k2d2 + 2φ0)

]}
(10)

where φ1 = tan−1(K2/K1 tanφ0), r1g = r2g = 1 for the TE polarization, and r1g = n2
1/n2

g and
r2g = n2

2/n2
g for the TM polarization. The expressions for ∆neffr and neffi given above show

explicitly how the effective index and the leakage loss change with the period number N . As shown
in the expressions, both |∆neffr | and neffi decrease exponentially with the value of N . The factor
that governs the rate of the exponential decay is 2ξ. When the bandgap edge is approached (i.e.,
|χ| → 1 from above), we have ξ ∼= 0 and the perturbation condition exp(2Nξ) À 1 is no longer
satisfied. In that case, both ∆neffr and neffi should approach 0.

3. NUMERICAL EXAMPLES

We use five parameters to characterize the Bragg waveguide: the dielectric-constant ratio r12 =
n2

1/n2
2, the high-index fraction of a period p = d1/Λ, the relative guiding-layer index a = (n2

g −
n2

2)/(n2
1 − n2

2), the relative guiding-layer thickness q = dg/Λ, and the period number N . The
TE modes are independent of r12. Only the TM modes depend on all these parameters. The
propagation constant and the leakage loss of the waveguide can be expressed in the normalized
form as b = (n2

effr − n2
2)/(n2

1 − n2
2) and ζ = 2neffrneffi/(n2

1 − n2
2), respectively, which depend on the

operating condition of the waveguide defined by the normalized frequency V = k0Λ(n2
1−n2

2)
1/2. In

our numerical examples, we assume q = 1.6, a = 0, p = 0.5, and r12 = 2.25.
Figure 2(a) shows the variation of b with V for a truncated structure with N = 5 (solid) and

the ideal structure with N = +∞ (dashed). The shaded regions are the bandgaps. The modes
are labeled as the TEm(n) or TMm(n) modes, where m is the mode order from Eq. (1) and n is
the bandgap order [5]. The Brewster condition of the TM polarization is shown as the B-line
along which b = bB = 1/(1− r2

12) and the minimum value of b is shown as the L-line along which
b = bmin = 1/(1 − r12) [5]. As shown in Fig. 2(a), a truncated Bragg reflector does not affect
much the propagation constant. Some mode-field patterns are shown in Fig. 2(b). The field in the
truncated structure is oscillatory with finite amplitude in the external medium, which gives rise to
a leakage loss. On the other hand, the field in the ideal structure decays away through the periodic
structure and suffers from no radiation loss.

The normalized leakage loss ζ is related to the power attenuation coefficient α in the waveguide
by α = 0.869k0neffi in dB or αΛ = 0.434V ζ/(b− bmin)1/2 in dB per pitch length (dB/Λ). Fig. 3(a)
shows the variation of αΛ with V within the first bandgap (n = 1) for several values of N , where
the results calculated from Eq. (1) (solid) and Eq. (7) (dashed) are compared. As shown in the
figure, the leakage loss decreases with an increase in N and becomes large as the band edge is
approached. The results calculated by the perturbation formula Eq. (7) are in good agreement
with those from Eq. (1), except near the bandgap edges. Fig. 3(b) shows the variation of αΛ with
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Figure 2: (a) Dispersion curves and (b) mode-field distributions for a truncated Bragg waveguide with N = 5
(solid) with reference to those of the ideal waveguide with N = +∞ (dashed).

N for several values of V . The results obtained from Eq. (1) (points) and Eq. (7) (curves) are in
good agreement. As expected, the leakage loss decreases exponentially with an increase in N . The
slopes of the straight lines shown in Fig. 3(b) are given by 2ξ. For example, at V = 2.6, we have
2ξ = 0.537 and 0.475 for the TE and TM modes, respectively.
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Figure 3: Variations of the attenuation coefficient αΛ with (a) V and (b) N .

4. CONCLUSION

Using the ray-optics model, we analyze the leaky modes of an optical Bragg waveguide that contain
two identical truncated Bragg reflectors and derive an explicit expression for the calculation of the
leakage losses in the waveguide. With numerical examples, we investigate the effects of the number
of the periods in the truncated Bragg reflectors on the propagation constants and the leakage losses
of the modes. Our method of analysis can be extended to the analysis of more general Bragg
waveguides that contain non-identical Bragg reflectors.
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Abstract— Results of theoretical analysis and numerical simulation studies of a MW-class,
overmoded terahertz oscillator are presented. The device consists of a large diameter cross-
section, slow wave structure with a unique profile of wall radius specifically designed to support
surface wave and to provide a strong beam-wave coupling at a moderate voltage. Under the
condition of 500 kV voltage and 2 kA beam current, the 2.5-D particle-in-cell simulation predicted
the output power of 41MW at the frequency of 0.143THz. And an efficiency of 4.1% was also
obtained with a perfect time plot and fine spectrum characteristic.

1. INTRODUCTION

“Terahertz (THz) fields” is a generic term for electromagnetic waves within a spectrum between 0.1
and 10 THz.The interest in this frequency range is fuelled by the fact that this range of frequency
is the place where unique physical phenomena with characteristic features are produced [1]. For
example, the spectral energy distribution in observable galaxies shows that 50% of the total lumi-
nosity are located in the THz frequency range. And THz signals are the information carriers in the
ultra wideband communications systems, which are developed now and are expected to become a
commercial reality in the next decade.

However, due to the difficulties in generation and detection of the Terahertz signals, they were
until recently an almost unexplored area of research. The developments of ultra fast optical tech-
niques, the manufacturing of semi-insulating semiconductors and the micromachining of vacuum
electron devices have boosted the terahertz fields as a new research area [2]. This paper presented
the recent results of design and simulation of 0.14THz high power relativistic backward wave os-
cillator (BWO) in our laboratory.

2. GENERAL CONSIDERATIONS

2.1. Overmoded Slow Wave Structure (SWS)
The main function of SWS in the BWO is to support slow waves with the phase velocity below that
of the light, and to ensure strong enough coupling impedance over the frequency range of interest
for an electron beam located relatively far from the structure’s inner surface. In order to meet these
requirements, various axial profiles of wall radius for the periodic structure were analyzed, such
as sinusoidal, rectangular, trapezoidal and semicircular. And finally a spatially periodic structure
with the rectangular profile was chosen because it can meet the both requirements (slow wave and

(a) (b)   

Figure 1: (a) 3-D SWS model with rectangular rippled wall, (b) 2-D axial symmetric cross-section of the
SWS
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strong coupling) and supply the fabrication convenience in the millimeter dimensional range. The
model of the selected structure is illustrated in Fig. 1.

In this structure, the transverse diameter D(D = 2R) is designed to several times the free-space
wavelength λ thereby reducing the internal field stress for the same power flow, and in other words it
can increase the power-handling capacities of the high power terahertz devices [3]. For a TM01mode
propagating in the selected SWS, an approximate relation between the maximum power Pmax and
the maximum strength of electric field allowable at the wall, Emax, can be given by

Pmax = 8.707
(

Emax · λ
511

)2 π2

2
σ′4

√
1−

( υ0,1

2πD′
)2 1

υ2
0,1

(1)

where D′ = πD/λ, λ is the free-space wavelength, υ0,1 is the first root of equation: J0(x) = 0,
J0(x) is the Bessel function of order 0. From the formula (1), we can find that the output power
Pmax is dramatically increased with the enlargement of transverse diameter D. And if D/λ ≥ 1.76,
the SWS is defined as an overmoded SWS.

2.2. Surface Wave Operation

Linear beam relativistic BWOs are based on the interaction between an electron beam and the
electromagnetic field containing slow-wave components. Such a field can be realized in the spatial
periodic structure where the electromagnetic field at an eigenfrequency ω can be expressed as an

     

 

(a) (b)

(c) (d)

Figure 2: (a) Dispersion diagrams corresponding to different periods of rectangular SWS, (b) dispersion dia-
grams corresponding to different inner radii of cylindrical waveguide, (c) dispersion diagrams corresponding
to different depth of rectangular slots, (d) dispersion diagrams corresponding to different width of rectangular
slots.
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infinite sum of spatial harmonics:

Ez =
+∞∑

n=−∞
anG0 (kc,nr) ejkz,nze−jωt + c.c (2)

where
kz,n = kz,0 +

2πn

L
, n = 0, ±1, ±2, · · ·

L is the spatial period of the SWS, n is the spatial harmonics number. And the transverse and
longitude wave numbers satisfy the equation

k2
z,n + k2

c,n =
(ω

c

)2
(3)

If |kz,n| < ω
c , the spatial harmonic is fast and volumetric since its field profile is described by the

ordinary Bessel function, G0 = J0; However, when |kz,n| < ω
c , the harmonic is slow, and the field

profile is described by the modified Bessel function, i.e., G0 = I0. The field of this harmonic has the
characteristic that the field is mainly localized near the surface of SWS, which is defined as surface
wave. Our goal is to design this kind of SWS for which the eigenmode in a certain frequency range
consist of only slow spatial harmonics, which will play an important role in the realization of high
power overmoded THz wave sources.

3. DISPERSION RELATION OF SWS

Dispersion diagrams, to some extent, are the most important characteristic of SWS. From the dia-
grams, the operation frequency of device can be approximately determined, and the other eignvalues
such as coupling impedance and linear growth rate can also be derived as well [4]. We investigated
the dispersion relation of SWS with various dimensional parameters. And the dependence of the
dispersion characteristics on these parameters is showed in Fig. 2. It is apparent that the frequency
of interest (0.14 THz) is included in the frequency range of the SWS. From the calculated diagrams,
we can also preliminary determine the values of dimensional parameters of SWS as well as the ac-
celeration voltage of the electron beam in order to ensure the device operate at the frequency of
0.14THz.

4. PARETICLE-IN-CELL (PIC) SIMULATION AND RESULT ANNALSIS

The analytic theory of the microwave electronics can provide an exact description of the normal
modes of the SWS in the absence of a beam. Also, it supplies us with an accurate picture of
small-amplitude behavior when the beam is added to the system. However, in the regime of
large-amplitude, nonlinear operation as the situation investigated in this paper, the PIC computer
simulations should be used in order to examine the behavior of the THz BWO [5]. The simulation
model is illustrated in Fig. 3, and the values of parameters are given in Table 1.

Table 1: Value of structural parameters for the PIC simulation.

Parameters Ra L d a D1 D2 H N

value 3.0mm 0.9 mm 0.4mm 0.2mm 4.0mm 4.0mm 1.0mm 20

The simulation was carried out with the boundary conditions that the waveguide wall is a perfect
conductor, that there was an axial symmetry of z axis, and that the electromagnetic waves were
outgoing at the ends of the structure to a good approximation. As the initial condition for the
simulation, there were no electromagnetic fields in the SWS, and the electron beam was just incident
at the left-end side of the structure. Under the condition of 500 kV voltage, 2 kA beam current and
4T axial guiding magnetic field, the oscillator began to work. Fig. 4 shows the temporal behavior
of typical field component at a certain point in the SWS and the corresponding Fourier transform
of this signal. We can find that the oscillator steadily operated at the frequency of 0.143 THz. The
time plot of the output power is indicated in Fig. 5. And the peak power of 41 MW (efficiency equals
to 4.1%) was obtained from the device. Fig. 6 exhibits the distribution of longitude electric field
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Figure 3: THz BWO model in the PIC simulation.

(a)  (b)   

Figure 4: (a) Time plot of the generated signal, (b) spectrum of the generated signal.

EZ along the radial direction at the coordinate of z = 5mm. It is found that the field decreased
along the given radius from the inner surface of the SWS to the center axis, that is to say, the field
accumulated almost near the inner surface, which confirmed that the system we designed operated
as a surface wave oscillator.

Figure 5: Time plot of the output power. Figure 6: Distribution of EZ along the radius.
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5. CONCLUSIONS

In this paper, we presented the preliminary research progress on the overmoded, MW class terahertz
source in our lab. It was found that an overmoded interaction SWS must support surface wave that
are synchronous with the electron beam, and simultaneously exhibit large values of the coupling
impedance. The dispersion characteristics of the SWS with periodic rectangular rippled-wall were
examined. And a set of optimal values of the system parameters were specified. With the 2.5-
D particle-in-cell simulation method, the power lever of 41 MW and the efficiency of 4.1% were
obtained at the frequency of 0.14 THz. Further innovation of the device structure is required in
order to enable the generation of higher wave power at higher frequencies.
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Abstract— Passive mode-locking of Nd:glass laser is studied based on a gain model that
includes Stark-split sub-transitions. The full gain model appropriately describes the passive
mode-locking characteristics of both a single-medium and a dual-gain-media Nd:glass laser. The
simulation results are in good agreement with the experiments.

1. INTRODUCTION

Many broadband gain media used in ultrafast lasers, such as Ti:sapphire, Cr:forsterite and Cr:LiSAF,
are homogeneously broadened. There are other gain media, such as neodymium-doped glass and
erbiumdoped glass, whose lasing transitions consist of inhomogeneous broadening and multiple
Stark-split subtransitions. Careful handling of this type of gain media in certain mode-locking
operations is needed. In active mode-locking, the mode-locking strength is usually weak, and the
pulse bandwidth is comparable to the CW lasing bandwidth, which is mainly contributed from
a single major sub-transition. Thus, it is appropriate to include only the major sub-transition in
the gain model [1]. However, for passive modelocking that usually has a strong pulse shortening
mechanism, the broadband gain can be efficiently utilized, and it is necessary to include all the
Stark-split sub-transitions to account for the overall broadband gain. This is particularly true for
modeling a dual-gain-media Nd:glass laser [2].

In this paper, we modeled the gain of Nd:glass laser by considering the homogeneous broadening,
the inhomogeneous broadening and the Stark-split sub-transitions. It gives the main features of
Nd:glass gain, i.e., having a relatively narrow CW lasing bandwidth under a broad overall gain
linewidth. Under passive mode-locking, the full gain model appropriately describes the mode-
locking characteristics of Nd:glass laser. For the dual-gain-media Nd:glass laser, the full gain
clearly shows how the overall gain is reshaped and broadened, which leads to the generation of
shorter pulses. The simulation results are in good agreement with the experiments.

2. EXPERIMENTAL CHARACTERIZATION OF KLM STRENGTH

The schematic of the laser is shown in Figure 1. The transmittance of the output coupler was
1.5%. The reflection of each mirror had a reflection of 99.5%. The loss at each Brewster’s surface
was estimated to be ∼0.2%. With the unsaturated absorber loss of ∼1%, the total roundtrip
internal cavity loss (excluding the loss from the output coupler) was ∼7.2%. The Nd:glass laser
was pumped by a CW Ti:sapphire laser with Ppump of ∼1W. About 60% of the pump power was
delivered to the Nd:fluorophosphate glass while the Nd:silicate glass received 40% of the total pump
power. When the laser was operated at the center of the stability zone, it had the smallest cavity
loss δ0, and generated a maximum free-running power Pout,CWmax of 64 mW, with the threshold
pump power Pth of 60 mW. Femtosecond pulses were generated by Kerr-lens mode-locking (KLM),
while the saturable absorber acted to start the mode-locking and help maintain the pulse stability.
The pulse bandwidth was adjusted by changing the insertion of the prism into the beam path.
Experimentally, when the group-delay dispersion (GDD) was adjusted to be about −320 fs2, we
obtained 41 nm pulse bandwidth and 38 fs pulses, which are the shortest pulses ever generated from
a bulk Nd:glass laser [2].

We described the effect of KLM by a fast saturable absorber model δA(t) = δa0/(1+|ã(t)|2/Ps,abs),
where δa0 is the unsaturated absorber loss and Ps,abs is the saturation power. We estimated the
cavity linear loss according to

Pout,CW

Pout,CWmax

=
Ppump

Pth,CWmax

δ0−ln R
δCW−ln R − 1

Ppump

Pth,CWmax
− 1

(1)

where Pout,CW and δCW are the CW power and the cavity loss at near the edge of the stability zone
under KLM. From the measured Pout,CW of 35 mW, we obtained δCW = 13.7%. The difference
between δ0 and δCW gave the unsaturated absorber loss δa0 = 6.5%.
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Figure 1: Schematic diagram of the passively mode-locked dual-gain-media Nd:glass laser.

3. MODELING

The observed fluorescence linewidth of various Nd:glasses come actually from a convolution of the
homogeneous broadening, the inhomogeneous broadening and twelve Stark-split sub-transitions.
Due to Stark-split sub-transitions, the overall gain of the Nd:glass is broad (25–30 nm) and asym-
metric. In our model, we set the homogeneous linewidth ∆vh and the inhomogeneous linewidth
∆vih to be 24 cm−1 and 96 cm−1, respectively, corresponding to an inhomogeneity ∆vih/∆vh = 4 [3].
The sub-transition locations were set according to reference [3], and the average Stark-split line-
separation is about 45 cm−1. The gain cross section of each Stark-split sub-transition was adjusted
individually for both the Nd:silicate glass and Nd:fluorophosphate glass to make their overall gain
profiles fit to the measured fluorescence spectra [4], as listed in Table 1. Figure 2(a) shows the small
signal gain of the Nd:silicate glass and its CW lasing spectrum. The simulated gain linewidth is
∼26 nm and the CW lasing bandwidth is ∼8 nm, which are in good agreement with the published
data [4]. For Nd:glass, the fast thermal relaxations cause cross saturation of populations of different
sub-levels. Through this mechanism, the CW lasing bandwidth is mainly determined by the single
major sub-transition [5]. If only the major Stark-split subtransition is modeled, it would give to
a substantially narrower gain linewidth of 13 nm and a slightly broader CW lasing bandwidth of
11 nm. For the passive mode-locking of the Nd:glass, where the modelocking strength is strong, it
is necessary to include all the Stark-split sub-transitions to account for the overall broadband gain.

Figure 2: (a) Unsaturated gain profile and CW lasing spectrum; (b) Unsaturated gain profile and pulse
spectrum of Nd:silicate glass laser (unsaturated absorber loss δa0 = 6.5%).

4. MODE-LOCKING PERFORMANCE OF SINGLE-MEDIUM ND:GLASS LASER

We simulated the passive mode-locking of Nd:silicate glass laser based on the gain model described
above. Besides the gain, the simulation includes the cavity loss, GDD, self-phase modulation (SPM)
and self-amplitude modulation (SAM) by a fast saturable absorber with the saturation level set to
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Table 1: Peak cross-section of each Stark-split sub-transition for Nd:glass [3].

Wavelength (nm)
σ0(10−20 cm2)

Nd:glass
σ0(10−20 cm2)

Nd:fluorophosphates
σ0(10−20 cm2)

Nd:silicate
(A)-(1) 1064 1.0010 1.0010 1.0010
(A)-(2) 1073 0.4390 0.7024 0.6146
(A)-(3) 1086 0.0760 0.0760 0.0760
(A)-(4) 1095 0.1520 0.1824 0.1976
(A)-(5) 1099 0.0100 0.0033 0.0059
(A)-(6) 1104 0.2970 0.0660 0.1485
(B)-(1) 1048 0.4830 0.1725 0.1725
(B)-(2) 1057 0.9660 0.4830 0.5367
(B)-(3) 1070 0.0100 0.0180 0.0160
(B)-(4) 1078 0.2760 0.4140 0.3588
(B)-(5) 1080 0.1200 0.2040 0.1560
(B)-(6) 1088 0.3560 0.4628 0.4628

be about optimal (Pave/Ps,abs = 10−1). Figure 2(b) shows the pulse spectrum of Nd:silicate glass
laser at the soliton stability boundary (due to excessive gain filtering) where the shortest pulse
can be generated and stably maintained. The unsaturated absorber loss is set to be 6.5%, same
as the estimated δa0 from the experiment of the dual-gain-media Nd:glass laser, for the purpose of
comparison. The strong inhomogeneous broadening of Nd:silicate glass introduces less gain filtering
to the pulse spectrum and helps create a broad bandwidth of 32 nm. Due to the steep slope at the
short-wavelength side of the gain profile, a red shift of the spectral center occurs so that the pulse
experiences less gain filtering. Figure 3 shows the pulse bandwidth generated at the soliton stability
boundary for different unsaturated absorber loss. A stronger SAM action from the KLM can push
the soliton-like pulse into a smaller dispersion region and therefore creates a broader bandwidth.
The simulation shows that for Nd:glass laser, an unsaturated absorber loss δa0 ≥ 5% is needed to
generate a pulse bandwidth comparable to the gain linewidth.

dual-gain-media Nd:glass laser
single-medium Nd:silicate glass laser
single-medium Nd:fluorophosphate glass laser

Figure 3: Pulse bandwidth as a function of δa0 for single-medium Nd:glass laser and dual-gain-media Nd:
glass laser.

5. MODE-LOCKING PERFORMANCE OF DUAL-GAIN-MEDIA ND:GLASS LASER

For generating short pulses from Nd:glass laser, gain reshaping technique is usually used to broaden
the effective gain linewidth, which is otherwise limited by the asymmetry of the gain profile. One
approach is to introduce a filter at the short wavelength and reshape the overall gain profile [6].
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In our scheme of dual-gain-media Nd:glass laser, the gain reshaping and broadening are achieved
through the combination of two gain media into one oscillator, as shown in Figure 1. We simulated
the mode-locking of the dual-gain-media laser. Figure 4(a) shows the unsaturated gain profile when
the pump ratio of the Nd:fluorophosphate glass and Nd:silicate glass equals to 2. The benefits are
two fold. First, it creates a maximum broadening of unsaturated gain by 6.5 nm, which is about 25%
increase compared to that of a Nd:silicate glass or Nd:fluorophosphate glass. Second, the gain profile
becomes more symmetric. When the same unsaturated absorber loss δa0 = 6.5% is applied, with
this reshaped gain, the dual-media Nd:glass laser generates a broader pulse bandwidth compared
with the single-medium Nd:glass laser, as shown in Figure 4(b). The simulated pulse bandwidth is
∼40 nm at the small GDD boundary (−330 fs2) of the stable soliton mode-locking. Both the pulse
bandwidth and the GDD are within 10% with respect to that from the experiments. Since the
gain becomes more symmetric in the dual-gain-media scheme, the pulse spectrum experiences only
∼2.3 nm red-shift. In comparison, for the single-medium Nd:silicate glass laser with asymmetric
gain, the red-shift is ∼4.4 nm, which is noticeably larger. The similar feature was also observed in
the experiments, in which the spectral red-shift for the dual-gain-media Nd:glass laser and single-
medium Nd:silicate laser were ∼5 nm and ∼8 nm, respectively. The differences in the absolute
amounts were likely caused by a large loss of the saturable Bragg absorber at the edge of high
reflectivity coating ∼1.032 nm in the experiments.

