
PIERS 2006-TOKYO

Progress In Electromagnetics Research Symposium

Proceedings

August 2-5, 2006

Tokyo, Japan

www.emacademy.org
www.piers.org



Contents 
 
1A1 Waveguides and Transmission-Lines Based on Metamaterials 
1A2 Recent Advances on Metamaterials 
1A3 Computation in Electromagnetics for Ultra Wide Band Applications 
1A4 Microwave and Millimeter-Wave Circuits 
1A5 Extended/Unconventionl Electromagnetic Theory, EHD(Electrohydrodynamics)/EMHD 
(Electromag-netohydrodynamics) and Electrobiology 
1P1 Young Scientists Research for Applied Electromagnetics 
1P2 Scattering by Canonical Objects 
1P3 EMC Problems on Printed Circuit Boards and Common Mode 
1P4 Advances in Detection and Imaging: from Algorithms to Systems and Applications 
1P6 Dosimetry of Human-Body Exposure to High-Frequency Electromagnetic Fields II 



Empirical Studies on Electromagnetic Fields around Two Thin Wires 
Hiroshi Echigo and Katsuhiro Sato 

Tohoku Gakuin University, Japan 

 
Abstract— It is well known that two thin wires is fundamental one for the radio-frequency (RF) signal and energy transmission 
systems since they give the basic concept and knowledge about the RF transmission and radiation phenomena. They are the main 
issues of RF research field. In this paper, experimental measurements of magnetic fields around two thin wires are described. 
Measured data was obtained as complex numbers (amplitude and phase) so that they lead to give motion pictures of virtual wave 
propagations using the Phase Injection Method. The results obtained give the motion pictures showing that the propagating waves 
on a transmission line are changing into radiating waves and forming the plane waves. 

Keywords- Two thin wires; electromagnetic near field; electromagnetic wave transmission and radiation; Phase Injection 
Method. 

 

1. INTRODUCTION 
 

  A two thin wire system is one of the simplest and the most 
fundamental one to study radio-frequency (RF) signal transmission 
and radiation. For students and engineers, it gives basic concepts on 
the transmission lines and antenna system.  For example, an open 
parallel line is treated as no radiating parts to explain the signal 
transmission circuits in the circuit theory. However, RF field 
researchers have noticed that these transmission lines can radiate EM 
energy. Especially in digital equipments, a gross of transmission lines 
are used to transfer the information signals. Their shapes are not only 
parallel ones but also arbitral-curved structures. The radiations from 
these lines are severe problems in the design and development of 
digital equipments.  To reduce the radiation, it is very effective to 
know how electromagnetic waves propagate and radiate out of the 
lines. 

In this paper,  
1) The measurement system is described to collect the field data, 
2) Using obtained data of complex values, the virtual wave 
propagation around lines can be displayed after extra phase rotation is 
added to the phase term of measured complex values: Phase Injection Method. Our experiments implied that the line ends and 
curved portion of the line could cause the EM wave radiation.   
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2. EXPERIMENTAL SYSTEMS 
 

A. 

B. 

Two thin wires 
  The parameters of the thin wires used for our experiments are 
listed in Table 1. The wires were fixed on a flat plastic plate 
(Stylo Foam) to make various shapes and they were stood 
vertically to connect their one ends to the RF power feeding part, 
hanging from the ceiling of the room as shown in Fig. 1. 

Table 1 Parameters of two wires 
Radius of the wire 0.2 mm 

Separation of  
The wire centers 

Gradually increasing  

Length About 1.0 m 
Materials Copper 
Insulator Polyvinyl Formal 

 

RF power feeding system 
The feeding parts were settled at the upper end of the line, which could feed RF power to each wire independently through two 

coaxial cables. The feeding parts and the wires are shown in Fig.1.  
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C. 

D. 

E. 

F. 

XY positioner 
  To scan the electromagnetic (EM) field around the line, X-Y 
positioner (D3425AV1O-S) was used.  This makes possible to 
move the arm vertically (Z-direction) and horizontally (X-direction) 
carrying a small loop EM sensor.  
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Fig.3 Magnetic Field Hx near the Line 

Fig.2   The coordinate and lines. 
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EM sensors 
To measure the EM fields, a small-shielded loop was used. The 

small-shielded loop is composed with a semi-ridged coaxial cable 
with its diameter 2mm. The loop radius is 1.0cm. 

 

Measurement equipments 
EM sensor output was led to Vector Volt Meter (VVM:HP8508A) 
through a coaxial cable (SUCOFLEX ) of 5m lengths and a pre-
amplifier with its amplification gain of 25dB. 
  

Measurement site  
The measurements were accomplished in a vacant office room. 

To reduce the reflection from the floor, EM absorbers were settled 
on the floor, especially on the area near the line end. 

 

3. MAGNETIC FIELD NEAR THE LINE 
 

To confirm the current distribution on the line, the magnetic 
fields near the line were measured. Not to confuse the following 
explanation, xyz coordinate is set to the line configuration as shown 
in Fig.2.  

To confirm the measurement, the near field of a parallel two 
wires was measured when RF energy of 1GHz was supplied to the 
lines. The small loop sensor was scanned on the plane; y=1.5cm,x=-
10~+10cm, z=60~200cm, to make the field pattern. Fig.3 gives the 
results for resistive termination; (166 ohm resistor). Fig.4 gives the 
magnetic field near one of two wires to show the current 
distribution on the wire. It proves that the current is flowing on the 
line without any irregularities. 

 

4. MEASUREMENT RESULTS OF MAGNETIC NEAR FIELDS 
BESIDE TWO THIN WIRES. 

 
Since a complex value (amplitude and phase) is obtained at each 

measurement point on the measurement plane that is parallel to a 
plane including two thin wires, we can show two kinds of fields 
(amplitude and phase).  However another expression would be more effective and more attractive to understand what are going on 
the area. 
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 The measured values were transformed to give real parts and imaginary part because the only real parts have essential meanings 
in our real world. 

Figure 5 gives one of the measured fields in real parts. The left picture comes from the data obtained when the loop face was 
set to horizontal and the right one is for the loop face in vertical setting. 
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5. PHASE INJECTION METHOD TO GIVE VIRTUAL MOTION PICTURES SHOWING WAVE PROPAGATIONS 
To derive the real part from the measured complex value (amplitude and phase), 

phase increment of a fraction of 2 Pi were tried to give the real values at the time 
later by a fraction of the time period of the applied RF wave. Succeeding 
increment of the phase can give the real part values at the succeeding time 
sequentially. Consequently, this method can derive virtually the succeeding  

  

Real part Imaginary part 

Fig.6 Real and Imaginary parts of near fields of
gradually separating two wires.  

(feeding point :top of the wires) 
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Fig.5 Magnetic near fields of  
 gradually separating two wires. 
 (feeding point :top of the wires) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fields along time sequence. 

 Figure 6 shows the resultant field sequence obtained by using this Phase Injection 
Method. 
 

6. CONCLUSION 
  The two-wire line (a pair of thin wires) is one of the simplest and the most 
fundamental transmission one to study the EM wave transmission and radiation. 
As in the digital equipments, a lot of transmission lines are used to transfer the 
information signal between devices. The radiations from these lines are severe 
problems in design and development of digital equipments.  To reduce the 
radiation from them, it is very important to know the phenomena (RF energy 
transmission and radiation) from these line structures. In this paper, the 
experimental results were given summarized as, 
 1) After confirmation of the magnetic field near the line, several field patterns 
were shown. 2) Using obtained data of complex values, the wave propagation 
could be revealed after the Phase Injection Method to give the virtual motion 
pictures. 

According to our experime s, it would be true th t the line ends and curved 
portion of the line could cause the EM wave radiation. 

a  nt  

 
Acknowledgements : Authors express their grate thanks to Prof.R.Sato conducting 
the researches and to the JSPS giving the project researches. 

REFERENCES 
[1] R. Sato, "Transmission Circuit," Corona Publishing Co.,Ltd., Tokyo, Japan, 1963. 
[2] C.R. Paul, Introduction to Electromagnetic Compatibility, New York: Wiley-Intersciences, 1992. 
[3] Y.Itoh, K.Sato, H.Echigo, R.Sato “On EM Field around a 2 Conductor Parallel Line,” Tech. Rept. 

Of IEICE, no.EMCJ2000-68, pp.19-24, Oct. 2000. 
[4] K.Sato, Y.Itoh, H.Echigo, R.Sato “On Electromagnetic Wave Radiation out a 2 Conductor  

Parallel Line,” Tech. Rept. Of IEICE,  no.EMCJ2000-113, pp.73-78, Dec. 2000.  

Progress In Electromagnetics Research Symposium 2006-Tokyo, Japan, August 2-5 Session 1A1



Transmission Properties of Metal Hole Arrays in Terahertz Region 
 

M. Hangyo 
Institute of Laser Engineering, Osaka University, Japan 

F. Miyamaru 
Department of Physics, Shinshu University, Japan 

 
Abstract─Transmission properties of metal plates periodically perforated with holes (metal hole arrays, MHAs) have 
been investigated in the THz region. Since metals can be considered as a nearly perfect conductor in the THz region, 
the surface plasmon-polariton (SPP) does not exist on a flat surface. However, the SPP-like modes exist on MHAs 
and contribute to the enhanced transmission of THz waves. These SPP-like modes also contribute to the resonant 
polarization conversion of the transmitted THz waves. We show a variety of transmission phenomena for single- and 
double-layer MHAs. 
 
1. Introduction 
  Since the discovery of the extraordinary transmission phenomenon of light for metal thin films perforated with 
periodic subwavelength holes (metal hole arrays, MHAs), 1 the localization and propagation of light on structured 
metals have attracted much attention. The enhanced transmission of light through the MHAs has been explained by 
the excitation of surface plasmon-polaritons (SPPs) localized on their surfaces.2 The extraordinary transmission has 
been also reported in the microwave3 and terahertz (THz) regions.4 The difference between the optical and THz 
(microwave) regions is that the SPPs on flat metal surfaces in the THz region cannot be considered as "the surface 
waves" since the decay length perpendicular to the surface is more than hundreds of the wavelength. This is due to 
the fact that the metals are nearly perfect conductor in the THz region. However, Pendry and coworkers found 
theoretically that the SPP-like modes localized on perfect conductor surfaces exist when the surfaces has indentations 
(e. g., holes, dimples, grooves, etc.).5 Their prediction has been confirmed experimentally in the microwave region.6 
These structured surfaces are recognized as one of metamaterials. 
  In this paper, we show a variety of transmission phenomena attributed to the excitation of the SPP-like modes in 
the Pendry's sense (we call these modes just SPP hereafter) for MHAs in the THz region. The transmission spectra 
have been measured by the terahertz time-domain spectroscopy (THz-TDS) system.7 In this spectroscopy, transient 
THz pulses are emitted from a photoconductive antenna (PA) by exciting with a femtosecond laser and those 
transmitted through samples are coherently detected by another PA with a similar structure. From the wave forms 
measured with and without the samples, the transmittance and phase shift spectra are deduced by Fourier 
transformation. Polarization changes of the transmitted THz waves are measured by analyzing the polarization by 
wire-grid polarizers. 
 
2. Basic THz Transmission Properties of Metal Hole Arrays 
  Figure 1 shows the schematic structure of a MHA. The MHAs are made of aluminum and have a hexagonal 
structure. The structure is characterized by a hole diameter d, a spacing between holes s, and a thickness of the metal 
slab t. The characteristic frequency of this MHA is the cutoff frequency of a single hole  and the 
1st order diffraction frequency 

dc πν /841.1c =
3/2d sc=ν . In this paper, we deal with the cases . The wave forms 

measured with and without the MHA with d = 0.68 mm, s = 1.1 mm, and t = 
0.5 mm are shown in Fig. 2 (a).

dc νν <

8 A nearly single cycle input pulse changes to 
an oscillating wave form after transmitted through the sample. Figure 2 (b) 
shows the transmission and phase shift spectra obtained by the Fourier 
transformation of the wave forms in Fig. 2 (a). The transmittance shows the 
peak at 0.27 THz indicating that the MHA works as a bandpass filter. The 
transmittance at 0.27 THz is about 0.9, which is 2.5 times higher than the 
porosity of the holes 0.35. This means that the incoming THz waves are 
concentrated into the holes.  

ts

d

ts

d

Figure 1: Schematic structure 
of a MHA. 

  In order to investigate the role of the SPP in the enhanced transmission, 
the dependence of the transmission spectra on the in-plane wave number is 
measured by changing the incident angle. The results are shown in Fig. 3. 
The incident THz waves are p-polarized. The white dotted lines are 
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Figure 2: (a) THz wave forms 
and (b) transmittace and phase 
shift spectra of the MHA. 
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Figure 3: Transmission spectra as a function of the 
in-plane wave number. 

calculated assuming the dispersion of the SPP on a flat almost perfect conductor. The SPP dispersion curves agree 
well with the transmission peak except that the experimental transmission peak branches are slightly lower than the 
calculation. This discrepancy is attributed to the perturbation of the SPP on the flat surface by the hole arrays. This 
agreement supports the participation of the SPP in the enhanced transmission. In order to get further evidence for the 
participation of the SPP in the enhanced transmission, the dependence of the transmission spectra on the number of 
holes has been measured.9 The peak transmittance normalized by the hole area increases with increasing the number 
of holes indicating that the collective excitation (SPP excitation) is needed for the enhanced transmission. The surface 
localization of the SPP mode is confirmed by observing the shift of the frequency of the transmission peak by 
attaching thin dielectric films on the surface of the MHA10 and also by simulation.11

 
3. Polarization Properties of Metal Hole Arrays 
  Up to now, the polarization properties of the MHA have attracted less attention compared with the enhancement of 
the transmission. For the case of the metal gratings, Sambles and coworkers have found highly efficient resonant p-s 
polarization conversion phenomenon in the reflection geometry.12 They attributed this phenomenon to the resonant 
excitation of the SPP. We found large polarization change for the MHA when the incident angle is changed slightly 
from the normal as shown in Fig. 4.13 The wave forms are shown in the polarization-time space for (a) the incident 
wave, (b) transmitted wave for normal incidence, and (c) transmitted wave for the incident angle deviated by 3º from 
the normal. The polarization vector and the lattice vector connecting the nearest neighbor holes makes the angle of 
45º. As seen in Fig. 4 (c), the polarization changes with time evolution. The ellipticity and angle of rotation spectra 
are shown in Fig. 4 (d). Both spectra deviate from zero near the SPP frequency. This resonant frequency changes with 
the lattice constant as expected for the resonant SPP frequency.14 We also confirmed that the ellipticity and angle of 
rotation spectra are scarcely affected by the thickness of the MHA indicating that the phenomenon occurs at the 
surfaces.15 These results strongly indicate that the polarization conversion phenomenon is caused by the resonant 
excitation of the SPP. 
  
4. Double-Layer Metal Hole Arrays 4. Double-Layer Metal Hole Arrays 
  The double-layer MHAs show a variety of transmission properties owing to the geometrical freedom of the two 
layers (the structural parameters of the MHA in the following are d = 0.6 mm, s = 1.13 mm, and t = 0.25 mm).11 
Figure 5 shows the schematic configuration of the two layers. We measured the transmission spectra with changing 
the layer spacing h and lateral displacement p. The results are shown in Fig. 6 for p = 0 and 0.57 mm. The 

  The double-layer MHAs show a variety of transmission properties owing to the geometrical freedom of the two 
layers (the structural parameters of the MHA in the following are d = 0.6 mm, s = 1.13 mm, and t = 0.25 mm).

transmission spectra show Fabry-Perot-like interference patterns as seen in Figs. 6 (a) and (b). When h is large transmission spectra show Fabry-Perot-like interference patterns as seen in Figs. 6 (a) and (b). When h is large 

11 
Figure 5 shows the schematic configuration of the two layers. We measured the transmission spectra with changing 
the layer spacing h and lateral displacement p. The results are shown in Fig. 6 for p = 0 and 0.57 mm. The 
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compared with the wavelength, the transmission spectra for p = 0 and 0.57 mm are similar with each other as seen in 

s about interesting polarization changes. When the two layers are arranged keeping 

olarization properties of the double-layer MHAs can be used to develop new optical 

. Hole Arrays made of doped Si 
rious materials with a wide range of dielectric constant for hole arrays. 

Fig. 6 (d). In contrast, the spectra are quite different with each other when the spacing is less than the wavelength. For 
example, the peak transmittance for p = 0.57 mm is larger than for p = 0 mm. This unexpected transmission property 
could be explained by the near-field coupling of the SPP excited on the rear surface of the first layer and that on the 
front surface of the second layer. 
  The coupling of the SPPs bring

 

φin
θin

x z

y

the hexagonal or trigonal rotational symmetry, the polarization of the incident THz wave should be kept after 
transmission and this is confirmed experimentally. However, when the symmetry of the configuration is low as the 
case shown in Fig. 7 (two-fold symmetry), the polarization conversion occurs. The polarization conversion occurs 
only when the spacing of the two layers is less than the wavelength. This phenomenon could be also explained by the 
near field coupling of the SPPs. 
  The above transmittance and p
devices controlling the transmittance and polarization ranging from microwave to visible depending on the scale of 
fabrication. Further, the piles of MHAs, which are metallic photonic crystals, can be considered as a new group of 
optical devices. 
 
5
  In the THz region, we can use va
Appropriately doped semiconductors can be considered as metals in the THz region. In order to confirm the 
participation of the SPP in the enhanced transmission phenomenon, we fabricated the hole array with doped Si 
(P-doped). The structural parameters are d = 0.37 mm, s = 0.62 mm, and t = 0.4 mm. The doped Si changes from 
metallic to dielectric with decreasing temperature. Figure 8 shows the temperature dependence of the transmission 
spectrum. The transmission spectrum at 200 K shows a resonant peak at 0.48 THz and the height of this peak 
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Figure 6: Transmision spectra of the double-layer 
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Figure 5: Schematic configuration of 
the double-layer MHA. 

transmitted wave form at normal incidence, 
and (c) transmitted wave form at the incident 
angle of 3°. (d) Ellipticity and angle of rotation 
spectra. 
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Figure 8: Temperature dependence of the 
transmission spectrum of hole arrays made 
of doped Si normalized by the hole area.. 

components (a) parallel and (b) perpendicular to 
that of the incident wave. (c) and (d) are spectra for 
h = 0.24 and 1.00 mm, respectively. 

decreases with decreasing temperature. This means that the resonant transmission due to the SPP disappears with 

 properties of single- and double-layer metal hole arrays (MHAs) have been investigated by using the 

ptical components 
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freezing out of the carriers. This experimental fact demonstrates the role of the SPP in the enhanced transmission. The 
drastic increase of the transmittance at very low temperatures is due to complete freezing out of the carriers, which 
makes the sample the dielectric photonic crystal slab.  
 
6. Summary 
  Transmission
THz-time domain spectroscopy. From the dependence of the transmission properties on the incident angle, total 
number of holes, thickness of thin dielectric film on the MHA surfaces, carrier density for the Si hole array etc., the 
enhanced transmission is attributed to the SPP-like mode in the Pendry's sense. Resonant polarization conversion has 
been found for the incident angle slightly deviated from the normal and the mechanism is also attributed to the SPP 
excitation. For the double-layer MHA, anomalous transmission and polarization conversion are found and explained 
by the near-field coupling of the SPPs on the two MHA surfaces.  
  The properties of the MHAs presented in this paper can be used to develop a new group of o
from the microwave to optical regions such as filters and polarization converters. By introducing anisotropy and 
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Parallel Computing of Electromagnetic Field Based on Domain Decomposition Method 
 

Tianwei LI , Jiangjun RUAN and Daochun HUANG 

Wuhan University, China 
 

Abstract: The computing velocity and memory storage of Single PC are often limited in large-scale electromagnetic simulation 

by finite element method (FEM), parallel processing is an important means to overcome such problems. The domain decomposition 

method (DDM) which decomposes the domain by nodes dominating and suits for parallel computing was illustrated first in this 

paper; A 2D electrostatic model was built and decomposed by the DDM; And the FEM linear system of equations was solved by 

using parallel CG method on the distributed parallel system composed of 6 PCs, the effective speed up reaching 97.5% was 

satisfying. Especially for large-scale simulation which consists of more than millions of freedoms, the parallel processing reduces 

computing time and increases the computing velocity greatly, it’s the base on which large-scale 3D electromagnetic parallel 

computing. 
1. Introduction 

FEM is one of the most effective and widespread numerical methods in the electromagnetic field analysis, the coefficient matrix 

of the system of equation formed through FEM is sparse, symmetric and positive definite, and it is easy to resolve.  However, with 

the precision requirement of electromagnetic calculation increasing of engineering design and scientific research, the memory 

storage and calculation speed for large linear equation system formed by FEM are becoming bottleneck problem. Thus, to seek 

proper computing mode and solution algorithm to increase memory storage and reduce solution time is an important subject matter 

to FEM. 

Large-scale parallel computation has become a brand-new method for the science research and engineering technology, it may 

reduce the analog computation time greatly for most complicated analysis, and it has the potential to expand the computing 

capability from single processor to multiple processors. 

The CPU time approximately contains two parts in solving electromagnetic field problem by FEM, one is finite element matrix 

formation time and one is finite element system of equations solution time. Among them, the system of equations solution time 

occupies over 80%. Therefore, it is significant to study highly effective parallel algorithm for improving parallel efficiency. 

In analyzing large-scale electromagnetic field problem by FEM, the system of equations’ formation will consume large 

computing time due to the memory limitation of single computer in computing elemental stiffness matrix and assembling total 

stiffness matrix, and solving the system of equation is slow due to the limited storage. DDM is a kind of large granularity 

preconditioning algorithm, it combines flexible domain division and balancing load assignment strategy, forming and solving 

distributed system of equations on parallel computer. It overcomes the limitation of storage and speed of single computer. 

In this paper, the principle of DDM suited for parallel computing is expounded in section 2, parallelized conjugate gradient method 

is discussed in section 3 and a 2D electrostatic instance is carried in section4 on parallel computers which consists of 6 PCs 

connected by 1000M Ethernet. At last a conclusion is drew. 
2. Domain decomposition method 

According to the “divide and conquer” theory of DDM, the domain Ω is divided by p sub-domains (Ω1，Ω2，…，Ωp），

i j
i j≠

Ω Ω =∅I ，the number of nodes of each domain is approximately equal. Each sub-domain is assigned to one processor and 

calculated simultaneously. Data exchanging between neighboring sub-domains in each step of iteration during solving process is 

carried out by calling the function MPI_Send and MPI_Recv in MPI library conveniently. 