Figure 4: (a) Gain reshaping and broadening, (b) Pulse spectrum broadening of dual-gain-media Nd:glass
laser (unsaturated absorber loss δa0 = 6.5%).
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Abstract— This paper proposes the study of some high impedance surface (HIS) structures
for compact antenna applications in the millimeter-wave domain. The millimeter wave domain is
now very important for high speed wireless and high bit rate optical (> 40Gbits/s) communica-
tions systems. The HIS structures provide many advantages for antennas as they enhance their
performances; HIS structures have capability to block the surface wave, to reduce the coupling
effect, to present high real impedance at the resonance frequency (Re(Z) À 377Ω) and to reduce
the global thickness of the low profile antenna. Several high impedance surfaces structures are
analyzed and their properties compared. We perform this analysis on structures which composed
of rectangular lattices patches periodic arrangements, Jerusalem lattices shape and 2LC shape
(two LC split loops). For each structure, we are interested in the frequency behavior of the
reflection phase to determine the resonance frequency and the band-gap as well as in the losses
(joule effect) in the structure. All the dimensions and shapes of the unit cell geometry are op-
timized in order to use the dielectric substrate available in our laboratory. The high impedance
surface is modeled using HFSS (Ansoft) code based on finite element methods. We chose the
structure presenting the best performances to design the metamaterial antenna with coaxial feed
and finite surface witch is modeled with 7 × 7 and 9 × 9 double rang unit cells. In comparison
with conventional antenna type, placed above a metal ground plan, the antenna placed above the
HIS has smoother radiation profile, less power wasted in the backward direction, better return
loss (at least −10 to −15 dB better) and higher gain and directivity (at least +1 dB). The layout
of the HIS structures circuits (many varieties) are now edited and the manufacturing process in
progress. The results of the HFSS simulations will be compared with the experimental free space
and coaxial measurements in the millimeter-wave domain.

1. INTRODUCTION

We have known that a patch antenna consist of a metal patch suspended over a ground plane and
separate with the ground plane by a dielectric substrate, so is acts as a cavity. We use herein the
rectangular shape for radiator patch, and we choose the coaxial feeding method, the feeding point
has chosen at the patch’s corner in the purpose of impedance matching. Antennas of this type are
low-profile but highly resonant.

In the circuit, the ground plane is always finite, and its edges contribute to the radiation pattern.
In addition to space waves, the antenna generates surface waves in the ground plane, which then
radiate from edges and corners. The combined radiation from the patch and the ground plane edges
interfere to form a series of multipart lobes and nulls at various angles. The edges radiate backwards
as well as forwards, causing a significant amount of wasted power in the backward hemisphere and
ripples in the antenna pattern. This problem is exacerbated, if the substrate is thick, or has a high
dielectric constant.

Many authors propose the suppression of the surface waves, by embedding the patch antenna
in a highimpedance ground plane as [1–5]. In the following example (Fig. 1), D. Sievenpiper shows
a comparison between the radiation pattern of a microstrip patch and HIS ground plane patch
antenna.

The measurements (Fig. 1) are at a frequency in which the two antennas have the same return
loss. In both the H and E-plane, the patch on the ordinary metal ground plane shows significant
radiation in the backward direction, and ripples in the forward direction. The pattern is not
rotationally symmetric, and is much thinner in the H-plane than in the E-plane. Conversely, the
patch placed over the high-impedance ground plane produces a smooth, symmetric pattern with
little backward radiation.

In this paper, after presenting some potential planar microstrip high impedance surfaces and
their frequency response, we chose the structure presenting the best performances, to design the
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Figure 1: E and H-plane radiation patterns of two patch antennas [1].

metamaterial antenna with coaxial feeding method and finite ground plane surface. The later is
modeled with 7 × 7 double rang unit cells. In comparison with conventional antenna type placed
above a metal ground plan, the antenna placed above the HIS has smoother radiation profile, less
power wasted in the backward direction, better return loss (at least −4 dB to −8 dB better) and
higher gain and directivity (at least +4 dB)

2. HIS DEFINITION

High Impedance Surface (HIS) structures, also designed as Artificial Magnetic Conductor (AMC)
or Perfect Magnetic Conductor (PMC) [3, 6] may be very useful for antenna applications and in a
very large variety of microwave other devices [4, 5]. Electromagnetic band gap structures (EBG)
have been widely studied for their behaviour as High Impedance Surface (HIS), since they show a
stop band frequencies behaviour. The AMC condition is characterized by a resonance frequency
where the phase of the reflection coefficient is zero and its magnitude equal to one. In contrast, an
HIS may deviate a little from this condition, sometimes yielding more flexibility in antenna design.
In this case, we defined a band gap frequency as a frequency range in which the reflection phase
cross from +90◦ to −90◦ [9].

Like the proposition of Sievenpiper and co-others [1, 4], planar periodic array of metallic patches
with connection via to the ground plane exhibit a high impedance with an exactly zero degree
reflection phase at the resonance frequency. Array of patches without via connection to the ground
plane exhibit also this property. We have known that, there is a problem with most of proposed HIS
structures because they present a shift of the resonant frequency versus the incidence angle [15].

3. SIMULATION MODEL OF HIS STRUCTURES

3.1. HFSS Modelling
The performances of the HIS structures are studied using numerical simulation from a finite element
method HFSS codes (FEM-HFSS ANSOFT Version 10.1). We use three structures: the square
patches structure, the Jerusalem structure and the two LC boucles “2LC” structure. The Figure 2
(below) gives the studied planar structures called also Uni-planar Compact Photonic Bandgap

a) b) c)
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g=0.16 mm

a=1.20mm,
g=0.15mm

b=0.81mm,
g=0.30mma) b) c)a) b) c)
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Figure 2: Square patches (a), Jerusalem (b) and the “2LC” (c) structures.
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(UCPBG) [10, 11].
Patch antennas are studied with all the three type of HIS structure listed above. The simulation

set-up is presented in Figure 3. A plan wave model is established to evaluate the reflection phase
of the EBG surface. The plan wave is launched to normally illuminate the EBG structure like
the method in [7] and [12]. To model an infinite periodic structure, we used a single unit of EBG
structure with periodic boundary condition on the four sides of the sample in simulation.
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Figure 3: Setup simulation for one cell “UCPBG”.

3.2. Numerical Results
The geometries (all dimensions) of the three types of structures are optimized in the millimeter wave
domain, corresponding to the 40–45 GHz frequency range. The used substrate has the following
characteristics: thickness h = 0.51 mm, permittivity ε = 3.38 (RO4003 substrate) and tan(δ) = 0.
The metallic cell patches and ground plan are chosen to be perfect electric conductor (no loss in
the material).

The optimized dimensions for the unit cell and the array period for the three structures are
respectively; W × W = 0.7742 × 0.7742 mm2, array period P = 0.931mm for the rectangular
patch, array period P = 1.11mm for the “2LC” and array period P = 1.30mm for the Jerusalem
structure.

The obtained results on the optimized structures are shown in Figure 4. For each type, we can
see the diagram of return loss, the reflection phase and the real and imaginary part of the surface
impedance.

Broader band gap results in a better control of the antenna backward radiation, thus it is
essential to choose the structure which shows the largest band gap. We know also, that the band gap
will be seriously reduced for incoming plane wave with a certain incidence angle. In our simulation,
the chosen structure showed the best real part of surface impedance approximately 6 · 104 Ω. After
analysis, we show that the rectangular HIS structure presented the best performances for antenna.

Table 1: For the different cells: the resonance frequency, the bandgap width and the dimension period.

Type of structure Period(mm) Frequency(GHz) Bandwidth(%)

Rectangular 0.93 41.2 41.46

Jerusalem 1.30 40.6 27.16

2LC 2.04 41.5 22.89

At the resonance frequency, the reflection coefficient has zero-phase and the surface impedance
is real and maximum (infinite in theory). For all three structures, the minimum return loss occurs
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approximately at the resonance frequency. The relative bandwidth of the three structures is defined
as:

Bbandwidth =
(
f[+90◦] − f[−90◦]

)
/f[0◦]

And the results are reported in Table 1.
One can observe that, the rectangular patch HIS presents the best results in term of band gap

width, stability and satisfied features for antenna application. It was naturally chosen to simulate
the antenna performances. In order to verify the constancy of the resonance frequency, particularly
when the unit cell is integrated to the array and when it interact with the other cells, we have
simulate new patches structures with lager number of elements (4 × 4 to 6 × 6 ). The results
showed that the bandgap region does not shift since the period of structure remains exactly the
same (imposed by the unit cell).

(a) 

(b) 

(c) 

Figure 4: Numerical simulation results: (a) Rectangular, (b) Jerusalem and (c) “2LC” patches. Left: Return
loss magnitude (dB) and phase (degrees). Right: Impedance surface Zin(f).

4. ANTENNA PATCH SIMULATION WITH AND WITHOUT HIS STRUCTURE

Figure 5 shows the antenna topology that we choose to study in this paper. Following the analysis
and results obtained in Section 3, we use the high impedance surface, rectangular type to realize our
antenna. Using this “composite” ground plan structure, we expect better performances (enhance
of the antenna gain, directivity and return loss). All the results presented here compare the
performances of the two types of ground plan structures; conventional antenna and HIS antenna
(metamaterial antenna).

The radiator element is exactly the same in the two antennas (rectangular patch antenna of
1.75× 1.60mm and 0.03mm copper thickness). The radiator element is fed using coaxial line and
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Figure 5: A patch antenna embedded in a high-impedance ground plane.
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Figure 6: Comparison of the return loss (MS11) between HIS ground plane and conventional patch antennas.

positioned in order to obtain the best impedance matching (0.2 mm at the corner of radiator).
We have show here in the Figures 7 and 8 the simulation results of two antennas at 42 GHz, the

point in which both of them have the same value of return loss (see the Figure 6), the comparison in

H-plane

E-plane

H-plane

E-plane

H-plane

E-plane

Figure 7: Radiation pattern comparison of two kinds of antenna at 42 GHz.
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Figure 8 has shown clearly the advantage of using HIS structure for patch antenna; We receive the
augmentation 4.5 dB of gain and/or directivity for patch with HIS in our simulation (see Figure 8)
compared with the conventional patch, thus leading to an increase in bandwidth and efficiency of
antenna [14]. From the Figure 7, we see that the radiation pattern of the metamaterial antenna is
more directive (+20 dB) than the conventional antenna (+15 dB).

H-plane

E-plane

HIS ground plane Ordinary ground plane

H-plane

E-plane

H-plane

E-plane

HIS ground plane Ordinary ground plane

Figure 8: Gain/Directivity comparison of two kinds of antenna at 42GHz.

5. CONCLUSIONS

We have used finite element method (FEM) to numerically determined characteristics of high
impedance surface structures. Numerical results for return loss, reflection phase and input impedance
are shown. The structure which shows the best performance is chosen to design a metamterial patch
antenna. The results confirm and show the good characteristics of antenna with HIS ground plane.
We have seen that, around of the resonant frequency, the return loss of the designed antenna
decrease significantly and its gain and directivity are notably improved or enhanced.

The layout of many varieties of HIS structures circuits are now edited and the manufacturing
process in progress. The comparison and discussion between the numerical results obtained by the
simulation and experimental results will be presented in our future work.
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Force Generation of Selemion Governed by the Charge Quantity
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Department of Human and Information Systems, Faculty of Engineering
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Abstract— It was reported previously that the force generated by Selemion appeared to have a
direct correlation to the charge given to it. In this work, a quite simple relationship was observed
between charge and force as reported before - linear relationship -, as long as the redox reaction
of silver layers on Selemion surfaces was induced. Consequently, it was expected that the control
of charge given to Selemion would be reflected as the control of force generated by Selemion. In
fact, it was experimentally confirmed that the force Selemion generated could be easily controlled
with the control of charge given to Selemion itself.

1. INTRODUCTION

Fabricating an electroactive polymer actuator has been an attractive theme for a number of re-
searchers for the past decades [1–11]. The author of this paper has been involved in the investigation
especially on the polymer actuators consisting of ion exchange polymer membranes [12–14]. Since
the ion exchange polymer membranes exhibit large bending under a small applied voltage [2–
6, 9–11], it has been believed that they can be employed as the bending mode polymer actuator
materials.

Precise controllability of bending and force generation behavior of ion exchange polymer mem-
brane actuator (hereafter called IEPM actuator) are fundamental factors for practical IEPM ac-
tuators. It was observed previously that a largely dehydrated IEPM called Selemion (Asahi glass,
Co. Ltd., Japan), sandwiched between thin silver layers, retained the precise controllability of its
bending curvature with the control of charge given to it [14]. Further, it was observed at the same
time that the force generated by Selemion could be controlled by the control of charge as well [14].

In order to verify if the force generated by Selemion was truly governed by the charge given to
Selemion itself, the further experiments were carried out, and the results are shown in this paper.

2. EXPERIMENTAL

2.1. Specimen Preparation

Selemion (containing -SO3H group, thickness = 140µm) was employed as a starting material of
specimen. Its top and bottom surfaces were plated with silver with the silver mirror reaction.
This silver-plated Selemion was dehydrated in a desiccator with a desiccant. Several hours before
performing the experiments, it was cut into the strip shape, where its structure is shown in Fig. 1.
This strip shape specimen was left in the air so that it could absorb a minute quantity of water
from the air, since previously a minute quantity of water was found to play an essential role for the
induction of precisely controllable Selemion bending by the charge control [13].
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Figure 1: Structure of specimen.
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Figure 2: The experimental setup employed for the measurement
of Selemion force.
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2.2. Force Measurement under the Given Voltage

Force generated by Selemion was measured along with current under the given voltage. A Selemion
specimen was horizontally clamped with the electrodes at the 3 mm narrow end, and the other end
was placed slightly above the stage surface of balance as depicted in Fig. 2. Imposing a voltage
on Selemion caused its bending, where the definitions of positive and negative of voltage, current,
and curvature are given in Fig. 2. Downward bending of Selemion induced by the positive applied
voltage pressed downward the stage of balance, exerting a force to the stage. The force was detected
with the balance, and this force data was acquired in real time with the computer connected to the
balance.

2.3. Force Control with Charge

The controllability of force with the control of charge was investigated. Force generated by Selemion
was measured by using the same experimental setup as described in the previous section, but the
given current was imposed to the Selemion in order to control the charge.

3. RESULTS AND DISCUSSIONS

3.1. Charge vs. Force

According to Ref. [13], the precise bending curvature controllability of Selemion was observed only
when the redox reaction of Ag layers on Selemion surfaces was induced. There was a threshold
voltage, Vth, at least required for the induction of Ag redox reaction [14]. Without controlling
the bending curvature of Selemion, it would be impossible to control the force Selemion generates.
Therefore it was necessary to know Vth, and Vth was experimentally determined as follows: Force
was measured along with the current under the applied voltage increasing at the rate of 50 mVs−1

from 0 mV to 3000 mV employing the setup described in the section 2.2. Fig. 3 shows V (voltage)
vs. I (current). Note that I represents the current of Selemion whose width is 1mm, namely, I was
obtained by the simple calculation that the actual measured current was divided by the specimen
width. The abrupt increase of I was observed around at V = 1300mV. It suggests the occurrence
of redox reaction at V = 1300 mV. V vs. F (force) is shown in Fig. 4. F represents the force
generated by Selemion whose width is 1 mm as well, namely, F was obtained by the calculation
that the actual measured force was divided by the specimen width. F exhibited abrupt increase
around at V = 1300mV as well. Thus V = 1300 mV was defined as Vth.
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Figure 3: V vs. I. V increased at the rate of
50mVs−1. I increased discontinuously at V =
1300mV indicated with an arrow.
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Figure 4: V vs. F . V increased at the rate of
50 mVs−1. F increased discontinuously at V =
1300 mV indicated with an arrow.

Q (charge given to Selemion) vs. F under the application of constant V = 2000 mV was

measured, where V = 2000 mV was imposed for 45 s. Here, Q was given by Q(t) =
t∫
0

I(t′)dt′, where

t represents time. Since 2000mV was higher than Vth, the redox reaction of Ag layers on Selemion
surfaces occurred. The result is shown in Fig. 5. Q vs. F formed a perfect straight line, that is,
a direct correlation between Q and F . It was observed no or unordered F at the early stage in
the dotted circled area in Fig. 5. It must have been caused by the technical difficulty in measuring
F , when the bending curvature of Selemion was positive but quite small, close to 0 mm−1. As
described earlier, the straight shape Selemion was horizontally clamped as depicted in Fig. 2 for
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the measurement of F , and one end of it was placed slightly above the stage of balance initially.
Such a slight gap between the end of Selemion and the stage of balance made it impossible to detect
F induced by the slight bending of Selemion. Another reason of no or unordered F must have been
due to the insufficient sensitivity of balance to F .
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Figure 5: Q vs. F under the
constant V = 2000mV, where
V = 2000mV was imposed for
45 s. See the text about the dot-
ted circled area.
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Figure 6: t vs. Q and t vs. F under the constant V = 2000mV followed
by the open circuit at t = 45 s indicated with the arrows.

In order to further see the relationship between Q and F , the measurement for Q and F was
carried out under V = 2000 mV for 45 s followed by the open circuit. Fig. 6 shows the results of t
vs. Q and t vs. F . At the moment indicated with the arrows in Fig. 6, the circuit was opened. Q
and F were maintained constant after t = 45 s. F did not decay even in the open circuit state. It
strongly suggests that F has a direct correlation to Q.

3.2. Force Controllability with the Charge Control
From the experimental results and discussions so far, it was expected that F could be precisely
controlled by the control of Q. In order to verify this speculation, the relationship of Q vs. F was
investigated by measuring F under the controlled Q as described in the section 2.3. Experimental
condition was as follows: a constant rate of Q was given to Selemion initially, and discontinuously
the rate of Q was raised at t = 45 s, where Q was always controlled actually by controlling I
imposed on Selemion. Fig. 7 shows t vs. Q and t vs. F . Discontinuous change of F was observed
at t = 45 s from this diagram along with the discontinuous change of Q at the same moment, both
are indicated with the arrows. Fig. 7 was rearranged into Q vs. F as shown in Fig. 8. Q vs. F
formed an almost complete straight line, despite the observation of discontinuous change of Q vs.
F at t = 45 s. It might be interpreted as F was governed by Q, and F could be controlled with
the control of Q. Therefore F was again measured under the complicatedly controlled Q. The

0

100

200

300

0 20 40 60

0.00

0.50

1.00

1.50

0 20 40 60

t / s

Q
/ 

m
C

t / s

F 
/ 

m
N

Figure 7: t vs. Q and t vs. F . The rate of Q was discontinuously
raised at t = 45 s, indicated with an arrow. The rate of F also dis-
continuously increased at t = 45 s, indicated with an arrow.
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behaviors of Q given to Selemion and F are shown as a function of t in Fig. 9, where the rate of
Q from t = 0 s to 20 s was 4.4 mCs−1 and −4.4mCs−1 from t = 20 s to 22 s, and the same Q cycle
was repeated from t = 22 s onward. t vs. Q looks quite similar to t vs. F , and these diagrams were
rearranged into Q vs. F shown in Fig. 10. Q vs. F was almost on the straight line, despite the
repeated significant rate change of Q, where the absolute value of V was always above Vth. This
result also suggests that F is governed by Q, and the control of Q can leads to the control of F .
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Figure 9: t vs. Q and t vs. F . Q increased constantly at the rate
of 4.4mCs−1 for 20 s followed by its constant decrease at the rate of
−4.4mCs−1 for 2 s, and the same cycle was repeated from that time
onward.
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4. CONCLUSIONS

It was confirmed that the force generated by the silver-plated Selemion in the largely dehydrated
state was governed by the charge given to Selemion itself. The relationship between charge and
force was represented by the almost straight line, as long as the redox reaction of silver layers on
Selemion surfaces was induced. Such a correlation of force to the charge did not deteriorate even
under the complicatedly controlled charge. Therefore we can speculate that the force generated by
Selemion can be precisely controlled with the control of charge. This finding offers one reason that
the fabrication of practical IEPM actuator must be possible in the future.
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Abstract— We will discuss electro-optic properties and phase-behavior of lyotropic chiral-
nematic materials under electric fields.

(I) Fingerprint rolls of a chiral nematic between two antiparallel-rubbed ITO substrates are
formed at low electric field strengths. This pattern can be photo-stabilized through UV poly-
merization of added monomers by means of an UV focal-conic Gaussian laser beam. The chiral
nematic liquid crystalline molecules are still free to diffuse within the polymer-stabilized confining
structure. The resulting stabilized pattern can be used as a highly diffractive electrically switch-
able polymer-stabilized cholesteric diffraction grating (PSCDG). The regular spatial variation of
chiral-nematic material gives rise to strong light intensity in forward diffraction peaks, together
with weaker intensity peaks of half the spacing from the polymer matrix. The electro-optic
properties and dynamical modes of these gratings depend on the dynamics of the chiral-nematic
liquid within the polymer matrix, which is found to depend on whether isotropic or mesogenic
monomers are used. We found a strong effect of confinement on the dynamics of chiral-nematic
order fluctuations in the mesogenic polymer network for scattering vectors along the helicoidal
axis of the fingerprint-roll structures.

(II) Preliminary experiments on the phase-behavior of fd-virus suspensions under external electric
fields will be shortly discussed. A phase diagram in the electric field-amplitude versus frequency
plane will be presented. At low ionic strengths, electric field-induced polarization of the double
layer induces an isotropic to chiral-nematic phase transition. At higher field strengths we ob-
serve melting of the chiral nematic state, which is probably due to either induced dipole-dipole
interactions or the finite relaxation time of the double-layer charge density.

1. HIGHLY DIFFRACTIVE ELECTRICALLY SWITCH-ABLE POLYMER-STABILIZED
CHOLESTERIC DIFFRACTION GRATINGS (PSCDGS)

Chiral macromolecules can be used to produce electro-optic active materials. Highly diffractive
(∼ 90% diffraction efficiency) electro-responsive gratings can be made by UV-induced polymer-
ization of mesogenic types of monomers in which chiral nematic molecules are embedded. Poly-
merization is most conveniently performed by means of an in-situ focal conic UV laser photo-
polymerization under an electric field, where “controllable” sizes of fingerprint rolls are formed [1, 2].
The two images in Fig. 1 show an example of the typical optical morphology of the mesoscopic
structure of such a Polymer-Stabilized Cholesteric Diffraction grating (PSCDG) as observed under
crossed polarizers.

The left image is a higher magnification of a regular fingerprint roll structure shown in the
morphology of the right side (mesogenic type) PSCDG [1]. A schematic of the distribution of
polymer and liquid crystalline material within the polymer-stabilized chiral-nematic fingerprint is
given below the images in Fig. 1. After photo-polymerization, the chiral-nematic molecules are
still able to diffuse and reorient within the confined regular structure formed by the polymerized
template. The structure of the chiral-nematic liquid crystals can thus be switched between a highly
diffracting “On-state” at lower electric field and the minimum diffracting “Off-state” at higher
electric field strength. The typical diffracting performance is demonstrated in Fig. 2. There are
strong, primary diffraction peaks due to the regularly spaced chiral-nematic liquid crystal and
weaker, secondary peaks due to the presence of polymer-network.

The switching properties of the grating are determined through the diffusive motion of the
chiral-nematic molecules through the confining polymer network. The performance of switching
between the diffracting “On-state” and “Off-state” is approximately a few tens of milli seconds [1].
A typical confining geometry as imposed by the reactive mesogenic polymer network is shown as
a SEM image and a depolarized optical microscopy image in Fig. 3 (upper images). The SEM
image shows the bare morphology of the polymer walls after removal of the chiral nematic liquid
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Figure 1: Typical depolarized optical morphology of PSCDGs made of mesogenic monomer RM257-based
microgratings (see also Ref. [1]), and the brief sketch of the regular structure of polymer-stabilized chiral
nematic fingerprint texture. The cell thickness is the same as the optical pitch of chiral nematics d = 10 µm.
The polarization direction of the UV light used to polymerize the momomer is along the ŷ-direction. Arrows
in the upper images indicate the direction of the helicoidal x̂ axis.

crystal material, which indicates the presence of dynamic curvature of the embedded chiral ne-
matic material between the “polymerized walls”. The dynamics of the chiral molecules within the
polymer-stabilized fingerprint texture has been studied by means of dynamic light scattering [3].
Scattering studies have been performed for two different types of polymer-networks by isotropic
(HDDA) and reactive mesogenic (RM257) monomers. When the scattering vector is perpendicular
to the helicoidal axis, there is no significant difference in the relaxation process of chiral nematics
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Figure 2: Typical forward transmitted diffraction spectrum of a PSCD state in the z-direction: Diffraction
“On-state” occurs under a low electric field conditions (|E| ∼ 0.35 [V/µm]), while the minimum diffraction
is shown as “Off-state” (|E| ∼ 1.60 [V/µm]) at high field strengths. The primary (integer) and secondary
(half-integer) peaks are due to the optical pitch of chiral nematics (as P = 10 µm). The (mesogenic RM-257
based) polymer network has shown a pitch equal to P/2 = 5 µm. More details can be found in Ref. [1].
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in both polymer networks. However when the scattering vector is along the helicoidal axis, there
is a significant difference in the slow relaxation of thermal fluctuations of the chiral molecules,
depending on the monomer type embedding the chiral nematic molecules, as can be seen from
the scattered intensity auto-correlation functions given in Fig. 3 [3]. The chiral molecules relax
faster in the isotropic (HDDA) polymer-network as compared to the reactive mesogenic (RM257)
polymer-network. This is due to a more effective coupling of the chiral nematic molecules to a slow
polymer mode for the reactive mesogenic type of polymer-network along the helicoidal axis [3].
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Figure 3: Upper: SEM image of bare mesogenic (RM257) polymer-network (courtesy of S. Kang et al.) and
a depolarized optical morphology of polymer-stabilized chiral nematic fingerprint rolls (the arrow indicates
the direction of the helicoidal axis). Lower: Normalized scattered intensity auto-correlation functions, which
characterize the decay of thermal fluctuations of photostzbilized chiral nematic molecules along the helicoidal
axis, where two different types of polymer-networks are shown for a given scattering vector (qx ∼ 9.25 µm−1).

2. PRELIMINARY RESULTS ON THE PHASE-BEHAVIOR OF FD-VIRUS
SUSPENSIONS UNDER EXTERNAL ELECTRIC FIELDS

We recently started to study the electric-field induced phase behaviour of fd-virus suspensions in
water at low ionic strength. Fd virus is a very long (880 nm) and thin (6.7 nm) rod-like particle with
a relatively large persistence length (2500 nm). There is an extended double layer around these
stiff colloidal rods at low ionic strengths, which can be polarized by means of an external electric
field. The core of the virus is not electrically polarized by the moderate electric field strengths
used in our study. It has been observed before [4], by means of birefringence studies, that at
low fd-concentrations the rods tend to align along the electric field lines, as expected, but that at
higher concentrations (a few time the overlap concentration) the direction of alignment changes
with increasing field strength and/or frequency. The reason for this behavior is unknown, but is
clearly related to interactions between the polarized double layers. The suspensions of fd-virus
particles at low ionic strength exhibit an isotropic to chiral nematic (N*) phase transition at much
higher concentrations (of about 50–100 times the overlap concentration). The interactions between
the polarized double-layers are therefore expected to have a pronounced effect on the phase behavior
just below the isotropic to chiral nematic (N*) transition concentration without an electric field. A
preliminary phase diagram in the AC field-amplitude versus frequency plane is presented in Fig. 4
for a fixed fd-virus concentration and a low ionic strength. In the absence of the external electric
field the dispersion is isotropic. With increasing AC electric field amplitude at a fixed frequency,
we observe a transition from an isotropic to a chiral-nematic state. At higher field strengths, the
chiral nematic (N*) phase melts. The reason for such a melting might be connected to a significant
disruption of the double layer due to the large ion-currents past the core of the fd-virus particles.
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Note that melting is also observed at fixed field amplitude on increase of the frequency. This might
be due to the finite response time of the polarization of the double layer.
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Figure 4: A preliminary phase diagram and a typical morphology of chiral nematic (N*) phase of fd-virus
suspensions under AC external electric fields ([fd]∼ 2.0mg/ml at 0.16 mM Tris/HCl buffer). The largest
optical pitch of an electric field-induced N* phase is ∼ 10 µm as observed by depolarization microscopy.

3. CONCLUSIONS

Chiral nematic molecules are interesting both for their electro-optic properties and phase behavior
under external electric fields. Chiral nematic fingerprint rolls that are formed under electric fields
can be stabilized by means of photo-polymerization of a monomer matrix. The resulting regular,
stable structures exhibit high diffraction efficiency. Due to the degree of “reorientation” freedom
of the chiral nematic molecules, the electro-optic responsive diffraction gratings can be switched
between highly diffracting “On-state” and the minimum diffraction “Off-state” by means of an
external electric field.

We have also observed that a chiral-nematic can be induced in the isotropic dispersions of fd-
virus suspensions at a low ionic strength by applying an external electric field. This may be due
to interactions between polarized double layers. At high electric field strengths, the chiral-nematic
(N*) phase melts. Further investigation of other fd-concentraions is useful for understanding the
precise mechanisms of such phase behavior under an external electric field.
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Design of Composite Electromagnetic Wave Absorber Made of Soft
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K. Sakai, Y. Wada, and S. Yoshikado
Department of Electronics, Doshisha University, Japan

Abstract— Composite electromagnetic wave absorbers made of a soft magnetic material (perm-
alloy or sendust) and polystyrene resin were investigated. The volume mixture ratio of magnetic
material was varied in the range from 18 vol% to 75 vol%. The composites with the low volume
mixture ratio of soft magnetic material absorbed more than 99% of electromagnetic wave power
in the frequency rage from 1 GHz to 12 GHz. The values of the real part µ′r of the relative
complex permeability µ∗r for both magnetic materials were less than unity at frequencies above
approximately 6 GHz as the volume mixture ratio of magnetic material increased. This result
suggests the possible realization of an electromagnetic wave absorber that can operate above
10GHz.

1. INTRODUCTION

Electromagnetic waves with frequencies higher than 1GHz are now more widely used for commu-
nication with the increasing use of telecommunication devices such as mobile phones. In the case
of electric toll collection (ETC) systems, their operating frequency will increase from 5.8GHz to
more than 10 GHz in the future. Therefore, the development of an electromagnetic wave absorber
suitable for these frequency bands is required.

The purpose of this study is to investigate the design of a practical composite absorber that
operates in a wide frequency range above 1GHz. The composite absorber consists of soft magnetic
material particles, such as permalloy or sendust, and polystyrene resin. Both permalloy and sendust
satisfy Snoek’s limit at high frequencies [1] and have high permeability values in the frequency range
above 1 GHz. These characteristics make it possible to fabricate an electromagnetic wave absorber
suitable for this frequency band [2, 3]. In addition, it is expected that the composite materials have
values of µ′r, the real part of the relative complex permeability µ∗r , of less than unity, because in
qualitative theoretical calculations it has been predicted that the µ′r has to be less than unity for a
constant relative dielectric constant ε′r. This characteristic allows electromagnetic wave absorption
above 10GHz. These soft magnetic materials, however, have high electric conductivity. Thus, if
the number of particles of such a magnetic material dispersed in the resin, such as polystyrene,
exceeds the percolation threshold, magnetic particles will be in direct contact with each other
and the average conductivity σ of the composite will increase markedly. Eventually, the reflection
coefficient of the electromagnetic wave reflected by the composite will increase and the absorption
characteristics will be degraded [4]. To prevent the increase in σ, we attempt to disperse and
isolate the magnetic particles in the polystyrene resin so that they are not in contact with each
other. To isolate the magnetic particles, the surface of each magnetic particle is coated with
very fine polystyrene particles of less than approximately 1µm diameter, which is less than that
(approximately 20µm diameter) of the magnetic particles.

2. EXPERIMENTS

Chips of polystyrene resin of approximately 200µm diameter were ground with ethanol by mechan-
ical milling (MM) (Fritsch, P7) using a zirconia pot and zirconia balls of 1mm diameter for 1.5 h.
The rotation speed of the turntable was 600 rpm. The ratio of the rotation speeds of the milling
pot to the turntable was 2:1. Permalloy (Ni 45%, Fe 55%) particles (grain type, average grain size
of approximately 10µm) or sendust (Al 5%, Si 10%, Fe 85%) particles (flake type, average grain
size of approximately 20µm) and ground polystyrene particles (average grain size of approximately
1µm) were then mixed by MM for 30 min to coat the particles of the magnetic material with the
polystyrene particles. After mixing, the powder mixture was heated to melt the polystyrene resin
then hot-pressed at a pressure of 5 MPa into a pellet shape. Then, the pellet was cooled naturally
to room temperature and processed to a toroidal-core shape (outer diameter of 7mm and inner
diameter of 3.04 mm) for use in a 7 mm coaxial line or to a rectangular shape (22.8 mm×10.16mm)
for use in a waveguide at the X-band (8.2 GHz to 12.4 GHz). The sample was loaded into a coax-
ial line or rectangular waveguide while ensuring that there was no gap between the coaxial line
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or rectangular waveguide and the toroidal-core sample. The complex scattering matrix elements,
S∗11 (reflection coefficient) and S∗21 (transmission coefficient) were measured using a vector network
analyzer (Agilent Technology 8722ES) by the full-two-port or one-port reflection method. The
values of µ∗r (µ∗r = µ′r − jµ′′r , j =

√−1) and the relative complex permittivity (ε∗r = ε′r − jε′′r) were
calculated from the data of both S∗11 and S∗21. The return loss R for various sample thicknesses was
calculated from the complex reflection coefficients Γ∗ using the relation R = 20 log10 |Γ∗|.
3. RESULTS AND DISCUSSION

3.1. Dispersion State of Magnetic Material Particles and the Conductivity of Composite
Materials
Surface optical microphotographs of the composites made of permalloy or sendust are shown in
Fig. 1. Each particle of the magnetic material was surrounded by polystyrene resin even if the
volume mixture ratio of the magnetic material exceeded the percolation threshold of 33 vol%, as
shown in Fig. 1. This is because very fine polystyrene particles coated the surface of each particle of
the magnetic material and melted polystyrene resin entered between the particles of the magnetic
material. The values of ε′′r increased gradually for both composite with the volume mixture of the
magnetic material, even when it exceeded the percolation threshold. These results show that the
particles of the magnetic material are isolated from each other and that the composites have a low
value of σ.

(a) 75 vol% permalloy composite (b) 57 vol% sendust composite 

Figure 1: Surface optical micro-photographs of composites: (a) 75 vol% permalloy and (b) 57 vol% sendust.

3.2. Frequency Dependence of µ′r and Absorption Characteristics
Figures 2 and 3 show the frequency dependences of µ′r and µ′′r for the composites made of permal-
loy or sendust, respectively. In this study, a qualitative theoretical calculation was performed to
investigate the absorption in the frequency range above 1GHz. The measured values of µ∗r for the
composites made of permalloy or sendust and the calculated values of µ∗r that satisfy the nonre-
flective condition Equation (1) are shown in Figs. 4 and 5, respectively [5].

1 =
√

µ∗r/ε∗r tanh
(
γ0d

√
µ∗rε∗r

)
(1)

Here, γ0 is the propagation constant in free space and d is the sample thickness. The value of ε′r
used for calculation was independent of frequency and the same as the measured value. ε′′r was
assumed to be zero. The measured values of µ′r for the composite made of 33 vol% permalloy
roughly agreed with the calculated values for d = 3 and 4 mm, as shown in Fig. 4, and those for
the composite made of 25 vol% sendust almost agreed with the calculated values for d = 4 mm, as
shown in Fig. 5, in the frequency range from 1 GHz to 10 GHz. On the other hand, the plots of the
measured values of µ′′r for the the composite made of 33 vol% permalloy intersected the calculated
line near 6 GHz for ε′r = 10 and d = 3mm, and those for the composite made of 25 vol% sendust
intersected the calculated line near 5 GHz for ε′r = 10 and d = 4 mm, as shown in Figs. 4 and
5. Therefore, it is expected that the absorption of a large amount of electromagnetic wave power
occurs at approximately 6 GHz and d = 3mm for the composite made of 33 vol% permalloy and
at approximately 5GHz and d = 4 mm for the composite made of 25 vol% sendust, as shown in
Fig. 6. Fig. 6 shows the absorption center frequency f0 and the normalized −20 dB bandwidth
(the bandwidth corresponding to the return loss of −20 dB is divided by f0) of each composite.
The value of −20 dB corresponds to the absorption of 99% of the electromagnetic wave power.
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The composites made of permalloy or sendust showed a return loss of less than −20 dB for the
optimum d value and the bandwidth was approximately 10%. Furthermore, the sample thickness
for which the return loss becomes less than −20 dB was relatively thin compared with that of
commercial absorbers. In particular, the composites made of sendust have some advantages over
those made of permalloy because sendust contains no rare metals such as Ni and the mass density
of the composites made of sendust is very small. For example, the mass density is approximately
1.5 for the composite made of 18 vol% sendust and approximately 1.8 that of 33 vol% sendust.
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Figure 2: Frequency dependences of (a) µ′r and (b) µ′′r for composites made of permalloy and polystyrene
resin.
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Figure 3: Frequency dependences of (a) µ′r and (b) µ′′r for composites made of sendust and polystyrene resin.

To investigate the absorption at frequencies near 10GHz, the values of µ∗r and ε∗r for the com-
posite made of 25 vol% sendust were measured by the reflection method using the rectangular
waveguide at X-band frequencies because the accuracy of measurement was poor using the coaxial
line due to the generation of higher-order modes. The frequency dependences of the return loss at
X-band frequencies for the composite made of 25 vol% sendust are shown in Fig. 7. The absorbing
center frequency f0 increases from 8.5GHz to 11.6GHz as the sample thickness decreases from
2mm to 1.5mm. f0 varies markedly over the narrow range of sample thickness as the frequency
becomes higher than 8 GHz. The return loss was less than −20 dB near 11.6GHz for the sample
thickness of 1.5 mm, as shown in Fig. 7, and the bandwidth was approximately 6%. Therefore, the
composite made of 25 vol% sendust can also be used as an electromagnetic wave absorber in the
frequency range above 10GHz.

The composites made of permalloy or sendust showed values of µ′r of less than unity at frequencies
above approximately 6 GHz as the volume mixture ratio of magnetic material increased, as shown
in Figs. 2 and 3. It is speculated that this phenomenon is due to magnetic moments generated by
an eddy current flowing on the surface of the particles of the magnetic material. Soft magnetic
material is generally conductive and the skin depth δ of soft magnetic material, which is given by
Equation (2), is less than the radius of the soft magnetic material particles at frequencies above
approximately 5 GHz.
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Figure 4: Measured and calculated values of (a) µ′r and (b) µ′′r using Equation (1) for composites made of
permalloy.
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Figure 5: Measured and calculated values of (a) µ′r and (b) µ′′r using Equation (1) for composites made of
sendust.

  
(a) permalloy composite (b) sendust composite 

Figure 6: Values of normalized −20 dB bandwidth and center frequency f0 of composites made of (a)
permalloy and (b) sendust. Bars show the normalized −20 dB bandwidth and symbols show the absorption
center frequency.

δ =

√
2ρ

ωµ0µ′r
(2)

Here, ω is the angular frequency and ρ is the resistivity. For example, δ for this permalloy is
estimated to be 3.1µm at 5 GHz because the resistivity of the permalloy is 2 × 10−7 Ωm [6] and
it decrease in proportion to 1/

√
ω. The eddy current flows in the layer of skin depth δ on a

magnetic material particle and generates a magnetic moment antiparallel to incident magnetic field.
Consequently, the value of µ′r is reduced and sometimes becomes less than unity. This result suggests
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the possibility of electromagnetic wave absorption above 10 GHz, because Equation (1) indicates
that the values of µ′r should be less than unity in the high-frequency region. The values of 1−µ′r for
various volume mixture ratios of permalloy and sendust are shown in Fig. 8. 1− µ′r increased with
the increase in the volume mixture ratio of magnetic material. In particular, 1−µ′r for sendust was
roughly proportional to the volume mixture ratio above 25 vol%. This result indicates that the
effect of the magnetic moments generated by the eddy current becomes dominant as the amount of
magnetic material increases. To examine this phenomenon, composites made of aluminum particles
having a grain size of approximately 80µm and polystyrene resin were prepared. Fig. 9 shows the
values of 1 − µ′r for various volume mixture ratios of aluminum. 1− µ′r increased proportional to
the volume mixture ratio of aluminum particles. Although the grain size and skin depth of the
aluminum particles are different from those of the magnetic material particles, a similar result to
the composites made of permalloy or sendust was observed in the composites made of aluminum.
Therefore, it is speculated that the reason why the vales of µ′r become less than unity may be
qualitatively explained by magnetic moment generated by the eddy current.
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Figure 8: Values of 1− µ′r for various volume mixture ratios of (a) permalloy and (b) sendust.

For the composite with a volume mixture ratio of 75 vol% permalloy, the measured values of
µ′r almost agreed with the calculated values at frequencies from approximately 8 GHz to 20 GHz
for ε′r = 60 and d = 1 mm, as shown in Fig. 4(a). On the other hand, the measured values of µ′′r
agreed with the calculated values only at approximately 3.5GHz. Therefore, the composites with
a high volume mixture ratio of permalloy did not show a return loss of less than −20 dB in the
measured frequency range. A similar result was obtained for the composites with a high volume
mixture ratio of sendust. However, it is speculated from Figs. 4 and 5 that the lines showing the
frequency dependence of the measured values of µ′′r may intersect the calculated lines at a frequency
above 10GHz, which is outside the range of the measurement, because µ∗r rapidly decrease in the
high-frequency range. Therefore, it may be possible to show a return loss of less than −20 dB at
frequencies above 10 GHz. Investigations of the absorption in this high-frequency range is now in
progress.
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Figure 9: Values of 1− µ′r for various volume mixture ratios of aluminum.

4. CONCLUSIONS

Composites with a low volume mixture ratio of soft magnetic material showed show a return loss
of less than −20 dB in the frequency range from 1GHz to 12 GHz. It is concluded that these
composites are suitable for use in practical electromagnetic wave absorbers in the frequency range
used for ETC systems or mobile phones.

The values of µ′r for composites with a high volume mixture ratio of soft magnetic material
were less than unity in the frequency range above approximately 6 GHz, and the absorption of
electromagnetic wave power at frequency range above 10 GHz is expected.
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Abstract— A new unsupervised classification method is proposed for polarimetric SAR images
to keep the spatial coherence of pixels and edges of different kinds of targets simultaneously. We
consider the label scale variability of images by combining Inhomogeneous Markov Random Field
(MRF) and Bayes’ theorem. After minimizing an energy function using an expansion algorithm
based on Graph Cuts, we can obtain classification results that are discontinuity preserving. Using
a NASA/JPL AIRSAR image, we demonstrate the effectiveness of the proposed method.

1. INTRODUCTION

Due to the fact that the prior information about cluster center characteristics of SAR images
cannot be obtained in many cases, it is necessary to develop unsupervised classification methods
for POLSAR images. Cloude and Pottier proposed an unsupervised classification method based on
their target decomposition theory [1]. Lee proposed a method based on the Wishart classifier [2].
Both the methods are based on the assumption that the pixels are independent, so the methods
are sensitive to noise and lack of spatial coherence.

Markov Random Field (MRF) is a useful tool to incorporate the spatial interaction of pixels.
MRF has been applied to classification in remote sensing [3, 4]. The standard MRF (homogeneous
MRF) cannot represent the label scale variability because it is assumed that the coupling between
pixel labels (the parameter β) is constant throughout the whole image. In some regions of an image,
e.g., the ocean, the label (sort) of pixels is constant, so β is very large. On the other hand, in some
other regions, e.g., many small bare grounds in a small forest, the labels of pixels are various, so β
is very small. When we classify an image using the homogeneous MRF model, it is difficult to keep
details of a region associated with a small β and prevent another region associated with a large
β from being divided simultaneously. Therefore, it is necessary to incorporate the Inhomogeneous
MRF [5] to represent the label scale variability of the image.

In this paper, we will develop a new iteration method consisting of two steps: (1) to fix the
labeling (a classification result) and estimate the cluster parameters and the smoothness parameter
β of the Inhomogeneous MRF in the energy function; (2) to fix the parameters and estimate a
labeling that minimizes an energy function by using an expansion algorithm [6] based on Graph
Cuts. Using the proposed iteration method, we can obtain good classification results.

2. INHOMOGENEOUS MRF MODEL

According to [5], we employ the Inhomogeneous MRF model for polarimetric SAR images in this
section. The dimension of the image is n × m, each site is denoted as sij (1 ≤ i ≤ n, 1 ≤
j ≤ m), the set of labels (sorts) is L = {1, 2, . . . , K}, the label field {Xij |Xij ∈ L}, Yij is
the covariance matrix at sij , Y = {Yij }, Bayes’ theorem yields P (X|Y ) ∝ P (X)P (Y |X), so the
unsupervised classification of polarimetric SAR images by using maximum a-posteriori probability
(MAP) estimator is equivalent to estimate X = arg maxP (X)P (Y |X) for a given Y .

From [2], we have

P (Y |X) =
∏

(i, j)∈s

P (Yij |Xij ) =
∏

(i, j)∈s

nqn |[Yij ]|n−q exp
(
−tr

(
n [Σij ]

−1 [Yij ]
))

K(n, q) |[Σij ]|n , (1)

where K(n, q) = πq(q−1)/2
q∏

i=1
Γ(n− i + 1), Γ() represents the Gamma function, n is the number of

looks, q = 3 for the reciprocal case. Σij is the covariance matrix of the class which sij belongs to.
| | and tr() represent the determinant and the trace of a matrix, respectively.
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From the Hammersley-Clifford theorem [7], we know that P (x) can be described by a Gibbs
distribution:

P (X) =
1
z

exp(βV (X))
1
z

exp


β

∑

i, j

Vij (Nij ∪ xij )


 , (2)

where xij is a realization of Xij at sij , Nij is the neighborhood of sij , V is the potential function, β
is the smoothness parameter, z is a constant for normalization. We use the Potts model: Vij (Nij ∪
xij ) = nij (xij ), where nij (xij ) is the number of pixels labeled xij in the neighborhood of the site sij .
Thus the potential function V penalizes the labeling which does not satisfy the spatial coherence.
As V is non-convex, we avoid overpenalizing the sudden change between the labels of neighboring
pixels. So this model is discontinuity preserving [6], i.e., it can preserve the sharp jump at borders
of regions while keeping smoothness inside homogeneous regions. When we use the Inhomogeneous
MRF model,

P (X) =
1
z

exp


∑

i, j

βijVij (Nij ∪ xij)


 =

1
z

exp


∑

i, j

βijnij (xij )


 (3)

Thus, maximizing P (X|Y ) is equivalent to minimizing − ln(P (X)P (Y |X)). Removing terms
which are independent of X, the problem becomes: to find a labeling x (a realization of X) for
minimizing an energy function:

E(x) =
∑

i, j

n× (|[Σij ]|+ tr
(
[Σij ]−1[Yij ]

))
+

∑

i, j

−βijnij (xij ) (4)

In order to rapidly obtain the accurate result of classification, we have to precisely estimate the
parameters Σij and βij and rapidly find the labeling which minimizes the energy function E(x). We
use an iteration method consisting of two steps: (1) to estimate the parameters Σij and βij by using
the labeling obtained from the last iteration; (2) to fix the parameters Σij and βij estimated in (1)
and to find the labeling that minimizes the energy function E(x) by using the expansion algorithm
based on Graph Cuts. Relative to the standard EM approach, step (1) is an approximation to the
E-step and step (2) is similar to the M-step [8].