2.1 Initialize matrix stucture 

After the nodes in a sub-domain were assigned to one processor, they are classified into three types, internal, border and external. 

Three kinds of nodes are depicted in Tab.1, Ni, Nb and Ne are the number of internal, border and external nodes respectively. 

Tab.1 Three types of nodes 
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node node vector local serial numbers 

internal need update 0→Ni－1 

border need update Ni→Ni＋Nb－1 

external no update Ni+Nb→Ni＋Nb+Ne－1 

 
           (a)                               (b) 

Fig. 1 Organization of vector components 

For Proc0 in Fig.1 (a), node 0 is internal; node 1 and 2 are border; node 3, 4 and 5 are external. Ni＝1,Nb=2,Ne=3. Each node 

corresponds one row of the matrix, nodes 0, 1 and 2 in Proc0 correspond three rows, and the nonzero columns number are as 

follow: 

row nonzero columns 

0 0 1 2          

1 1 0 2 5       

2 2 0 1 5 3 4 

Further, there are 6 nodes in Fig.1 (b), a matrix of 6×6 can be formed due to each node corresponding to one row. The 

distributed matrix structure is as follow. A 3×6 matrix is on Proc0, a 1×6 matrix is on Proc1 and a 2×6 matrix is on Proc2. 

 row nonzero columns 

proc0 0 0 1 3 4   

 1 1 0 3    

 3 3 1 0 4 2 5 

proc1 4 4 0 3 2   

proc2 2 2 4 3 5   

 5 5 3 2    

For Proc0：Ni=1,Nb =2,Ne =3;For Proc1：Ni=0,Nb =1,Ne =3;For Proc2：Ni=1,Nb =1,Ne =2. 

For distributed parallel computing, the global serial numbers of rows and nonzero columns were transformed into local ones. 

After transformation, the result is as follows: 

 row nonzero columns 

proc0 0 0 1 3 4   

 1 1 0 2    

 2 2 1 0 4 3 5 

proc1 0 0 1 3 2   

proc2 0 0 3 2 1   

 1 1 2 0    

2.2 Calculate matrix components 

With regard to the distributed matrix data structure above, the component values of each nonzero column can be calculated 

through FEM according to the node coordinates and element structure information included in the processor. The component values 

then were assigned to the corresponding positions to form distributed sub-matrix Ai, which will make preparations for 

parallel computing.  
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3. Parallelized CG method 

Using parallelized CG method to solve linear equation:  

Ax=b                                               (1) 

The iteration formula is xk+1= xk +αkpk, when the residual kk xx −+1 2 is smaller than a supposed standard r0, then xk is the 

solution. CG method converges quickly, requires relative small memory, but when condition number cond(A) of matrix A is bigger 

than 102, the CG iteration is extremely slow. So, to incompletely Cholesky factorize matrix A, then A ≈ CCT. C is sparse the same as 

A, does not need extra memory. Transforms linear equation (1) into [C-1A (CT) -1] CTx=C-1b, thus, the condition number of matrix A 

can be improved, the iteration speed will enhance greatly. The flowchart of parallelized ICCG method is in Fig.2. 
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Fig.2  Flow chart of parallelized CG method 

4. Result and discussion 
4.1 Distributed parallel environment 

A parallel system connected with 6 high performance PCs through 1000M Ethernet was in Fig.3，and the configuration of PCs 

are in Tab.2. 

Tab.2 PC cluster configuration 

 

Fig.3 Distributed parallel computer                       
4.2 Instance  

A fixed capacity, ε= 8.85×10e-12 F/ m, the potential is 0V inside, and 1V outside. The aim is to simulate the potential 

distribution in the domain Ω .The partial differential equation is:  

－▽·(ε*▽u)=eq  in Ω   (eq=0.0)                             (2)          

Processor Pentium4 3.0 GHz 

Memory 1G   (p0 2G) 

Network 1000M Ethernet 

OS Fedora core 2 

MPI Mpich 1.2.6 
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Fig.4  2D FE model of fixed capacity                Fig.5  Partitioned domains of the FE model 

  
Fig.6 Time elapsed of medium and large-scale parallel computation 

 

                Fig.7 Efficiency speedup ratios                Fig.8 Computation time comparison between quadrilateral 

and triangle mesh （1043000 nodes） 

The domain Ω is divided into five parts in Fig.5, calculated by six processors, and the result is in Fig.4.Fig.6 and Fig.7 show that, 

as the numerical computation scale growing, parallel computation time grows, the efficiency speedup increases gradually; when the 

computation scale is invariable, the parallel computing time decreases as the number of processors increasing; Fig.8 shows that, the 

computing time of triangle element mesh is smaller than quadrilateral element mesh for large-scale computation; the parallel 
system gets satisfied speedup,and it has good extension. 
5. Conclusion 
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A parallel hardware and software environment was put up in this paper, and a 2D electrostatic problem was simulated in parallel 

based on it. The results showed that DDM combined with ICCG fitted for parallel computation well, the computation speed 

increased greatly. Satisfied speedup ratios and parallel efficiency obtained, and it has the capability to simulate large-scale 3D 

electromagnetic problem in parallel quickly and precisely. 
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Abstract: This paper presents new phase noise reduction and harmonics improvement methods of a 

microwave oscillator utilizing a corrugated coplanar waveguide (CCPW) electromagnetic bandgap (EBG) 
structure. Utilizing the inherent high-Q and unique spurious-free characteristics of a CCPW structure, we 
achieved a phase noise reduction of 8 dB at 1MHz offset and an increased second harmonic suppression of 10.16 
dB when compared to those of a conventional CPW oscillator without the CCPW structure.  
 

1. Introduction 
In the last several yeas, the EBG structure, which has its origin in optics, has been successfully applied to 

various microwave components such as power amplifiers [1], filters [2], and antennas [3]. There has also been 
strong interest in application of this structure in microwave oscillator applications. In this regard, several novel 
oscillator circuits utilizing the advantages of the EBG structure have been proposed, where planar integration of 
the chip is the primary concern. H.W. Liu et al. reported an efficiency improved VCO using a defected ground 
structure (DGS) as a harmonic tuner of the oscillator circuit at the expense of additional chip area [4]. Y.T. Lee 
et al. showed the phase noise enhancement of an oscillator using a DGS structure as a resonator component of a 
conventional oscillator circuit [5]. They used a DGS as a harmonic suppressor or a novel phase noise reduction 
component of a conventional oscillator circuit.  

However, DGS based oscillators inherently have the disadvantages of requiring an additional air gap between 
the perforated backside metal plane and a metallic shielding enclosure package [6],[7]. These problems in turn 
lead to reliability problems and difficulty in miniaturization of the chip. Also, the inherently required five or six 
periods of the unit cell in the implementation of such a structure may lead to a size problem. Additionally, the 
extra processing of the backside metal plane increases the complexity in a fully monolithic application of the 
chip. 

In this paper, a novel compact EBG based oscillator based on CCPW technology is presented for the first time. 
The CCPW structure, originally suggested as a low pass filter, is modified to the microwave resonator 
component of the oscillator circuit maintaining its advantages of uniplanar structure and compactness. The 
higher quality factor of the structure relative to that of the conventional CPW resonator plays a role of phase 
noise reduction of the oscillator circuit. In addition, the unique harmonic characteristic of the CCPW plays a role 
of harmonic suppression of the oscillator circuit, which leads to enhancement in DC-AC power efficiency of the 
circuit.     

2. Design of a CCPW Resonant Cell  

 
 

Fig. 1.   Corrugated CPW EBG structure. 
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Recently, a one-quarter wavelength deep high impedance CCPW structure [8] was proposed as a planar 
version of Sievenpiper’s high-impedance surface originally proposed in [9]. As can be seen in Fig. 1, the CCPW 
structure consists of a center strip separated by a narrow gap from two ground planes and a numerous high 
impedance slots running down into the ground planes of the structure. The width of the slot is much shorter than 
the wavelength and the depth of the slot is one-quarter wavelength. This one-quarter wavelength of each slot 
transforms the zero impedance of the ground plane to infinite, and forbids the propagation of transverse magnetic 
surface waves along the CPW line. Consequently, a deep stop-band corresponding to the bandgap of any other 
EBG structure is generated. Its inherent uniplanar characteristic and compactness in size solve the 
aforementioned problems of conventional DGS based oscillators and affords greater possibility of monolithic 
application of EBG structures. 

 

 
Fig. 2.  Simulated and measured S-parameter of the CCPW EBG resonant cell. 

 
Fig. 2 shows the simulated and measured S-parameter of the CCPW structure fabricated on a RT/Duroid 6010 

substrate having a dielectric constant of 10.2 and thickness of 25mil. The widths of the line and the gap of the 50 
ohm CPW transmission line were calculated as 0.9 mm and 0.55 mm, respectively. The depth of the slot was set 
to 5 mm, which corresponds to one quarter wavelength at the offset frequency of 6 GHz. 

In 1969, K. Kurokawa derived following equation for the frequency spectra of phase perturbation 
)(ωδφ of oscillating signal that is directly applicable to the phase noise estimation.  
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In his oscillator model, the active device for negative resistance generation was represented by 

ddd jXRZ +=  and the impedance of the resonator was represented by ccc jXRZ +=)(ω . The entire 

circuit was expressed as a series connection of dZ and )(ωcZ  where )(te  represents noise that may be present. 
From this equation, we can notice that the reduction of phase noise can be achieved by increasing the 

magnitude of )(' 0ωcZ , which means the drastic impedance variation of a resonator with respect to frequency at 
the point of resonance. 

In our CCPW resonator circuit, the cutoff frequency of 6 GHz near the resonator application frequency 
of 5.5 GHz causes the input impedance of the CCPW structure to vary rapidly from 50 Ω as the frequency 
deviates from the resonant frequency, which means the drastic increase of )(' 0ωcZ in equation (1). This 

increase of )(' 0ωcZ directly leads to the reduction of the frequency spectra of phase perturbation )(ωδφ and 
finally contributes to the reduction of phase noise of an oscillator circuit. The resonance frequency and 
subsequent oscillation frequency can be easily tuned by changing the depth of the CCPW structure.  

Another advantage of the CCPW resonator is its harmonic tuning characteristic. The harmonics of the 
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circuit can be suppressed by controlling the reflection phase of terminating resonance, as suggested in [11]. 
The length between the CCPW structure and the transistor was tuned to 9.09 mm in order to negatively 
feedback the second harmonic component signal of the oscillator circuit. In addition to this methodology, 
we utilized the inherent absence of any nth-harmonic in the S(1,1) characteristic of the 5.5GHz CCPW 
resonator so as to reduce the harmonics of the final oscillator circuit. From this suppression of harmonics, 
an increase in the fundamental output power and dc-ac power efficiency can be achieved. 

The total size of the CCPW EBG structure was only 12 mm × 9.5 mm, which corresponds to 0.57 λg × 
0.45 λg, where λg is the wavelength of resonance frequency.  

 
 

3. Design of Oscillators 
 

 
(a) 

 
(b) 

Fig. 3.   (a) Layout and (b) photograph of the oscillator with CCPW resonant cell. 
 
 

Fig. 3 shows the layout and fabricated result of a 5.5 GHz oscillator circuit. Negative resistance to compensate 
for the loss in the resonator was generated using a short stub in the source terminal of the transistor, which can 
be easily fabricated in CPW technology. Output matching stubs were tuned to meet the small signal oscillation 
condition, and the designed CCPW cell was implemented as a fundamental frequency selection component of an 
oscillator circuit. For comparison, a conventional CPW oscillator without the CCPW resonator structure was also 
designed and fabricated. The other components, i.e. except the CCPW structure, were set to be identical 
including the transistor, an Agilent ATF-36077 pHEMT. The fabrication processes of the oscillators were 
extremely simple without any via-hole process, pattern on the backside metal layer, or any lumped element 
soldering process. 
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4. Measurement Results 
 

 
(a)                                                                                            (b) 

 
Fig. 4.  Measured output spectrums of the CCPW based-oscillator.(a) Fundamental output power spectrum. (b) 

Harmonic characteristic. 
 
Fig. 4 shows the photograph of the measured fundamental output spectrum and harmonic performance of the 

fabricated CCPW oscillator. The oscillator exhibits a measured oscillation frequency of 5.41 GHz with a 
measured peak output of 3.50 dBm at a bias condition of Vds = 1.5 V, Ids=10mA, and Vgs = -0.2 V. The second 
and third harmonic suppressions were measured as -42.67 dB, and -27.00 dB, respectively. And, the phase noise 
is measured as -115.3 dBc/Hz at an offset of 1 MHz. 

 

 
(a)         (b) 
 

Fig. 5.  Measured output spectrums of the reference oscillator without the CCPW structure.(a) Fundamental 
output power spectrum. (b) Harmonic characteristic. 

 
In Fig 5, for comparison, we show the measured fundamental output spectrum and harmonic performance of 

the reference CPW oscillator with the CCPW in Fig. 3 replaced by a conventional CPW line without any 
corrugation. The output power of the reference oscillator oscillating at 5.58 GHz was measured as 0.381dBm 
with only a 32.51dB rejection of the second harmonic and phase noise of -107 dBc/Hz at 1MHz offset at the 
same bias conditions of Vds = 1.5 V, Ids=10mA, and Vgs = -0.2 V.  

These results constitute a 10.16 dB reduction in second harmonic suppression and resulting DC to AC power 
efficiency improvement of 7.2 % of the newly developed CCPW based-oscillator when compared to those of a 
conventional CPW oscillator without the CCPW structure. The phase noise improvement due to the higher phase 
slope of the CCPW-based oscillator is measured as 8 dB at 1MHz offset from the carrier frequency. 

5. Conclusion 
In this paper, a novel oscillator that incorporates a uniplanar CCPW EBG structure as a resonator component 
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of the conventional CPW oscillator circuit was presented. The introduction of the CCPW EBG structure was 
verified to be effective in reducing the phase noise and enhancing the harmonic performance and dc-ac power 
efficiency of the oscillator circuit in a very small chip size increment. The small size and uniplanar structure 
characteristic of the circuit can be easily applied to MMIC applications of the circuit while avoiding the 
drawbacks of the conventional DGS based EBG oscillators.  

 
ACKNOWLEDGEMENTS 
This research was supported by EMERC at CNU and ADD through the RDRC at KAIST. 
 
REFERENCES 
[1]  C. Y.Hang, V. Radisic, Y. Qian, and T. Itoh, “High efficiency power amplifier with novel PBG ground plane 
for harmonic tuning,”1999 IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 807-810, 1999. 
[2]  A. Griol, D. Mira, A. Martinez, J. Marti, and J.L. Corral, “Microstrip multistage coupled ring bandpass 
filters using photonic bandgap structures for harmonic suppression,”  Electronics Letters, vol. 39, pp. 68-70, 
2003. 
[3]  Y.J. Sung and Y. S. Kim, “An improved design of microstrip patch antennas using photonic bandgap 
structure,” IEEE Transactions on Antenna and Propagation, vol. 53, pp. 1799-1804, May 2005. 
[4]  H. W. Liu, X.W. Sun, and Z. F. Li, “A VCO with harmonic suppressed and output power improved using 
defected ground structure,” Proceeding of SBMO/IEEE MTT-S IMOC 2003, pp.  163-167, 2003. 
[5]  Y. T. Lee, J. S. Lim, J. S. Park, D. Ahn, and S.W. Nam, “A novel phase noise reduction technique in 
oscillators using defected ground structure,” IEEE Microwave and Wireless Components Letters, vol. 12, No. 2, 
pp. 39-41, February 2002. 
[6]  Zhengwei Du, Ke Gong, Jeffrey S. Fu, Baoxin Gao, and Zhenghe Feng, “Influence of a metallic enclosure 
on the S-parameters of microstrip photonic bandgap structures,” IEEE Transaction on Electromagnetic 
Compatibility, vol. 44, No. 2, pp. 324-328, May 2002. 
[7]  J. Z. Gu, W. Y. Yin, R. Qian, C. Wang, and X. W. Sun, “A wideband EBG structure with 1D compact 
microstrip resonant cell,” Microwave and Optical Technology Letters, vol.45, No. 5,  pp. 386-387, June 2005 
[8]  S. J. Kim, and N. H. Myung, “A new PBG structure:Corrugated CPW,” Microwave and Optical Technology 
Letters, vol. 39, No. 5, pp. 412-414, December 2003. 
[9]  D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, “High-impedance 
electromagnetic surfaces with a forbidden frequency band,” IEEE Transaction on Microwave Theory and Tech., 
vol. 47, pp. 2059-2074, 1999. 
[10]  K. Kurokawa, “Some basic characteristics of broadband negative resist-ance oscillator circuits,” Bell Syst. 
Tech. J., vol. 48, pp. 1937-1955, July 1969. 
[11] Q. Xue, K. M. Shum, and C. H. Chan, “Novel oscillator incorporating a compact microstrip resonant cell,” 
IEEE Microwave and Wireless Components Letters, vol. 11, No. 5, pp. 202-204, May 2001. 
 

Progress In Electromagnetics Research Symposium 2006-Tokyo, Japan, August 2-5 Session 1A4



A Novel Compact CPW Bandpass Filter with Super-wide 
Stopband Suppression 

 
Shry-Sann Liao, Pou-Tou Sun, Chin-Yen Tao, Hsien-Wen Liu, Chia-Yi Chien 

RF&MW Circuits Design Laboratory, Department of Communication Engineering, 
Feng-Chia University, 100, Wen-Hua Rd., Taichung, Taiwan 407, R.O.C. 

 
Abstract – A novel miniaturized CPW bandpass filter with super-wide stopband suppression was proposed 

in this study.  The folded and bended techniques have been considered. The advantages of this 
filters reveals a super-wide stopband suppression. The measured result of the S21 is less than -20 
dB up to 7.5GH. The dimension of this novel bandpass filter is only 20% of the circuit area 
compared to the conventional design. It is quite useful in the MICs and MMICs applications. 

 
Index Terms – Compact-size, coplanar-waveguide (CPW) structures, bandpass filter. 
 
1. Introduction 
 

The advantages of the coplanar waveguide (CPW) structures in the design of microwave and 

millimeter wave circuits are ease in series and shunt connections, no via hole, insensitive to the 

substrate thickness, and low dispersion effect. Recently, in the RF front-end of a modern 

communication system, bandpass filters with wide stopband and high selectivity are usually to enhance 

the overall circuit performance. There were some methods to design a bandpass filter with supper-wide 

stopband suppression.  

In [1], it used the corrugated structure to equalize the phase velocities of the two eigen-models in 

the propagation direction, and the designs bandpass filter had a wide upper stopband with satisfactory 

attenuation levels. [2] used parallel-coupled stepped impedance resonators (SIR) to design bandpass 

filters with an optimal rejection bandwidth. And the filters with SIRs of lower impedance ratios were 

found to have higher spurious resonant frequency and better rejection levels at 2f0, twice the passband 

frequency. The design was based on a theory that the even-mode and odd-mode phase velocities of 

suspended coupled microstrips can be equalized on a substrate with a proper suspension height. This 

property was applied to design the coupled stages of a parallel-coupled line filter so that the spurious 

response at 2f0 can be completely suppressed [3]. There are some advantages, like high selectivity, wide 

stop-band and low insertion loss (<3db) by comparing with above architectures each others. 

Disadvantage was to use substrate with high cost to achieve circuits, and the circuit areas were too 

large. 

Up to now, BPFs with low cost, small size and lightweight characteristic are the fundamental 

requirements for the components of communication system. In this report, we proposed a CPW 

bandpass filter occupied not only small circuit area, but also had super-wide stopband suppression. It is 

very useful in MICs and MMICs applications. 
 

2. Design Description 
 

In general, a series inductor was represented by a λ/8 short-end series stub. At the same length, a 

shunt open-end stub was equivalent to a shunt capacitor [4]. Ignoring RT in the series resonant circuits, 
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the transition band and the selectivity of the filter were influenced by the different values of inductor 

and capacitor. Traditionally, a bandpass filter was designed by using a series short-end stub and two 

shunt open-end stubs. However, this filter always exist the bad selectivity, and the transition band is not 

sharp enough. Adding a novel bandstop filter can overcome this problem [5]-[6]. All the structures 

obviously occupy too many circuit dimensions. Therefore, bending and folding techniques have been 

considered to reduce the circuit area further.   

The final circuit and its corresponding equivalent circuit are shown in Fig. 1(a)-(b), respectively. 

The length of the stub line which is shown in Fig. 1(a) is summarized in table I(a), and the values of 

the capacitors and inductors which are shown in Fig. 1(b) is summarized in table I(b). The 

transmission zero is controlled by the total length 4d1+4g1+w2. The second and third harmonic 

frequencies can be suppressed by adjusting the shunt capacitor C'.   
 

 

 
(a) (b) 

 
Fig. 1 (a) A novel compact-size CPW bandpass filter with super-wide stopband suppression. (b) The equivalent circuit of 

the (a). 
 
 
Table. I (a) Parameters of filter. (b) Values of the equivalent circuit. 
 

(a) 
 
 
 
 
 

(b) 

ω1 ω2 ω3 ω4 ω5 ω6 
6mm 0.25 mm 1.5 mm 1 mm 1.5 mm 0.75 mm 

ω7 g1 g2 d1 d2 d3 
2.875 mm 0.25 mm 0.5 mm 4 mm 1.75 mm 0.5 mm 

L L' C C' RT RT
' 

26.4nH 11.5nH 0.18pF 0.46pF 8Ω 2.3Ω 
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3. Simulation and Measured Results 
 
This new structure is applied to design a reduced-size CPW bandpass filter, and that is proposed 

and examined. The implemented circuits in this report were fabricated on the FR4 substrate (εr = 

4.7mm, tanδ = 0.022, thickness = 0.8mm, and metal thickness = 0.02mm). A full-wave Sonnet em 

simulator was used for all simulations, and an Agilent 8510C Vector Network Analyzer (VNA) was 

used for all measurements. The simulated and measured results are shown in Fig. 2(a)-(b). The 

simulated and measured results are summarized in Table II. It reveals that S21 is less than -20 dB up to 

7.5GHz.  
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(a) (b) 

 
Fig. 2. (a) The simulated result of the novel compact CPW bandpass filter at 2.4GHz with super-wide stopband 

suppression. (b) The measured result of the novel compact CPW bandpass filter at 2.4GHz with super-wide 
stopband suppression. 

 
 
Table. II. Summarized the measured and simulated results. 
 