3. ESTIMATION OF PARAMETERS

If the covariance matrix of the m-th cluster center is denoted as Σm, then the estimation of Σm is
the mean of covariance matrices of the pixels corresponding to the label m in the last iteration [2].

The estimation of βij is intractable because βij appears in both the exponent of the probability
density model and in the normalizing constant z. We divide the whole image into 16×16 equal
blocks, and in each block β is regarded as a constant which is estimated by using the Pseudo
Likelihood Estimator (PLE) [5] in each block. In this way, β can approximately represent the local
label scale and its estimation is tractable.

From the Maximum Likelihood Estimator (MLE),

∂

∂β
P (X|Y ) = 0 ⇔ P (Y |X) · ∂

∂β
P (X) = 0

∂

∂β

1
z(β)

eβ·V (X, β) = 0
(5)

Using the PLE, we have P (X) =
∏
ij

1
zij

exp(β · nij (xij )), where zij

K∑
x=1

exp(β · nij (x)), K is the

number of classes.
Define ξ = eβ,

∂

∂β
ln P (X) =

∑

ij

nij (xij )−
∑

ij

∑
x

nij (x)ξnij (x)

∑
x

ξnij (x)
= c−

∑

ij

Pij (ξ)
Qij (ξ)

(6)
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where c is a constant, Pij (ξ) and Qij (ξ) are polynomials which degrees are not more than the
number of pixels in the neighborhood of sij . If we choose the standard 4 connected grid (as we did
in later experiment), Pij (ξ) nd Qij (ξ) have only 5 possible forms, respectively. Their degrees are

not more than 4. Thus the estimation of β is converted to solve c−
5∑

i=1
ri

Pi(ξ)
Qi(ξ)

= 0, i.e.,

c−
„

r1 · 4ξ4

ξ4 + K − 1
+ r2 · 3ξ3 + ξ

ξ3 + ξ + K − 2
+ r3 · 4ξ2

2ξ2 + K − 2
+ r4 · 2ξ2 + 2ξ

ξ2 + 2ξ + K − 3
+ r5 · 4ξ

4ξ + K − 4

«
= 0 (7)

where ri (i = 1, 2, . . . , 5) is the number of pixels which neighborhood system is the i-th possible
forms in the partition of the image (1/(16×16) of the whole image), and K is the number of classes.
Using the labeling obtained in the last iteration, we can obtain c and ri (i = 1, 2, . . . , 5). It is
easy to demonstrate that the left side of the Equation (7) is a monotonically decreasing function,
so β can easily be obtained by using Newton-Raphson scheme to solve (7). In practice, from the
characteristics of POLSAR images we constrain that β ∈ (0, 3).

4. OPTIMIZATION OF LABELING

In each iteration, we estimate the labeling for minimizing the energy function E(x) in Equation (4).
The first term of E(x) is called Data term, which measures the disagreement between x and the
observed data. The second term is called Smoothness term, which measures the extent to which x is
not piecewise smooth. As mentioned above, to make the labeling to be discontinuity preserving, we
chose the Potts model because the potential function of the Smoothness term has to be non-convex.
It was proved that the global minimum of E(x) is NP-hard due to non-convexity of the potential
function [6]. Therefore we have to find a suitable algorithm to compute the approximation of
the global minimum. For both Iterated Conditional Modes (ICM) and Simulated Annealing (SA)
the standard moves (i.e., only one pixel can change its label at a time) were adopted to find an
approximation. Once a local minimum has been reached, the value of the energy function cannot be
reduced by standard moves any more. But a local minimum may be far from the global minimum,
so the result may be very poor. Although we can obtain the global minimum theoretically by SA
in certain case, this algorithm is very slow and it was demonstrated in [9] that the result of SA
may be very far from the optimum in practice.

In [6], an expansion algorithm was proposed to minimize energy functions based on Graph Cuts.
In contrast to standard moves, the expansion algorithm allows many pixels to change their labels
at a time, which is called one α-expansion move, i.e., labels of any pixels in the image can be
converted into α at this step. Therefore, when a local minimum has been reached, we can still
reduce the value of the energy function by using this algorithm. It was proved that the expansion
algorithm gives a solution that is within a factor of two of the global minimum for Potts model and
its runtime is short [6]. Thus we can obtain more precise results by using this algorithm than ICM
and SA. In addition, the algorithm is more effective than the others.

There is a one to one correspondence between labelings x and partitions of image pixels. To
find a labeling for minimizing the energy function, we adopt the expansion algorithm based on the
following iterations [6]:

Step1. Start with an arbitrary labeling x.
Step2. Set success := 0.
Step3. For each label α ∈ {1, 2, . . . , K} :

3.1 Find x′′ = arg minE(x′) among x′ within one α-expansion of x.
3.2 if E(x′′) < E(x), set x : = x′′ and success := 1.

Step4. if success = 1, goto Step2.
Step5. return x.

An execution of Steps 2, 3, 4 is called a cycle, and an execution of Steps 3.1 and 3.2 is called an
iteration. The key point is in 3.1: given a labeling x and a label α, how to find a labeling x′′ which
energy function is minimum among x′ within one α-expansion move of x. It was shown in [6] that
by setting a suitable graph we can convert this problem into finding the minimum cut in the graph
we set. The minimum cut can be obtained by using a max-flow algorithm. For classification of a
POLSAR image with 700× 900 pixels, we obtained the minimum within 5 cycles, mostly within 3
cycles. It only took a few seconds.



Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, 2008 1331

5. CLASSIFICATION SCHEME

It should be pointed out that to estimate β we need to use the labeling obtained from the last
iteration. If the labeling we used is far from the true result, the value of the estimated β may be
far from the true β. For unsupervised classification, if the labels we assigned initially or obtained
from the last iteration are the same throughout a certain region which labels are actually various,
the value of the estimated β may be too large. To estimate a new labeling in the next iteration
by using this β, details of the region may be lost, causing the next β still too large, i.e., once the
weight of the smoothness term of a region is too large, the data term of this region may lose its
influence forever. To overcome this problem, when the iteration number is odd, we reduce the value
of β (e.g., let β = β/5) so that the data term could still exert influence even if the initial labeling
was bad; when the iteration number is even, we use the value of the estimated β so that the spatial
information can be used to obtain reliable results. The procedure of the proposed method is given
as follows:

Step1: Initialize the labeling.
Step2: compute the corresponding covariance matrices of cluster centers Σm.
Step3: Divide the image into 16× 16 equal blocks. For each partition, compute the coefficients of

the Equation (7) by using the labeling obtained from the last iteration. Then compute β by
using the Newton-Raphson scheme. Let β = β/5 if the iteration number is odd.

Step4: Set the energy function as (4) for the whole image by using the estimated Σm of the whole
image and β of all partitions. Then find the new labeling by using the expansion algorithm
based on Graph Cuts.

Step5: Go to Step2 unless termination condition is satisfied.

The iteration is terminated when the classification results are almost the same as those by the
last iteration or the loop time reaches a pre-defined bound.

Figure 1: Span image. Figure 2: The result of our scheme.

6. EXPERIMENT RESULT

A NASA/JPL AIRSAR L-band image of San Francisco was used for illustrating the classification
scheme proposed above. The 4-look calibrated SAR image consists of 700×900 pixels. The span
image is shown in Fig. 1. Speckle filtering was applied before classification [10]. We chose K = 5 and
classified the image into 5 classes by using the target decomposition theory [1] as the initialization
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of the labeling. We obtain the classification results of the Wishart classifier [2] and our scheme
after 4 iterations. The result of our scheme is shown as Fig. 2. From the figure we can see that in
contrast to much noise of the result of the Wishart classifier, the result of our scheme shows the
spatial coherence while keeping details of the image.

7. CONCLUSION

A new unsupervised classification scheme for polarimetric SAR images has been proposed. In this
method, we considered the spatial information by using the Inhomogeneous MRF model that can
represent the label scale variability. The classification results can be rapidly obtained by using an
expansion algorithm based on Graph Cuts. The excellent performance of the proposed method has
been illustrated by a NASA/JPL AIRSAR L-band image.
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Spatial Distribution Pattern of MODIS-NDVI and Correlation
between NDVI and Meteorology Factors in Shandong Province in

China
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Abstract— The vegetation index research was necessary for monitoring plant growth. Based on
the data of 250m spatial resolution NDVI (Normalized Difference Vegetation Index) of MODIS
(Moderate Resolution Imaging Spectroradiometer), this paper analyzed the spatial distribution
pattern of NDVI in Summer in Shandong Province in the east of China. With the data of six
meteorologic sites and the average NDVI in January, in April, in July and in October in 2006
including the average atmosphere temperature, relative humidity, precipitation, sunlight hours
and using the SPSS statistics software, the correlation between NDVI and meteorology factors
was researched. The results were showed as follows: there was obvious character of spatial
distribution pattern of NDVI in Shandong Province. The value of NDVI in plain region was
higher than the value of mountain and hilly region, and moreover the distribution of value of
NDVI was even in plain, in which the most of NDVI was greater than 0.7–0.8. In the mountain
region, NDVI was falling off with the decreasing of the altitude, where NDVI was about 0.6–0.7.
Deeply research also showed that NDVI was affected by human activity distinctly, and so the
NDVI in the city was lower than 0.4, as such lower than that of the suburb. The atmosphere
temperature and quantity of the precipitation were the two main factors affecting the change
of NDVI, at the same time the seasonal sunlight hours was second-class factor that caused the
change of the NDVI. The research results also indicated that with the decreasing of the latitude,
the correlation between NDVI and temperature was decreasing too, on contrast, the correlation
between NDVI and the quantity of precipitation was increasing.

1. INTRODUCTION

The vegetation is acting an important role in the earth ecological system, and it affects the energy
balance between the earth and atmosphere, being the nature “link”.

The vegetation growth has obvious seasonal variation characteristic, and become the “display”
in the global climatic change. Therefore research on the correlation between the vegetation and
the climatic change has become very important in the global change research. The vegetation
index is a kind of value which can instruct the vegetation growing trend and the biomass (through
linearity or non-linear combination way including addition, subtraction, multiplication, division
with selecting the multi-spectra remote sensing data) [1–5]. The vegetation index is a simple,
effective measure to the surface vegetation condition, and is the “bridge” between the remote
sensing image and the vegetation research. Analyzing the spatial distribution pattern of vegetation
index of Moderate Resolution Imaging Spectroradiometer (MODIS) in Shandong Province and
correlation with climatic element has the vital significance to the Shandong Province ecological
environment monitoring and the vegetation response to the climatic change.

Normalized Difference Vegetation Index (NDVI) is one of the best instruction factors of the
vegetation growth condition and the degree of vegetation cover [4–9]. If an area is covered by the
vegetation, then the value of the NDVI of this area is just a positive number, and also increases
along with the vegetation cover increasing [1–6]. Since the 1990s a few researches on the NDVI
spatial pattern and it with climatic element correlation have been carried in China, but majority
of researches was based on NOAA/AVHRR-NDVI [10–13]. The MODIS vegetation index was
improved on the basis of the NOAA/AVHRR vegetation index [13–16], and at present, it has been
an effective method of monitoring global and regional scale of vegetation condition since MODIS-
NDVI is more sensitive to vegetation condition owing to reducing the disturbances which exterior
factors bring (for example atmospheric, solar elevation angle, cloud and so on). First band (red
wave) and second band (near-infrared wave) of MODIS was used to calculate NDVI, and their space
resolution is 250 m [1–3]. Terra-MODIS scans the same area of the earth two times every day, this
kind of suitable space and time resolution can reflect the change characteristic of the vegetation
very well [9–12]. This paper taking Shandong Province as a research region, discovered the spatial
pattern characteristic of MODIS-NDVI, and analyzed correlation between the mean value of NDVI
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in January, April, July, and October in 2006 and the corresponding meteorological factor with using
data of six meteorology observation stations.

2. RESEARCH DATA AND METHOD

2.1. Brief Introduction of Research Area Condition
Shandong Province is located in the downriver of the Yellow River, east near to Bohai, Yellow Sea,
is situated between the east longitude 114◦ 36’–122◦ 43’ and the north latitude 34◦ 25’–38◦ 23’,
and holds the important status in the national economical pattern. The territory including the
peninsula and the interior two parts, eastern part is peninsula hilly area; western and northern
parts are the plain; and southern and central parts are the mountainous region.

Shandong Province belongs to the East Asian warm temperate zone monsoon climate. The
increase of the quantity of the precipitation and heat take place at the same season. Spring and
autumn are short, while winter and summer are longer. Average temperature is 11–14 ◦C, and
average precipitation is generally 600–900 mm.

2.2. Data Origin and Processing
This research used vegetation index products (16 days-integrated and 250 m space resolution) which
were provided by the American aerospace bureau (National Aeronautics and Space Administration,
NASA). Format of the NDVI data was HDF, and the time of NDVI images were in January, in
April, in July, in August, and in October in 2006. These NDVI data were already adjusted through
the radiation method, geography localization and atmospheric adjustment. The meteorological
data came from Chinese meteorology scientific data sharing network.

First using MRT tool software (MODIS Reprojection Tool) to complete the projection and the
format conversion of NDVI images, and as a result, the projection of transformation images was:
Geographic (Lat/Lon) WGS84, and the format of the images was GEOTIFF, and the sampling way
was Bilinear. Then carried on the mask operation to obtain MODIS-NDVI images of Shandong
Province by Shandong Province’s administrative boundary image.

Taking six meteorological stands (Huimin, Chengshantou, Jinan, Weifang, Dingtao, Yanzhou)
of Shandong Province as the center, and 30 km as the buffer radius, got buffer images of NDVI
data in January, in April, in July, and in October in 2006.

2.3. Research Method
In order to analyzing the spatial distribution pattern of NDVI in summer–autumn, this research
used ENVI 4.1 remote sensing processing software, calculated average NDVI data of the last ten
days of August and beginning ten days of September (data integrated of the 225th–240th days, and
241st –257th days), and obtained the NDVI graduation distribution map.

Since some research indicated that the vegetation has the lag response to the meteorological
factor [13], therefore this research carried on the correlation analysis between buffer NDVI images
and month and seasonal climate factors including average temperature, the average relative hu-
midity, the precipitation, the sunshine hours with applying SPSS software, using statistics method.
For example, in order to analyze the correlation between NDVI in July and corresponding seasonal
temperature, we need to calculated the average value of the temperature of May, June and July.
After we finished all four seasonal calculation with the similar method, we can obtain a group of
corresponding values, then we can calculated the correlation coefficient between NDVI and seasonal
mean value of the climatic factor.

3. RESULT AND ANALYSIS

3.1. MODIS-NDVI Spatial Distribution Pattern in Shandong Province
According to the vegetation distribution characteristic in Shandong province, the vegetation index
was divided into seven levels. Because the area where NDVI was lower than 0.4 was smaller,
moreover, it was generally population concentration city, therefore NDVI between 0 and 0.4 was
divided into a level. From Figure 1, the spatial distribution of vegetation index had the obvious
region characteristic, as follows:

First, we can see this kind of spatial distribution characteristic of southwest and northwest
plain area of Shandong province. This area was forming from flood silting by Yellow River, and
the elevation in this area was about 50 meters, with the fertile soil, and the developed agriculture.
Through the Shandong Province vegetation type map, we can know that in this area, most of the
vegetation type was the crops, with few forest. Crop types and season change were main factors
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that affected the vegetation index change. Because crops were planted nearly at the same time as
well as the crops area certain widespread, vegetation index at the same time were quite consistent,
and the NDVI value were all above 0.7. Especially, the NDVI of the Lubei plain and Jinghang canal
basin were all achieve above 0.8. But the NDVI value of the city obviously reduced, that number
in the population crowded area was lower than 0.4, and eventhough, at suburb, NDVI value was
also only between 0.5 and 0.6.

NDVI

Figure 1: Spatial pattern of MODIS-NDVI in 2006 in Shandong Province.

Second, notice the characteristic of Yellow River Delta. The humanity activities intensely af-
fected this area, and the soil was mild as well as with serious salinification. Most of vegetation
types were the graminaceous grass and the weed meadow, lacking the natural forest vegetation,
and there were a large area of primary or the secondary natural meadow and some willow tree, and
other areas were all the farmland. Because this area was seriously salinification, with barren soil,
the vegetation growing not good, therefore the vegetation index was lower and the value was about
0.4–0.6 Fig. 1 showed that in the large coastal shallow and tidelands, the NDVI value was below
0. In the meadow area of the inland, NDVI value was also below 0.4. Compared with former, the
area where the NDVI value was higher than 0.7 was covered by the nature grass in the long area
on both banks of the Yellow River.

Third, there was the obvious characteristic of southern, central and western Shandong Province
and peninsula mountainous region. The topography is higher, and terrain was complex. In the
area where the elevation is above 200 m, there was more quantity of moisture, and land was covered
by forest, so the degree of forest cover was higher, therefore average NDVI was higher than the
value of other place at the same time, and majority of NDVI in the area was between 0.7 and 0.8.
However in the area where elevation is 50–200m, the vegetation was mainly the patch of grass and
the crops, so cover ratio was lower, there the NDVI value was majority between 0.6 and 0.7. In
this area, another characteristic was that the NDVI value of the top of the mountainous area was
highest and then with the deduce of the elevation NDVI decreased progressively to all around.

Fourth, should pay attention to the characteristic of low hilly area in eastern peninsula. The
elevation of majority of this area is about 50–500m, there is enough precipitation and quantity of
the heat, the main vegetation type included the black pine, the Japanese red pine, the hemp oak
tree, the locust tree, coniferous forest and the temperate zone fallen leaf foliage forest. However,
in lower elevation area, majorities of farmland were the vegetation. As a result of marine climate
adjustment, vegetation growth is luxuriant, the vegetation index was higher, majority of NDVI was
all above 0.7-0.8.

In brief, in Shandong Province, NDVI value of all cities was all below 0.4. Not only the NDVI
value of farmlands in plain was highest, but also this kind of spatial distribution of NDVI of
farmland was even. In the mountainous area, the value of top of mountain was highest and then
taking the mountainous top as the center, NDVI decreased progressively to all around with the
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decrease of the elevation.
3.2. Correlation of NDVI and Climatic Factors
3.2.1. Correlation of NDVI and Climatic Factors at the Same Month
Comparing average NDVI of 30 km buffer area of weather stations with average temperatures, the
average precipitation, the average relative humidity, average sunshine hours in the same month in
2006 year, and analyzing their relevance, correlation coefficients were calculated, the result was
showed in Table 1.

Table 1: Correlation coefficient between NDVI and month mean value of the climatic factor.

Different
region

average
temperature

average relative
humidity

average
precipitation

average
sunshine hours

Huimin 0.95 −0.024 0.605 0.773
Chengshantou 0.944 0.89 0.723 −0.428

Jinan 0.888 0.115 0.818 0.527
Weifang 0.836 −0.153 0.906 0.785
Dingtao 0.715 0.326 0.76 0.521
Yanzhou 0.853 0.312 0.856 0.208

There was remarkable correlation between average temperature in various regions and NDVI, in
comparison, the correlation coefficient between NDVI and the average precipitation was generally
lower than the former, even though correlation coefficient were also all above 0.6. Except corre-
lation coefficient of Chengshantou regions was 0.89, other correlation coefficients were all smaller.
Between NDVI and sunshine hours, except Chengshantou, other regions all presented the correla-
tion, moreover, the area of correlation coefficient above 0.5 achieved 65%. There was not obvious
relevance between NDVI and the relative humidity.

Table 2: Correlation coefficient between NDVI and seasonal mean value of the climatic factors.

Different
region

average
temperature

average relative
humidity

average
precipitation

average
sunshine hours

Huimin 0.757 0.059 0.674 0.816
Chengshantou 0.717 0.933 0.7 0.448

Jinan 0.655 −0.081 0.662 0.933
Weifang 0.534 −0.112 0.279 0.927
Dingtao 0.384 −0.237 0.522 0.991
Yanzhou 0.587 −0.195 0.611 0.926

Table 1 also showed that the temperature and the precipitation were the main meteorological
factors that affected NDVI changes in the Shandong province, which founding was consistent with
that results in the publication literature by Li Bengang [7]. The further analysis indicated that
the relativity of the temperature and the NDVI value reduced in the direction from the north to
the south, however, the tendency of correlation of the precipitation and the NDVI increased. This
indicated that, in Shandong Province, along with latitude reducing, dependence of the vegetation
growth on the temperature reduced, however, dependence of the vegetation growth on the precipi-
tation increased. There was no obvious rule to obey between NDVI and the temperature and the
precipitation in the direction from east to west.
3.2.2. Correlation of NDVI and Seasonal Mean Value of the Climate Factors
Because the NDVI value has the accumulation characteristic [7], this research carried on the cor-
relation analysis between NDVI and the season mean value of corresponding climate factors, and
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the correlation coefficient can be seen in the Table 2.
Through comparing Table 1 and Table 2, the result showed that the relevance between NDVI

and the same month mean temperature, and the average precipitation were higher than the value
between NDVI and the seasonal mean value, but the relevance between NDVI and the same month
sunshine hours was lower than the value between NDVI and the seasonal average sunshine hours.

4. CONCLUSION

In this paper, applying MODIS-NDVI in January, in April, in July, in October in 2006 in Shandong
Province and the weather observation data, we analyzed the correlation between NDVI and climatic
factors, draw the following main conclusions:

(1) Spatial pattern characteristic of MODIS-NDVI in Shandong Province in summer is obviously,
NDVI value of the plain is the highest, and also distribution is even, NDVI of mountain region of
the elevation above 500 is the second high. The MODIS-NDVI value is affected by the humanity
activities remarkably, and in city area, the vegetation index is obviously lower than the other area
covered by vegetation.

(2) In Shandong Province, MODIS-NDVI value is mainly affected by the temperature and the
precipitation, therefore these two climatic factors are very important to the vegetation growing.
Along with latitude reducing, the dependence of vegetation development upon the temperature
decreases, on contrast, this dependence of vegetation growing upon the precipitation increases.