 
 

Center 
Frequence 

(GHz) 

Bandwidth
(MHz) S21(dB) S11(dB)

Stopband 
Suppression 
(3.1~6GHz) 

Circuit Size
(mm2) 

Measurement 2.4 310 -2.86 -16.08 Yes 

Simulation 2.4 350 -1.20 -27.02 Yes 
12.25×14.5

 
 
4. Conclusions 

In this study, we have proposed a novel miniaturized CPW bandpass filter with super-wide 

stopband suppression. We are successful using the concept of frequency combiner with high Q factor 

which reveals supper wide harmonic suppression at least two and half times passband frequency. The 

proposed filter has the performances better than that of the conventional λ/4 bandpass filter, and the 

dimension of this novel bandpass filter is only 20% of the circuit area compared to the conventional 

design. The element size of the component can easily be fabricated by using standard printed-circuit 

etching processes. It is quite useful in the wireless communication systems. 
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Abstract - In this paper, we have used the non uniform transmission lines (NUTL) to design 
the output matching network of a non linear power amplifier. The immediate result, we have 
noticed, is that harmonics are sharply reduced by such use of  NUTL. On the other hand, we 
have applied cascaded NUTL to design microstrip filters in order to attenuate drastically 
harmonics in outbands. Hence, we have optimised the profiles of the different elements of non 
uniform filter in such way that each element removes harmonics of its adjacent elements. 
 
1.  Introduction 
 

To improve the performance of microwave circuits and particularly the non linear 
active or passive circuits, we have suggested the use of non uniform transmission lines due to 
their frequency behavior. This fundamental property allows the elimination of undesirable 
frequencies within the spectrum of interest. 
 

The analysis of such structures is given by a numerical calculation program based on 
the work of Hill[3], which consists of determining the general solution of the propagation 
distribution equation of the electric and magnetic field and deducing the accurate model of the 
transmission line. Therefore, several non uniform transmission lines with various profiles 
(linear, exponential, and hyperbolic) have been analyzed. Their contribution to control, reduce 
and eliminate the harmonic frequency, generated by the non linearity of some active and 
passive microwave circuits has been experimentally validated. 

 
2. Analysis of non uniform transmission lines 
 
In most propagation problems occurring in non uniform structures, the propagation equation 
can be put, handling some transformations, in the form of a Hill’s equation without a first 
derivative term [1]. 

0)()()(
2

2

=+ ξξ
ξ
ξ Ug

d
Ud                                                              (1) 

                       
U(ξ),   represents a voltage or one component of electric or magnetic filed, g(ξ) describes the 
non uniformity profile and ξ denotes the longitudinal coordinate. 
According to the Floquet theorem, the general solution U(ξ)  is a combination of two linearly 
independent particular solutions U1 (ξ) and  U2 (ξ) written as: 

 
U1 (ξ) = eµ1ξ.u1 (ξ)                                                           (2) 
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          U2 (ξ) = eµ2ξ.u2 (ξ)                                                     (3) 
 
         U(ξ) = A.U1 (ξ) + B.U2 (ξ)                                                   (4) 
 
A and B are determined by the boundary conditions, µ1 and µ2=-µ1 are the Floquet exponents. 
u1 (ξ), u2 (ξ) are π-periodical functions expressed by infinite sums of this form:  
 

∑
+∞

∞−

= ξξ nj
n eCu 2

,11 .)(                                          (5) 
∑
+∞

∞−

= ξξ nj
n eCu 2
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Where C1,N and C2,N are the coefficients of Fourier series expansion of u1 (ξ) and u2 (ξ), 
respectively. 
 
The above equation (eq.1) can be solved in a systematic fashion by: 
 a) First expanding g(ξ) in Fourier series : 
 

∑
+∞

∞−

= ξθξ nj
neg 2)(

                                                                    (6) 
 b) Second, truncating the infinite set of linear and inhomogeneous equations to solve for 
Floquet’ exponents. 
 c) Finally, expressing the general solution in terms of calculated coefficients and exponents 
as follows: 
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For that, the g(ξ) expansion combined with a particular solution (U1 (ξ) or  U2 (ξ)) are inserted 
in equation (1) to obtain the resulting infinite set of equations: 
 

∑
+∞=

−∞=
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p

p
ppnn ZnCCnjµ      ,        0..)2( 2 θ                                                              (8) 

It is noteworthy that, Fourier coefficients θn of g(ξ)  decay rapidly to zero, allowing hence the 
truncation of this series to a finite and low number of harmonics ensuring sufficient precision. 
According to H. Pointcarré and of L. Ince investigations [5], the determinant of the truncated 
system converges and may be written in the closed-form expression: 
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         With:   
01 θξ j=          (9)                        

  
Floquet exponents, solutions of this equation, are found iteratively by canceling the 
determinant ∆ (µ1,2) = 0, while the Ci,,n are assumed different from zero. 
 
 
Different NUTLs with several profiles have been analyzed using the Hill’s method. Their 
behavior in terms of reflection and transmission coefficients has been observed over a wide 
band of frequency. The effects of geometrical shapes have been assessed [7]. Results obtained 
of simple lines and exponential ones optimized to resonate at a fundamental frequency equal 
to 1 GHz (Figure 1) are shown in Figure 2. 
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Figure 1: Profiles of simple and non uniform transmission lines 
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Figure 2: Frequency behaviour of simple and non uniform transmission lines 
 
Actually, the non uniform transmission lines have a frequency behaviour which strictly 
depends upon their forms and their profiles of non homogeneity. While the transmission 
structures resonate in a regular multiple of fundamental frequencies, the non uniform lines 
resonate on frequencies which are different from integer multiples of fundamental.  
 
3. Applications of Non Uniform Transmission Lines 
 
3.1 Design of matching networks   
 
Figure 3 depicts a power amplifier example where input and output matching structures 
typically uniform, are replaced by non uniform transmission lines with appropriate profiles.  

Ampli

Non uniform  lines (B) Simple lines (A) 

Inpout 
Output 

output 
Matching

 
 

input 
matching 

 
 

 
                 Figure 3: Enhanced matching networks of a power amplifier.  
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The two circuits configurations are absolutely the same except. In the first case (A) 
transmission lines are simple and uniform whereas in the second one, transmission lines and 
stubs are chosen non uniform with appropriate profiles. The aim of using non uniform lines in 
this scheme is to reduce the amplitudes of harmonics at a convenient level while keeping the 
same behaviour at the fundamental frequency. Of course, this feature must not mismatch the 
power amplifier at the input nor at the output. 
 
3.2 Design of a rejection filter 
 
In a Stop band filter designed by simple uniform lines (Figure 4), we have replaced open 
circuit stubs with non uniform transmission lines resonating at the same fundamental 
frequency, but obviously at different harmonics (Figures5). 
 

 L         L       L
 
 
 
    λ /4    λ /4             λ /4               λ /4    

 
 

Figure 4: Stop Band filter designed by simple lines 
 

 L         L       L
 
 
 
         L1              L2               L3                 L4        

 

   

          W1                W2              W3              W4   
Figure 5: Stop Band filter designed by non uniform stubs. 
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Figure 6: Transmission Coefficient (S21) of  a Stop Band filter. 
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Figure 6 depicts Transmission coefficient of both filters with simple and non uniform stubs 
after optimization of dimensions (W1, W2, W3, W4 and L1, L2, L3, L4). With such choice, it is 
possible to achieve a better harmonic suppression in the rejection band while the response 
elsewhere is practically unaltered. 
 
 
4. Conclusion 
 
The analysis of non uniform transmission lines (NUTLs) using Hill’s equation is achieved 
using an efficient iterative method based on Floquet’ exponents determination. Once voltages 
and currents are defined over each point x along the transmission structure, S-parameters and 
other pertinent features can be easily derived. 
 The NUTLs have a frequency behavior which depends on their geometric profiles.  
This fundamental property was used for harmonic control in active and passive microwave 
circuits. Applications for matching as well as filtering structures have exhibited attractive 
results and showed good agreement with experience.  
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Spectral considerations about 2D paraxial and
non-paraxial beam solutions

R. Mahillo-Isla, M. J. González-Morales, C. Dehesa-Mart́ınez
University of Valladolid, Spain

Abstract—This work presents the spectral equivalence for the two steps given in the real prop-
agation space to obtain Gaussian beams from Complex beams. The Plane Wave Spectrum of both
solutions is obtained and a discussion about their differences is also presented.

Introduction

The fundamental steps to get Gaussian beams from Complex beams are known for both 2D and
3D scenarios [1], [2] and [3]. This work deals with the 2D problem. Such a work has been extensively
investigated in the real space [3], [2] and [4]. Two approximations are made so as to obtain 2D Gaus-
sian beams from Complex beams: the complex High Frequency-Far Field (HF-FF) condition, and the
paraxial condition [4]. In [4], both approximations are deeply studied giving the zones where Gaussian
beams are close to Complex beams under certain error criteria. Thus, with those given, the paraxial
regions are defined.

Up to the authors’ knowledge, the relations, in a spectral domain, between Complex beams and
Gaussian beams have not been discussed until now, although spectral techniques have been used in
scattering problems where Complex beams are involved [5]. So, the translation of both approxima-
tions in the spectral domain can achieve a deeper understanding of the solutions to problems in which
Complex beams are used as the illumination.

There are also scattering problems dealing with Gaussian beams where their spectral decomposi-
tion is made [6]. Solutions obtained by these means are also discussed.

The paper organization is the following. The spectral decomposition of 2D Complex beams is
obtained first. Second, 2D Gaussian beams are treated in order to get their Plane Wave Spectrum
(PWS). After doing this, the differences found between their spectra are discussed. Finally, the
conclusions of this work and the future research lines are summarized.

1. Plane Wave Spectrum of Complex beams

2D complex beam solutions are obtained by displacing a point source located at (xs, ys) a complex
quantity in the form:

xs = xs − ib cosφ
ys = ys − ib sinφ

}
, b > 0. (1)

The parameter b is related to the beam width at its waist and φ is the angle between the beam and
x axes (see Fig. 1). The fields obtained by means of this source translation are the same as the ones
calculated for the line current source along z axis carrying I0, replacing the real source coordinates
with the complex ones [3]. Assuming that time harmonic dependence is e−iωt, the electric field has
only one component, �E = ẑECB [3] and [4]:

ECB = −I0ωμ0

4
H

(1)
0 (k0R), R =

√
(x− xs)2 + (y − ys)2. (2)

1
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Two quantities arise in this radiation problem: the complex distance, R, and the complex angle, θθθ.
These complex polar coordinates are related to the complex cartesian coordinates in the usual way,

x = x− xs

y = y − ys

}
→
{

x = R cos θθθ
y = R sin θθθ (3)

The definition of the PWS P (α) for 2D waves can be found in [7]. For a 2D TE polarized wave, the
electric field can be expressed in the following terms,

E(r, θ) = I0

∫
C
P (α)eik0r cos(θ−α)dα, (4)

being (r, θ) polar coordinates (x = r cos θ, y = r sin θ), P (α) the PWS of the �E field, and C the path
in Fig. 2 for the contour integral. The aim of this section is to find the PWS of a Complex beam
expressed in (2).
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Fig. 1: Complex beam radiation problem. Fig. 2: Contour C used in equation (4).

For that, the integral representation of cylindrical harmonics of index ν is needed [8]:

Ψν(r, θ) = H(1)
ν (k0r)eiνθ =

e−iν π

2

π

∫
C
eik0r cos(θ−α)+iναdα. (5)

Accordingly, the Hankel function in (2), in which (R, θθθ) replace (r, θ), is represented by

H
(1)
0 (k0R) =

1
π

∫
C
eik0R cos(θθθ−α)dα. (6)

After some calculation, one finds that:

H
(1)
0 (k0R) =

1
π

∫
C
e−ik0(xs cos α+ys sinα)eik0(x cos α+y sin α)dα, (7)

which can be rewritten using real polar coordinates (r, θ), as:

H
(1)
0 (k0R) =

∫
C

1
π
e−ik0(xs cos α+ys sin α)eik0r cos(θ−α)dα. (8)

By substituting this result in (2), the definition given in (4) leads to the PWS of field ECB , which
may be written in terms of real quantities by using (1), as

PCB(α) = Ae−ik0(xs cos α+ys sin α)ek0b cos(α−φ), A = A = −I0ωμ0

4π
. (9)

2
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The term e−ik0(xs cos α+ys sin α) gives account for the real displacement of the source. This term will
appear also whether a line source is displaced from the origin to a real point (xs, ys). Then, for the
study of the PWS of Complex beams, without any loss of generality, both xs and ys can be taken as
0. If a new complex angle Θ is defined as Θ = θθθ − φ, what amounts to rotate the coordinate system
an angle φ, the PWS is

PCB(α) = Aek0b cos α, (10)

which is the PWS of a Complex beam related to a new coordinate system (ξ, η) adapted to the beam:
the beam axis is the ξ axis (Fig. 1). In the whole following discussion, the beam will be referred to
the (ξ, η) cartesian coordinate system.

1.1 Spectral aspects of Far Field Complex beams

At this point, it is going to be discussed the first of the two approximations applied to Complex beams
in order to get Gaussian beams. The result of applying the complex (HF-FF) to Complex beams
is called Far Field Complex beams. From a spectral point of view, it can be shown that Far Field
Complex beams are obtained by asymptotic evaluation of (6) using the Steepest Descent Path (SDP)
method. The integral in (6) has the form:

∫
C
ekq(α)dα, (11)

where
q(α) = iR cos(Θ − α). (12)

The saddle point is αSP = Θ. It is simple as q′′(α) = −q(α) �= 0. The SDP method approximation
consists in the use of a second order Taylor series approximation for q(α) around the saddle point,

q(α) ≈ iR
[
1 − 1

2
(Θ − α)2

]
. (13)

Since no further approximations are made, the translation onto the angular spectral domain is that
for each complex angle Θ, the function q can be quite well approximated with its second order Taylor
series. This means that q is a smooth function around Θ, as Θ is determined through tan Θ = η

ξ−ib .
By doing the required calculations in order to follow the SDP method, one retrieves the expression

of Far Field Complex beams [3] and [4]:

EFFCB = −I0ωμ0

4

√
2
π
e−i π

4
eik0R

√
k0R

, |k0R| � 1. (14)

2. Plane Wave Spectrum of Gaussian beams

Gaussian beams are obtained when applying the paraxial condition to (14) [3].

EGB(ξ, η) = −I0 ωμ0

2
√

2π
e−i π

4
ek0b√

k0(ξ − ib)
exp

( −η2

W2(ξ, b)

)
exp

[
ik0

(
ξ +

η2

2R(ξ, b)

)]
, (15)

where W = [ 2b
k0

(
1 + ξ2

b2

)
]1/2 is the beam width and R = b2

ξ (1+ ξ2

b2 ) is the curvature radius of the beam
phase front.

Once the expression for the PWS of Complex beams has been obtained, it is mandatory to get
the corresponding expression for Gaussian beams. Before doing this, it is quite convenient to remark
some topics. Gaussian beams are not solutions of the 2D Helmholtz wave equation; they are solutions
of the 2D paraxial wave equation, indeed. So, the definition of PWS of Gaussian beams has not sense
strictly speaking, since only solutions of Helmholtz wave equation are subject of this decomposition.

3
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Gaussian beams profile at their waists is used in order to define a expression for theier PWS. Notice
that if the PWS obtained is introduced in (4) for the purpose of retrieving the field at any space point,
the field obtained is a valid solution of 2D Helmholtz wave equation.

As it has been seen, to obtain the PWS of Gaussian beams requires the evaluation of is expression
(15) at ξ = 0+, for instance,

EGB |ξ=0+ = −I0ωμ0

4

√
2
π

ek0b

√
k0b

exp
(
− η2

2b/k0

)
. (16)

As EGB|ξ=0+ is a Gaussian function of η, (16) can be expressed in the form of an inverse Fourier
transform of a Gaussian function as well. In fact, the expression of the Fourier transform of EGB |ξ=0+

is:

F
{
EGB |ξ=0+

}
.= FE(κ) = −I0ωμ0

2
ek0b

k0
exp

(
− κ2

2k0/b

)
, (17)

so that,

EGB|ξ=0+ =
∫ +∞

−∞

1
2π
FE(κ)eizκdκ, (18)

and after performing a change of variable κ = k0 sinα, (18) becomes:

EGB|ξ=0+ =
∫

C∗

k0

2π
cosαFE(α)eik0η sinαdα. (19)

The path C∗ is the contour C in Fig. 2 displaced π
2 towards left. The functions involved in the

integral are regular functions (there are neither poles nor branch points in the integral). Thus, C∗
can be deformed into contour C without more ado. What it is wanted to find is the PWS of Gaussian
beams, i.e., PGB(α) in

EGB =
∫

C
PGB(α)eik0(ξ cos α+η sinα)dα. (20)

By identifying the evaluation of (20) at ξ = 0+ with (19), PGB(α) is obtained:

PGB(α) = A cosαek0b(1− 1
2

sin2 α), (21)

where A = −I0 ωμ0

4π as in (9). In [6], a very similar procedure is made in order to get a spectral
decomposition of Gaussian beams. In order to give a deeper understanding of this result, the differences
observed between expressions (10) and (21) are going to be discussed.

As the trigonometric functions can be expressed in terms of coordinates, one can see that, when
η � |ξ − ib| (this fact is used to apply paraxial condition in the real space domain [3] and [4]), α ≈ 0.
The paraxial condition, from an angular spectral point of view, consists in the use of Taylor series at
α = 0 of the trigonometric functions. For the cosine function,

cosα = 1 − 1
2
α2 +O(α4). (22)

It is useful to maintain a trigonometric function so as to change into wavenumber spectral domain.
So, one can use the paraxial approximation of the sine function (sinα = α + O(α3)) to substitute α
in (22):

cosα = 1 − 1
2
[sin2 α+O(α6) + 2 sinαO(α3)] +O(α4) = 1 − 1

2
sin2 α+O(α4), (23)

which explains the exponential dependence of the Gaussian beam PWS (21).
The term cosα in (21) means an angular limit in the propagation, since at α = ±π

2 equals zero;
so, it gives account of the lack of propagative behavior along the η axis of Gaussian beams.

4
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Going back to the discussion presented at the beginning of this section, the comparison between
the solution of the 2D Helmholtz wave equation with PWS given in (21) and 2D Gaussian beam can be
deeper studied in order to check the space regions where the Gaussian beam is a good approximation
to the 2D Helmholtz wave equation under a certain criterion. That is to compare the field provided
by a Gaussian illumination,

EGI =
∫

C
PGB(α)eik0r cos(θ−α)dα, (24)

with the Gaussian beam expression (15).

Conclusions

The complex HF-FF condition approximation has been revealed as the Steepest Descent Path eval-
uation of the Plane Wave Spectrum integral. The SDP method, in this case, means to substitute q(α)
with (13) in the integral (6). This result checks the previous work [4], that states the regions in which
the complex HF-FF condition is held. For example, if k0b � 1, almost the whole space fulfills the
complex HF-FF condition. But points electrically near the branch points of R, η = ±b, will never
meet this condition, as q(α) is not regular at such points.

The paraxial condition applied in the real propagation space leads to gives conditions in the angular
spectral domain. The first one is a truly angular condition at the beam axis, and the other condition
defines the lack of propagative behavior along the η axis. In a future work, the comparison between
the solution of 2D Helmholtz wave equation with Gaussian illuminations and Gaussian beams with
the same profile at its waist will be done.

The steps followed in order to obtain Complex beams PWS also show how translations in real
propagation space are translated into phase changes in the angular spectral domain, and rotations in
the real propagation space give translations in the angular spectral domain. This could be anticipated,
since the PWS is closely related to the Fourier Transform, as seen when obtaining the PWS of Gaussian
beams.
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4. E. Gago Ribas, M. J. González Morales, and C. Dehesa Mart́ınez. Analytical Parametrization of

a 2E Real Propagation Space in Terms of Complex Electromagnetic Beams. IEICE Transactions
on electronics, E80-C(11):1434–1439, 1997.

5. J. W. Ra, H. L. Bertoni, and L. B. Felsen. Reflection and Transmission of Beams at a Dielectric
Interface. SIAM Journal of Applied Math., 24(3):396–413, 1973.

6. Em. E. Kriezis, P. K. Pandelakis, and A. G. Papagiannakis. Diffraction of a Gaussian beam from
a periodic planar screen. Journal Opt. Soc. Am. A, 11(2):630–636, 1994.

7. P. C. Clemmow. The Plane Wave Spectrum Representation of Electromagnetic Waves. Oxford
University Press & IEEE Press, Oxford & New Jersey, 1 reissued edition, 1996.

8. A. Sommerfeld. Partial Differential Equations in Physics. Academic Press, New York, 1949.

5

Progress In Electromagnetics Research Symposium 2006-Tokyo, Japan, August 2-5 Session 1P1



Computation of Scattering from

Randomly Distributed Dielectric Circular Cylinders

N. Nakashima and M. Tateiba
{norimasa, tateiba}@csce.kyushu-u.ac.jp

Faculty of Computer Science and Communication Engineering, Kyushu University
6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan

Abstract
A Monte Carlo simulation is done for electromagnetic (EM) wave scattering from randomly distributed 4225

cylinders. The scattered field is computed by means of the boundary element method (BEM) with our fast

techniques: a multilevel fast multipole algorithm (FMA) and a generalized minimal residual (GMRES) iterative

solver with two-step preconditioning (TSP). Numerical examples show the normalized power densities for scattered

far and near fields for regularly and randomly distributed cylinders. We discuss the characteristics of scattered

fields by random medium.

1 Introduction
Multiple scattering by many random particles has been theoretically studied by many researchers and
applied to communication and remote sensing technology. One of authors proposed a new multiple
scattering theory [1] and a method for the estimation of effective medium parameters [2]. However, there
are some limits to the particles of random medium. In order to deal with random media composed of
several kinds of particles in shape, size and material, we consider computational analysis as a suitable
method and use a Monte Carlo simulation.

The BEM is widely used for numerically calculating EM wave scattering. In computation of EM wave
scattering, the most time-consuming part rises from solving a linear system of L equations derived by
the BEM. Our previous works presented a multilevel FMA [3] and a GMRES method [4] with TSP [5].
They reduce both the complexities and the net quantities of computation and memory drastically.

This paper treats EM wave scattering from randomly distributed cylinders. We carry out a Monte
Carlo simulation and numerically estimate the normalized average power density for the coherent com-
ponent and incoherent component of scattered waves. Aforementioned fast techniques are applied to
the computation of scattered near and far fields from a realization of random medium. In numerical
examples, we assume a random medium containing 4225 cylinders.

2 Formulation
Let us consider the two-dimensional problem of EM wave scattering by N infinitely long cylinders in a
vacuum. The relative permittivity and permeability of the ith cylinder are ε(i)

r and µ
(i)
r , respectively.

The wave numbers of the vacuum and i-th cylinder are given by k0 and ki = k0

√
ε

(i)
r µ

(i)
r , respectively.

Each axis of the cylinders is parallel to the z-axis of the cylindrical coordinate system. We formulate this
problem in the electrical field integral equations (EFIE) for TM wave and in the magnetic field integral
equations (MFIE) for TE wave. The z-components of unknown fields ψz and ∂ψz/∂n are given by

ψinc
z (ji) =

1

2
ψz(ji) −

1

4j

N∑
n=1

[∫
Cn

{
ψz(j′

n)
∂H

(2)
0 (k0|ji − j′

n|)
∂n′

n
− H

(2)
0 (k0|ji − j′

n|)
∂ψz(j′

n)

∂n′
n

}
dl′n

]

(1)
0 =

1

2
ψz(ji) +

1

4j

∫
Ci

{
ψz(j′

i)
∂H

(2)
0 (ki|ji − j′

i|)
∂n′

i

− H
(2)
0 (ki|ji − j′

i|)α(i)
r
∂ψz(j′

i)

∂n′
i

}
dl′i

(i = 1, 2, . . . , N). (2)

Here, Ci is the boundary of the ith cylinder, and ρi and ρ′
i are the observation and integration points on

Ci, respectively. The H(2)
0 is the zero order Hankel function of the second kind, and ∂/∂ni is the outward

normal derivative on Ci. The α(i)
r is a relative medium constant of the ith cylinder. We fixed at ψz = Ez

and α(i)
r = ε

(i)
r for TM wave and ψz = Hz and α(i)

r = µ
(i)
r for TE wave. The ψinc

z is an incident wave.
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The integral equations can be discretized through the BEM. Dividing each boundary intoMi boundary
elements and using the point matching method, we obtain a dense linear system of L equations Ax = b,
where L = 2(M1 + M2 · · · + MN). The square coefficient matrix A is composed of four blocks of L/2
order. These four blocks are further composed of subblocks:

A =

[
Aout Bout

Ain Bin

]
=

⎡
⎢⎢⎢⎢⎢⎣

aout
11 · · · aout

1N bout
11 · · · bout

1N
...

. . .
...

...
. . .

...
aout

N1 · · · aout
NN bout

N1 · · · bout
NN

ain
11 0 bin11 0. . .

. . .
0 ain

NN 0 binNN

⎤
⎥⎥⎥⎥⎥⎦
. (3)

Here, the notation 0 is zero matrix. The subblocks aij , bij are the matrix of Mi by Mj. The notations
“out” and “in” mean outer and internal fields of cylinders, respectively. The right-hand side vector b is
composed of 2N subvectors:

b = (b1, b2, · · · , bN , 01, 02, · · · , 0N ). (4)

The notation bi and 0i are the subvector of Mi order and the zero vector of Mi order, respectively.

3 Computation of scattered wave
Solving the linear system by an iterative method needs much computation time and memory. As shown
in equation (3), the upper half of coefficient matrix is dense and the memory complexity is O(L2). In
solving the linear system by using an iterative method, the computational complexity is estimated at
O(L2) per one iteration due to the product of the upper half of coefficient matrix and a vector. We
apply our multilevel FMA [3] to the computation of the product and reduce the computational and
memory complexities. On the other hand, the lower half of coefficient matrix is sparse and the memory
complexity is O(L). The computational complexity is estimated at O(L) for the product of the lower
half of coefficient matrix and a vector. Because both the complexities are very low, we directly compute
the product.

Our multilevel FMA is similar to the Multilevel Fast Multipole Algorithm (MLFMA) [6], proposed by
W. C. Chew et al., but differs in the computation stages. Our FMA is based on Graf’s addition theorem
while the MLFMA on the integral representation of the Bessel function. The addition theorem becomes
inefficient for some computations of such a high frequency region that a cell size is larger than a certain
value. Then we apply the Fast Fourier Transform (FFT) to reduce the inefficiency. The computational
complexity of our algorithm is theoretically estimated at O(L log2 L) and slightly larger than that of the
MLFMA [7]. The memory complexity is O(L logL) both for the MLFMA and our algorithm. However,
we treat a volume scattering problem in this paper, and the computational and memory complexities are
estimated at O(L) which is the same as the MLFMA.

Our FMA can expedite the computation of scattered far and near fields. The far field is computed at
the azimuthal directions θi for the x-axis. The θi is given by

θi =
2π
P (i = 0, 1, · · · , P − 1), P = 2c > 4p+ 1 > 2c−1, (5)

where the c is a natural number and p is the truncation number. In the near field computation, we
determine an analytical region and divide it into the same size 4l cells. The centers of the 4l cells
correspond to the observation. Here l is related to the resolution for the image of the near field and given
by 2l > 4p + 1 > 2l−1 in this paper. The truncation number p depends on the size of the analytical
region.

Next we consider the choice of an efficient iterative method. We can see from equation (3) that the
coefficient matrix A is non-Hermitian. Many iterative methods for non-Hermitian have been proposed
but the fastest and the most efficient iterative method is not found yet. Our previous works showed
the comparison among well-known 11 iterative methods in terms of iteration number, computation time
and the amount of used memory up to convergence [5][8]. It is found from some numerical results that
GMRES method [4] converges fastest though the number of iteration may be more than other iterative
methods. This is caused by the fact that the number of executions of matrix-vector products in an
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iteration is one for GMRES method and two for many other iterative methods for non-Hermitian. The
frequency of matrix-vector products up to convergence becomes smaller for GMRES method than for
other methods; thus the computation time is shorter for GMRES method. Consequently we conclude
that GMRES method is currently the most effective iterative method for fast computation of scattering
from many cylinders.

Another advantage of GMRES method over other iterative methods is to be free from breakdowns
in iterative process. When we assume non-singular coefficient matrix and ignore the round-off error, the
iterative process of GMRES method converges to a numerical solution with required accuracy. However,
the amount of used memory may be much more for GMRES method than for other methods because it
increases with the number of iterations. To minimize memory increment, we apply efficient precondition-
ings to iterative process. We present TSP combined with half reduction and block Jacobi [5].

We propose the following two preconditioners:

K1 =

[ −A−1
in 0

B−1
in B−1

in

]−1

and K2 = −ÃoutA−1
in + B̃outB−1

in . (6)

Here, Ãout and B̃out are the block diagonal matrices composed of aout
11 to aout

NN and bout
11 to bout

NN , respectively.
Before solving the linear system Ax = b, we apply K1 as a right preconditioner. Then we can obtain the
preconditioned linear system whose number of unknowns is reduced in half of the original one. In solving
the preconditioned linear system by GMRES method, we apply a standard block Jacobi preconditioning
to the iterative process. The block Jacobi preconditioner is given by K2.

The feature of TSP is to apply two preconditioner. The aim of the first preconditioner K1 is just to
reduce the number of unknowns. We do not take account of the improvement of the convergence rate
for GMRES method. The convergence is improved by the second preconditioner K2. We use a standard
Block Jacobi preconditioner in this paper. The reduction of the number of unknowns leads to suppress
the increment of memory use. However, the net computation time is not reduced because we have to
compute matrix-vector product for two blocks Aout and Bout in spite of the use of K1.

4 Coherent and Incoherent components of scattered field
The characteristics of scattering from random medium containing many scatterers are expressed in terms
of statistical quantities. Thus we prepare Ns realizations of random medium containing N cylinders.
The method to generate a realization of random medium is shown in [9]. Briefly speaking, N cylinders
regularly placed in advance are randomly moved in order that all the cylinders may not overlap each
other.

The scattered field from a random medium is constituted of the coherent component and the incoherent
component. They are estimated as the statistical quantities. If the scattered fields for Ns realizations
of random medium are ψs(1)

z , ψ
s(2)
z , . . . , ψ

s(Ns)
z , then the coherent component of scattered fields from

the Ns realizations ψco
z and the incoherent component of scattered field from the i-th realization ψinco(i)

z ,
respectively, are given by

< ψco
z >=

1

Ns

Ns∑
i=1

ψs(i)
z and ψinco(i)

z = ψs(i)
z − ψco

z . (7)

The average power density of each component normalized by incident field is given by these equations:

Pco = |〈ψco
z 〉|2/|ψinc

z |2 and Pinco =

(
1

Ns

Ns∑
i=1

∣∣ψinco(i)
z

∣∣2
)
/|ψinc

z |2. (8)

5 Numerical Examples
We consider scattering from regularly and randomly distributed 4225 cylinders in a square region whose
fractional volume is 0.1. Here the scattered field has only coherent component for the regular distribution
because the combination of distribution of cylinders is only one. The radii, relative permittivities and
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relative permiabilities of cylinders are the same for all cylinders and assumed as ka = 1.0, εr = 2.0 and
µr = 1.0. The number of realizations of random medium Ns is 100. We assume TM plane wave incidence
and put l at 10 in the computation of scattered near field from each realization. For scattered far field,
we check the energy conservation by using the optical theorem and assure ourself that it is satisfied at
95 percent. The computation is performed on Compaq Alpha 21264 with 667 MHz CPU and 4GB main
memory.

The normalized power densities of scattered far fields are shown in figure 1 (a) for regular distribution
and figure 2 for random one. We can find that the peaks of the coherent component for the regular
distribution are suppressed except for the forward scattering direction. The incoherent component shows
the maximum and minimum peaks around the backward and forward directions, respectively.

Numerical results for near fields are shown in figure 1 (b) and figure 3. For the regular distribution,
strong peaks are found around ky = 0, ±60, ±120 in forward scattering direction: kx < 0. These strong
peaks may depend on the low-order Floquet modes. It can be found from figure 3 (a) that the regular
peaks in y direction are disappeared for the random distribution. The incoherent component is large in
the region of 100 < kx < 200 and |ky| < 100. In this area, a peak of coherent component is also found.
We imagine that the effect of the random distribution of cylinders is significant around the backward
scattering direction rather than the forward one.

6 Conclusion
EM wave scattering from randomly distributed N cylinders is considered, and the normalized average
power densities for coherent and incoherent components of scattered fields are estimated by means of
the Monte Carlo simulation. In the computation of scattered field, our multilevel FMA is applied to
GMRES iterative solver with TSP. Numerical examples show the case of 4225 dielectric cylinders. The
peaks of coherent component of scattered field are suppressed except for forward scattering direction.
The incoherent component of scattered field becomes maximum and minimum around the backward and
forward scattering directions, respectively. We suppose from these results that the effects of the random
distribution of cylinders is significant around the backward scattering direction.

As future works, we calculate the coefficient of coherence attenuation. We will simulate scattering
from random medium contained by over 10,000 cylinders with arbitrary cross section.
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Figure 1: Normalized power densities for scattered near (right) and far (left) fields from regularly placed
cylinders.
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Figure 2: Normalized average power densities for the coherent (left) and incoherent (right) components
of scattered far field from randomly distributed cylinders.
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diamagnetic levitating magnets

 

Joe Nhut Ho & Wei-Chih Wang

 

Mechanical Engineering Department
University Of Washington, Seattle WA 98195, USA

 

Abstract

 

This paper analyzes the static stability of a diamagnetic levitating rotor. Balancing forces is necessary but
does not guarantee stable levitation. Restoring forces (minimizing potential energy) of a levitating magnetic around
the zero force point is also required. An equivalent statement is that any small displacement from the zero force point
causes the magnet to return to the zero force point. A derivation using this concept gives a stability criterion for cylin-
drical levitating magnets. The criterion controls the spacing of the diamagnetic plates needed to stably levitate a mag-
net. This was verified by experiments using regular graphite and pyrolitic graphite plates. When adjustment for plate
thickness is included, theoretical stability requirements and experimental results match well.

 

Introduction

 

For an object to stably levitate the potential energy must be a local minimum at the levitation point. Accord-
ing to Earnshaw’s theorem no configuration of bodies interacting with 1/

 

r

 

2

 

 forces can be statically suspended [1-2].
Thus stably levitating a magnet is impossible because no local energy minimums exist. However, this theorem does
not include dynamic and quantum mechanical systems thus planets can stably orbit stars and electrons in atoms can
remain in their energy levels around an atomic nucleus.

Diamagnetic levitation is a combination of dynamic and quantum mechanical effects and are excluded from
Earnshaw’s theorem. When a magnet approaches a diamagnetic material, the repulsive force grows stronger and vice
versa. The repulsion force its self is generated by quantum mechanical interaction between the magnet’s field and the
atoms of diamagnetic materials [3-4]. This paper will examine how a magnet is stably levitated for the system
described in [5].

 

Stability Analysis

 

The levitation points can be found by balancing forces. There two possible levitating positions shown in fig-
ure 1, one above and below the suspending magnet. These points can be estimated with fairly good accuracy by
applying the Lorentz force law and then using a multipole expansion for the suspending magnet’s field. If one
assumes a thin, cylindrical magnet, the levitation points can be found from this expression:

 

Figure 1: The lower and upper stability points. The arrows show
the directions of the forces the magnets exert on each other.

Figure 2: FBD for levitating magnet suspended
between two horizontal diamagnetic plates
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1   (+ if 

 

M

 

L

 

 is negative, – if 

 

M

 

L

 

 is positive)

where 

 

R

 

L

 

, 

 

M

 

L

 

, and 

 

H

 

L

 

 are the radius, magnetization, and thickness of the levitating magnet and 

 

R

 

, 

 

M

 

, and 

 

H

 

 are the 
radius, magnetization, and thickness of the suspending magnet. For the lower levitation point, 

 

M

 

L

 

 is positive (attrac-
tive) and for the upper one 

 

M

 

L

 

 is negative (repulsive).
The required diamagnetic strength and maximum plate spacing are governed by how difficult the equilib-

rium points are to stabilize. Stability is often found by examining potential energy directly [1, 2], however, this can be
done indirectly by examining forces affecting a levitating magnet. Net conservative forces and potential energy of an
object are related by [6]:

2

For stability, the potential energy must be minimized around the levitation point and can be expressed in terms of 
cylindrical coordinates by

3 a)    and b)    

for an axis symmetric system like this one. Expressing these requirements in terms of net forces gives

4 a)    and   b) 

Equations of 4 are more useful than 3 because forces can be calculated more easily from the Lorentz force law than 
potential energy. Equations 4 expresses that stability requires opposing (restoring) forces for any small displacement 
from the equilibrium position.

The forces acting on the levitating rotor are weight, magnetic attraction/repulsion from the suspending mag-
net, and stabilizing forces from the diamagnetic plates (see figure 2 for a free body diagram). One possible way to
model the forces from the diamagnetic plates near the levitation point is to model them as linear springs by adding
terms with the form –

 

constant

 

 

 

×

 

 

 

displacement

 

. The reasoning for this is that the potential energy well around a levita-
tion point should be parabolic shaped (as least for a first order approximation) [1, 2]. Adding two additional term rep-
resenting the effects of the diamagnetic plates gives the following force balance:

5

where the first term is the magnet’s weight, the second is the magnetic forces, and the last two terms are from the dia-
magnetic plates which oppose any displacements (where 

 

z

 

' and 

 

r

 

 are displacements from the levitation point 

 

z

 

0

 

 

). Since the suspending magnet is cylindrical, 

 

B

 

 has only has radial and vertical components. The next step 

is to find how large (or how “stiff”) 

 

¥

 

z

 

 and 

 

¥

 

r

 

 need to be in order maintain stability. Ultimately this sets a maximum 
limit about how far away a specified diamagnetic material can be to trap a levitating magnet (given a material with 
magnetic susceptibility 

 

χ

 

, what is the maximum plate spacing that will still stably levitate a magnet).
First, the analysis will be done for the vertical direction. Applying 4a to 5, performing the cross product,

integrating along the radial direction, moving 

 

¥

 

z

 

 to the other side, and keeping only the vertical components pro-
duces:

6

where  and  are the top and bottom of the levitating magnet centered at the levitating 

point (see figure 1). Using a multipole expansion

7  

and 

 

r

 

 = 

 

R

 

L

 

 gives (since levitating magnet is at center axis.
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8

or assuming a thin cylindrical magnet gives:

9

Equation 8 is easier to examine the stability of the upper and lower levitation points. For small magnets, 

 

z

 

0

 

 is much 
larger than 

 

R

 

L

 

 so for the lower levitation point the left side of equation 8 is always positive. This means the lower 
point is unstable unless 

 

¥

 

z

 

 is greater than the positive quantity on the left side. Thus, diamagnetic plates are required 
for stabilization. For the upper point, however, 

 

M

 

L

 

 is negative which makes the left side negative. So 

 

¥

 

z

 

 could be zero 
and the upper point would still be negative. Thus, no diamagnetic plates are needed to vertically stabilize the upper 
point. Note that equation 8 can be evaluated at the levitation point 

 

z

 

0

 

 to find the required diamagnetic stiffness to sta-
bilize the lower point. This will be done in the next section to find plate spacing.

For the radial direction, applying equation 4b to 5, one gets:

10

and doing the cross product and integrating the circumference produces (and ignoring the vertical component):

11

The term  is always negative around the vertical axis (because the 

 

z

 

 component decreases away from

the axis) so the integral is always negative. Continuing the analysis, using a multipole expansion for 

 

B

 

z

 

:

12

and substituting this gives a pair of expressions

13

or for small magnet approximation:

14 .

Again the second expression is easier to interpret. The upper point is unstable since 

 

M

 

L

 

 is negative (must be oriented 
the opposite direction of the suspending magnet for repulsion) and the left side is positive. A diamagnetic cylinder is 
required stabilize a magnet radially [1]. The lower point is stable and no diamagnetic cylinder is needed.

 

Analysis for plate spacing

 

The minimum value for 

 

¥

 

z

 

 has

 

 been found in the previous section. But the value of 

 

¥

 

z,min

 

 is not a very useful
engineering tool. One would rather know (or estimate) the diamagnetic plate spacing around the levitating magnet
given the susceptibility 

 

χ

 

 of the plates. This requires a model of the magnetic field distribution from the diamagnetic
plates around the levitating magnet. One can use a multipole expansion and the method of images [2, 7] to find the
stabilization from diamagnetic plates. As noted before, the radial field is responsible for the vertical force between
two horizontal magnets. The multipole expansion for the radial field of a cylindrical image magnet is:
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s

s
2

z'

z1
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z4 z3
top image magnet

bottom image magnet

z1 = sb – HL/2 

z2 = sb + HL/2

z3 = st – HL/2

z4 = st + HL/2

sb = s + 2z'

st = s – 2z'

sb

st

Note that st is negative since
levitating magnet is below the image

⇒ z1 = s + 2z' – HL/2 

⇒ z2 = s + 2z' + HL/2 

⇒ z3 = –s + 2z' – HL/2 

⇒ z4 = –s + 2z' + HL/2 

HL

 

while setting H = HL and R = RL for the geometry of the image magnet and M = Mi is the magnetization in the dia-
magnetic material. In order to find the force on the magnet from diamagnetic material placed below the magnet, one 
needs to apply the Lorentz force law:

15

Differentiating with respect to z and applying the integration limits gives:

16

A similar result can be found for diamagnetic material above the levitating magnet. Combining the results for both 
plates and using a substitution for the local coordinates in terms of plate spacing s (see figure 3), Mi = χML/2 for the 
image magnetization [7], and HL = t (magnet thickness), gives an equation for ¥z:

17

This result assumes the levitating magnet is centered between the two plates (so z' = 0) as shown in figure 3 and the 
negative sign is from ¥z was defined to be negative.

Results
Experiments show that magnets can be stably levitated between two diamagnetic plates at the lower point

without any diamagnetic material to constrain the magnets radially (using a diamagnetic cylinder). The experiments
described here used a suspending NeFeB magnet with H = 38 mm, and R = 19 mm and a levitating magnet with RL =
3.15 mm and HL = 1.6 mm, and ρ = 7800 [9]. Furthermore, magnets slightly displaced radially automatically return to
the center axis and self center themselves showing radial stability around the central axis.

Using the above magnet parameters, assuming a magnetization for both magnets M = 978 kA/m [9], and
using the levitation point z0 = 13.4 cm (measured from experiments) gives a minimum value for stability around
¥z,min > 0.114 N/m. The largest spacing to stably levitate the levitating magnet is 6.0 mm using pyrolitic graphite

plates 3.0 mm thick (χ ≈ –4.5 × 10–4 [1]) with the magnet was directly centered between the plates ( ). With s =
6.0 mm, equation 18 gives a value of 0.136 N/m which is greater than the minimum value. Using an adjustment from
figure 8 in [5] to account for the finite thickness of the plates (values for parameters needed to use the charts: T/HL =
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Figure 3: The geometry and variables used to find the stabilization coefficient. Vertical coordinates
are positive pointing upward.
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3.0/1.6 = 1.875, RL/HL = 1.97, s/2 = z = 3.0 mm, thus z/HL = 1.67) gives a thickness adjustment around 0.85. Applying
this value gives ¥z,plate = 0.115 N/m, 0.8% above ¥z,min.

Using ordinary pressed graphite plates (χ ≈ –1.6 × 10–4 [1]) that were 10 mm thick with the same magnets
gave a gap spacing of 4.4 mm. Using 4.4 mm gives a value of 0.115 N/m, the same as above. Since the ordinary
graphite plates are so thick (T/z = 10/1.6 = 6.25) so they are practically semi infinite with an adjustment of 1.0. Thus
the experimental value for the ordinary graphite plates agrees within 0.8% as well. The differences for both cases
could be due asymmetries in the experimental set up, uncertainties about magnetization and susceptibility, or the mul-
tipole approximation. Figure 6 plots values of ¥z for both ordinary and pyrolitic graphite (without adjustment for
plate thickness) as a function of plate spacing. Whenever the stability coefficient is greater than ¥z,min (smaller plate
spacing) the magnet would always levitate easily.

Conclusions
Criteria for stable levitation were presented and agree well with experiments, verifying that equations 1, 8

(or 9) and 17 can be used together for estimating plate spacing which is necessary for designing a levitating rotor.
Adding more terms to the multipole would produce more accurate results, especially for tighter plate spacing but
would make the formulas inconvenient.
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a homogeneous medium and a photonic crystal
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Abstract—Effective properties of photonic crystals are investigated using a new theoretical method. In the
one-dimensional case, analytic expressions of permittivity and permeability of an anisotropic and homogeneous
equivalent are obtained. From this analysis, we show that the effective permittivity and permeability can have
very small variations in a wide range of wavevectors including propagating and evanescent waves. However, the
one-dimensional configuration and its model are limited. We then chose to adapt our theory to two-dimensional
structures, with a two-dimensional crystal flat lens with optimized impedance adaptation as an illustration.