(3) Correlation between the NDVI and the same month mean temperature, and average pre-
cipitation are higher than the correlation between the NDVI and the seasonal mean value, but
correlation between NDVI and the same month sunshine hours is lower than the value between
the NDVI and the seasonal average sunshine hours, so we can draw another conclusion that the
influence of sunlight hours to vegetation growing has accumulation characteristic and Just because
of this, the sunshine hours length in whole plant growth season has a profounder influence to the
plant growth.
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Abstract— In general, RCS measurement must meet the far-field condition, which need a
vast measuring area or a costly compact range. To solve the problem, a new technique by
extrapolation correction dealing with near-distance RCS measurement of aircraft targets is set
up. The RCS of aircraft target under spherical wave illuminating can be adopted to extrapolate
far-field RCS of them. The convolution arithmetic utilizing conductive board as a reference target
deduces the phase-correction coefficient g(x) between spherical and plane wave, and in fact the
convolution calculation of g(x) can be replaced by Fast Fourier Transform, which is related to the
scattering field of the reference target measured in near-distance, thus the calculating procedure
could be completed simply and quickly. By theoretical simulation for a simple target, the RCS
extrapolated can be obtained correctly. Experimental results of complex aircraft target show
that this new technique makes experiment agree to theory precisely, moreover, it permits the
measurement distance reduced by 15 percent of the minimum distance of far-field. Also, there is
no serious limitation of measurement for target in dimension of aperture and depth.

1. INTRODUCTION

Scattering testing is of great significance to find stealth target and its scattering characteristics
research. Generally RCS testing needs huge testing field or complex expensive compact range
system [2–5]. Based on the shape character of aircraft, a new method of near-field RCS testing
is put up in this paper. By defining a phase correction coefficient g(x) only, which amends the
phase difference brought by the bending wave front, the far-field RCS of an aircraft is obtained.
The correction coefficient g(x) can be derived by a relation between near-field and far-field of a
reference metal plate.

2. CONVOLUTION EXTRAPOLATION METHOD

Table 1 lists a number of targets (scaled models), the height of the fuselage is less than 1/5 of its
length. So they can easily meet the far field RCS testing requirements in the vertical direction
(Table 2 shows the allowed maximum height of a target at different frequencies to meet the far field
RCS testing requirements). Therefore, for the near-field RCS tests, field distribution in the target
range can be looked approximately as a cylindrical wave.

Table 1: The height and length of some scaled models.

Model Global Hawk B2 Yun 8 Dark Star

length/(m) 1.9 2.0 2.5 3.3

height/(m) 0.15 0.12 0.4 0.2

Height/length 0.079 0.061 0.18 0.064

Table 2: The maximum height allowed for testing targets at different frequencies.

Test Distance R = 20 m

Frequency/GHz 1 2 5 10 18

maximum height/m 1.73 1.22 0.77 0.55 0.41

The cylindrical wave front in the one-dimensional direction (vertical direction, as shown in
Fig. 1) is flat, but bending in the other dimension (azimuth direction x), therefore, a correction
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Figure 1: Metal plate rotates by α angle.

coefficient g(x), which only contains the azimuth variable x, is defined to amend the bending wave
front.

Consider a spherical wave irradiating on a metal plate, the length of which is L (width ¿ L) ,
as shown in Fig. 1. The metal surface of the incident field is posed by the following two parts:

Ei

(
x′

)
= ei

[
Ep

(
x′

)
ejkx′ sin α

] [
g

(
x′

)]
(1)

The Ep(x′)ejkx′ sin α is the incident electric field of an ideal plane-wave irradiating on the metal
surface. The g(x′) is the phase correction function of describing the actual deviation from plane-
wave. The ei is the united polarized vector of incident electric field Ei.

According to document [1], an expression exists as following:

Ep(x) ≈ 1
g(x)

· F [Es(u)] (2)

where F[•] means Fourier transform, u = 2k tanα, k is the wave number. By taking inverse Fourier
transform of expression (2),

Esi(u) ≈ F−1

[
1

g(x)

]⊗
Es(u) (3)

where Esi(u) is the inverse Fourier transform of Ep(x). With height and width being as same as
the target under test, electing a metal plate as the reference plate, by the relationship between
tested data of the plate at near-field and its far-field RCS theoretical value, g(x) can be derived.
From (2)

g(x) ≈ F−1 [Es(u)]
Ep(x)

(4)

or

g(x) ≈ F−1 [Eplane s(u)]
Eplane ∞(x)

(5)

So (3) can be rewritten as

Esi(u) ≈ F
{

Eplane ∞(x)
F−1 [Eplane s(u)]

} ⊗
Es(u) (6)

Certainly Eplane ∞(x) is determined by

Eplane ∞(x) = F−1 [Eplane ∞(u)] (7)

Inversed Fourier transform of (6)is

F−1 [Esi(u)] ≈ F−1 [Eplane ∞(u)]
F−1 [Eplane s(u)]

F−1 [Es(u)] (8)
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On the right side of (8), Eplane s(u) is the measured value of reference plate at near-field,
Eplane ∞(u) is the far-field theoretical value of reference plate, Es(u) is the measured value of target
at near-field, then F−1 [Esi(u)] can be gained by (8), and taking Fourier transform of F−1[Esi(u)],
Esi(u) comes out. Although (6) include convolution operators, they can be replaced by some
appropriate Fourier transforms and inversed Fourier transforms.
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Figure 2: Normalized scattering pattern of Long
plate (L = 20λ) in the near-field and far-field.
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Figure 3: Normalized RCS pattern after convolution
extrapolation compared with the theoretical value.

Figure 4: Global Hawk(1:10 Scaled Model).
Wingspan: 1.8 m; Captain: 0.85 m; Height: 0.30 m
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puted from physics optic method.

3. SIMULATION AND EXPERIMENT

Assume a metal plate with length L = 25λ, height B = 4λ as reference target, and the other plate
with length L1 = 20λ, height B = 4λ as target under test, the testing distance R = 0.10R0 where
R0 = 2L2/λ.
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Figure 2 shows the normalized scattering pattern at near-field and far-filedbut after convolution
extrapolation, as Fig. 3, the extrapolation result and far-filed result are very consistent.

Figure 4 is the indoor testing photo about Global Hawk (1 : 10 Scaled Model).
Testing distances are 12.8m and 16 m respectively, and the testing frequency is 15 GHz. Fig. 5

gives two near-field measuring results. The normalized RCS pattern is a function of distance.
Extrapolation results are shown as Fig. 6, within azimuth angle of ±15◦, the two extrapolation
results are very consistent.

The application of convolution extrapolation technique provides a good agreement of both ex-
trapolation results (see Fig. 6). Fig. 7 gives the theoretical results of the model, we can see that,
at a certain angle scope (±15◦) , the convolution extrapolation pattern is basically the same as the
theoretical calculation result.

4. CONCLUSION

Convolution extrapolation technique uses a reference metal plate to gain the correction coefficient
g(x), and need not calculate the complex convolution by appropriate Fourier transform. From
above results, the extrapolation technique used to investigate aircraft scattering has already shown
high accuracy and great reduction of the test distance during RCS measurement, so it is valuable
in the field of scattering measurement.
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Application of DSP in the Step-Frequency RCS Measurement
System
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Abstract— Step-Frequency RCS measurement system is a new and remarkable RCS mea-
surement system, which can obtain the response of target at each frequency point in an anecho
chamber. Comparing it with traditional way of CW RCS measurement, more information gains in
the new system. IFFT, zero insertion and the use of additional windows are some of familiar DSP
techniques, which can improve the results if they are applied to the measurement. Using IFFT,
the frequency domain data of whole chamber obtained by the measurement can be interpreted
into time domain value, and the unwanted signals can be removed by adding a gate of range.
Inserting zero in the frequency domain for increasing the points of IFFT will be good for finding
response of target in the time domain exactly. The measurement of finite frequency spectrum
makes the cut of data, the use of windows can reduce the effect of side lobe. Two metal spheres
are measured in the anecho chamber. Two sorts of diameter are 50mm and 400mm respectively.
The former is used for a target, the latter for scaling. The span of frequency is 8 GHz ∼ 12GHz,
and the test frequency points are 801. Hamming windows are added to frequency domain data of
the target and the scaler, then a number of zero as many as three times of frequency domain data
are inserted for IFFT. A range gate is added to the target region where energy of target returns
is much higher than the background. Returning to the frequency domain again, according to
the results scaled, it shows that the accuracy of measurement is obviously improved. The value
of RCS measurement is waved less than 1 dB around the center of frequency over 80%, in com-
parison with 4 dB waving over all test frequencies before, so it’s significant that integrating DSP
techniques mentioned above is specially useful for RCS measurement of low scattering targets.

1. INTRODUCTION

RCS measurement is necessary to research the electromagnetic scattering properties of radar target
as well as to design stealth weapon system. The theory and algorithm of electromagnetic scattering
computation can be verified by RCS measurement, moreover, it’s difficult to compute electromag-
netic scattering of complex objects, but the data can be obtained visually by RCS measurement.
Step-Frequency RCS measurement system is a new and remarkable RCS measurement system,
which can obtain the response of target at each frequency point in an anecho chamber. Some DSP
technologies are applied to the Step-Frequency RCS measurement in this paper. The results of
simulation and experiment show that the accuracy of measurement is improved.

2. THEORY

The Step-Frequency signal is a super width band radar signal which is changed by steps (shown in
Figure 1). It consists of some pulses. The width of pulse can be adjusted according to the situation
we need. The frequency of each pulse is different, and the interval between each frequency are
constant. IFFT is used to process the return signal, then high resolution range imaging of target
can be obtained as shown in Figure 2. Therefore, Step-Frequency signal is applied extensively to
microwave imaging and target recognition.
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Figure 1: Step-Frequency signal.
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Figure 2: Relationship between frequency-domain and
time-domain of Step-Frequency signal.
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The high performance vector network analyzer can transmit this kind of signal using synthesizer
of frequency, which can provide the combination of many discrete frequencies. The amplitude and
phase at each sampling frequency keep consistent by using phase-locked loop and self-adaptation
logical circuit, so it can be expressed as follow:

S(f) =
N−1∑

i=0

δ (f0 − i ·∆f) (1)

where, f0 is start frequency, ∆f is interval of frequency. The time-domain form of the signal can
be derived by IFFT:

s(t) =

fN−1∫

f0

N−1∑

i=0

δ (f0 − i ·∆f) exp(j2πft)df

= ej2π[f0+(N−1)∆f/2]t · sin(πN∆ft)
sin(π∆ft)

(2)

From the above mentioned equation, the time-domain form of Step-Frequency signal is a series
of Sa function whose carrier frequency is the center frequency. The repeatition period is T = 1/∆f .
The accuracy of analysis measurement simulated from changing the points of IFFT and windows
is as follows.
2.1. Number of Points for IFFT
The targets of simulation are a metal square flat plate with width of 200mm and a scaling metal
sphere with diameter of 400 mm. The span of frequency is 4 GHz with 801 points lined. The distance
of measurement is 16m. Then the frequency-domain data are transformed into time-domain by
IFFT with 801 points, the result is shown in Figure 3.

The theoretical RCS values of scaling sphere and metal flat plate at center frequency are
−9.01 dBsm and 13.49 dBsm respectively, so the theoretical difference of RCS value of them is
22.50 dB, and according to Figure 3, the difference of value is 22.57 dB with 801 points. Then the
points are increased to 3201, the result is shown in Figure 4.

The difference between scaling sphere and metal flat plate is 22.52 dB as shown in Figure 4, which
is much closer to the theoretical value. The reason for that is that zero insertion in frequency-domain
makes the sampling points more accurate in the time-domain, so it is beneficial to recognize the
peak of target.
2.2. Windows Function
The process of IFFT above is actually using rectangular windows in frequency-domain, because
there are a number of interference coming from background, then we can remove them away by
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Figure 3: The time-domain data transformed by IFFT with 801 points, (a) scaling sphere, (b) metal flat
plate.
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Figure 4: The time-domain data transformed by IFFT with 3201 points, (a) scaling sphere, (b) metal flat
plate.

using a gate of range. After gating, the RCS value of a sphere in frequency-domain is different
from the theoretical one, and the further away from the center frequency, the greater difference of
RCS value comes. If we narrow the width of gate, the situation will be deteriorated shown as in
Figure 5 .
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Figure 5: Effect of gate’s width.
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Figure 6: Effect of using Hamming windows.

In order to improve the accuracy, Hamming windows are used because they have low side- lobes.
The line shown in Figure 6 is the result which we use Hamming windows in frequency-domain, then
after gating and returning, it is natural to see that the value over 80% are identical with theoretical
value, so the use of Hamming windows expands the accurate results in frequency-domain.

3. EXPERIMENTS AND ANALYSIS

The Step-Frequency RCS measurement system in the anecho chamber is shown in Figure 7. Two
metal spheres whose diameter are 400mm and 50mm respectively, the former is used for scaling
and the later is used for target.

The span of frequency is 4GHz, the number of frequency points is 801, after using IFFT with
3201 points, a accurate time-domain response is come out, then we gate them appropriately, and
return it to the frequency-domain, the value of target frequency response after scaling can be seen
in Figure 8 comparing with theoretical data. However, if we use Hamming windows, the situation
will be changed greatly as shown in Figure 9. Most of the results are close to theoretical value, so
the accuracy of measurement is greatly improved by using these DSP techniques.
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Figure 7: Step-Frequency RCS measurement system.
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gular windows.
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4. CONCLUSION

In the Step-Frequency RCS measurement system, if Hamming windows are applied to the original
data in frequency-domain, and IFFT is used with sufficient points, then after adding a gate of
range and returning back to frequency-domain, we can obtain the more precise results. It is great
important to use DSP techniques in the low scatter RCS measurement.
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Electromagnetic Absorption by Conducting Fiber Filled Composite
in the Centimeter- and Millimeter-wave Regions
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Abstract— We observed strong electromagnetic absorption by the conducing fiber filled foam
composite with a very low fiber concentration in a wide frequency range. The strong absorption in
the millimeter-wave region can be attributed to the magnetic property which originates from the
interaction of fibers in high frequency region. The experimental data are in good agreement with
the theoretical computations. With the aspect ratio of the fiber increasing and the conductivity
decreasing, strong absorption would emerge throughout the centimeter- and millimeter-wave
regions. The conducting fiber filled composite can be employed to develop very light microwave
absorbing materials with strong absorbing ability in wide waveband.

1. INTRODUCTION

Microwave absorbing materials (MAMs) or electromagnetic interference (EMI) shielding materials
are important for modern electronic technologies due to the increasingly severe electromagnetic
pollution. Traditional MAMs are fabricated with granular fillers such as the ferrite and the magnetic
metal particles. The loading ratios are usually the order of 10 vol%, therefore the MAMs are weighty.
The frequency range with enough strong absorption is narrow, especially in the millimeter-wave
region in which the intrinsic magnetic property of fillers is absent. For nonmagnetic granular
fillers, the classical effective medium theories such as the Maxwell-Garnet Theory [1, 2] and the
Bruggeman theory [2–5], regard the composite as nonmagnetic. When the magnetic property of
fillers is absent, the wave impedance of the composite will mismatch much that of the free space,
so the microwave reflectance is inevitably high. The conducting fiber filled composite can obtain
high values of dielectric constant at a very low loading ratio [6–8]. With the frequency increasing,
the fiber filled composite will acquire magnetic property due to the coupling among conducting
fibers [6]. Therefore the wave impedance of the composite will match well that of the free space
better in the millimeter region, and the microwave reflectance shall decrease.

Figure 1: SEM micrograph of carbonyl iron fiber.

2. EXPERIMENT

The carbonyl iron fibers were fabricated by use of the magnetic-field-induced chemical decompo-
sition method [9, 10]. The iron pentacarbonyl vaporized, and decomposed into spherical particles,
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and the particles grew into carbonyl iron fibers under an adjustable magnetic field. The SEM mi-
crograph of the carbonyl iron fiber is shown in Figure 1. The fiber filled composite was fabricated
as follows. Polyol-polymethylene-isocyanate (PAPI) was filled into a tank (labeled as A). Polyol
polyether, foam stabilizer, catalyst, blowing agent were mixed in another tank (labeled as B). Then
the carbonyl iron fibers were dispersed into the mixture in B, and were mixed thoroughly. The
PAPI was poured into B, and the components in B were mixed round 5 ∼ 10 s at 1800 rpm. When
the color of mixture in B got white, the mixture was poured into a preheated mould. The mould
was maintainted at about 80◦C for 2 hours. Therefore the carbonyl iron fiber filled composite with
a square plate shape (180 cm × 180 cm × 2mm) was prepared. The microwave reflectance of the
carbonyl iron fiber filled foam composite backed by a metal substrate was measured using the arch
method. The reflectance was measured in 8 ∼ 18GHz, 26.5 ∼ 40GHz, and 75 ∼ 110 GHz. The
diameter of the carbonyl iron fiber used is about 5µm, and the length is about 1.5mm, therefore the
aspect ratio is around 300. The packing fraction of fibers is 0.046 vol%. The measured reflectance
of the foam composite in the three regions is displayed in Figure 2. The absorption is weak in
8 ∼ 18GHz and 26.5 ∼ 40GHz. However, the absorbing ability of the foam composite is strong in
75 ∼ 110GHz, with the reflectance being all less than −10 dB.
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Figure 2: The measured microwave reflectance of the carbonyl iron fiber filled foam composite.

3. THEORY AND DISCUSSION

3.1. Theory
As well known, the microwave reflectance of the foam composite backed by a metal substrate is
determined by [11],

R = 20 lg
∣∣∣∣
Zin − 1
Zin + 1

∣∣∣∣ , (1)

where Zin is the normalized input impedance, being given by

Zin =
√

µe

εe
tanh

(
i
2πd

λ

√
µeεe

)
, (2)

where εe, µe and d are the effective permittivity, effective permeability, and thickness of the carbonyl
iron fiber filled foam composite, and λ is the incident wavelength in free space. The effective
permittivity of the composite can be calculated in terms of the effective medium theory (EMT).
The classical EMT can be applied when the particles are spherical and their diameters are much less
than the incident wavelength. If the particles are not spherical, spheroid can be used to simulate
various nonspherical particles. In order to consider the skin effect in the case of high frequency,
Lagarkov and Sarychev introduced the renormalized conductivity [6]. On the other hand, they
revised the depolarization factor to take the interaction of fibers into account. Their theory, which
is called scale dependent effective medium theory (SDEMT), anticipates a percolation threshold
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that is linearly dependent upon the reciprocal of the aspect ratio of the conducting fiber. The
anticipation is in agreement with the numerical simulations [12–14] and experiments [7]. The
SDEMT equation is given by [6]

p

3
f(∆)εm/εe

1 + f(∆)(εm/εd)(b2/a2) ln(1 + aεd/bεe) cos Ω
+ 3(1− p)

εd − εe

2εe + εd
= 0, (3)

where ε denotes the permittivity, subscript m indicates the conducting fiber, subscript d indicates
the dielectric host, subscript e indicates the conducting fiber filled composite. 2a is the length of
the fiber, b the radius of the fiber, p the packing fraction, and f(∆) and Ω are given by

f(∆) =
(1− i)

∆
J1[(1 + i)∆]
J0[(1 + i)∆]

, (4)

Ω2 = εd(ak)2
ln(a/b) + i

√
εdka

ln(1 + aεd/bεe)
, (5)

where ∆ = b
√

2πσmω/c, is the ratio of the skin depth to the radius of the fiber, σm is the conduc-
tivity of the conducting fiber, J0 and J1 are Bessel functions of the zeroth and first order, ω is the
radian frequency, c is the speed of light in the free space, and k = ω/c.

According to the classical EMT, the effective permittivity and permeability of the composite
are calculated respectively in terms of the dielectric permittivity and the magnetic permeability
of the components. If the components are nonmagnetic materials, the composite are regarded
as nonmagnetic. Bohren [15], and Mahan [16] ever pointed out that the composite consisting of
relatively large nonmagnetic inclusions would show magnetic property. Bohren drew a conclusion

that the magnetic permeability of the composite µeff = 1 +
3ip

2(kr)3
[S(0)− S(π)], where S(0) and

S(π) are the scattering amplitude of the embedded particle in the forward and the back direction
respectively, k is the wave number in the host, and r is the radius of the particle. With the geometric
size of the particle increasing, the scattered energy concentrate in the forward direction, therefore
the composite consisting of relatively large nonmagnetic inclusions acquires magnetic property.
The diameter of the carbonyl iron fiber is in the order of micrometer, which is much less than the
incident wavelength. So the induced magnetic response is negligible [6, 17]. However, if we consider
the coupling effect of the conducting fibers, the magnetic field in the incident electromagnetic wave
will excite a circular current in high frequency, which comprises the displacement currents flowing
between two nearest-neighbor fibers and the induced currents flowing in the fibers in the opposite
direction. Every couple of the nearest-neighbor fibers obtains a magnetic moment, therefore the
composite displays magnetic property. The magnetic moment of the couple of nearest-neighbor
fibers m ∝ ad2, where d is the distance between two nearest-neighbor fibers. The magnetic moment
of single fiber m1 ∝ ab2, therefore the magnetic response of conducting fiber filled composite due
to the coupling of the conducting fibers is much more evident than that induced by the magnetic
moment of every single conducting fiber. When the conducting fibers are randomly distributed in
the host, the iterative formula for the effective permeability of conducting fiber filled composite is
given by [6]

µe = 1 +
2
3
p
a2

b2

εd(ka)2

ln(a/b)
tan(ga)− ga

(ga)3
, (6)

where
g = k

√
εdµe + i

εd

2∆2f(∆) ln(a/b)
. (7)

3.2. Numerical Calculation and Discussion
Considering that the carbonyl iron fiber comprises some impurities such as Carbon [3, 4], their
conductivity certainly decreases compared with pure iron. We assume that the conductivity of
carbonyl iron fibers σm = 2 × 106 S/m. The dielectric permittivity of the foam host approaches
that of free space [18], and we put it to εd = 1.05. Therefore we calculate the effective dielectric
permittivity and magnetic permeability of the carbonyl iron fibers filled foam composite in terms
of the SDEMT equation (3) and the equation (6), as displayed in Figure 3(a). The calculated
microwave reflectance (labeled as 1) in 8 ∼ 110GHz is displayed in Figure 3(b), being in good
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Figure 3: (a) The effective permittivity of carbonyl iron fiber filled foam composite calculated in terms of the
SDEMT, and the effective permeability of the fiber filled foam composite calculated using Equation (6). (b)
Curve 1: The reflectance calculated in terms of the effective permittivity and the effective permeability in
(a); Curve 2: The reflectance calculated using the effective permittivity in (a) and the effective permeability
equal to 1.

agreement with the experimental measurements. The intrinsic permeability of carbonyl iron [19]
are less than 10 in 8 ∼ 18GHz, and approaches unity in the millimeter-wave region. If we make use
of the classical EMT to calculate the effective magnetic permeability of the carbonyl iron fiber filled
foam composite, the effective magnetic permeability of the composite is almost equal to unity in
8 ∼ 110 GHz due to the very low packing fraction. The thus obtained microwave reflectance curve
(labeled as 2) is displayed in Figure 3(b) as well. It is obvious that this curve is in disagreement
with the experimental measurements, especially in 75 ∼ 110GHz. In this region, the incident
wavelength is comparable with the length of the conducting fiber, and the composite obtains an
evident magnetic property as shown in Figure 3(a).
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Figure 4: (a) The calculated effective permittivity and effective permeability of carbonyl iron fiber filled
foam composite. The fiber aspect ratio is 500, but other parameters are all same as those in Figure 3. (b)
Comparision of the calculated reflectance of the two composite consisting of conducting fibers with different
aspect ratios.