1. Introduction

The concept of negative index materials has been introduced by V. G. Veselago [1]. J. B. Pendry remarked that
such materials could permit the realization of new flat lenses with, a priori, unlimited resolution [2]. Although
there is some controversy concerning negative index materials, it is clear that the amplification of the evanescent
waves induced by this class of new materials will have important applications to subwavelength imaging, as well as
to light trapping [3]. The challenge is now to design composite structures presenting properties as close as possible
to those of negative index materials.

Periodic structures made of metallic wires or “double C resonators” possess some properties similar to the
desired ones. However, the relevance of these metallic structures should decrease if the “visible domain” (when
the wavelength is smaller than 1.5µm) is considered. Indeed, at these wavelengths, absorption takes place in
metals and fabrication becomes difficult since these structures are used in the “homogenization domain” (when
the dimensions of the unit cell of the periodic structure are much smaller than the wavelength). Purely dielectric
periodic structures, the second kind of structures expected to mimic negative index materials, do not suffer from
absorption and present interesting properties in the “resonance domain” (when the dimensions of the unit cell of
the periodic structure are similar to the wavelength). Since important applications are expected in the visible
domain, this communication is devoted to dielectric periodic structures.

Determination of effective properties of dielectric structures operating in the resonance domain is a difficult
task. It is convenient to split the general concept of negative index into three phenomena: negative refraction,
the effect of the truncation of the boundary layer, and evanescent wave amplification. Negative refraction with
photonic crystals is now a well-known phenomenon: it has been predicted [4, 5] and then demonstrated in several
experiments [6]. On the other hand, to our knowledge, the effect of the truncation of the boundary layer has only
been occasionally studied, and then mostly in an empiric manner [7–9]. Also to our knowledge, amplification of
evanescent waves has not been studied in the photonic crystal context.

The new theoretical method is based on r# [10], the reflection coefficient on a photonic crystal but, for the
moment, a one-dimensional structure made of p identical unit cells is considered. Each unit cell is in practice a
stack of m homogeneous layers (see figure 1). Surrounded by two homogeneous and isotropic media, this structure
is illuminated by an incident electromagnetic beam field U i. The choice has been made to consider it harmonic
[with time dependence in exp(−iωt)] and s-polarized. The response of this finite-thickness structure is the reflected
beam U r

p which can be deduced from U i by the usual reflection coefficient rp associated with a plane wave.

1

k
i

rp

k
r

εu, µu

.

..

εd, µd

ph#

x3

ε1, µ1

.

..

εm, µm

h#

h1

.

..

hm

T

1 r# 1 ra

air

one dimensional
photonic crystal

air

homogeneous and

anisotropic medium

Figure 1: Left: one-dimensional structure made of a stack
of p identical unit cells. Right: unit cell made of a stack of
m homogeneous layers with constant permittivity εj, con-
stant permeability µj and thickness hj (j = 1, 2, . . . , m).

Figure 2: Left: reflection coefficient r# on a photonic
crystal. Right: reflection coefficient ra on an anisotropic
and homogeneous medium. The identification r# = ra

provides the effective properties of the crystal.

In order to reach intrinsic properties of the crystal, the crystal effect has to be enhanced and p has to tend
toward infinity. Unfortunately rp does not always have a limit while p grows but U r

p does. This limit, denoted

Progress In Electromagnetics Research Symposium 2006-Tokyo, Japan, August 2-5 Session 1P2



by U r
# can be expressed similarly to U r

p using a new reflection coefficient r# deduced from the coefficients of the

transfer matrix T corresponding to a unit cell (see figure 1):

T =

[
T11 T12

T21 T22

]
= T1T2 · · ·Tm , Tj =

[
cos(κjhj) µjκ

−1
j sin(κjhj)

−µ−1
j κj sin(κjhj) cos(κjhj)

]
, κ2

j = ω2εjµj − k2
1 , (1)

where Tj is the transfer matrix corresponding to the homogeneous layer j (j = 1, 2, . . . , m) and k1 is the tangential
component of the wavevector of each plane wave forming the beam field.

The extraction of effective properties from an inhomogeneous medium like a photonic crystal leads to model
theoretically this medium by a new one, homogeneous this time, revealing similar optical characteristics. If, for
given domains of temporal and spatial frequencies, the structure and its homogeneous equivalent have identical
reflection properties, then these two media will be considered as equivalent.

From a dispersion law point of view, good candidates for simulating photonic crystals are anisotropic media.
This communication is dedicated to the simulation of photonic crystals by anisotropic and homogeneous media of
which electric permittivity and magnetic permeability tensors are denoted εa and µa respectively.

εa =


 ε‖ 0 0

0 ε‖ 0
0 0 ε⊥


 , µa =


 µ‖ 0 0

0 µ‖ 0
0 0 µ⊥


 . (2)

Parameters εa and µa are chosen such that they provide a dispersion law as close as possible to the one inside
the crystal; they can take a priori any complex value. Such a medium, taken as semi-infinite, has a reflection
coefficient ra (see figure 2).

Finally, the identification ra = r# will provide an analytic expression for both εa and µa. From this analytic
expression, it is shown in [11] that effective permittivity and permeability take in general complex values. Moreover,
it is proved that these quantities are purely real in the case where the unit cell of the one-dimensional crystal is
symmetric with respect to a horizontal plane. This condition determines the adequate truncation of the crystal.
Then this communication will be devoted to crystals with symmetric unit cell.

The symmetry of the unit cell allows another property for effective quantities like εa and µa. In fact, effective
permittivity and permeability can be almost constant for a wide range of wavevectors including propagating and
evanescent waves. That is to say that optical properties for propagating and evanescent waves are nearly the same.

Nevertheless, the modeling of a one-dimensional crystal reveals instructive limitations that have to be enlightened.
In particular, it is shown that a negative effective index of refraction cannot be obtained with one-dimensional pho-
tonic crystals. Finally, we present a numerical method to study the impedance adaptation in the two-dimensional
case with a flat lens example.

2. Noteworthy cell configuration

As notified before [11], a solution to obtain a purely real effective permittivity is to consider a crystal with a unit
cell symmetric with respect to a horizontal plane (see figure 4). In other words, if a one-dimensional crystal with a
unit cell made of two homogeneous layers is considered, then a solution is to choose the truncation at the middle of
the first or the second layer. For example, we can consider a resulting unit cell made of m = 3 homogeneous layers:
h1 = h3 = h#/4, h2 = h#/2,

√
ε1/ε0 =

√
ε3/ε0 = 1.5 (for SiO2),

√
ε2/ε0 = 3.4 (for Si) and µ1 = µ2 = µ3 = µ0.

The dispersion law inside this structure is represented on figure 3.

3. Analytic expressions for effective permittivity and permeability

0.0
 0.5
 1.0
 1.5
 2.0
 2.5
 3.0


0.2


0.4


0.6


0.8


1.0


 


 


 


0.0
 0.1
 0.2
 0.3
 0.4
 0.5

0.0


0.1


0.2


0.3


0.4


0.5


 


 
 


k1h#/(2π)k1h#/(2π)

k
#

h
#

/
(2

π
)

ω
h

#
/
(2

π
c)

K1

K3

Bloch mode

no Bloch mode ε1, µ1

ε2, µ2 horizontal

planeε2, µ2

ε1, µ1

h#

h1

h2

h2

h1

Figure 3: Representation of the dispersion law inside the
crystal for s-polarization where k1 is the horizontal com-
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Figure 4: Example of a unit cell invariant under a mirror
reflection with respect to the horizontal plane represented
by the dashed line. This symmetry implies T11 = T22 for
the transfer matrix, and then s = 0.
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3.1 Simple dispersion law

At suitable frequencies the dispersion law of the crystal becomes elliptical and, denoting by K1 and K3 the length
of the semi-axes of this ellipse, it can be modeled by k2

1/K2
1 + k2

#/K2
3 = 1 (k# is the vertical component of the

wavevector inside the crystal). One can compare it to that of an anisotropic medium characterized by constants
(2):

k2
a +

µ‖

µ⊥
k2

1 = ω2ε‖µ‖ , (3)

where ka denotes the vertical component of the wavevector inside the anisotropic medium. For instance, at
normalized frequency ωh#/(2πc) = 0.462, the dispersion diagram inside the crystal is very close to an ellipse
in the range k1h#/(2π) ∈ [−0.5, 0.5] (figure 5). It can be well-approached by the dispersion law (3) inside the
homogeneous and anisotropic medium. Because of the polarization choice for the incident beam field, one can see
that ε⊥ does not appear in (3). Performing the identification of the two dispersion laws and ka = k#, one obtains
permeabilities µ⊥ and µ‖ as functions of ε‖:

µ⊥ = K2
1/

(
ω2ε‖

)
, µ‖ = K2

3/
(
ω2ε‖

)
. (4)

At this stage, we need the third equation that will permit us to find an analytic expression for ε‖, i.e. ra = r#.
As a result, there comes an analytic expression of the effective permittivity for the considered structure:

ε‖ = (K3/ω2)β#

[
1 − k2

1/K2
1

]−1/2
k2

1 < K2
1 ,

ε‖ = (K3/ω2)(β#/i)
[
k2

1/K2
1 − 1

]−1/2
k2

1 ≥ K2
1 ,

(5)

where β# is defined as follow:

β# =
Re[T12]

|Re[T12]|
T−1

12

√
1 − g2 + i T−1

12 s if g2 < 1 ,

β# = T−1
12

√
1 − g2 + i T−1

12 s otherwise,

g = (T11 + T22)/2 , s = (T11 − T22)/2 ,

(6)

where the argument of the complex square root
√

1 − g2 is in [0, π[ and Re[T12] is the real part of the coefficient T12.
Resulting values for the effective permittivity and permeability are represented on figure 6. Effective permittivity
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Figure 6: Effective permittivity ε‖ and permeabilities µ‖

and µ⊥.

and permeabilities are purely real and present relative variations under 10% for this k1-range around five times
wider than the one restricted to propagating waves.

3.2 Limits of the model

The results we illustrated until now are valid as the dispersion law of the crystal is simple enough to be faked by
that of an anisotropic and homogeneous medium. Now, in order to show the limits of our one-dimensional model,
let us consider the frequency ωh#/(2πc) = 0.255 where the dispersion law becomes more complicated (see figure
7). At this frequency, the dispersion law is close to an ellipse centered at k#h#/(2π) = ±1/2, it can be modeled
by k2

1/K2
1 + (k3 ∓ 1/2)2/K2

3 = 1, and the most natural way is to model it by an hyperbole. Unfortunately, the fact
that this hyperbole is defined for all k1 ∈ R implies that considering evanescent waves has no sense. As a matter
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of fact, it seems that there is no simple model for frequencies taken in band gaps or for which the dispersion law is
an ellipse centered on k#h#/(2π) = ±1/2. Nevertheless we can remark that the dispersion law is only determining
the direction of the energy flow via the group velocity. Since the latter remains invariant if the dispersion law is
shifted, we tried the following.

Let us consider that the dispersion law centered on k#h#/(2π) = 1/2 (figure 7) is in fact centered at the origin.
Using the same notations as those of the example described in the precedent section, the two dispersion laws that
have to match are again

k2
1

K2
1

+
k2

#

K2
3

= 1 and k2
a +

µ‖

µ⊥
k2

1 = ω2ε‖µ‖. (7)

Since the unit cell of the crystal is made of ordinary materials (with all µj real and positive) then the horizontal

component P‖ of the Poynting vector P = (E × H + E × H)/4 has always the same sign inside and outside the
crystal: there is no negative refraction. Indeed, for µ > 0, the horizontal component of the Poynting vector is
roughly

P‖ = (2ωµ)−1|E|2k1. (8)

This absence of negative refraction inside one-dimensional photonic crystals imposes the restriction

µ⊥ = Re[µ⊥] > 0 (9)

in the model for s-polarization. Obtained values for ε‖, µ‖ and µ⊥ are depicted in figure 7. In this case, condition (9)
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Figure 8: Effective permittivity ε‖ and permeabilities µ‖

and µ⊥.

imposes not only µ⊥ > 0 but also µ‖ > 0 and ε‖ > 0 via (7). Here, we conclude that the effective index cannot take
negative values for one-dimensional crystals. Moreover, figure (8) shows that the model is not adequate since the
sign of ε‖ changes across the boundary delimiting evanescent and propagating wave domains at K1h#/(2π) ≈ 0.168.

4. Two-dimensional numerical example

In this last section, the considered structure is a two-dimensional crystal consisting of a bulk of silicon (ε = 12.0)
with drilled air holes on a hexagonal lattice (the lattice constant, i.e. the edge of the triangular unit cell, is
denoted by a). The air holes have circular cross section with radius r = 0.43a. At the normalized frequency
ωa/(2πc) = 0.336, and for the s-polarization (when the electric field is parallel to the air holes), this structure has
a dispersion law leading to negative refraction with the product of the effective permittivity ε and permeability µ
equal to unity [12]. In other words, this crystal has the same behavior as a negative index material with n = −1
for propagating waves.

Thanks to the one-dimensional study, this crystal has been truncated such that the first layer is symmetric with
respect to an horizontal plane [12]. The effective permittivity and permeability are then real and can be determined
numerically:

ε = −5.7 µ = −0.175 . (10)

These constants are determined with the following procedure [12, 13]. The crystal is embedded in a homogeneous
medium with µ = 1/ε and both negative. Then we make varying the value of the permittivity of the surrounding
medium. And the value of the effective permittivity is determined when the diffracted field by the embedded crystal
is minimal.
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Figure 9: Map of the electric field modulus when a line source is in presence of the embedded flat lens.

Finally, in order to show an optimized efficiency of the flat lens, the crystal has been embedded in a homogeneous
medium with permittivity and permeability equal to 5.7 and 0.175 respectively, such that impedance adaptation
occurs. The resulting map field is shown on figure 9.

5. Conclusion

We have shown that effective permittivity and permeability can present small variations in a wide range of
wavevectors including propagating and evanescent waves. However, our model demonstrates that one-dimensional
crystals cannot behave like negative index material. Extension of these results to two-dimensional crystals with
negative refraction should have important applications in subwavelength imaging as it is proved by the two-
dimensional numerical example of an optimized flat lens.
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Fig. 1.  Axes and variables

(1)

New Numerical Experiments in Scattering by Dielectric Wedges

Egon Marx

National Institute of Standards and Technology

Gaithersburg, MD 20899-8212, U.S.A.

Abstract —The behavior of the field components near the edge of a dielectric wedge for a plane monochromatic

wave of arbitrary direction of incidence and polarization is summarized.  The integral equations for boundary func-

tions for a finite wedge are presented both for singular and hypersingular equations, using the single-integral-equa-

tion method.  The field components are then derived from the boundary functions by integration.  Results are shown

for a particular case.

1. Introduction

When a plane wave is incident on a dielectric wedge of infinite cross section, some of the components of the

fields near the edge of the wedge diverge, following a negative fractional power law of the distance from the edge. 

We expect the same behavior of fields near the edge of a wedge of finite cross section or of sharp edges in other

scatterers.  One can use singular integral equations [1] (SIEs) or hypersingular integral equations [2] (HIEs) to inves-

tigate the behavior of the field components near the edge of a dielectric wedge.  The unknown boundary functions in

the single-integral-equation method also diverge near the edge.  If the rate of the divergence could be firmly estab-

lished, this behavior could be built into the form of the function and there would be no need to concentrate patches

near an edge in the numerical solution of a problem.  For a dielectric wedge, power series solutions [3], [4] indicate

that the behavior remains essentially that of static fields, determined by the permittivity and permeability of the

wedge material, that of the surrounding medium, usually assumed to be free space, and the angle of the wedge.  For

oblique incidence, this means that the behavior of the fields should be that of the TE and TM modes [5], [6].  Nu-

merical experiments with a finite dielectric wedge show disagreements between the computed and the expected

behavior.  For the HIE, the unknown boundary functions remain constant near the edge and the numerical difficulties

come from the highly singular behavior of the kernel.

Agreement with the expected behavior occurs only for particular directions

from the edge for TE and TM modes.  The theory fails to indicate where the

expected asymptotic behavior sets in, if at all; this usually occurs at a small

fraction of the wavelength.  For oblique incidence, the behavior of the fields

near the edge depends on the direction of incidence, polarization, and the direc-

tion of approach to the wedge, which is not the case for the static fields.  Some

of the results depend on the approximations used in the numerical solution of

the problem, especially for the SIE.  There is also a dependence of the ampli-

tude of the fields on the size of the finite wedge, which may be due to the over-

all scattering cross section of the wedge.  The difficulty of matching two waves

propagating at different speeds in different media on the two sides of a dielec-

tric wedge as well as in the outside medium on the continuation of the sides

suggests that there may be no general rigorous solution for this scattering prob-

lem.  For a perfectly conducting wedge, where the fields on one side of the

boundary vanish, there is good agreement between the predicted and computed

behavior of the field components.

We consider the electromagnetic scattering of a plane monochromatic wave

2 2by an infinite wedge of angle â, permittivity g and permeability ì , surrounded

1 1by a medium characterized by g and ì .  The fields near the edge of a dielectric wedge have been studied both theo-

retically and numerically.  Some of the components of the fields are seen to diverge, although the computed fields do

z z not appear to follow the theoretically derived behavior along all directions.  The fields E in the TE mode and H in

the TM mode are expected to behave like ñ , where ñ is the distance to the edge and t obeys the equationt
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(2)

(3)

(4)

(5)

(6)

(7)

(8)

1 2 1 2 1 2 1 2where r = |ì - ì |/(ì + ì ) (TE) or r = |g - g |/(g + g ) (TM) [3].  The two modes are no longer independent for

oblique incidence, and we seek to determine what the expected behavior of the fields will be for arbitrary direction

of incidence and polarization.

2. General Formulas

Some details of the derivations can be found in Ref. [7], and the coordinate system is shown in Fig. 1.  If the

geometry of the scatterer is invariant under translations along the z-axis, the fields can be decomposed into longitudi-

nal and transverse parts.  The transverse components of the fields can then be expressed in terms of the longitudinal

z zones, E  and H .  These field components obey the homogeneous Helmholtz equation in the xy-plane.  For a dielectric

wedge, the tangential fields have to be continuous across the boundary of the scatterer.  The tangential components

of the perpendicular fields along a curve C are given by

z where k is the z-component of the propagation vector  and

z z z zAcross the boundary C separating two media, E and H and also the tangential derivatives ME /Ms and MH /Ms are

continuous.  The continuity conditions for the tangential components of the perpendicular fields give a relationship

between the normal derivatives,

where

These conditions can then be used to obtain integral equations or the behavior of the static fields.

3. Integral equations

A minimal set of singular or hypersingular integral equations can be derived following the methods explained in

Refs. 1 and 2.  The singular equations are
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(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

and the hypersingular equations are

where, in terms of Hankel functions of , we have

The functional MN is hypersingular.  These sets of coupled equations can then be used to determine the behavior of

the fields near the edge of the wedge.

4. Static fields

A number of authors [3-6] agree that the behavior of the total fields near the edge of a wedge in a scattering

z z problem should be that of static fields.  Both E and H obey the Laplace equation, which can be separated into an

angular and a radial part.  Since we have to match the fields along the sides of the wedge, we assume that all fields

have the same dependence on ñ.  We set

and, for R(ñ) = ñ , the continuity conditions give eight homogeneous equations for the unknowns A, AN, AO, A�, B,t

BN, BO, and B�.  The solution of this set of linear equations is the trivial solution unless the determinant of the coeffi-

cient vanishes.  The vanishing of this 8×8 determinant gives a transcendental equation for t that allows us to find the
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behavior of the components of the fields near the edge.  This equation reduces to

where we have substituted   We can reduce Eq. (19) to the pair of equations

whose solutions differ only in sign.  Then Eq. (20) gives the corresponding value of t, which depends on the wedge

angle â.  These equations have the same form as the ones obtained in the TE and TM modes.  Once t is known, the

constants such as A are determined from the boundary conditions and then substituted into Eqs. (15) through (18).

5. Example

We show results for the direction of incidence at è = 60E and n = 90E both for the HIE method and the SIE meth-

1 1 2 2od.  We choose the relative constants of the media to be g  = 1, ì  = 1, g  = 5, and ì  = 3 and the wavelength ë = 1

ìm.  These parameters give two possible behaviors for the field components near the edge of the wedge.

In Fig. 2 we show the computed field components in a log-log plot that emphasizes the behavior near the edge of

the wedge.  A power law for the fields translates into dashed straight lines, proportional to ñ , on this plot.  We seet!1

that some components follow one line and some follow the other.  The field components obtained using HIEs show

one or the other asymptotic (ñ 6 0) behavior for the polarizations that correspond to TE and TM modes, but the plot

for a oblique polarization falls somewhere in between.  The field components obtained using SIEs, shown in Fig. 3,

have a steep ascent near the edge, a behavior that has been noted before in TE and TM modes, and which is probably

due to errors in the divergent boundary functions or in the integration for such a function.

The boundary functions, shown in Fig. 4, for the HIE follow mostly the expected constant behavior near the edge,

but some of them grow as one gets away from the edge of the wedge. Those for the SIE show the expected divergent

behavior, but it is not clear whether they follow a power law that would be indicated by a straight line.

6. Conclusions

Perpendicular components of the static fields near the edge of a dielectric wedge diverge with power laws deter-

mined by a transcendental equation in the configuration that corresponds to oblique incidence.  There are essentially

two field modes that reduce to the TE and TM modes for normal incidence.
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Fig. 2.  Magnetic field component and expected asymptotic behavior for HIE.

Fig. 3.  Magnetic field component and expected asymptotic behavior for SIE.

Fig. 4.  Typical boundary functions for HIE and SIE showing behavior near the edge of the wedge.
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Fig. 1.  Scattering by a strip on a substrate.

(1)

(2)

Scattering by a Finite Grating on a Substrate

Egon Marx

National Institute of Standards and Technology

Gaithersburg, MD 20899-8212, U.S.A.

Abstract —Computer simulation of field components and of microscope images of finite gratings are performed

using singular integral equations for boundary functions.  Some of the equations that are obtained in the single-

integral-equation method are shown, as well as an integral of the boundary function that gives a field component. 

Image formation in a microscope is discussed.  Field components and images at different focus heights are shown

for a finite grating of Si lines on a Si substrate.

1. Introduction

The semiconductor industry uses lines and other structures on a semiconductor to overlay different layers of a

device.  Accurate measurements of these features are important to the alignment, as well as to predict the behavior of

lines in integrated circuits.  We reduce the problem to a two-dimensional scattering process by assuming that the

lines are infinitely long and that the incident field is a monochromatic plane wave.  Measurements of the transverse

dimensions of these lines or strips using optical images or fields are also of great interest to the industry.  A number

of these lines placed on a substrate form a finite grating, which sometimes can be approximated by an infinite grat-

ing.  For critical dimensions significantly smaller than the wavelength of the light used in a microscope, the images

do not have the same shape as the features and simulation has to be used to interpret the images and perform mea-

surements [1].

2. Integral Equations

We use Maxwell's equations for two-dimensional scatter-

ers in integral form [2-4] to determine the fields scattered by

the cylinders that represent the lines on the substrate.  The

presence of a semi-infinite substrate causes a reflected wave

1to be present in the region V  in addition to the incident wave

2and a refracted wave in the region V , as shown in Fig. 1. 

These are all plane monochromatic waves with no sources in

the finite region and are called homogeneous fields.  We de-

fine scattered fields as the difference between the total fields

and these homogeneous fields.  The scattered fields are cylin-

drical waves that obey the radiation condition at infinity.  The

3region V , of finite cross section, can represent a single line

or a finite number of such lines in the form of a grating.  The

i i ig  are the permittivities and the ì  the permeabilities of the V . 

The coordinate system is chosen with the z-axis along the

1generator of the cylinder, the x-axis along the interface C ,

and the y-axis perpendicular to the interface.  We use the

ijsingle-integral equation method [5] to find the unknown boundary functions ç  and then determine the fields by inte-

gration.

For oblique incidence and arbitrary polarization, three typical integral equations out of eight are
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(3)

(4)

(5)

(6)

Fig. 2.  Illumination and coordinate system.

where G , N, NN, and NO are functionals related to the Green function of the two-dimensional Helmholtz equation as 

shown in Ref. 2 (the first subindex refers to the constants of the medium, the second one to the curve over which the

integration is carried out, and the superindex to the curve where the value of the functional is evaluated),

1 2and , , , and  are the homogeneous field components in V  and V .  From Eq. (2) we can solve for

21 21ç  and, from a similar equation, for çN , which can be substituted back into the remaining six equations.  A typical

equation used to determine the field components is

where , .

A similar method based on integral equations can be used to obtain the efficiencies of infinite gratings [6] or they

can be determined by the rigorous coupled-wave analysis method [7].  The fields of infinite gratings are independent

of the distance to the substrate.

3. Microscope Images

To simulate the image formation in a micro-

scope, we consider that the illumination is a super-

position of a number of plane waves defined as

Köhler illumination.  We compute the scattered

fields for each incident wave and add the intensities. 

The aperture angle from the axis to the edge, shown

in Fig. 2, is È , defined by sinÈ  = é/n, where é is the

illumination numerical aperture and n is the refrac-

tive index.  The scattered field components can be

computed at a given height above the substrate and

the lines by solving the integral equations and inte-

grating.  The Fourier components are determined

numerically and we keep those that fall into the col-

lection numerical aperture, eliminating evanescent

fields and components that propagate at too shallow an angle.  We choose a focus height and propagate these com-

ponents using the homogeneous Helmholtz equation.  The field components are further modified by the effect of the
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(7)

(8)

magnification of the microscope [8], which for most applications is large and can be approximated by infinity.  After

the inverse Fourier transform is computed, the intensities of the scattered fields for each incident plane wave are

added up to obtain the image.

4. Grating Efficiencies

For infinite gratings, the outgoing flow of energy is limited to a finite number of directions associated with the

diffraction orders.  They are determined by the diffraction equation

where Ë is the period of the grating, ë is the period of the light,  is the angle with respect to the normal of the sub-

strate, and  that of the incident direction.  For a finite grating, the amplitude of the scattered far fields form loops

[9] about the same direction, and the area in the loop is proportional to the flow of energy in that direction.  The in-

tensity of the far field in a direction n is given by

The zeroth-order diffraction peak presents a problem because it has to be added to the reflected wave, which propa-

gates in the same direction.  This is not possible for the far fields, which correspond to a cylindrical wave at large

distances from the scatterer and decrease as 1/%ñ, while the reflected fields are those of a plane wave.  Alternatively,

one has to determine fields that are close to the finite grating, which should correspond to an approximation of the

fields of infinite gratings, at least in the center portion where the edge effects are small.  On the other hand, the near

fields found at distances from the scatterer smaller than the wavelength do not need to have the periodic behavior

one expects.

5. Example

We consider a finite grating of 21 Si lines, each 230 nm high, 163 nm wide, and positioned at a pitch of 541 nm,

on a Si substrate.  The dimensions of the lines are somewhat smaller than the wavelength of the incident light, which

is 546 nm.  For this configuration, only the zeroth-order diffraction occurs for infinite gratings.  In Fig. 3 we show

the magnitude of the z-components of the scattered plus reflected fields at heights of 5 ìm and 0.3 ìm above the

substrate.  At 5 ìm, there is a considerable influence of the reflected field while at 0.3 ìm the fields look more peri-

zodic, at least in the center.  We have chosen normal incidence and TM or TE mode, which correspond to E  = 0 and

zH  = 0, respectively.  The whole array has a width of about 10 ìm, which suggests that at a height of 5 ìm one gets

significant contributions from both the scattered and the reflected fields.  At 0.3 ìm one gets the expected behavior

in the TM mode but a more complicated one in the TE mode.

In Fig. 4 we show microscope images for the same finite grating at different focus heights.  These images are

normalized to 1 at large distances from the grating.  The actual focus height of the microscope is unknown, so that

the focus height is adjusted automatically to a maximum of a function of the image profile called a focus metric [10]. 

Ideally one compares a series of measured and computed profiles to establish the correspondence between them.  In

this figure we notice that the contrast increases with focus height, then decreases until it essentially vanishes at 500

nm above the substrate, and then increases again, giving rise to at least two maxima.  We also notice that the images

have a minimum at the center of the profile for heights less than 500 nm and a maximum above that height.

6. Conclusions

The method of integral equations for unknown boundary functions has been used to determine field components

and microscope images for finite gratings with features of a size comparable to the wavelength of the incident light. 

An important issue when comparing measured and simulated microscope images is the focus height, which is given

for the simulations but unknown for the measured images.  A series of images can be compared as the focus height is

varied, and the focus metric helps to match the images in the sequences.

In the example presented above, there is only zeroth-order diffraction present for infinite gratings or for far fields. 

Far fields from a cylindrical wave that decrease like the inverse to the distance from the scatterer cannot be added to

the constant reflected plane wave.  The fields near the substrate present a more periodic structure, as seen in Fig. 3,

that can be used as an approximation to those obtained for infinite gratings.
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Fig. 3.  Computed field components for TM and TE modes at different heights above the substrate.

Fig. 4  Computed intensities of the electric fields at different heights above the substrate.
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Abstract – Based on the idea of an analytical regularisation a mathematically rigorous and numerically efficient ap-
proach is proposed to solve the potential problem for open arbitrary shaped shell of revolution with Dirichlet boundary 
condition. The initial integral equation is reduced to a form admitting decomposition of the integral kernel into the sum 
of the Green’s function for a sphere, which includes all the singularities of the reformulated problem, and a smooth re-
mainder. An effective calculation technique for the coefficients of the Fourier expansion of the remainder was obtained. 
Using the analytical regularisation, the problem is equivalently reduced to an infinite system of linear algebraic equa-
tions of the second kind. Such equations can be effectively and efficiently solved by standard numerical methods. The 
convergence improvement of the series describing the surface charge is implemented.  
 

1. Introduction 
 

At present, diffraction by open shells of revolution is studied mostly by direct numerical techniques. Fre-
quently, codes based on these techniques require powerful computer resources, but usually no guarantee on the accuracy 
of computations is available. This arises because the customary approach is based on the numerical solution of the first 
kind Fredholm equation which is deducible from the single-layer potential representation. It is well known that this 
equation is ill-posed, and as a consequence, the computational scheme is neither stable nor convergent. Thus it is highly 
desirable to transform this equation into a second kind Fredholm equation, which provides a stable and fast converging 
computational algorithm that enables us to reach any required accuracy of computation [1]. A transformation technique 
for canonically shaped open shells was developed in [2,3] by applying a method of analytical regularisation. 

The first step in the generalisation of this method [2,3] to diffraction from arbitrarily shaped open shells of 
revolution is to solve the corresponding electrostatic potential problem. Our proposed method for solving the boundary 
value problem with the Dirichlet boundary condition has several noteworthy features. The solution, in its integral equa-
tion formulation, depends upon an analysis of the singularities of the Green’s function describing the body of revolution. 
Thus guided, the integral equation is transformed so that the specially scaled kernel may be decomposed as a sum of the 
Green’s function for a sphere and a remainder term. It is essential for our method that all singularities are confined to the 
spherical Green’s function, and that the remainder is smooth. This reformulation was first suggested by Tuchkin [4]. 

The reason for performing such a reformulation is to ensure regularity of the extracted remainder, and this al-
lows us to use a standard and effective calculation technique for its Fourier coefficients. Another motivation is so that 
we may apply a well-known regularisation method which employs analytical transformations connected with Abel’s in-
tegral equation. When these transformations are applied to the canonical Green’s function for a sphere, the problem is 
reduced to the second kind Fredholm equation as desired, in the form of an infinite system of linear algebraic equations. 
This system is very effectively solved by a truncation method; fast convergence of this technique is proven theoretically.  
 

2. Problem formulation  
  Let l  be a plane, smooth, and non-self-crossing curve specified by a given single-valued continuous function 

( ) ( )∞∈ ,0θρ , where [ ]πθ ,0∈  is a zonal angle of spherical coordinates; furthermore the element of arc length should be 

positive: ( ) ( ){ } ( ){ } 022 >′+= θρθρθλ , and also ( ) ( ) 00 =′=′ πρρ . When l  is rotated about the vertical −OZ axis, a 

closed body of revolution is obtained. Fix some ( )πθ ,00 ∈ . Let 0S  be the open shell of revolution formed by rotation 
of the curve ( ) [ ]{ }00 ,0: θθθ ∈== lll . The surface 1S  generated by the curve ( ) ( ]{ }πθθθ ,: 01 ∈== lll  forms the 
“aperture” of 0S  (see Fig.1). A more general geometry of the shell, obtained by allowing the function ( )θρ  to be multi-
valued, may be described by using a parameterisation in which the arc-length of the contour l  is the parameter. In this 
case the shell of revolution is defined by two given functions. Our approach permits generalisation for such geometry. 
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Fig.1. (a) The problem geometry.   (b) The generating curve.   

 Let the shell 0S  be charged to some electrostatic potential, described by the given function ( )pΨ , 0Sp ∈ . The 
scalar function ( )qUU =  defining the electrostatic potential in the space observation point 3Rq ∈  is to be found. As is 
well known the solution to this mixed boundary value problem for Laplace’s equation with Dirichlet boundary condition 
is equivalent to the following Fredholm integral equation of the first kind, 
 

 

  ( ) ( ) ( )qdspqGp
S

pD Ψ=− ��
0

,σ ,     0, Spq ∈ ,                                                        (1) 

where ( )pDσ  denotes unknown surface charge density, ( ) ( )( ) 1,4, −= pqRpqG π  is the free space Green’s function for 

Laplace’s equation, and ( ) pqpqR −=,  is the distance function; the point 0Sp ∈  denotes the variable of integration.  
 

3. Solution method 
 

We introduce the unknown function ( )pX  to describe a scaled version of the charge density distribution, and 
extend it to the full interval of zonal angle pθ  in spherical coordinates:   

                                              ( ) ( ) ( ) ( ) [ ] [ ]
( ] [ ]��

�
�
�

∈∈
∈∈×−=

.2,0,,,0

2,0,,0,,,
0

0

πϕπθθ
πϕθθϕθσθθρϕθ

pp

ppppDpp
ppX

λ                                   

Thus the initial equation (1) can be rewritten in the form 
 

  ( ) ( ) ( ) ( )qqpqpqpppppp GXdd ϕθϕϕθθϕθθθρθϕ
π π

,,,,,sin
2

0 0

Ψ=� � ,     Sq ∈ .                            (2) 

 

 Expanding the functions of azimuth angle in Fourier series, it is possible to implement the integration over 
variable pϕ  in (2), and then separate the surface integral equation into an infinite set of single integral equations over 

zonal angle, where each equation corresponds to a value m  of azimuth index: 
 

( ) ( ) ( ) ( )qmpqmpmppp GXd θ
π

θθθθθρθ
π

Ψ=� 2
1

,sin
0

,   ,...2,1,0 ±±=m ,  Sq ∈ .                   (3) 

 

Asymptotic estimates show that when the point p  tends to the point q  fixed somewhere on the shell, the azi-

muth angle Fourier coefficients of Green’s function ( )pqmG θθ ,  exhibit two kinds of singularities: a rational fraction sin-

gularity on the “top” or  “bottom” of the shell ( )OZq ∈θ , and otherwise a logarithmic one: 

                      ( )
( )( )

( ) ( ) ( )�
�

�
�

�

∉+−�
�
�

	


�−

∈
= −

−

,,,lnsinsin8

,,sin4
, 1

2

01

OZwhenF

OZwhen
G

qpqmpqpqpq

qmpp

pqm
θθθθθθθθρθρπ

θδθθρπ
θθ     
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when 1<<− qp θθ ; here ( )pqmF θθ ,  is a smooth function, and 0
mδ  is the Kronecker symbol. Introducing the remainder  

 

                                           ( ) ( ) ( ) ( ) ( )pqmpqmpqpqm GGD θθθθθξθξθθ ,,, 0−×= ,  ,...2,1,0 ±±=m ,          
 

where ( ) ( )θρθξ =  is a scale factor, it is simple to check that the difference ( )pqmD θθ ,  between the rescaled Green’s 

function for the shell of revolution and the Green’s function for the unit sphere ( )pqmG θθ ,0  is a smooth function. 

Now we can rewrite the integral equation  (3) in the form 

 

( ) ( ) ( ){ } ( )qmpqmpqmpmpp DGXd θθθθθθθθ
π

Ψ=+�
~

,,sin
0

0 ,    ,...2,1,0 ±±=m , Sq ∈ ,                    (4) 

where ( ) ( ) ( ) πθθξθ 2
~

qmqqm Ψ=Ψ . Thus the kernel of (4) is separated into ( )pqmG θθ ,0  - a spherical canonical part that 

involves all the singularities and can be effectively treated - and the continuous remainder ( )pqmD θθ , . The idea of such 

a transformation of the initial equation (1) was first suggested by Yu.A. Tuchkin [4].  
The functions ( )pqmG θθ ,0  and ( )pqmD θθ ,  are represented in the radial coordinate r  “discontinuous form” [2], as   

    ( ) ( ) ( )�
∞

= +
=

mn
p

m
nq

m
npqm PP

n
G θθ

π
θθ cosˆcosˆ

12
2

4
1

,0 , ( ) ( ) ( )�
∞

=
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mlk
p

m
lq

m
k

m
lkpqm PPAD

,

cosˆcosˆ
4
1

, θθ
π

θθ ,  [ ]πθ ,0, ∈pq ,                              

where ( )xPm
n̂  is the normalised associated Legendre polynomial. For calculation of the Fourier-Legendre coefficients of 

the smooth remainder it is possible to obtain the following expressions when 0=m :  

                                 ( ) ( ) ( )pqplqkpqpqlk DPPddA θθθθθθθθπ
π π

,cosˆcosˆsinsin4 0
0 0

0 ×= � � , 

                            ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ){ }pqpqpq
S

pq
S

pqpq KKD θθβθθαθθβθθαθξθξ
π

θθ ,,,,
2

1
, 00

20 −= . 

Here ( )xK  is an elliptic integral of the first kind, and the following values are introduced: 

 ( ) ( ){ } ( ){ } ( ) ( ) ( )[ ] 2122 cos2, −+−+= pqpqpqpq
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When the points q  and p  are close together, we can obtain the following expansion in ( ) 12 <<−= pq θθδ : 

            ( ) ( )
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Finally expanding the unknown function mX , and the right hand side of (4) in the Fourier-Legendre series, 

( ) ( )�
∞

=
=

mn
p

m
n

m
npm PxX θθ cosˆ ,    ( ) ( )�

∞

=
=Ψ

mn
q

m
n

m
nqm Pa θ

π
θ cosˆ

4
1~

,     ( ) ( ) ( )� Ψ×=
π

θθξθθθ
0

cosˆsin2 m
m

n
m
n Pda ,     (5) 

the integral equation (4) can be reduced to the following system of dual series equations for unknowns m
nx . This system 

is equivalent to an operator equation of the first kind in the Hilbert space given by the Meixner condition [1]: 
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The potential on the shell ( )qΨ  is assumed to depend only on zonal angleθ , and also due to the symmetry of 
the shell, the unknown function ( )pX  is not a function of azimuth angleϕ ; thus 0=m

nx  when 0≠m . The system (6) is 
ill-conditioned, therefore the standard truncation technique is generally inappropriate. The form of the obtained system 
allows us to apply the standard analytical regularisation procedure described in [2], based on the transformations con-
nected with Abel’s integral equation, which helps us to get rid of this ill-conditioning and arrive at the algebraic system 

 

( ) ( )0
0

0 ˆˆ θθ m
n

nnmm VxWx =+�
∞

=
,                                                                (7) 

where we introduce the following notations: ( ) 02121ˆ mm xmx −+= ,  ( ) ( )�
∞

=

+++=
0

0
0

0 2121
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lmnlnm QAlnW θθ , 

                               ( ) ( ) ( )
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�
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+++

−
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1
1sinsin1 00

0 nm
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nm
nm

Q nm
θθ

π
θ  , ( ) ( )�

∞

=

++=
0

0
0

0 21
l

lmlm QalV θθ . 

The analysis of the matrix ( )0θnmW  shows that the system (7) is equivalent to the Fredholm operator equation 

of the second kind: thus the coefficients of the expansion of charge density on the open shell can be effectively calcu-
lated with any prescribed accuracy by means of the truncation procedure.  

 

      
a)                                                                          b) 

Fig.2. Potential distribution U and relative error ||/|| 00 UUUU −=δ , where 0U is calculated according to [2]:  

a)- along line segment oA as a function of distance OAr ;  b)- along  circle arc BC of radius 75.0 as a function of θ . 
 

The series ( )θX in (5), describing the charge density, has to exhibit at the shell edge a singularity prescribed by 
the Meixner condition, and must vanish on the aperture. To see this behaviour directly requires a large number of terms 
in the sum (5). However, utilizing a known discontinuous series [2], the charge density calculation can be transformed to  
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where ( )θθ −0H  is the Heaviside function, and the elements of the vectors mχ  and ( )0,θθmS  are defined as 
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In the representation (8) the singularity is extracted in an explicit form. The swift convergence of the calcula-
tion process for mχ  and for ( )0,θθmS  from its recurrence relation makes the calculation of ( )0,θθσ D very effective. 
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4. Numerical results 
 
 

The approach was validated by comparison against the results obtained for canonical geometry structures, for 

example, the perfectly conducting open prolate spheroid: ( ) ( ) θθρ 2222 cosbaaab −−= , ba ≥  (see Fig.2).  
         

                             
a)                                                                       b) 

Fig.3. (a) Surface charge density Dσ  versus θ  for different shell shapes.   (b) Potential space distribution U  for 53.0=a . 
 

More, and wider, possibilities of our approach may be demonstrated by the numerical investigation of the open non-
canonical geometry shell obtained by rotation of the "Pascal Limacon”: ( ) ( )πθθρ −+= cosba , ba ≥  (see Fig.3). 
 

5. Conclusion 
 

A mathematically rigorous and numerically efficient approach for solving the electrostatic potential problem 
with a Dirichlet boundary condition on the arbitrary shaped open shell of revolution is described. By considering the 
singularities of the Green’s function, we transformed the initial integral equation to a form that permits separation of the 
integral kernel into a singular part, which is the Green’s function for the unit sphere, and a continuous remainder.  The 
smoothness of the remainder ensures that the calculation of its Fourier coefficients is efficient and effective.   

We transformed the integral equation to a system of dual series equations, and then applying a standard analyti-
cal regularisation procedure, transformed it to an algebraic system of the second kind Fredholm type, which can be 
solved numerically by means of the truncation method, with any prescribed accuracy. Series convergence was improved 
by utilising a certain discontinuous series enabling us to extract explicitly the charge density singularity at the shell edge.  
 This general approach effectively parallels that developed previously for canonical shells. The accuracy and 
possibilities of this approach were demonstrated by the examples of the prolate spheroid and the non-canonical geometry 
body obtained by rotation of the "Pascal Limacon". Although important in itself, this method provides the first, and per-
haps the major, step in a comparable analysis of full wave scattering problems for open shells of revolution.  
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Analysis on 20H Rule Applied Printed Circuit Board 
Shinichi Ikami, Akihisa Sakurai 

Technology Development Center, IBM Japan, Yamato, Kanagawa, Japan 
 
ABSTRACT : The effect of so-called "20H rule" was studied with EM solver using MoM. The rule recommends that the power plane should 
be shrunk against the ground plane by 20 times of the distance between the planes to realize lower EMI radiation.   Bypass capacitors were 
populated between power and ground planes to simulate a realistic printed circuit board.  From the evaluation of the electric and magnetic 
dipole moment, the contributions of common and differential modes current were calculated.  It was found that there arises common mode 
current in the ground plane when the 20H rule was applied.   At the resonance frequencies, the common and differential mode radiations are 
observed in relation to its resonance mode, the common mode radiation due to y- or x-directional electric dipole moment for TM01 or TM10 
respectively.   Considering the common mode current occurrence is a fundamental mechanism of the electromagnetic radiation, it is concluded 
that the application of the rule increases the radiation.   