As shown in Figure 2, the electromagnetic absorbing ability of the carbonyl iron filled foam
composite is weak in the centimeter-wave region. This phenomenon can be attributed to the low
aspect ratio and the high conductivity of the carbonyl iron fiber. The high aspect ratio is difficult
to be achieved due to the brittleness of carbonyl iron fiber, so the aspect ratio of the fiber is
300. However, we set the aspect ratio to be 500, and calculate the effective permittivity, effective
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Figure 5: The reflectance of two piece of composite consisting of conducting fibers with different conductiv-
ities. The other parameters are same as those in Figure 2.

permeability, and reflectance as shown in Figure 4. When the conducting fiber is elongated, the
frequency range where evident magnetic property emerges move to the low frequency region. The
wave impedance of the composite match well that of the free space in the low frequency region,
therefore the reflectance decrease also in this frequency region.

On the other hand, we can decrease the effective permittivity to make the wave impedance of
the composite match well that of the free space. According to the SDEMT, we can decrease the
effective permittivity of the composite by reducing the conductivity of the fiber. For example, we
put the conductivity to 2 × 105 S/m, and compare the calculated reflectance with the reflectance
calculated using σm = 2 × 106 S/m. The results are displayed in Figure 5. With the conductivity
of the fiber decreasing, the electromagnetic absorption property is improved, especially in the low
frequency region.

Furthermore, we reduce the conductivity of the conducting fiber, and increase the aspect ra-
tio simultaneously, and calculate the reflectance as shown in Figure 6. This composite shows a
strong electromagnetic absorption property throughout the centimeter- and millimeter-wave re-
gions. Therefore we can obtain excellent MAMs with very light weight and strong electromagnetic
absorbing ability by adjusting the aspect ratio and conductivity of the conducting fiber.
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Figure 6: The calculated microwave reflectance of conducting fiber filled foam composite. We set parameters
follows, fiber diameter 2b = 1 µm, length 2a = 2mm (aspect ratio is 2000), conductivity σm = 4× 105 S/m,
and packing fraction p = 0.046%.
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4. CONCLUSIONS

In summary, we studied experimentally and theoretically the microwave absorption property of
carbonyl iron fiber filled foam composite in the centimeter- and millimeter-wave regions. We found
that even at a very low packing fraction, the carbonyl iron fiber filled foam composite displayed a
strong absorbing ability in a wide waveband, especially in the millimeter region. The theoretical
approach, which gives the effective permittivity of the composite in terms of the SDEMT, and the
effective permeability by considering the coupling of fibers, can predict the microwave reflectance
which is in good agreement with the experiments. The numerical computation shows that we
can obtain very light MAMs with strong absorbing ability in the centimeter- and millimeter-wave
regions, by adjusting the parameters of conducting fiber such as aspect ratio and conductivity.
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Analysis of the Optimal Gap Width and Gap-to-gap Distance in
π-mode Double-gap Cavities for Broadband Klystrons
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Department of Physics, Shantou University, Guangdong 515063, China

Abstract— Single electron approximate approach is used to analyze the interaction process of
ideal clustering electron beam with the resonant E-field in the gaps of π-mode double-gap cavities.
The research shows that equal two gaps and the transit angle π of the gap-to-gap distance in
π-mode double-gap cavities is not a suitable choice to get the maximal conversion efficiency. The
formulae of the optimal gap width and gap-to-gap distance are put forward to design asymmetric
π-mode double-gap cavities for higher conversion efficiency.

1. INTRODUCTION

Double-gap cavities are usually used as output cavities of broadband klystrons to widen working
band or enhance output power [1–6]. An accurate design of the gap width and the gap-to-gap
distance is very important to the efficiency of klystrons. Unsuitable gap width or distance between
two gaps will cause parasitic oscillation or instability.

Equal two gaps with same width are generally used in π-mode double-gap cavities [7–10], but it
may not be the optimal choice to get the maximal efficiency of energy exchange of well clustering
electron bunch with resonant electro-magnetic field, because of the different speeds of electrons in
two gaps. So we must calculate the different transit angle relative to the gap width of two gaps
respectively. Also, it is not the best that the transit angle of the gap-to-gap distance in π-mode
double-gap cavities is π, which has been chosen in conventional design of broadband klystrons.
We will analyze the interaction process of well clustering electron beam with the resonant E-field
in two gaps of a general asymmetric π-mode double-gap cavity and calculate the efficiency of
energy exchange of motive electron with resonant electro-magnetic field with the single electron
approximate approach. Then, it is possible to determine the optimal gap width and the gap-to-
gap distance for higher conversion efficiency of kinetic energy of electron into energy of resonant
electro-magnetic field of certain frequency.

2. THE ENERGY EXCHANGE OF IDEAL CLUSTERING BEAM WITH THE
RESONANT FIELD IN GAPS

A general π-mode double-gap cavity works in TM-mode, and the resonant E-field in two gaps is
always in opposite directions. Fig. 1 is the main section plane of the cavity, in which the directions
of the E-field in two gaps are showed. When a clustering electron beam passes through a gap, it will
exchange energy with the resonant electro-magnetic field. The conversion efficiency achieves the
maximum in the case of that repeated electron clusters always pass through the gap in the direction
of the resonant E-field and the repeated frequency of electron cluster equals to resonant frequency
of the cavity. The kind of ideal clustering electron beam interacting with the resonant E-field in
the gap for the maximum conversion efficiency is showed in Fig. 2. So it is reasonable to regard
an ideal clustering electron beam as a series of periodically repeated single electron in calculation
of the energy exchange of the clustering electron beam with the resonant electro-magnetic field of
certainfrequency in the cavity.

Assuming that a electron with velocity V0 enters into the first gap at the time of t0 = 0, and
the resonant E-fields of certain frequency in two gaps are expressed as

E1 = E0 cos(ωt + ϕ) (Gap 1) (1)
E2 = −E0 cos(ωt + ϕ) (Gap 2) (2)

where ϕ is the leading phase of E-field in first gap relative to the clustering electron beam. It is
determined by the load or the gap impedance of the output cavity.

After the motive electron transits the Gap 1 at the time of t1, the velocity of the electron
becomes V1. Then the electron will pass through the drift tube with constant velocity and enters



1354 PIERS Proceedings, Hangzhou, China, March 24-28, 2008

Figure 1: Main section plane of a double-gap cavity.

into the Gap 2 at the time of t1 + tL. When the electron leaves the Gap 2 at the time of t1 + tL + t2,
the velocity of the electron will change from V1 to V2. It is easy to get

V1 = V0 +
eE0

meω
[sinϕ− sin(ωt1 + ϕ)] (3)

V2 = V0 +
eE0

meω
[sinϕ− sin(ωt1 + ϕ)− sin(ωt1 + ωtL + ϕ) + sin(ωt1 + ωtL + ωt2 + ϕ)] (4)

tL =
L

V0 + (eE0/meω)[sinϕ− sin(ωt1 + ϕ)]
(5)

d1 = V0t1 +
eE0

meω2
[ωt1 sinϕ + cos(ωt1 + ϕ)− cosϕ] (6)

d2 = V0t2 +
eE0t2
meω

[sinϕ− sin(ωt1 + ϕ)− sin(ωt1 + ωtL + ϕ)]

+
eE0

meω2
[cos(ωt1 + ωtL + ϕ)− cos(ωt1 + ωtL + ωt2 + ϕ)] (7)

Figure 2: The ideal clustering electron beam.

When a π-mode double-gap cavity is used as an output cavity of a broadband klystron and has
a suitable load and gap impedances, the V2 expressed by Equation (4) will be smaller than V0.
Then the kinetic energy of electrons is converted into the energy of the resonant electro-magnetic



Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24-28, 2008 1355

field of certain frequency. The conversion efficiency is

η = 1−
(

V2

V0

)2

(8)

3. THE OPTIMAL GAP WIDTH AND GAP-TO-GAP DISTANCE FOR HIGHER
EFFICIENCY

It is seen from Equation (4) that the conversion efficiency would not achieve the maximum except
that ϕ = −π/2, ωt1 = ωt2 = π, ωtL = 2π. But at the resonant frequency of the first gap, the
leading phase ϕ of E-field relative to the clustering electron beam is zero. The general value of ϕ for
all the suitable loads or gap impedances is −π/2 < ϕ < π/2. So in order to get higher conversion
efficiency in a relative wide working band, we must choose the optimal gap width and gap-to-gap
distance under the condition of ϕ = 0, which corresponds to the center of the working band of
an output circuit. Then the optimal transit angles or the lengths of two gaps and the drift tube
between two gaps can be calculated by Equations (4)–(7).

θ1 = ωt1 =
π

2
, θ2 = ωt2 = π, θL = ωtL = 2π (9)

d1 =
πV0

2ω

(
1− 2

π

eE0

meωV0

)
, d2 =

πV0

ω

(
1− 2eE0

meωV0

)
, L =

2πV0

ω

(
1− eE0

meωV0

)
(10)

The conversion efficiency in the center of the working band of an output circuit in the case of
the optimal gap width and gap-to-gap distance is

ηopt = 1−
(

1− 3eE0

meωV0

)2

(11)

In the practical design of broadband klystrons, it is always that the conversion efficiency and
the beam voltage or the original velocity V0 of repeated electron clusters are predetermined. If so,
the optimal gap width and gap-to-gap distance of π-mode double-gap cavities for higher conversion
efficiency can be calculated by Equation (10) and Equation (11).

eE0

meωV0
=

1−√
1− ηopt

3
(12)

d1 =
V0

3ω

(
3π

2
− 1 +

√
1− ηopt

)
or

ωd1

V0
=

π

2
− 1−√

1− ηopt

3
(13)

d2 =
2πV0

3ω

(
1
2

+
√

1− ηopt

)
or

ωd2

V0
=

π

3
+

2π

3
√

1− ηopt (14)

L =
2πV0

3ω

(
2 +

√
1− ηopt

)
or

ωL

V0
=

4π

3
+

2π

3
√

1− ηopt (15)

4. CONCLUSION

The paper analyzes the interaction process of ideal clustering electron beam with resonant electro-
magnetic field of certain frequency in an asymmetric π-mode double-gap cavity with single electron
approximate approach, and puts forward the formulae of the optimal gap width and gap-to-gap dis-
tance to design asymmetric π-mode double-gap cavities for higher conversion efficiency. The results
of Equations (9)–(15) may be beneficial to manufacture higher quality of broadband klystrons.
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Abstract— Rectifier is the essential part of passive RFID transponders. This paper based on
two types of conventional rectifier, analysed several factors which influence the output voltage
and Power Conversion Efficiency (PCE) of the rectifier. From the analysis results of these two
types of rectifier, we proposed a modified version of the rectifier which has high output voltage
and high PCE. Simulation results are also studied and presented in this paper.

1. INTRODUCTION

The radio frequency identification (RFID) system is a system makes use of the bidirectional wireless
communication technology in order to identify the target and then process the relevant data. The
system is mainly formed by two parts, it includes a RFID tag and a reader [1]. According to the
power supply of RFID tag could be either one of the passive, semi-active or active power supplies.
The passive RFID tag, due to its low cost and longer lasting life, hence it is more popular [2].

Passive tag does not consist of any power source in general and the tag obtains power energy
from the electromagnetic waves sending by the RFID reader through the coupling antenna. The
electromagnetic waves after rectification, voltage stabilization then the tag obtain the DC voltage
which maintain the need of the normal operations of the RFID tag and its circuitry. Hence, DC
voltage generation technique is the key technology for passive RFID tag.

The rectifier is the basic part of the DC voltage generation circuit of the RFID tag, the per-
formance of tag relies on it. The main parameters of the rectifier affecting the performance of the
RFID tags are the output voltage Vout and the Power Conversion Efficiency (PCE). The PCE is
defined as the ratio of the output power Pout and the input power Pin of the rectifying circuit. (i.e.,
PCE = Pout/Pin).

Recently researches have paid attentions to this topic [3–5]. The RFID rectifier discussed in [4]
is using the structure of a half wave rectifier and the PCE is low. The RFID rectifier discussed in [5]
is a self-boosting circuit, with 3.16 V induced voltage on the tag antenna, the output voltage and
PCE could reach 2.38 V and 70.1% respectively. However the structure is more complex and it uses
more chip area. This paper is to discuss the factors that affect the PCE of rectifier, then proposed
a new type of rectifier with the addition of two more MOSFET switches to the conventional circuit
which help to reduce the power loss, hence increase the PCE and output voltage.

In order to explain the circuit design in detail, we first analysis of the functionalities and per-
formances of two conventional rectification circuits, then a modified circuit will be proposed. Sim-
ulations and comparisons of the two types of conventional rectifier and the modified rectifier will
be done.

2. CONVENTIONAL RECTIFICATION CIRCUIT

Figure 1 shows two types of conventional rectification circuits [5], they are mainly suitable for power
source generator of the low and high frequency band passive RFID tag. In Figure 1(a) is the NMOS
gate cross connection bridge rectification circuit and this circuit has two diodes connecting to the
MOSFET, for this reason, the circuit will have a threshold voltage drop V th from the antenna
to the load capacitor. In Figure 1(b), it is using PMOS and NMOS device and has a cross gate
connection structure. Although it solved the threshold voltage drop of the diodes connected to
MOSFET, this circuit has to face another problem, such as the antenna voltage is smaller than the
storage capacitor voltage, the storage charge will feedback to the antenna through the PMOS, thus
it causes low PCE and a bigger voltage swing on the load.

Below is using the structure of the rectification circuit of Figure 1(b) as an example to analysis
the factors affect the PCE. Figure 2 shows the transient equivalent circuit of the (N) MOS device
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(a) (b)

Figure 1: Two types of conventional rectifier circuit. (a) NMOS gate cross-connection bridge rectifier circuit.
(b) PMOS, NMOS gate cross-connection bridge rectifier circuit.

(i.e., MOS1 model [6]), Dbd, Dbs are the substrate-drain diode and the substrate-source diode
respectively. The rs, rd and rds are the source connection resistor, drain connection resistor and
channel resistor respectively. The cgb, cgs, cgd, cbs and cbd represent the parasitic capacitances,
comparing with the parameters above, rs and rd can be ignored [7]. Such that you can provide the
transient equivalent circuit of the PMOS, NMOS gate cross-connection bridge rectifier circuit as
shown in Figure 3.

Figure 2: The transient equivalent circuit of a MOS device (i.e., MOS1 model).

Figure 3: The transient equivalent circuit of PMOS, NMOS grid cross-connection bridge rectifier circuit.

Based on the working condition of an equivalent circuit as shown in Figure 3, we could find out
the source that creates the power loss of this circuit:
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1. The A1(A2) is a high voltage and A2(A1) is a low voltage, the PMOS1(PMOS2) and NMOS2
(NMOS1) are conductive, the circuit charge up the load capacitor through the conductive
resistor rds. The main power loss is on the conductive resistor.

2. When A1(A2) is a high voltage and A2(A1) is a low voltage, if the voltage of the load capacitor
CL is higher than the voltage on A1(A2), the charge on the load capacitor will go through
the conductive resistor rds and parasitic capacitor then feedback to the antenna and it causes
the power loss.

3. When the threshold of NMOS1(NMOS2) is greater than the conductive voltage of the parasitic
diode Dbd, and the voltage of A1(A2) is smaller than the ground with the conductive voltage
of the parasitic diode Dbd, the current will from the ground and pass through the diode to the
antenna. This causes the current leakage of the substrate and the power conversion efficiency
will drop.

4. PMOS and NMOS transistors are both treated as switches and the current pass through them
will make the parasitic capacitor of the transistor being charged and then discharged, this will
introduce power loss of the transistor.

3. MODIFICATION AND IMPROVEMENT OF THE CONVENTIONAL RECTIFIER
CIRCUIT

According to the above analysis, we may improve the circuit in certain aspects,

1. In order to reduce or eliminate the threshold voltage drop from the antenna to the load
capacitor, it can make use of the PMOS, NMOS gate cross connection bridge rectifier circuit.

2. In order to reduce the power loss on rds it can use a bigger size MOS transistor, but the
bigger size MOS transistor will raise a larger parasitic capacitor. When the MOS transistor
is conductive, the power loss will increase when the capacitor is charged and discharged. For
this reason, the optimization of the size of the MOS transistor is needed.

3. The power loss due the current leakage could be reduced by using the substrate bias [8]
technology.

4. Try hard to suppress the feedback current from the loading capacitor to the antenna.

This paper has shown the modified rectifier circuit as shown in Figure 4 and two more NMOS-
FET switches are added in front of the storage capacitor based on the circuit on Figure 1(b). The
main purpose of these switches is to suppress the current feedback when the voltage on the antenna
is lower than the voltage on CL.

 

Figure 4: The rectifier circuit after improvement.

4. COMPARISONS OF THE SIMULATION RESULTS

The comparisons of the simulation results of two types of conventional rectifier circuits and the
modified rectifier circuit will be shown below. The rectifier circuit input is complied with the
standard of ISO/IEC 15693-2 and the sine-wave carrier frequency is decided to be 13.56 MHz, the
amplitude is 3.16 V [5]. It is using the same size of the MOS transistors. The load capacitor is
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200 p and the typical load resistor value is 45 KΩ [3] and CSMC 0.6µm CMOS layout model is
adopted [9]. Pspice is the tool for modeling the circuits and the simulations was done by the tool
also. The simulation results are shown in Figure 5.

Vout vs Time PCE vs Time

Vout vs Time PCE vs Time

(a)

Vout vs Time PCE vs Time

(b)

(c)

Figure 5: Simulation results for three types of rectifier circuits being discussed. (a) The NMOS gate cross-
connection bridge rectifier circuit Vout ≈ 2.1V and PCE≈ 56%. (b) The PMOS, NMOS gate cross-connection
bridge rectifier circuit of Vout ≈ 2.4V and PCE≈ 3.1%. (c) Modified rectifier circuit of Vout ≈ 2.58V and
PCE≈ 74%.

Comparing of the simulation results, the modified rectifier circuit overcomes the threshold volt-
age drop of NMOS gate cross-connection bridge rectifier circuit. Hence, the output voltage can
reach 2.58V; simultaneously it overcomes the feedback current of the load capacitance of the PMOS,
NMOS gate cross-connection bridge rectifier which causes the instability of the output voltage and
the low efficiency of the power conversion. The PCE of the rectifier circuit hence can reach 74%.

In Figure 5(b), the simulation shows the PCE is very low because of the power loss on the
conductive resistors and the parasitic capacitors due to the feedback current from the load capacitor.

The output voltage Vout and the PCE is limited by the size of the MOS transistor, due to its
channel resistors and the parasitic capacitors.

From Figure 6, follows the change of the size of the MOS transistor, as the size increase, the
channel resistance will become small. The voltage drop on the channel resistor will less, hence this
will increase the output voltage Vout. These three types of rectifier have quite the same results.
For PCE, as the size of the MOS transistor has increased, the power loss on the channel resistance
will become less, however, it will introduce the parasitic capacitance simultaneously. Then, it
will cause the power loss becomes larger. In this case, the channel resistance and the parasitic
capacitance will be the major factors influence the value of PCE. In order to get the highest value
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of PCE, an optimized size of the MOS transistor has to be found. In Figure 6(a) shows that when
the channel width of the MOS transistor is w = 15µm, PCE = 56.3%. In Figure 6(c) shows that
when the channel width of the MOS transistor is w = 10µm , PCE= 75.7%. In Figure 6(b), for
PMOS, NMOS gate cross-connection bridge rectifier circuit, due to feedback current from the load
capacitance to the antenna, the power loss due to the parasitic capacitance is higher than the
channel resistance, therefore as the size of the MOS transistor increases, the PCE on the whole will
decrease and the value of PCE is relatively low.

 

Vout vs MOS width

PEC vs MOS width

Vout vs MOS width

PEC vs MOS width

(a)

(b)

Vout vs MOS width

PEC vs MOS width

(c)

Figure 6: The relation between Output voltage Vout, the Energy Conversion Efficiency and MOS Transistor
size. (a) NMOS gate cross-connection bridge rectifier circuit. (b) PMOS, NMOS gate cross-connection bridge
rectifier circuit. (c) Modified rectifier circuit.

From the simulation results shown above, the performance of the modified rectifier circuit is
higher than the two typical rectifier circuits. It has been significantly improved for Vout and PCE.

5. CONCLUSION

This paper has proposed a new type of rectifier circuit for RFID tag and it has done modification
to the conventional rectifier circuit. It eliminates the threshold voltage drop from the antenna to
the RFID chip such that it increases the output voltage. Moreover, two more MOS switches are
added in order to suppress the feedback current from the RFID to the antenna. This improves
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the PCE and the maximum PCE can reach 75.7%. The proposed circuit is compliance to the
industrial standard of CMOS technology and is suitable for passive RFID tag chip application with
low frequency and short distance.
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Abstract— We propose an injection-locked millimeter wave generator based on field emission
mechanism according to the previous successful designs of the THz and millimeter wave devices.
The design of this injection-locked device has been carried out and verified by the numerical
simulations. A bandwidth of about 60 MHz has been obtained and it shows the consistency with
the prediction of Adler’s equation. The Q factor of the resonant structure is also calculated. An
electronic efficiency up to 7% can be achieved without any external magnetic field applied.

1. INTRODUCTION

The millimeter wave frequency region is part of the microwave range and is generally considered to
extend from about 30GHz to 300 GHz. Tunable high-power coherent radiation sources, have been
extensively studied for many applications including high resolution radars, communications, mate-
rials processing, plasma heating, high energy particle accelerators and power transmission [1]. The
most powerful sources available at low frequencies are klystrons, traveling wave tubes, magnetrons
and crossed field amplifiers. For high power generation and amplification in the millimeter range,
the well-known electron cyclotron masers (ECM) provide the solution [2]. Generally speaking, the
weight and the volume of these devices are heavy and huge, and the external magnetic circuit is
always needed.

In the previous work, we proposed a THz wave generator based on field emission cathodes [3–
4]. However, the current density required to achieve oscillations of the THz device is too high to
be available via today’s technology. The average current density required is about 150 kA/cm2.
To the state of the art, the highest current density achievable is around 1600A/cm2. Such a
high current density Spindt type field emission tips array has been demonstrated by MIT Lincoln
Laboratory [5]. Therefore, we first adjust all corresponding parameters of the THz device, i.e., scale
up the structure of the generator and scale down the frequency to Ka-band to reduce the start-
oscillating current density [6]. The simulation results show that not only an electronic efficiency
up to 9.16% can be obtained, but the average current density is successfully reduced down to an
achievable range about 264A/cm2. This electromagnetic structure can be easily fabricated via the
MEMS technology. These results motivate us to further study more physical characteristics, such
as the spectral purity, the phase and frequency controllability, and the stability of tuning.

Controlling the phase and frequency in oscillators by means of injection locking has known for
decades [7]. The idea is that this approach may be also applied to our device. In the present work,
we have investigated an injection-locked millimeter wave oscillator based on field-emission cathodes
by following the successful design of the millimeter wave devices. The verification of the injection-
locked oscillator has been done using the 2D finite-difference time-domain (FDTD) particle in cell
(PIC) code MAGIC (developed by ATK Mission Research, VA, US) [8]. A preliminary design has
been carried out. The Q factors of the interaction resonant structure and the corresponding locking
bandwidth have been determined.