I. INTRODUCTION 

Recently the high-speed and large power devices have become common for IT devices. Due to the usage of differential 
signaling for high speed connection, the EMI radiation from the signal trace becomes not a major issue of the radiate EMI, while 
the power noise from the high-speed, high-power LSI becomes a major one. The high speed switching in the LSI causes a large 
and high-frequency power noise. The noise flows out to the power and ground planes of the printed circuit board.  As the planes 
are usually the largest patterns in the card, it can be the most effective radiator or antenna in the system.  Many works have been 
done on the radiation from the power planes.  From the EMI design point of view, the placement of the bypass capacitors between 
power and ground planes are the key for the suppression of EMI radiation.  20H rule, a unique methodology was proposed on the 
size of the planes.  The rule was introduced in an EMC textbook [1]. It states that the physical size of power plane of a multi-
layered PCB should be smaller than the ground plane as much as 20 times the distance between the both planes, H, to reduce 
electromagnetic emission from the fringe.  The rule is attractive because it is so simple to realize in the actual design, its 
effectiveness has often been discussed [2,3].   The power and ground planes build a parallel plane structure.  The structure shows 
the cavity resonance.  An analysis on the internal-field in the cavity, Q-value and radiated EMI was done on the simple structure 
of planes and voltage source [4], no effectiveness can be found about the rule.   In this paper, the EMI-radiation will be discussed 
on the more realistic case which has bypass capacitors between the planes using a 3D electromagnetic solver [5].  The solver 
employs method of moments and it can handle dielectrics. The current distribution is analyzed in detail from the electromagnetic 
radiation point of view.  

II. SIMULATION MODEL AND PARAMETERS: 
  Total of 4 models were studied;  (1) The same size power and ground planes excited by a source,  (2) bypass capacitors were 
populated evenly on  it,  (3) 20H ruled power and ground planes without bypass capacitors and (4) 20H-ruled planes with bypass 
capacitors.  The calculation models for the cases (2) and (4) were shown in Figure 1.  
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(a) The same size power and ground planes with bypass capacitors          (b) 20H-ruled power and ground planes with bypass capacitors 

 
Figure 1: Calculation models 
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The printed circuit board has 5cm by 9cm large power and ground planes. The planes were separated by 0.4mm thick substrate.  
The dielectric constant of the substrate was set to 4.2 and its loss tangent was set to 0.01 as simulate the typical FR4.  The model 
has a voltage source between power and ground planes with output resistance of 1ohm.  The amplitude of the source voltage is 1V.  
The 24 bypass capacitors of 10000pF are distributed evenly with 2cm separations.   The ESR and ESL of the capacitors are set to 
be 1mOhm and 1nH respectively.  For 20H-ruled models, the same size of power plane are used to eliminate the effect of 
resonance frequency shift result from the power plane shrink.  
 

III. SIMULATION RESULTS – RADIATED E-FIELD 
 The calculation was done for the 200 points of frequency of 10MHz to 2GHz with 10MHz step.  The radiated E-Field for 
512points of 3m distance was calculated.   The maximum value was selected for the radiated EMI for the frequency.   Figure 2 
shows the result for the effect of bypass capacitors.  
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(a) The same size power and ground planes                                   (b) 20H-ruled power and ground planes 

 
Figure 2: The effectiveness of bypass capacitors 

 
For frequencies less than about 1GHz, the bypass-capacitors suppress the radiated-EMI as expected.  However above the 
frequency, the resonance plays a main roll and no obvious advantage can be found.   As an EMI design rule, distribution of the 
bypass capacitor with density of 1/10 of the wavelength of target frequency.  The 2cm corresponds to 730MHz in the FR4 with 
dielectric constant of 4.2, and the rule can be confirmed.  
 
The effectiveness of 20H rule is shown in Figure 3.  The radiated EMI is equal or larger for the 20H-ruled models regardless of 
application of bypass capacitors.  For lower frequencies where no resonance happens, the radiation is almost the same.  For higher 
frequencies where the resonance occurs, the 20H rule rather increases the radiation.  
 

           
(a) No Bypass capacitor                                                                           (b) with 24 bypass capacitors 

 
Figure 3: The effectiveness of 20H rule 

 

 The power and ground planes in the printed circuit board build a parallel plane resonator.  The resonance frequencies are 
summarized in the table 1.  The resonance mode is determined from the current distribution of the planes.  It is found that there is 
a circuit resonance with bypass capacitors.  The resonance frequencies increased with bypass capacitors as expected.  However, 
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there still exist the resonances.  Mathematically the resonances are determined by the boundary condition of the system.  The point 
connections between the power and ground planes are not so “strong” so that the frequency change is not big for today’s high-
frequency applications.   
 On the effect of the 20H rule, the radiation increases about 5dB even with the bypass capacitors for parallel plane resonances.  It 
can be noticed that the less increase for TM02 mode. A little change was observed for circuit resonance frequency with 20H rule.  
 

Table 1: Resonance Data 
Resonance 

Mode 
20H 
Rule 

No Bypass 
Capacitors 

With Bypass 
Capacitors 

0H TM01 
20H 

940 MHz / 102.7dB 
                 / 108.1dB 

1420MHz / 106.2dB 
                 / 111.1dB 

0H TM10 
20H 

1490MHz / 110.9dB 
                   / 115.9dB

1870MHz / 110.8dB 
                  / 116.4dB 

0H 1640MHz/ 101.2dB TM02 
20H 1650MHz/ 103.6dB 

1990MHz / 107.0dB 
                 / 111.5dB 

0H TM11 
20H 

1840MHz / 107.6dB 
                  / 113.1dB Above 2GHz 

0H Circuit 
Resonance 20H None 1020MHｚ / 101.2dB 

                  / 101.6dB 
 

 

IV. RADIATION MODE ANALYSIS 
 The above result is a direct observation of the EM simulation.  Strictly speaking, the result is only valid for the special case of the 
models.  To extend the results or findings to the general cases, more detailed analysis is required for the mechanism of the EM 
radiation.  For this purpose, the current distribution is analyzed in detail with radiation mode analysis [6].  
  The result of the radiation mode analysis is shown in Figure 4 and 5 for the models without and with bypass capacitors 
respectively.   The plot “emisim3m” shows the result from the EM solver where the radiated field was calculated directly from the 
current distribution with free-field Green function.  The “CmnX, Y, Z” stands for the far field re-calculation from the x, y and z 
directional electric dipole moment of the current distribution.  Similarly the “LpYZ, XZ, XY” represents the radiated field re-
calculated from x, y and z directional components of the magnetic dipole moments of the current distribution.  For example, the 
“CmnZ” means the radiated field due to the z-directional common mode current and “LpYZ” does the one due to the loop current 
in YZ plane. The coordinate system is shown in Figure 1.  For example, it can be seen from the Figure 4 (a) that the frequency 
range below 250MHz, the radiation occurs from the common mode current in z direction. This means that without the bypass 
capacitor, there is only z-directional current in the voltage source and this current act as a common mode current.  As the common 
mode radiation is the first term of the multi-pole expansion of the electromagnetic radiation, only the 0.4mm travel-distance is 
enough to dominate the total radiation of the system.  
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    (a) Radiation mode for same size power and ground planes,                                  (b) Radiation mode for 20H ruled power and ground planes, 

 
Figure 4: Radiation mode analysis – No bypass capacitors 
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          (a) Radiation mode for same size power and ground planes,                   (b) Radiation mode for 20H ruled power and ground planes, 

  Figure 5: Radiation mode analysis – With bypass capacitors 
 
  For each frequency range classified as the lower resonance-free region, the cavity resonances and circuit resonances, the main 
contributors of the total radiation are summarized in Table 2.  For the resonance frequencies, the component of each mode is 
described also in the parentheses.  
 
        Table 2: Radiation mode analysis 

Classification 20H 
Rule 

No Bypass  
Capacitors 

With Bypass  
Capacitors 

SameLess 300MHz 20H CommonZ LoopYZ, LoopXZ 

Same LoopYZ(101) LoopYZ(101) 
TM01 20H CommonY(102) 

LoopYZ(101) 
CommonY(102) 

LoopYZ(101) 
Same LoopXZ(110) LoopXZ(109) 

TM10 20H LoopXZ(110) 
 CommonX(108) 

LoopXZ(108) 
CommonX(107) 

Same CommonZ(92) 
LoopXZ(84) 

CommonZ(98) 
 LoopXZ(99) 

TM02 
20H 

CommonZ(90) 
LoopXZ(84) 
LoopXY(91) 

CommonZ(98) 
LoopXZ(99) 
LoopXY(99) 

Same
LoopXZ(100), 
LoopYZ(72), 

CommonZ(95) TM11 

20H 
LoopXY(101) 
LoopXZ(100) 

CommonX(100) 

Above 2GHz,  
Not Calculated 

Same CommonZ(101) Circuit 
Resonance 20H None CommonZ(101) 

 
  As for the effect of bypass capacitors, the radiation mode is the same for each classification.  Of course the radiation frequencies 
are changed as in Table 1, but the basic radiation mechanism keeps.  It is natural that the LoopYZ contributes mainly for the 
TM01 and LoopXZ for the TM10 resonances.  In TM02, there are two resonance loop currents canceling each other as shown in 
Figure 6, the LoopYZ cannot happen and the remaining z-directional common mode current determines the radiation.  For the 
circuit resonance with bypass capacitors, there is in-phase current on all of the capacitors as shown in Figure 7.  This means that 
the planes behave as a large single capacitor.   As for the effect of 20H rule, there arises common mode current in the direction of 
current distribution of each resonance mode.  There arises y-directional common mode current for TM01, and x-directional one 
for TM10.  Figure 8 shows the current distribution on the power and ground planes for 20H ruled configuration for TM01 at the 
instance that the maximum common mode current flow. The model is deformed as each mesh has same size.     Basically electric 
current on the power and ground planes at the same XY position cancels each other. As a result, there remains the current on the 
ground plane outside the power plane covered area, i.e. extended area due to 20H rule.  This current behaves as a common mode 
current and makes contribution to the total radiation additional to the original radiation due to LoopYZ.   
  As the mechanism is independent of the resonance, the effect occurs regardless of resonance.   There is no radiation increase in 
lower frequencies. In this frequency range, the loop currents flowing bypass capacitors are large enough and hide the effect of the 
common mode current radiation of the 20H rule.  It is interesting that the additional common mode contribution has almost the 
same magnitude as the original contribution of loop current.  
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Figure 6: The loop current in TM02                                        Figure 7: Circuit Resonance Current 

 
Common Mode
Current

                            
Figure 8: Common Mode Current for 20H ruled board 

 

V. CONCLUSION 
  The simulation analysis was done for the radiation from the power planes.  Additional to the usual printed circuit board where 
the power and ground planes have the same size, so-call 20H ruled power plane was analyzed.   From the typical 4 cases of model 
configuration and detailed analysis on the current distribution about the radiation mode, the radiation characteristics were studied.  
The each contribution of common and loop current obtained by the mode analysis is qualitatively natural for each resonance mode. 
Moreover the analysis suggests quantitative results.  As an example, the 20H rule was analyzed and it was found that the common 
mode currents on the extended part of the ground plane by which the radiation increased over all frequencies.  Also with the 
realistic condition of distributed bypass capacitors, there arises a circuit resonance where the planes act as a large capacitor, where 
the in-phase current flow on all of the capacitors.  As the result of radiation mechanism is independent of model size parameter, 
the conclusion can be general enough for EMI design rule definition.  As the direct conclusion from the radiation mechanism, it 
can be concluded that the power plane EMI radiation can be reduced with smaller space between power and ground planes by 
which the differential mode radiation will be reduced with loop area reduction, and common mode radiation will be reduced 
according to its travel distance reduction.  
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Common- and Differential-mode Components at Asymmetric Pattern-Layout Lines
on PCB

Fengchao Xiao 1 Yoshio Kami 1

Department of Information and Communication Engineering, University of Electro-Communications1

Abstract– A procedure for determining mode of currents flowing in two parallel trace lines on a printed circuit
board is discussed. Common- and differential-mode currents are well known as orthogonal mode currents when the
line system has symmetrical cross-sectional dimensions. The network function for a line system with asymmetrical
dimensions is discussed, and the in-phase and out-of-phase current components are discussed for the case in which
terminal conditions are applied to the function.

1 Introduction
Currents in trace lines are an important issue in electromagnetic compatibility (EMC). The currents flowing

in parallel transmission lines with a symmetrical configuration can be decomposed into two orthogonal modes:
differential and common. To estimate the currents, a network function for asymmetric trace lines is obtained using
a modal analysis technique. Applying terminal conditions to the network function, we derived the in-phase and
out-of-phase currents in the asymmetric trace lines.

2 Analysis of Multiconductor Transmission Line
When currents in parallel transmission lines are in a transverse electromagnetic (TEM) mode, the telegrapher’s

equations describing line voltages and currents hold. Let those lines be in the x-direction, and let L and c be
the line inductance and capacitance matrices, respectively. Let the line voltage and current vectors, V and I, be
decomposed into the mode voltage and current vectors, V m and Im, as

V = T vV m , and I = T iIm , (1)

where T v and T i are the voltage and current conversion matrices, respectively. Then, the telegrapher’s equations
describing the mode voltages and currents are written as [1]

− d

dx

[
V m(x)
Im(x)

]
=

[
O jωT−1

v LT i

jωT−1
i cT v O

] [
V m(x)
Im(x)

]
≡

[
O jωLm

jωCm O

] [
V m(x)
Im(x)

]
. (2)

If Lm and Cm in (2) are orthogonal, they correspond to the inductance and capacitance of mode m. This means
that (2) can be obtained using a procedure similar to that for an ordinary transmission line, for example, in the
form of an ABCD matrix:

[
Vm(0)
Im(0)

]
=




cosβmx jZm sin βmx

j
1

Zm
sinβmx cos βmx




[
Vm(x)
Im(x)

]
=

[
Am(x) Bm(x)
Cm(x) Dm(x)

] [
Vm(x)
Im(x)

]
(3)

where Zm =
√

Lm/Cm and βm = ω
√

LmCm are the characteristic impedance and phase constant of mode m,
respectively.

In this procedure, how the conversion matrices, T v and T i, are obtained is important. Uchida [2] showed some
examples for two and three lines above a ground plane, where the matrices are derived by investigating voltage
sources exciting lines in a uniform dielectric material. From (2), the mode voltage and current vectors should be
satisfied with

d2V m

dx2
+ ω2

(
T−1

v LcT v

)
V m = O , and

d2Im

dx2
+ ω2

(
T−1

i cLT i

)
Im = O . (4)

The mode voltage and current should propagate simultaneously, that is, at the same velocity, so that the following
condition should be satisfied with

T−1
v LcT v = T−1

i cLT i ≡
(
v2

m

)−1
(5)

Progress In Electromagnetics Research Symposium 2006-Tokyo, Japan, August 2-5 1P3



where vm is an orthogonal matrix whose elements correspond to the mode velocities. For the identity of (5), the
following condition should hold.

T−1
v = T T

i (6)

where superscript T denotes the transpose matrix. From the above discussion, we can see that the vm are
determined by eigenvalues and the conversion matrices correspond to eigenvectors. In this case, the conversion
matrices can be determined mathematically, but it is very hard to determine the excitation sources representing
the modes.

The final network function, in the form of an ABCD matrix for line length `, is
[

V (0)
I(0)

]
=

[
T v O

O T i

] [
Am Bm

Cm Dm

] [
T−1

v O

O T−1
i

] [
V (`)
I(`)

]
≡

[
A B

C D

] [
V (`)
I(`)

]
(7)

where Am · · ·Dm consist of the elements of (3). The scattering matrix commonly used for measurement can be
estimated from the above ABCD matrix.

3 Asymmetric Trace Lines in PCB
In a model with two conductors above a ground plane, there are two orthogonal modes. In the analytical

procedure, it is not necessary to determine these modes in advance. However, it is very interesting to do this when
considering other phenomena, especially crosstalk and radiation related to EMC. For two-conductor transmission
lines with the same cross section, differential and common modes are generally well known. The configuration is
as follows [1]: the differential-mode currents in two lines are equal in magnitude and go in opposite directions,
and the common-mode currents are equal in magnitude and go in the same direction. When the cross-sectional
dimensions of the two lines differ, how to determine the configuration of the modes is a problem. Consider the
asymmetrical-line model shown in Fig. 1 (a); only the trace line widths differ. Consider a model where the

Ground plane


Trace line


V
b

I
b


V
u


I
u


(a) Two trace-line model (b) Balanced mode (c) Unbalanced mode

Fig. 1 Model of asymmetrical trace lines and modes

dielectric material surrounding the lines is uniform; that is, only one kind of material is used. Let the capacitance
matrix be known using a numerical calculation technique such as a finite-element method (FEM):

c =
[

c11 c12

c21 c22

]
(8)

where c11 6= c22 and c12 = c21. In many cases, inductance matrix L is obtained from the following, assuming
TEM mode holds for that case.

L =
1
v2

c−1 (9)

where v is the light velocity in the dielectric material. Next, we consider the mode shown in Figs. 1 (b) and (c).
We call them “balanced” and “unbalanced” modes, respectively. From the figure, we can obtain the conversion
matrices: [

V1

V2

]
=

[ −(1− ν) 1
ν 1

] [
Vb

Vu

]
, and

[
I1

I2

]
=

[ −1 ν

1 1− ν

] [
Ib

Iu

]
(10)

with
ν =

c12 + c22

c11 + c22 + 2c12
=

L22 − L12

L11 + L22 − 2L12
. (11)

The relationship given by (10) holds for the conversion matrices given by (5), so the combination of these modes
is orthogonal. When ν = 0.5, that is, c11 = c22, the trace lines are symmetrical, so the balanced and unbalanced
modes correspond to the differential and common modes, respectively.
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For two trace lines on a PCB, there are two dielectric materials surrounding the lines. In such a model, it should
be determined whether a set of the above mentioned modes is orthogonal. Generally, the conversion matrices given
in (10) depend on the elements of the line capacitance and inductance matrices. For TEM mode transmission, the
inductance matrix is determined by applying the capacitance matrix of the lines in free space to the relationship
between the velocity and the matrix. That is, the inductance matrix is estimated independently of the dielectric
materials surrounding the lines. The conversion matrices determined from the line capacitance and inductance
matrices generally do not agree with each other.

Consequently, we can obtain the orthogonal modes mathematically and then establish the network function in
the form of an ABCD matrix. Our aim is to estimate the differential- and common-mode currents, so that we can
discuss those currents by applying the terminal conditions to the network function. Here, we consider the parallel
trace-line model where one line is excited, as shown in Fig. 2 (a). The terminal conditions in general are as

V
1


I
2


V
2


E
g


R
g


I
1
+


-


+


-

R
i2


V
1


I
2


V
2


E
g


R
g


I
1

+


-


+


-


(a) Single-line-excitation source (b) Unbalanced-mode source with internal resistance

Fig. 2 Source models for balanced and unbalanced modes.

V (0) = Eg −R0I(0) , and V (`) = R`I(0) (12)

where R0 and R` are the load impedance matrices at x = 0 and x = `, respectively, and Eg is the voltage source
matrix. These matrices for a single-line-excitation source (Fig. 2 (a)) are

Eg =
[

Eg

0

]
, R0 =

[
Rg 0
0 R2i

]
, R` =

[
R1` 0
0 R2`

]
. (13)

and for an unbalanced-mode source with internal resistance (Fig. 2 (b)) are

Eg =
[

Eg

Eg

]
, R0 =

[
Rg Rg

Rg Rg

]
, R` =

[
R` R`

R` R`

]
(14)

The transmission and crosstalk characteristics of the single-line-excitation model are often estimated in terms of
scattering matrix elements, which are obtained from the ABCD matrix defined in (7).

Substituting (12) into (7) leads to

I(0) = (CR` + D) {R0(CR` + D) + (AR` + B)}−1
Eg

I(`) = {R0(CR` + D) + (AR` + B)}−1
Eg

. (15)

From (15), the unbalanced-mode current, which is the total current flowing in the same direction, that is, in-phase
components, is defined by the summation of I1 and I2. Generally, the in-phase components in two trace lines are
different in magnitude; this differs from the definition of common-mode current. The difference is determined in
terms of ν, shown in (10), which corresponds to the ratio of the line current to the unbalanced-mode current,
I1/Iu. The differential-mode current component of the same magnitude and out-of-phase component agrees with
the balanced-mode current. We can therefore estimate the mode current using

ICM = Iu = I1 + I2 (for in-phase component), IDM = Ib = (1− ν)I1 − νI2. (16)

4 Experiments and Discussion
We discuss two models. In both, two 100-mm-long parallel trace lines are laid out 1 mm apart on a 1.6-mm-deep

FR4 board. In Model 1, both trace lines are 1 mm wide, and in Model 2, one is 1, and the other is 5 mm wide.
The capacitance matrices of both models were calculated using an FEM:

c
Model1 =

[
24.337 −6.7199
−6.7199 2.4337

]
pF/m and c

Model2 =
[

24.392 −7.9309
−7.9309 52.269

]
pF/m. (17)
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Based on the c and L matrices, the conversion matrices, or eigenvectors, were estimated using

T v =
[ −0.70711 0.70711

0.70711 0.70711

]
, and T i =

[ −0.70711 0.70711
0.70711 0.70711

]
for Model 1 (18)

T v =
[

0.63626 −0.96628
0.77148 0.25750

]
, and T i =

[
0.25750 −0.77148
0.96628 0.63626

]
for Model 2. (19)

For Model 1, the conversion matrices suggest the well-known mode-excitation circuits of differential and common
modes, but for Model 2, it is hard to determine the mode-excitation circuits at a glance.

Figure 3 shows the measured transmission characteristics, which are in good agreement with the computed
results, which are not shown here. Figure 4 shows the balanced and unbalanced currents for Models 1 and 2 when
the source voltage is 1 V.
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Fig. 3 Transmission characteristics measured in scattering parameters.
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Fig. 4 Balanced- and unbalanced-mode currents when voltage source is 1 V.

5 Conclusion
We have described a model of the line currents in asymmetric parallel trace lines on a PCB. Because the

independent modes in this model differ from the differential and common modes, the network function was
discussed first, and then a procedure to determine the current components was introduced..
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Extraction of Parasitic and Stray Capacitances from
1-Port Measurements

U. Paoletti and O. Wada
Graduate School of Engineering, Kyoto University, Japan

Abstract—A de-embedding technique for the measurement of very small parasitic capacitances of package or
small module interconnects is proposed. A probe with bulky ground can strongly affect measurement results.
With the help of a few additional measurements with one probe tip open, the capacitances between probe tips
and DUT can be estimated together with the parasitic capacitances of interest. The accuracy of the measure-
ment can be also approximately estimated. One example of application is given. The accuracy has been verified
with redundant measurements and with simulation results. A high accuracy can be obtained, even when a
strong capacitive coupling between probe ground and DUT is present.