2. PHYSICAL MODEL AND SIMULATION MODELS

2.1. Physical Model
Figure 1 shows the schematic of the injection-locked millimeter wave oscillator based on field-
emission cathode we proposed. The anode consists of six coupled cavities and the cathode is some
kind of field emission array (FEA). In our simulation, the effective work function of the cathode
is set to be 0.2 eV. Two shaded rectangular areas indicated by “Ins.” stand for insulators. A
potential Vin is applied between the cathode and the anode. Vin contains a dc input voltage Vdc

and an injected signal with a modulated frequency f . This electromagnetic structure can be easily
fabricated via today’s technologies such as MEMS. The material of the cavity is assumed to be the
perfect conductor for facilitating the numerical simulations.
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Figure 1: Schematic of the physical model. Two shaded rectangular areas indicated by “Ins.” stand for
insulators. The corresponding MAGIC simulation model is also shown.

2.2. Simulation Models
MAGIC is an electromagnetic particle-in-cell (EM PIC) code, based on the FDTD method for
simulating plasma physics processes such as the processes that involve interactions between space
charge and electromagnetic fields. Beginning from a specified initial state, the code simulates a
physical process as it evolves in time. In the hot test, i.e., simulations including charged particles
or electrons, the full set of time-dependent Maxwell’s equations is solved to obtain electromagnetic
fields. Then, the complete Lorentz force equation is solved to obtain relativistic particle trajecto-
ries, and the continuity equation is solved to provide current and charge densities for Maxwell’s
equations. This self-consistent approach is commonly referred to as EM PIC method, and is suitable
for dealing with the interaction between charged particles and electromagnetic fields. The interac-
tion between the charged particles is also included. In addition, the code has been provided with
powerful algorithms to represent structural geometries, material properties, incoming and outgoing
waves, particle emission process, real time observations of all physical quantities, and so forth. The
real time observed data facilitate the post-processing for further understanding the physics inside.

The MAGIC code is employed for verifying the designs of the generation of millimeter waves
with the electron-wave interactions and to do the hot tests of the field emission based millimeter
wave generator. Therefore, the 2D MAGIC model for the design also shown in Figure 1 has been
constructed for the hot tests.

2.3. Field Emission
The field emission is described by the Fowler-Nordheim Equation [9–20],

J =
AE2

s

φeff t(y)2
exp(

−Bv(y)φ3/2
eff

Es
), (1)

where A and B are the Fowler-Nordheim constants, and φeff is the effective work function assumed
to be a constant allowed dependence on material and surface roughness [20–22]. One should note
that the “effective work function” here is different from the work function as usually defined. The
effective work function can be affected by the local electric fields [21–22]. The normal electric
field at the cathode surface, Es, is computed from the application of Gauss’s law to the half-cell
immediately above the emitting surface, or

∫
~E · d~a = q/ε0, (2)

EcAc + (−EsAs) = q/ε0, (3)

and
Es = (EcAc − q/ε0)/As, (4)
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where Ec is the electric field at the half-grid, Ac and As are the cell areas at half-grid and surface,
respectively, and q is the existing charge in the half-cell. The functions t(y) and v(y) were Nordheim
elliptical functions [18–19] and approximated by Spindt et al. [23] as below:

t(y)2 = 1.1, (5)
v(y) = 0.95− y2, (6)

where y = 3.79× 10−5E
1/2
s /φeff is the Nordheim parameter.

2.4. Adler’s Equation
The relationship between the strength of the locking signal and the achievable bandwidth can be
described and estimated by Adler’s equation [7]:

∆f

f0
≈ 1

Qe

√
Pinj

Pout
(7)

where:

∆f = bandwidth, total frequency range over which locking will occur,

f0 = resonant frequency of the free-running case,

Qe = external quality factor (Q) of the millimeter wave oscillator,

Pinj = the power of the locking signal, and

Pout = output power.

3. SIMULATION RESULTS AND DISCUSSION
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Figure 2: Power spectrum of successfully locked
cases with injected frequency from 34.91 to
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To investigate the injection locking characteristics of the device, the input voltage was set
as Vin = Vdc + Vinj

∗ sin(2πft). For the free oscillating operation, Vin = Vdc = 16.75 kv and
Vinj = 0. In order to distinguish locked and unlocked states of operation, the fast Fourier transform
of the output signal calculated up to tmax = 100 ns is analyzed. The frequency resolution is
df = 1/tmax = 10MHz. After doing Fourier transform of Vd(t), we obtain the free oscillating
frequency 34.94 GHz for the oscillator.

For the cases of injection locking, we increase the power of the injection signal by increasing the
voltage Vinj up to 500 V at variant locking frequency from 34.86GHz to 35.04 GHz with a step of
10MHz. Figures 2 and 3 show the results of the successfully locked cases and fail to lock cases,
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respectively. The bandwidth estimated is 60MHz. To calculate the Q factor, we input a delta-
function-like signal and measure the transmitted power. After doing the Fourier transform of the
power, the Q factor can be determined to be about 35.48. According to the prediction of Adler’s
equation, the theoretical value of the bandwidth is about 80MHz and our simulation is close to
and consistent with the conventional prediction. The efficiencies of the injection-locked oscillator
for each injection locked cases with different frequencies are around 7%.

4. CONCLUSIONS

In this paper, we propose an injection-locked millimeter wave oscillator based on field-emission
cathodes and demonstrate the well phase/frequency controllability. The simulation results are
consistent with the prediction of Adler’s equation. An electronic efficiency up to 7% can be achieved
with no external magnetic field applied. The preliminary results show that our design of the
injection-locked oscillator seems to promise useful and compact Ka-band sources.
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Abstract— A new miniaturized bandpass filter geometry is hereby presented. The structure of
this filter is based on microstrip annular ring resonators with a wide bandwidth and precise tuning
capability. The center frequency of the filter is 2.45 GHz and the 3-dB Fractional Bandwidth
(FBW) is 105% with a sharp out-of-band rejection. The filter geometry is based on a new
technique that is to merge the stubs which allows considerable size reduction maintaining the
same efficiency. The size of the designed filter, excluding the I/O wave ports, is 7× 7mm2. Such
features make it best suitable for Bluetooth communication applications. The validity of the
design has been verified using two dissimilar electromagnetic full-wave numerical solvers. They
are ADS-Momentum as a Method of Moments (MoM) and Ansoft-HFSS as a Finite Elements
Method (FEM). There results have shown a very good agreement.

1. INTRODUCTION

Bluetooth is one of the promising technologies as a short-range connectivity solution for personal,
portable, and hand-held devices [1]. In the same time, ring resonators are highly desired for inte-
gration purposes due to their miniature size and simple design methodology. However, microstrip
structures usually suffer from the narrow bandwidth and poor out-of-band rejection. Few attempts
to achieve wideband response using microstrip ring resonators have been reported in [2–4]. This
article discusses a new tunable ring filter topology as well as investigating the possibility of minia-
turizing its overall size and offering a wide bandwidth. The size of the new filter, excluding the
I/O wave ports, is only 7× 7mm2 instead of 10× 10mm2 which is implemented beforehand in [5].
The initial and the modified filter geometries are shown in Figures 1 and 2 respectively. The new
filter is designed on RT/Duroid 6010 substrate material with a dielectric constant (εr = 10.2) and
a thickness (h = 0.635mm). The filter geometry was originally based on the design discussed in [2]
with some modifications on the resonator topology to reduce the size. The idea is simply to intro-
duce via-holes at the edges of the short-circuited stubs as indicated in Section 2. Such technique
can successfully increase the fractional bandwidth (FBW) up to 105% and provide a reasonably
good insertion loss at the edges of the band. However, this design could be furtherly miniaturized
by utilizing a new technique as will be declared in Section 3. Several investigations on the tuning
parameters of the filter have been gone through and discussed in Section 4. The investigations
show that the most significant parameters that affect the tuning of the filter are the stub-length
and the via-hole radius.
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Figure 1: (a) The geometry of the filter discussed in [5], (b) S-parameters of both filters.
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2. FILTER GEOMETRY

The design parameters and dimensions of the initial filter are discussed in [5]. The dimensions of
filter in Figure 1 are as follows: the input port which can be of any length, f = 0.3mm, w = 2.8 mm,
l = 3.25mm and g = 1 mm. On the other hand, the dimensions of the modified filter are shown in
Figure 2.
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Figure 2: (a) The geometry of the modified filter, (b) The simulation results.

A comparison between both of them is shown in Table 1. The size of the modified one is reduced
by more than 50% and on the other hand the FBW is also decreased by 15%. The S-parameters of
the two filters are shown in Figure 1(b). The return loss of the modified filter and the second one
are −40 dB and −54 dB respectively. On the other hand the band edge frequency of the modified
is 4.4 GHz while for the other one is 5.2 GHz.

Table 1: A comparison between the proposed filter and that one presented in [5].

Item The proposed filter The filter presented in [5]

Size (mm2) 7× 7 10× 10

Return loss (dB) −40 −54

FBW (%) 105 120

Tuning parameters Stub-length and via-hole radius Stub-length and via-hole radius

3. THE MODIFIED FILTER

The geometry of the modified structure is shown in Figure 2(a). The reduction technique is simple
and based on merging the tuning stubs which consequently results in a reduced size with wide
bandwidth. The modified geometry is a 49% of the original design. The proposed filter is simulated
using ADS-Momentum as a Method of Moments (MoM) based solver and Ansoft-HFSS as a Finite
Elements Method (FEM) based solver. The results are shown in Figure 2(b), where a very good
agreement between both of them is observed.

4. TUNING PARAMETERS

Several studies on tuning parameters of the filter have been investigated. According to the achieved
results it was clear that the most significant parameters that affect the capability of tuning are the
stub-length and via-hole radius. The effect of tuning parameters are shown in Figure 3. Both the
center frequency and the FBW increase as the length of the stub decreases, as shown in Figure 3(a).
On the other hand, the center frequency as well as the bandwidth of the filter can be controlled by
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the radius of both via-holes. Both the center frequency and the FBW increase as the radius of both
via-holes increases, as depicted in Figure 3(b). It could be benefited for selecting the dimensions
according the required frequency and the suitable FBW.
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Figure 3: The effect of tuning parameters of the filter: (a) the effect of the via-hole radius. (b) the effect of
the stub length.

5. CONCLUSIONS

A miniature bandpass filter design based on annular ring resonator structure has been introduced.
The overall size and the wideband characteristics of the proposed filter made it suitable for wireless
communication systems which require high bit-rate connectivity such as Bluetooth. According to
the achieved results, it was concluded that the most significant parameters that affect the tuning of
the filter are the stub-length and the via-hole radius. The results obtained from the two dissimilar
numerical solving techniques have shown a very good agreement and verified the validity of the
design.
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Abstract— This paper describes a single-feed S-Ring type stacked microstrip structure antenna
for broadband applications. The antenna is designed for RHCP/LHCP at a center frequency
of 2.1GHz. The design of the antenna is aimed at obtaining both wider bandwidth on the
impedance and better circular polarization AR (Axial-Ratio) for GPS (global positioning system)
applications. The feeding technique and structures of the present antenna has been analyzed.
The results of simulations and measurements results show that the antenna has an impedance
bandwidth (VSWR.52) of 30% and a 3-dB AR bandwidth more than 23%.

1. INTRODUCTION

In many areas of wireless communications, both reducing the number and the miniaturization of an-
tennas have been strongly required. Microstrip patch antennas are used in a variety of applications
due to their some salient features [1].

The designs of conventional single-feed circular polarized microstrip antenna are available either
of a square or circular patch on single planar. This paper describes a method by using a stacked
structure for designing a circularly polarized antenna with single-feed, and a different impedance
transformer method that further reduces the size of the patch.

The majority of current and future commercial and military applications typically use a circu-
larly polarized antenna. A single-feed circularly polarized microstrip antenna allows a reduction in
the complexity, weight, and have the additional advantage of small size and produce a completely
planar antenna. Single-feed circularly polarized antennas are currently receiving much attention.

In general, the microstrip antenna has a narrow 3-dB AR bandwidth. Increased bandwidth can
be achieved with a single patch [2, 3] or by using two (or more) stacked patches [4, 5], according
to above-mentioned methods impedance bandwidths ranging from 20 to 35% have been obtained;
however, it is unable to obviously increase the AR bandwidth.

The tradition the impedance matches feed networks requires with quarter-wave transformer or
hybrid circuit. However, the introduction of the hybrid circuit requires more places and complicates
the feeding structure. Further, this kind of antenna feed networks structure, if frequency deviation
from the center frequency, the 90◦ phase difference can no longer be maintained to result in elliptical
polarization even in the bore-sight direction.

In the practical design of a circularly polarization (CP) antennas, techniques for achieving wide-
band polarized characteristics, as well as impedance wideband and 3-dB AR bandwidths character-
istics are important. For this reason, we design a different from traditional impedance transformer
and employing stacked structure in this paper to overcome above perplexed problem at the same
time.

2. ANTENNA STRUCTURE

By making use of stacked patch concept [6] and with two different (high/low) permittivity sub-
strates [7], the AR bandwidth and the impedance bandwidth can be enhanced.

The proposed antenna was made up of two different permittivity substrates, microstrip feed
line, impedance matching transformer and an annular ring radiate element. It is designed for a
center frequency of 2.1 GHz for the TM10 mode [8]. The final constructed prototype is shown in
Figure 1.

The antenna structure and the substrate material mainly affect antenna properties such as
radiation efficiency, pattern and directivity etc. In the present configuration of antenna, we employ
a lower permittivity substrate in the top layer for the radiate element and circularly signal couple
element; besides, using a lower permittivity dielectric substrate situated in the second layer for the
rectangular feed line. Finally, using a high permittivity dielectric substrate situated in the first layer
for the ground plane. All of we mention antecedently, the high permittivity is FR4 substrate and
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Figure 1: Antenna configuration of proposed, (a)
Top view, (b) Side view.
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Table 1: The relative parameters of the proposed antennas (unit: mm).

1 S-Ring radiate element ri = 28, ro = 34

2 Slot r = 6

3 Cylindrical conductor h = 14.4, r = 0.8

4 Circularparasitically element r = 2

5 Rectangular microstrip feed line L = 16.36, W = 3

6 Ground plane 60× 60

7 SMA connector

8 RO substrate εr2 = 3.38, tand = 0.0025, d = 0.508

9 FR4 substrate εr1 = 4.4, tand = 0.0022, d = 1.6

10 Polymer εr = εo = 1, h = 2

the low permittivity is RO substrate, while the relevant parameters are list in Table 1, respectively.

The CP is obtained by choosing the suitable size of the radiating element to excit with equal
amplitudes and a 90◦ phase shift. The right or left hand circularly polarization depends on choosing
the feeding point positions. In the propose structure by cutting S-Ring component, Right Hand
or Left-Hand Circular Polarized (RHCP/LHCP) is achieved, respectively. By adjusting the length
of the cylindrical conductor from the radiating element to the feed line, the proposed antenna can
achieve an important bandwidth broadening.

3. SIMULATION AND EXPERIMENTAL RESULTS

The simulated and measured return losses (−S11 in dB) of the proposed antenna are shown in
Figure 2. The measurements show that the antennas are very well matched to the 50 Ω feed lines
and the optimum impedance bandwidth of 30% with the −10.0 dB return loss has been obtained
when the S-Ring gap is 8.5mm (∼0.07λo). Good agreement between measurement and simulation
could be noticed, confirming the wide frequency behavior of the new SRA feeding topology.

The AR result obtained from simulation and experiment are shown together in Figure 3 as a
comparison. The experimental results AR value is less than 3 dB in excess of 23% bandwidth, which
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is approximate simulation purpose, while the CPG (circular polarization gain) showed in Figure 4
is measured over 5 dBi across a frequency band between 1.8 to 2.5 GHz. Figure 5 depicts the far
field patterns of the antenna.

dB

Simulation( LHCP)

Measurement (RHCP)

Measurement (LHCP)

Simulation( RHCP)

15

12

9

6

3

0

15

12

9

6

3

0

Axial Ratio

Figure 3: Axial vs. frequence.

GaindBi

Simulation( LHCP)

Measurement (RHCP)

Measurement (LHCP)

Simulation( RHCP)

Figure 4: Gain vs. frequence.

(a) (b) 

Figure 5: Depicts the far field patterns of the antenna, (a) RHCP, (b) LHCP.

4. CONCLUSIONS

We describe a method for designing circularly polarized stacked structure antennas with a new
feeding topology. The excitation was done at a point from the back of the antenna substrate.

The propose impedance transformer permits a better purity of the CP and a wider impedance
bandwidth with respect to conventional antennas and the proposed antenna is suitable for imple-
menting low cost, high stable and well circular polarized GPS antenna.

The proposed antennas design is not only limited to the improvement on the impedance and
AR bandwidths of the conventional but also the radiation characteristics such as CP gain.
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Abstract— A wide-band ‘corners-truncated rectangular’ stacked patch antenna for use in the
circular polarization applications was proposed. The antenna proposed in this paper an axial
ratio of less than 3 dB and a VSWR of less than 2 : 1 were shown to be achievable over a 25%
bandwidth for use in the wireless communication applications, and this antenna can achieves
higher gain, lower side lobes and wider bandwidth compared to the traditional microstrip patch
antenna.

1. INTRODUCTION

The most serious limitation of the circularly polarized (CP) microstrip antennas is its narrow band-
width [1], to overcome its inherent limitation of narrow impedance and axial ratio (AR) bandwidth,
many techniques have been research and development for the enhancement of microstrip antenna
bandwidth e.g., for probe fed stacked antenna, slotted patch antenna, microstrip patch antennas
on electrically thick substrate [2–7].

Increased bandwidth can be achieved with [8, 9] or [10, 11]. The AR bandwidth can be enhanced
by [12, 13] concept. Hence, the present design of propose antenna is choice of a high permittivity
substrate to situate the bottom layer for the feed line element and a lower permittivity substrate
on the top layer for the radiate while an adoption of a higher air-spaced. The objective of the
proposed design is to generate a CP and to improve the bandwidth of the patch antenna.

2. ANTENNA DESIGN

The proposed antenna configuration is shown in Figure 1, that was designed consists of four layers
where first layer is ground plane, second layer is feed line, and the third and the fourth layer are
radiate and a parasitic patch, respectively.

 
2

w
1

w 3
w

1
P

2
P

2

1 3

4

5

6

7

d

8

RO 4R
1

L

2
L

3
L

(a) (b) (c)

Figure 1: Geometry of the proposed antenna: (a) snapshot of proposed antenna, (b) top view, (c) side view.

By making use of stacked patch concept one can obtain enhanced impedance and using high
permittivity can enhance the AR bandwidth. All of we mention antecedently, the stacked layers
are FR4 and RO dielectric substrate.

In the present configuration of antenna we employ a lower permittivity of RO dielectric substrate
in the top layer for the radiate element and a coupled parasitically patch, using a R4 dielectric
substrate situated in the bottom layer for the feed line and the ground plane.

A less than quarter-wavelength impedance transformer, is placed at the back of the radiate
patch, that is consists of two structures of the rectangular feed line and a cylindrical conductor, a
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tuning of stub wire is place at the rectangular feed line end, one can improve matching capabilities
by properly adjusting the stub. The signal is fed at back of bottom substrate to the impedance
transformer, while the bottom side is being a ground plane for the antenna.

By properly adjusting above the mentions sizes (including the coupled parasitically patch,
corners-truncated rectangular radiate element, rectangular feed line, cylindrical conductor, stub
wire), then we can obtain a better and wider bandwidth of CP antenna. Figure 1 depicts the
detailed antenna structure of the propose antenna, the values of various parameters involved in
Figure 1 are given in Table 1.

Table 1: The relative parameters of the proposed antenna (UNIT: mm).

1 Coupled parasitically patch W3 = L3 = 13.28
2 Rectangular radiate element W2 = L2 = 17.7
3 Rectangular microstrip feed line W = 3, L = 4.12
4 Ground plane W1 = L1 = 30
5 SMA connector
6 Stub wire Radius= 1.6
7 Cylindrical conductor Length= 10, Radius =1.6
8 Polymer 60× 60× 10

FR4 Dielectric substrate εr1 = 4.4, tan δ = 0.022
RO Dielectric substrate εr2 = 3.38, tan δ = 0.0025

P1, P2 Feed position (x1, y1, z1) = (13, 8, 11.6)(x2, y2, z2) = (17, 11, 11.6)

3. SIMULATION RESULTS

Referring to the configuration shown in Figure 1, the right or left hand circularly polarization
depends on choosing the feeding point positions, by changing the signal fed positions P1, P2, then
the right or left hand CP can easily achieved. The proposed antenna is designed for Right-Hand
CP (RHCP) radiation. The proposed antenna was designed and simulated at a center frequency
of 2.3 GHz with the aid of IE3D software, which is based on the method of moments [14].

Figure 2 shows that the simulated and measured return losses (−S11 in dB) of the proposed
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antenna are less than −20 dB over 2.0 GHz to 2.6 GHz. The measurements show that the anten-
nas are very well matched to the impedance transformer and the optimum impedance bandwidth
more than 30% with the −10.0 dB return loss has been obtained, when cutting corners-truncated
rectangular is 8.5mm (∼ 0.07λo). There is a frequency shift of about 100 MHz for measured return
loss with respect to simulated results, which may be mainly caused by the fabrication tolerance as
well as the possible uncertainty of in-house antenna assembly.

The measured and simulated 3 dB AR shown in Figure 3 covers the range of 2.0–2.7GHz and
the AR is lower than 2.5 dB across 2.0–2.65 GHz is in excess of 28% bandwidth. Figure 4 depicts
that the measured CP gain is more than 5 dBi over 1.8GHz to 2.6GHz. The measured far field
radiation patterns in two orthogonal planes (the x-z and y-z planes) at 2.3 GHz for the proposed
antenna are shown in Figure 5, the symmetry and wide angular radiation patterns are observed.
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Figure 4: Measured and simulated gains of the pro-
posed antenna.
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4. CONCLUSIONS

In this paper, a broadband CP stacked probed-fed patch antenna has been made and measured.
The measurement result has showed that good impedance matching and AR can be obtained
with this method at the same time. The proposed antenna permits a better purity of the CP
and a significant improvement impedance bandwidth with respect to conventional antennas. The
structure is easily fabricated, and the effects of the locations and dimensions of the proposed antenna
are very limited. The information presented in this paper will be suitable design and optimize the
antenna for engineering applications.
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Abstract— The design of a meta-material realization of artificial magnetic conductor (AMC)
surfaces for a high-gain reflector antenna application is presented. Artificial materials of periodic
dielectrics exhibiting an electromagnetic band-gap (EBG) performance have been proposed and
applied planar inverted-F antenna co-design and measurement. The artificial dielectric material
(ADM) can enhance antenna radiation performance, spread antenna bandwidth and improve
antenna radiation gain and efficiency. The artificial defected dielectric material has useful char-
acteristics of harmonic rejection, band suppression and surface wave suppression.

1. INTRODUCTION

Planar or corner periodic metallic array behave as AMC placed on a grounded dielectric substrate.
In this paper the AMC operation of single-layer arrays with via hole is studied using a resonant
cavity model and a new application to high-gain reflector antenna is presented. Planar AMC
surfaces are used the ground plane in a 10 GHz dipole antenna with a partially reflective surface.

2. DESIGN & RESULTS

The AMC structure with periodic metallic array is shown in Fig. 1 which may reduce the surface
wave and enhance the radiation performance. A magnetically loaded AMC material providing
enhanced bandwidth has been developed. The characteristics such as electromagnetic band-gap,
frequency selective surface and high impedance ground plane (HIGP) surface [1–3]. The AMC
structure can reduce the surface wave and enhance radiation performance. The traditional reflec-
tor antenna [4] with PEC ground plane is shown in Fig. 2 which introduces comparable worse

Figure 1: The artificial magnetic conductor (AMC) structure.

Figure 2: Traditional reflector antenna (α = 180◦,
H = 0.25λ).

Figure 3: Proposed reflector antenna with AMC
(α = 180◦, H = 0.25λ, D = 6 mm) structure.
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cross-polarization. The proposed reflector antenna with AMC structure in Fig. 3 can reduce the
surface wave interference, reduce cross-polarization and also improve the antenna gain (Fig. 4).
The bandwidth and center frequency of AMC surfaces are investigated with full-wave analysis [5]
and the qualitative predictions are validated.

Figure 4: Compared data with PEC and AMC reflector.

3. CONCLUSIONS

The AMC structure of a high-impedance ground plane (HIGP) applied for a reflector antenna
with dipole radiator has been developed. The designed antenna exhibits fairly high gain with the
frequencies from 8.5 GHz to 10.5 GHz. It is believed to be useful for microwave antenna applications.
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Abstract— A printed dipole antenna integrated with a duplex RF switch used for mobile base
station antenna beam steering is presented. A coplanar waveguide to coplanar strip transition
was adopted to feed the printed dipole. A novel RF switch circuit, used to control the RF signal
fed to the dipole antenna and placed directly before the dipole, was proposed. Simulated and
measured data for the CWP-to-CPS balun as well as the measured performance of the RF switch
are shown. It has demonstrated the switch capability to control the beam in the design of beam
steering antenna array for mobile base station applications.

1. INTRODUCTION

The use of adaptive array antennas for cellular base station application has recently become an
active area of research and development [1–3]. Base station antennas normally radiate omni-
directionally or in broad sectors, in which the most of the power is radiated in other directions
than toward the user. This causes waste of power and interference for other users. Therefore new
versions of base station antennas are now being made to overcome the problem by using antennas
that have narrow steerable beams. These can give large increment in capacity, and the possibility
of tracking mobile phones or vehicles.

In authors’ previous work [4], a set of simple design procedures for beam steering single circular
and concentric circular ring antenna arrays was proposed and analyzed theoretically (see Fig. 1).
In the paper, the design theory was formulated and the results of the proposed analytical model,
validated by a numerical model, were presented. Beam steering was achieved by implementing an
ON/OFF system concept to excite only specific elements of the array dipole antenna. In this study,
a following-up study was carried out on designing and implementing the RF switch for practically
realising the beam steering using the proposed ON/OFF antenna array system. A novel design
principle of RF switch, used to control the RF signal fed to each of the antenna elements in an
array, was proposed. Moreover, a coplanar waveguide (CPW) to coplanar strip (CPS) transition
was employed to feed the antenna element (i.e., printed dipole). Subsequently, performance of the
CPW-to-CPS fed dipole antenna controlled by a RF switching circuit for duplex operation was
evaluated and verified through hardware realisation. The measured results for the CPW-to-CPS
balun and practical performance of the RF switch are shown in this paper.

Figure 1: Circular array antenna, single circular ring arrays (left) and concentric circular ring arrays (right).

2. RF SWITCH AND PRINTED DIPOLE ANTENNA FOR BEAM STEERING
ANTENNA ARRAY

2.1. CPW-to-CPS Baluns
Two back-to-back CPW-to-CPS balun (see Fig. 2) were examined using ADS simulator, which is
based on the Method of Moment [5], in order to evaluate the balun performance such as, insertion
and return loss at design frequency (GSM 1800 band). A CPW-to-CPS balun was chosen and
designed for our application due to their several features such as low-loss, ease of fabrication and
no need for via holes [6, 7]. The balun structure was mounted on Duriod material (εr = 2.5,
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thickness h = 1.524mm, and tan δ = 0.0019). The measured insertion loss of the fabricated balun,
achieved over the operating bandwidth from 1.47 GHz to 2.04 GHz, was found to be less than 1 dB
as shown in Fig. 2. It is also noticeable that a reasonable return loss of 10 dB over the same
frequency bandwidth. An excellent performance of the magnitude and phase imbalance between
the two outputs of a single balun was observed within the intended operating band (the plot is not
presented here).

Figure 2: Layout of back-to-back balun (left) and the measured insertion loss and return loss of the balun
studied.

2.2. Design of CPW-fed CPS Printed Dipole Antenna
For analysis, performance of the CPW-to-CPS fed dipole antenna was investigated with the aid
of ADS. The layout of this dipole antenna is illustrated in Fig. 3, in which the width of the
centre conductor is 4 mm and the gap is 0.2 mm. The diameter of the circular slot is 6.4 mm and
the antenna length is 78.95 mm which corresponds to slightly less than half the wavelength (i.e.,
antenna resonates at around 1.84 GHz). For validation, a prototype of such a design was fabricated
and tested. Return loss of the fabricated dipole antenna was measured and the result was compared
to the data in prediction, as shown in Fig. 3. A bondwire was used to prevent unnecessary higher
order modes generated at the discontinuities [8].

Figure 3: Layout of CPW-to-CPS balun integrated with printed dipole (left) and the measured return loss
for this configuration studied (right).

2.3. Design Principle of RF Switch Circuit and Validation
RF switch is the integral part of modern communications system. Their application include well
established areas such as radar and emerging areas such as smart (switched beam, phase and adap-
tive) antennas for terrestrial and satellite communication systems. The fundamental component
in this switching is the operation of the RF p-i-n diode. The switches can be accommodated in
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the beam forming network or adaptive control beam antenna array systems. An ON/OFF system
concept for achieving antenna beam steering was practically implemented by a novel and simple
RF switching circuit.

The proposed switch can be used for duplex operation and the circuit diagram is illustrated in
Fig. 4. As can be seen, capacitors C1, C2, C3 and C4 are for dc blocking, and three diodes in
the circuit with appropriate biasing voltage can be used to provide a function as RF switching.
When both V1 and V2 are supplied with positive voltage, RF signal passes through forward biased
diode D1 and transmit power to the antenna. There is no signal returned to the path through
diode D3 since it is reverse biased. Therefore, the switch is ON and in RF transmission mode.
On the contrary, when the power supply is given negative voltage both V1 and V2, diode D1 is in
reverse biasing which can be effectively used for blocking the RF signal transmits to the antenna
and the reflected RF signal can be eliminated through the diode D2 due to the fact that RF signal
is shorted via a 50 ohm resistor (R1) to the ground. In this way, the switch is apparently OFF and
in the RF reception mode since only RF signal path through diode D3 is turned on. Thus, a dual
mode operation is realized.

Figure 4: Overall circuit diagram of the RF switch integrated with balun and dipole (left) and prototype
(right).

Prototypes of the RF switch integrated with back-to-back balun (see Fig. 5) and RF switch with
balun and dipole (see Fig. 4) were fabricated and tested in order to validate the design theory of
the proposed RF switching circuit.

The procedure of validation to the RF switch was carried out in two aspects (i.e., ‘ON mode’
and ‘OFF mode’). For the purpose of simplifying the analysis, the fabricated prototype circuit in
Fig. 4 was replaced by the back-to-back balun (see Fig. 5) for the evaluation purposes because it is
well matched to the 50 ohm at the design frequencies and can be directly connected to the switch as
a 50 ohm load. A practical measurement setup for evaluating this RF switch is illustrated in Fig. 5.
To begin testing the ‘ON mode’ for the proposed switch, a positive voltage of 0.93 V was provided

Figure 5: Photograph of the fabricated prototypes of the RF switch integrated with back-to-back balun (left)
and measurement setup for RF switch evaluation (right).
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to the V1 and V2 (see Fig. 4) and RF signal with power level of −20 dBm at single frequency of
1850MHz was injected to the RF switch (RFin port) from the signal generator. Subsequently, a RF
output power with level of −23.67 dBm (see Fig. 6) from the back-to-back balun was observed on
the spectrum analyser. Taking into account of the losses involved from the cable (1.33 dB) and the
balun (≤ 1 dB), the total insertion loss on the proposed RF swith was found to be approximately
1.5 dB when the switch is turned on.

On the contrary, in order to test the RF switch performance at ‘OFF mode’, the proposed switch
was supplied with a negative voltage of −0.93V to both V1 and V2 and RF signal with power level
of −25 dBm at the same frequency was injected to the back-to-back balun. It is notable that a
relatively less power was generated to test the RF switch in the receiving mode as the power level
of the received signal is always small in the reception. As a result, a power level of −42.17 dBm was
measured at the RFin port. It implies an isolation performance with at least 15 dB was achieved
for the proposed RF switch as shown in Fig. 7. It has to be noted that the other port (RFout) in
the switch was connected with a 50 ohm load in both cases.

It was found from the forgoing practical investigation that the proposed RF switch exhibits a
relatively good performance at ‘ON’ and ‘OFF’ mode. As a consequence, it has demonstrated the
capability used as the switch to control beam in the design of beam steering antenna array for
mobile base station antennas applications. Therefore, a follow-up study on practical realisation to
the mobile base station antenna with enhanced performance using the beam steering antenna array
design principle in cooperation with the novel RF switch proposed in this paper will be carried out
in the future work.

 

Figure 6: The output of the back to back baluns
when the switch mode is off.

 

Figure 7: The output of the back to back baluns
when the switch mode is on.

3. CONCLUSIONS

In this work, a complete analysis and design of the CPW-fed CPS balanced dipole antenna inte-
grated with a RF switching circuit for antenna beam steering used in mobile base stations, was
presented. The CPW-to-CPS balun and the dipole antenna, were investigated and the overall per-
formance of the dipole antenna in collaboration with the RF switching circuit were analysed and
evaluated. The predicted results indicating the design goal was well met. This is encouraging for
practical implementation of these switchable dipoles in the design of beam steering antennas for
the future work.
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Abstract— Ultra low side lobe level (ULSLL) array antennas have important applications in
radar and communication systems, ULSLLs are usually realized with uniform linear array (ULA)
or planar array antennas by excitation amplitude weighting, such as the current distributions
resulted from Dolph-Chebyshev or Taylor synthesis. Lower SLL, however, implies lower aperture
efficiency and larger excitation amplitude ratio (EAR), which makes the feed network more
complicated and more difficult to fabricate; lower SLL is also very sensitive to the excitation
amplitude/phase errors. In order to mitigate this difficulty, both the excitation amplitudes and
the element positions are used for ULSLL synthesis, where the element positions act as extra
freedoms for further SLL suppression. A symmetrical non-uniform linear array (SNULA) is
proposed, the full information particle swarm optimization (FIPSO) based on the Von Neumann
local neighborhood topology is adopted for ULSLL pattern synthesis, because it is effective for
multi-dimensional, multi-local-minimum, non-linear complex problems and robust convergence.
In the algorithm, the inertia weight is improved via the sigmoid limiting function; the boundary
conditions are dealt with a randomized damp reflection. Two numerical examples are given,
the first one is an 8-element −40 dB SLL array antenna, for comparison, a ULA with the same
aperture size, element number and peak SLL is synthesized by Dolph-Chebyshev method, the
results obtained show that they have nearly identical main beam and equal side lobes, but the
SNULA has lower EAR and higher aperture efficiency than those of the ULA. The second example
is a 12-element −45 dB SLL array, similar rules are obtained.

1. INTRODUCTION

Ultra-Low side lobe level (ULSLL) is usually realized with uniform linear array (ULA) by amplitude-
only technique, where the excitation amplitude tapering (AT) is obtained by the aid of Dolph-
Chebyshev or Taylor synthesize method. Lower SLL, however, implies lower aperture efficiency
(AE) and larger excitation amplitude ratio (EAR), and it is very sensitive to the excitation ampli-
tude/phase errors.

Density tapering (DT) technique is common used for limited side-lobe reduction of uniformly
excited arrays [1, 2], several methods such as differential evolution algorithm (DEA) [3], genetic
algorithm (GA) [4], and particle swarm optimization (PSO) [5–7] have been researched to optimize
the element locations.

In this paper, the AT technique is added to the DT technique as another freedom to mitigate the
difficult, which results in a symmetrical non-uniform linear array (SNULA), the full information
PSO (FIPSO) is presented ULSLL pattern synthesis.

2. METHOD

An SNULA antenna with even number (2N) isotropic elements is shown in Fig. 1, the excitation
amplitude are symmetric and in phase.

z

6x6x 5x 5x4x4x 3x 3x2x 2x1x1x
N

xx7

Nxx7
 ϑ

x
r

Figure 1: Symmetrical nonuniform linear array antennas (N = 7 for illustration).
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The array factor (AF ) is in the form,

Fa(ϑ) =
1
N

{
cos(kx1 sinϑ) +

N∑

n=2

An cos(kxn sinϑ)

}
(1)

where, ϑ is measured from the array broadside, k = 2π/λ is the wavenumber and λ is the wavelength,
the excitation amplitude of the 1st element has taken to be equal to 1.

The objective function is defined by,

f(A2 ∼ AN ; x1 ∼ xN ) = max

[
20log|F (ϑm)|, dFa(ϑ)

dϑ

∣∣∣∣
ϑ=ϑm

, m = 1 ∼ M

]
(2)

where M is the number of sidelobe, and ϑm is the location of mth sidelobe, there are 2N−1 variables
that span the solution space, obviously, it is a multi-dimension, non-linear complex optimization
problem.

The synthesis is accomplished by the full information PSO (FIPSO), which is based upon the
following two Equations [8],

⇀
v i ⇐ χ

[
⇀
v i + ϕ

Ni∑

m=1

rand() ·
(

⇀
pneighbor(m) − ⇀

xi

)
/Ni

]
(3)

⇀
xi ⇐ ⇀

xi + w
⇀
v i (4)

where ⇀
xi is position in the solution space of particle i, ⇀

v i is its velocity; χ is the constriction
coefficient, and is typically equal to 0.729; ϕ is the acceleration constant and is set to 4.1; rand()
is a uniform random generator distributed within the interval [0, 1); Ni is the number of influences
among the particle i’s neighbors, ⇀

pneighbor(m) is the position of its mth influence; w is the inertia
weight.

The FIPSO offers that the subpopulation could search diverse region of the whole space, as
individual particles is affected by its influences in the neighborhood, the local searching ability is
improved, which avoids traping into local optimum; the information flows from one neighborhood
to the next neighborhood, so the whole swarm shares and renews the information after an iteration.

A sigmoid damped limiting transformation is used to simulate the inertia weight in the iteration
procedure,

w(t) ≈ (ws − wf )/{1 + exp[α(t− t1)]}+ wf (5)

where t is the iterative step, ws and wf is the inertia weight at the beginning and end of iteration,
respectively; α is the damp constant, which determines the decreasing slope; t1 À 1 is the iterative
step where the steepest decreasing of the inertia weight occurs, and w(t1) = (ws + wf )/2.

A random mirror reflection relation is applied to the particle flying across the boundary in the
d-dimension,

xd
i ⇐ (1 + Γ)bd − Γxd

i (6)
Γ = Γ0 rand(), Γ0 ∈ [0, 1] (7)

where xd
i is the component of particle ⇀

xi in the d-dimension, bd is the lower or upper boundary, Γ
is the reflection coefficient, and Γ0 is the maximum value.

3. SIMULATED RESULTS

The 1st example is an 8-element −40 dB SLL linear array, the resulted element positions, excitation
amplitudes, EAR and aperture efficiency are listed in Table 1. Simulated AFs are shown in Fig. 2,
where Dolph-Chebyshev pattern of the ULA with the same number of element and array length is
plotted for comparison.

The 2nd example is a 12-element −45 dB SLL linear array, also, the results are listed in Table 1,
and simulated AFs are shown in Fig. 3.
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Table 1: Optimized parameters of the examples.

Examples Methods
Element positions and excitation amplitudes

EAR AE
n 1 2 3 4 5 6

1
PSO

xn 0.259 0.871 1.569 2.294
4.86 0.82

An 1.000 0.997 0.606 0.206

Chebyshev
xn 0.328 0.983 1.639 2.294

6.97 0.76
An 1.000 0.758 0.415 0.144

2
PSO

xn 0.261 0.782 1.409 2.133 2.893 3.668
7.74 0.81

An 1.000 1.000 1.000 0.719 0.374 0.129

Chebyshev
xn 0.333 1.001 1.667 2.334 3.001 3.668

12.5 0.72
An 1.000 0.872 0.656 0.417 0.212 0.080
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Figure 2: Array factors (N = 8, SLL = −40 dB).
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Figure 3: Array factors (N = 12, SLL = −45 dB).

4. CONCLUSION

By combination the AT technique and the DT technique, an SNULA antenna is proposed, the
FIPSO is used for ULSLL synthesis. Compared with the ULSLL of conventional ULA under the
conditions of the same HPBW and SLL, the simulated results of SNULA show that EAR is lower;
the aperture efficiency is higher.
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Abstract— Most likely, there are two techniques existed to reduce the side lobe level (SLL)
of array antennas: The conventional excitation amplitude tapering (AT) and the unusual ele-
ment space density tapering (DT). The AT technique, such as triangular, cosine, cosine-square
and raised-cosine amplitude distributions, as well as the Dolph-Chebyshev or Taylor current
coefficients, provides efficient means for low SLL (LSLL) and ultra-low SLL (ULSLL) pattern
synthesis, and also affords significant dynamic ranges control of the aperture distributions. The
feed network, however, becomes complicated and narrow bandwidth, the aperture efficiency de-
creased rapidly as the amplitude getting much tapered. The DT technique offers another way
for limited SLL reduction while the aperture efficiency is maintained, the antenna is a uniformly
excited non-uniformly spaced array with element positions thinned from the center element (odd
number array) or center two elements (even number array), the main advantage is that it sim-
plifies the bulk and lossy feed network. In this paper, A uniformly excited symmetrical array
antenna, which is compose of a uniform central sub-array (central part) and two density tapered
side sub-arrays (side parts), is presented for SLL suppression, a power function characterized by
two-parameter is employed to express the increments between adjacent elements of the two side
parts, the optimum values of the two parameters are searched by the Min-max method according
to the peak SLL. Numerical examples are given for the cosine-element, one half wavelength least
spacing, and 4-element central part arrays, 8-, 10-, and 12-element arrays are simulated; Dolph-
Chebysheve liked patterns are observed, −19.5 dB, −20.8 dB and −21.4 dB SLLs are achieved,
respectively.

1. INTRODUCTION

As an alternative sidelobe (SL) level (SLL) reduction technique, the nonuniformly (or unequally)
spaced linear array technique has been investigated extensively in the last decades from theory to
practice [1–5], a geometrically and electrical symmetrical array antennas is of particular interests
due to its real pattern function and unique phase center [6, 7].

A uniformly excited symmetrical nonuniformly spaced linear array (SNULA) antenna with den-
sity weighting (DW) is presented, a power function is introduced to describe the spacing increment,
and it provides an efficient approach for SLL reduction.

2. ANALYSIS

Figure 1 shows the array geometry for the cases: a) odd number of 2N + 1 elements, and b) even
number of 2N elements, the elements are symmetrical about the array center. The array can be
divided into 2 parts: 1) the central uniform spaced sub-array, and 2) the side non-uniformly spaced
sub-array.

At first, the odd number array are discussed, xn, (n = 1 ∼ N) is the position of the nth element
along the x-axis, dn is the distances between adjacent elements, and ∆n is the increment between
adjacent spacings,

dn = xn − xn−1, n ∼ N (1)
∆n = dn+1 − dn, n ∼ N − 1 (2)

Assume the space increments are increased monotonously according to a power function,

∆n =
{

0, n = 1 ∼ N1 − 1;
δ(n−N1 + 1)p; n = N1 ∼ N − 1.

(3)
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Figure 1: Symmetrical linear array antennas (N = 6, N1 = 3).

where 2N1 + 1 is the number of the central sub-array, δ is the increment parameter and p is the
power. Application (3) to (2) and (1), one gets,

dn =





d, n = 0 ∼ N1;

d + δ
n−N1∑
m=1

mp; n = N1 + 1 ∼ N.
(4)

xn =





nd, n = 0 ∼ N1;

nd + δ
n−N1∑
m=1

mp; n = N1 + 1 ∼ N.
(5)

where d is the element space of the central sub-array. The array factor (AF) is the sum of the
central sub-array factor fa1(ϑ) and the side sub-array factor fa2(ϑ),

Fa(ϑ) = fa1(ϑ) + fa2 (6)

fa1(ϑ) =
1

2N + 1
sin

(
k 2N1+1

2 d sinϑ
)

sin
(
k 1

2d sinϑ
) (7)

fa2(ϑ) =
2

2N + 1

N∑

n=N1+1

cos(kxn sinϑ) (8)

where, ϑ is measured respect to the array broadside, k = 2π/λ is the wavenumber and λ is the
wavelength.

Secondly, the even number array with 2N elements is deduced in the same way,

dn =





d, n = 0 ∼ N1 − 1;

d + δ
n−N1∑
m=1

mp; n = N1 ∼ N.
(9)

xn =





(n− 0.5)d, n = 1 ∼ N1;

(n− 0.5)d + δ
n−N1∑
m=1

mp; n = N1 + 1 ∼ N.
(10)

fa1(ϑ) =
1

2N

sin(kN1d sinϑ)
sin

(
k 1

2d sinϑ
) (11)

fa2(ϑ) =
1
N

N∑

n=N1+1

cos (kxn sinϑ) (12)
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For small scaled central sub-array, fa1(ϑ) has a broad main-beam and higher close-in SLs; while
fa2(ϑ) has a narrow main-beam and higher SLs, if the parameters (δ, p) are chosen appropriately,
the sodelobes may be counteracted each other to some extent, meanwhile the outer SLs can be
further suppressed by the element pattern, accordingly, the total array’s SLLs are decreased.

For searching the optimum values of (δ, p), the objective function is defined by,

f = max[20 log |F(ϑ)|, ϑ ∈ sidelobe region] (13)

The minimum value of f corresponds the optimum (δopt, popt).

3. NUMERIC RESULTS

As an example, an even number cosϑ-element array with N = 10, N1 = 2 and d = 0.5λ is
simulated, the optimum parameters are (δopt, popt) = (0.0448, 1.853), the pattern is shown in
Figure 2, Chebyshev-liked SLs with SLL= −20.77 dB is observed.

Several other arrays with d = 0.5λ are computed and the SLLs are listed in Table 1.

Table 1: SLLs of several arrays (cos ϑ-element, d = 0.5λ,).

(N, N1) (5, 1) (6, 2) (7, 1) (8, 2) (9, 1) (11, 2)
SLL (dB) −17.30 −18.55 −18.90 −19.48 −20.24 −21.03
(N, N1) (12, 2) (13, 2) (14, 3) (15, 3) (16, 3)

SLL (dB) −21.42 −21.92 −22.00 −22.03 −22.57
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4. CONCLUSION

The simulated results demonstrate that the spacing increments expressed as a power function
may give an appropriate mode for density weighted linear array antennas for SLL suppression;
approximated optimum SLL patterns can be obtained, for arrays no less than 9 elements, −20 dB
peak SLL are achievable.
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