1 Introduction

Due to the increase in the density of interconnects in IC packages and boards, parasitic capacitive coupling
increases. With the increase of clock frequency of digital circuits, the effect of small parasitic capacitances
becomes significant. It is therefore important being able to calculate and measure even small capacitances.
In order to verify numerical methods for capacitance calculations, it is also important to measure very small
capacitances.

The major problem in this type of measurement, is that the capacitive coupling between probe and DUT
can affect the results. This effect is larger when the probe presents large metallic parts near the probe tips,
typically the ground tip. On the other hand, these measurements present very high repeatability.

For this reason, de-embedding techniques are needed, which allow us to eliminate the effect of the probe.
In the following, a technique for extracting very small capacitances will be introduced and validated with
measurement and simulation results.

2 De-embedding technique
Node pair capacitances can be defined in a multi-conductor system, according to [1], by ‘removing’ the ground

or the reference node from the two-terminal capacitance equivalent circuit. The two-terminal capacitance matrix
can be derived from the short-circuit capacitance matrix, which relates the charge on each conductor to the
electric potentials of all the conductors, by sign inversion of the off-diagonal terms and by adding the rows
for the diagonal terms. Node pair capacitances are important for building equivalent circuits, but cannot be
directly measured. In particular, parasitic capacitances of passive interconnects belong usually to this class.

Total capacitance can be defined as the ratio between the charge moved from one conductor to another one,
both initially not charged, and their resulting potential difference. This movement of charge is what the voltage
generator inside the measurement equipment does, for example an impedance analyzer or a network analyzer.
For this reason, it is simpler to extract total capacitance than node pair capacitance from measurement results.
In particular, in the present work the total capacitance has been calculated from the reflection coefficient, which
has been measured with a vector network analyzer.

Even though an open-short-load (OSL) calibration is conducted, the measured capacitance can be affected
by the stray capacitances of the probe. Special and very expensive probes are often used, which are designed
for reducing the capacitances between probe tips and between probe tips and DUT, which are usually neglected
in the evaluation of measurement results. In the present work, a probe with a bulky ground has been used,
whose effect cannot be neglected. The proposed de-embedding procedure allows us to give a better insight into
the measurement procedure, and can be applied also to the former type of probes, for estimating their effect on
the results.

The simplest calculation that can be done for taking into account the effect of the probe parasitics, is to
subtract from the measured capacitance the capacitance between probe tips, or more precisely, the residual
capacitance between probe tips after an OSL calibration has been conducted. The residual capacitance can be
estimated with one measurement with open probe tips, as it was done also during calibration. This type of
calculation will be called in the following as zeroth order approximation.
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In the first order approximation, the capacitances between each probe tip and the terminals of the port under
consideration are taken into account. In order to calculate these capacitances, four additional measurements
are required, with one probe tip on one terminal and the second probe tip touching only the substrate. In these
measurements, the capacitance between one probe tip and one port terminal is in parallel to the capacitance
between probe tips, which can be measured as for the zeroth order approximation. The four capacitances
between probe and DUT can be estimated for each port in this way. A necessary condition, which must be
verified before any calculation, is that the measurement results with one open probe tip do not depend on the
position of the probe tip on the substrate.

With the first order approximation, only the total capacitance at each port can be calculated. The second
order approximation is aimed at the measurement of the node-pair capacitances, and it takes into account the
series connection of two node-pair capacitances at maximum. As it will be shown, it is not necessary to consider
all the possible combinations. In fact, depending on the measurement results, some of the series connections
can be neglected.

Higher order approximations could be defined in the same way. For example, in the third order approxi-
mation, the series connections of three node-pair capacitances are also considered. However, the complexity of
calculations increases very quickly, and the solution is practicable probably only under particular assumptions
depending on the DUT. In the following example, the second order approximation was sufficient for obtaining
very accurate results.

3 Example of application

The DUT is a four layer module of dimensions 25 mm × 25 mm. The nodes and measurement positions of
interest on the first layer are shown in Figure 1. On layers 2 and 4 two ground planes are present, and on layer
3 a power plane. All the layers with vias and interconnects are shown in Figure 1. On the second and the third
layers, conductors are indicated in white, whereas on the first and fourth layers they are shadowed. All vias are
through vias. The thickness of the FR4 substrate is 0.28 mm - 1.0 mm - 0.28 mm.

(a) Top view

(b) Layer 1 (c) Layer 2

(d) Layer 3 (e) Layer 4

Figure 1: Module under test with measurement nodes

In the measurements, an ICM TDR probe P/N A0113866B with a Cascade Microtech EZ probe positioner
has been used. For the calibration the Agilent N1020A-K05 standard substrate has been used. The reflection
coefficient has been measured with a network analyzer HP8753D in the frequency range 10 MHz - 1.5 GHz. All
the measured ports presented a capacitive behavior within an accuracy of 0.05 pF or less, up to a frequency of
at least a few hundreds MHz.

The total capacitances calculated from measurement results are listed in Table 1. The position of the probe
tips during measurements is indicated by the port nodes. The first node in the name refers to the node connected
to the ground tip of the probe, and the second one to the signal tip, respectively. In bold face the measurements
that would be conducted by traditional measurement techniques with zeroth order approximation are indicated.
Some of the additional measurements are necessary for the present de-embedding technique, and some are
redundant and will be used for verifying the results.
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Table 1: Capacitances extracted from measurements

Pos. Cap.

air 0.34 pF
G0V0 1.40 pF
G0open 0.35 pF
openV0 1.10 pF
V0G0 1.4 pF
V0open 0.35 pF
openG0 1.10 pF

Pos. Cap.

G1V1 1.40 pF
G1open 0.36 pF
openV1 1.10 pF
V1G1 1.4 pF
V1open 0.41 pF
openG1 1.10 pF

Pos. Cap.

G2V2 25.40 pF
G2open 0.34 pF
openV2 2.90 pF
V2G2 28.20 pF
V2open 0.35 pF
openG2 3.25 pF

Pos. Cap.

G3V3 25.40 pF
G3open 0.36 pF
openV3 2.90 pF
V3G3 28.10 pF
V3open 0.35 pF
openG3 3.20 pF

Pos. Cap.
G1G2 4.25 pF
G2G1 1.43 pF
V1V2 3.75 pF
V2V1 1.38 pF
G1V2 3.75 pF
V2G1 1.39 pF

G2V1 1.42 pF
V1G2 4.30 pF

It can be noticed, that by inverting the polarity of the probe, different results are obtained in most cases.
This is due to the stray capacitances between probe and DUT. The stray capacitances of the probe affecting
measurement at G2V2 are shown in figure 2. The effect of nearby nodes, indicated with dots in the figure, are
symbolically represented by means of the capacitances to one of the nodes (NN ).

(a) Complete (b) Simplified

Figure 2: Equivalent circuits for parasitic node-pair capacitances of probe and module

The measurement in air of Table 1 corresponds to the residual capacitance cPsPg between the probe signal
tip (Ps) and the probe ground tip (Pg) after calibration, and the measured value was 0.34 pF.

During measurements with signal tip of the probe not connected (e.g. G2open), the results show the parallel
connection between cPsPg, the capacitance cG2Ps from measurement node G2 to the signal probe tip, and all
the series combinations of capacitances from signal tip to node NN and from node NN to probe ground tip or
node G2. Since it is clear from Table 1 and from the geometry of the module, that the capacitance between
ground planes (nodes G2, G3) and power plane (nodes V2 or V3) is much larger than all the others, only the
series connections with the ground/power planes capacitance will be considered.

cV 2Ps + cPsPg +
cV 2G2 cG2Ps

cV 2G2 + cG2Ps
� 0.35 pF, cG2Ps + cPsPg +

cV 2G2 cV 2Ps

cV 2G2 + cV 2Ps
� 0.34 pF (1)

These results show that the capacitances between these nodes and signal tip of the probe can be neglected.
The simplified equivalent circuit is shown in Figure 2. Similar results can be obtained also for the nodes G3,
V3, G0, V0, G1 and V1.

Similarly, during measurements with ground tip not connected (e.g. openV2), the results show the parallel
connection between cPsPg, the capacitance cV 2Pg from node V2 to the ground tip, and all the series connections
of capacitances from probe ground to node NN and from node NN to V2. Again, it can be assumed, that the
series connection containing the capacitance between power and ground planes will dominate. In particular, for
the measurements on the nodes G2 and V2:

cV 2Pg + cPsPg +
cV 2G2 cG2Pg

cV 2G2 + cG2Pg
� 2.9 pF, cG2Pg + cPsPg +

cV 2G2 cV 2Pg

cV 2G2 + cV 2Pg
� 3.25 pF (2)

Progress In Electromagnetics Research Symposium 2006-Tokyo, Japan, August 2-5 1P3



In order to solve these equations, the assumption that cG2V 2 � cV 2Pg can be used. This is based on the fact
that the power plane is on the third layer and is completely covered by the larger ground planes on the second
and the fourth layer.

cG2Pg + cPsPg + cV 2Pg � 3.25 pF (3)

These relations can be used for calculating cV 2G2. In fact, the different measurement results obtained by
inverting the polarity of the probe can now be explained.

cG2V 2 + cV 2Pg + cPsPg � 25.4 pF, cV 2G2 + cG2Pg + cPsPg � 28.2 pF (4)

By combining Eqs. (3) and (4), the following results are obtained. This solution is consistent with the
previous assumption, and within an accuracy of 0.05 pF also with the first of Eq. (2), which has not been used
in the calculations.

cG2Pg � 2.85 pF, cV 2Pg � 0.05 pF, cG2V 2 � 25.0 pF (5)

Similar calculations can be made for the nodes G3 and V3. It is interesting to observe, that these results
could have been obtained more easily with the measurements on G2V2 and G3V3, and by taking into account
only the capacitance between the probe tips cPgPs. Indeed, it was more obvious to connect ground tip of the
probe to the large and nearby ground plane than vice versa. However, nothing could have been said in this case
about the accuracy of the results. Moreover, for other nodes it is not always obvious to decide where to connect
the probe ground, as in the case, for example, of nodes V2V1, which are connected to the power plane on layer
3 and to a trace on layer 1, respectively. For this measurement in particular, the only assumption is that the
series between power/ground plane capacitance and two other small capacitances can be neglected, or in other
words, that the second order approximation is used.

cV 1Pg + cPsPg +
cV 1G2 cG2Pg

cV 1G2 + cG2Pg
� 1.1 pF (6)

cV 1V 2 + cV 2Pg + cPsPg +
cV 2G2 (cG2Pg + cG2V 1)
cV 2G2 + cG2Pg + cG2V 1

� 3.75 pF

cV 2V 1 + cV 1Pg + cPsPg +
cG2V 1 (cG2Pg + cG2V 2)
cV 2G2 + cG2Pg + cG2V 1

� 1.4 pF

With the use of Eq.(5), the last equation can be rearranged into a second order algebraic equation. Its
solutions can be used for calculating the other capacitances. Since one of the solutions brings to negative
capacitances, it must be excluded. The module presents two identical traces between the nodes G0G1 and
V0V1. This explains why the measurement results relative to G2V1 are very similar to those relative to G2G1.
For this reason, the calculations related to the ports G2G1 and G1V2 have the same results.

cG1G2 � cV 1G2 � 0.85 pF, cG1Pg � cV 1Pg � 0.1 pF, cG1V 2 � cV 1V 2 � 0.15 pF (7)

These results are completely different from those obtained with the zeroth order or the first order approxi-
mation. Since these results contain also information about the nodes V1G2, it can be interesting to verify them
by using other results in Table 1.

cV 1G2 + cG2Pg + cPsPg +
cV 2G2 (cV 2Pg + cV 2V 1)
cV 2G2 + cV 2Pg + cV 2V 1

� 4.3 pF (8)

cG2V 1 + cV 1Pg + cPsPg +
cV 2V 1 (cV 2Pg + cG2V 2)
cV 2G2 + cV 2Pg + cV 2V 1

� 1.4 pF

After substituting Eqs. (5) and (7) into the left-hand side of the last equations, the values 4.25 pF and
1.45 pF are obtained, which agree within an accuracy of 0.05 pF with the values on the right-hand side. Further
confirmations of these results can be found in the measurement results in Table 1 relative to the nodes G1V2
and G1G2, which agree with those relative to V1V2 and V1G2 respectively. Finally, the values of cV 1G2 and
cG1G2 have been confirmed within an accuracy of 0.05 pF by simulation results as well, which were based on
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a combination of pseudo-analytical techniques [2], a two-dimensional finite element method tool (ANSOFT
MAXWELL SV) and a three-dimensional boundary element method tool [3].

Some of the measurement results in Table 1 are not affected by the large capacitance between the power
and ground planes, because this is in series with two other small capacitances. In particular, this is the case for
measurements with none of the probe tips on the ground or power planes, such as G1V1 or G0V0. However,
since these capacitances are very small, they can be affected by the capacitance between a ground plane and
probe ground tip (cG2Pg).

cV 1Pg+cPsPg+
cV 1G1 cG1Pg

cV 1G1 + cG1Pg
+

cV 1G2 cG2Pg

cV 1G2 + cG2Pg
� 1.1 pF, cV 1G1+cPsPg+

(cV 1G2 + cG2Pg) cG1G2

cV 1G2 + cG1G2 + cG2Pg
� 1.4 pF (9)

With the use of the results in Eqs. (5) and (7), last equation can be used for calculating cG1V 1, whose
value, 0.35 pF , can be introduced later in the first equation for verifying the accuracy. The results are equal to
1.18 pF , which agrees with the results on the right-hand side within an accuracy of 0.1 pF .

With similar arguments, and based on the fact that nodes G1 and G0 are connected, as well as V1 and V0, it
is possible to extend these results to G0V0. These results have been also confirmed by simulation results within
an accuracy of 0.05 pF.

All the results are summarized in Table 2. With the second order approximations, the accuracy is greatly
improved. It can be observed, that some of the results can be obtained also with zeroth or first order approxi-
mations. However, this is not systematic, and no control on the accuracy is possible.

Table 2: Capacitances in pF after de-embedding

Pos. 2nd

order
First order Zeroth order

PgPs PsPg PgPs PsPg
G0V0 0.35 0.3 0.3 1.05 0.75

G1V1 0.35 0.3 0.3 1.05 0.75
G2V2 25.0 22.50 24.95 25.05 27.85

G3V3 25.0 22.50 24.90 25.05 27.75

Pos. 2nd

order
First order Zeroth order

PgPs PsPg PgPs PsPg
G2G1 0.85 0.35 1.0 1.1 3.9

G2V1 0.85 0.30 1.05 1.05 3.95
V1V2 0.15 0.85 0.28 3.4 1.05

G1V2 0.15 0.85 0.30 3.4 1.05

4 Conclusions

With zeroth order approximation, only the residual capacitance between probe tips (cPsPg) after calibration
is considered. The residual capacitance can be measured with both probe tips open, after that calibration has
been conducted. In order to extract the node-pair capacitance from measurement results, the use of additional
measurements with one of the probe tip open has been proposed. In the first order approximation, only the
capacitances between probe tips and nodes are considered. In this case only the total capacitance at the nodes
can be the goal of the calculations. However, the first order approximation is not enough in the present study.
In the second order approximation, the series of two capacitances are considered. In the present study it was
enough to consider only series of one capacitance with the power-plane capacitance in most cases, in order to
obtain consistent results within an accuracy of 0.1 pF.
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Abstract

Printed circuit boards (PCBs) sometimes have a separated power or ground plane. Differential mode having
been propagated along the microstrip line is divided into multiple modes when the differential mode arrives
at the intersection of the signal line and the slit. They are differential mode that reflects backward and runs
through, slot line mode and parallel plane mode. In order to evaluate excitation of undesirable electromagnetic
modes, “transmission factor” is defined as a power ratio of excited mode to incident mode and is expressed in
a matrix form like S matrix. The transmission factor is obtained by the electromagnetic calculation near the
slit, since it is determined only by the structure of the intersection between the signal line and the slit.

1. Introduction

Printed circuit boards in digital devices have multiple power/ground planes and become multi-layer struc-
tures in order to supply stable power/ground voltages. The power/ground planes sometimes should be divided,
by slits, into several parts in order to isolate the voltage levels between the different segments on the same layer.
However, the signal transmission line is arranged above the separated power/ground planes. The slit on the
power/ground planes breaks signal current through either power plane or ground plane as return path, which
causes undesirable effects such as reflection and excitation of harmful electromagnetic mode which cause EMI
and deterioration of signal integrity[1], [2], [3].

This paper clearly explains the electromagnetic phenomenon that arises at the intersection. Slot-line mode
and parallel-plane mode are found to be dominant after FDTD simulation carried only in the local domain
around the intersection. Coupling between the incident signal as the transmitted mode and excited mode are
given in term of “transmission factor”. This factor is available to the same local structures sitting at any place
of a PCB.

Numerical examples are shown and easiness of calculation is appealed. With this approach, further devel-
opment for quicker calculation is expected to decrease the required calculation resource and the working time
of PCB designers for better signal integrity and common-mode control.Signal lineReturn planeGND plane Slit

Figure 1: A 3-layers PCB with slit on return plane.
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2. Excitation of Slot-line Mode and Parallel-Plane Mode

To investigate the excited unintentional electromagnetic mode, this paper deals with a slit on the middle
layer as shown in Fig. 1. The top layer has a signal line and the bottom layer is large enough to cover the
slit in the middle layer. According to FDTD calculation, differential mode having been propagated along the
microstrip line is split in to multiple modes: differential mode that reflects backward and runs through, slot-line
mode that propagated along the slit on middle layer, and parallel-plane mode that spreads cylindrically between
the middle and bottom layer, when the differential mode arrives at the intersection of the signal line and the
slit.

The test PCB using for FDTD calculation is shown in Fig. 2 and TABLE 1. Parameters employed in the
calculation are shown in TABLE 2 and whole area is filled with air. An isolated pulse with Gaussian profile is
fed into the microstrip line at the feed point, and propagates along the microstrip line. The reflection at the
end of the signal line does not take place, because the signal line and any edge of the test board are connected
to the Perfectly Matched Layer (PML). The voltage waveform was observed at points #1-3 shown in Fig.2.WSLTfeed5.25y xz (mm)

PML 45.75observation point17.625 22.875
22.87511.25 WMSL11.625 11.6#1 #2#3 r

(a) Plan view.

(mm) hSRhRGPMLy xz rVMSL1 VMSL2VPP1 VPP2
(b) Cross sectional view.

Figure 2: Test PCB using for FDTD.

Table 1: Parameters of the test board.
parameter value [mm]

WMSL 0.75

WSLT 0.75

hSR 0.4

hRG 0.4

Table 2: Parameters of FDTD calculation.
Cell size (∆x, ∆y, ∆z) [mm] (0.075, 0.075, 0.050)

Number of cells (Nx, Ny, Nz) (610, 610, 32)

Total cells 11,907,200

Time steps [ps] 0.121

Absorbing boundary condition PML (4 layers)

Feed type delta-gap feed

Figure 3(a) shows the voltage waveform of the incident signal and that reflected by the slit observed at the
point #1, which is convinced by the fact that the round trip propagation time between the observation point
#1 and the slit is 80ps; whole the area is filled with air. The waveform of the transmitted over the slit at the
point #2 is shown Fig. 3(a) too. The amplitude of reflected wave has about 20% of the input wave, and that
of transmitted wave has about 80% of the input wave.

The voltage waveform in Fig. 3(b) is observed at the point #3 on the slit. The waveform is excited by the
signal around the microstrip line and it spills into the slit as the slot-line mode. The waveform in Fig. 3(c)
is the voltage propagates along the pair of the return plane and ground plane. The peak voltage is inversely
proportional to the square root of r, which is the distance from the intersection of the signal line and the slit to
the observation point (Fig. 3(d)). Thus, the power which propagates along the pair of the return and ground
planes is inversely proportional to the distance r, which is the evidence that the field distribution is a cylindrical
wave as a parallel-plane mode with its center at the intersection.

2
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Figure 3: Voltage waveforms observed at each observation point and that between return and ground plane by
FDTD calculation.

3. Transmission Factor for the Evaluation of Each Mode Excited

Reflection into the microstrip line as well as the slot-line mode and parallel-plane mode are excited by the
transmission line overpassing the slit on return plane. A transmission factor is defined as the ratio of power of
excited modes to that of incident for evaluation of each mode excitation. Power of signal which propagates along
each transmission line or waveguide is obtained by integrating total power passing through the closed surface
defined beforehand. Power of slot-line mode and parallel-plane mode are observed together in the observation
point #3. Parallel-plane mode was separated with the dependence on distance r.

TABLE 3 shows examples of transmission factors of the structure shown in Fig. 2. Transmission factors show
that the reflection from and to the microstrip line is −12dB. Slot-line mode was excited at the rate of −16dB
and parallel-plane mode with −18dB. This value is determined only by the local structure around intersection
of the signal line and the slit. These factors are obtained by the analysis carried on the local area around the
intersection, and are available to the same local structure finding the same PCB.

Figure 4 shows the transition of the transmission factors as the slit width. SA,B is transmission factor, which
means the ratio of power of excited mode A to that of the incident, B. For example, SSLT,MSL1 means the
ratio of power of slot-line mode to that of differential mode on microstrip line. When the WSLT becomes large,
SMSL1,MSL1 and SSLT,MSL1 tend to increase. On the other hand, SMSL2,MSL1 and SPP,MSL1 tend to degrease.
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Table 3: Example of transmission factors of the structure shown in Fig. 2.
Unit:dB

MSL1 MSL2 SLT1 SLT2 PP1 PP2
MSL1 −12 −2.7 −16 −16 −18 −18
MSL2 −2.7 −12 −16 −16 −18 −18
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 SMSL2,MSL11
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Figure 4: Transition of the transmission factors as the slit width.

4. Conclusion

The slot-line mode and parallel plane mode excited at the intersection of the signal line and the slit. In
order to evaluate these modes,“ transmission factor” is defined as the ratio of power of excited mode to
that of incident. Magnitudes of these modes were calculated with FDTD method in the local domain around
the intersection to give the transmission factor. This procedure lends us the scheme to know the magnitude
of the exited undesirable electromagnetic modes which deteriorate of the signal integrity or gives rise to the
common-mode current known as the ground bounce, with the minimum cost of resource.
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Abstract– A model is described for analyzing the crosstalk between two parallel lines above a ground plane
and bent parallel to each other. It is based on a circuit concept approach, which incorporates both transmission
line and field theories. Experiments demonstrated that the proposed model accurately predicts the crosstalk.

1 Introduction
In a printed circuit board (PCB), there are various layouts of trace lines. Even if a trace line is designed

independently, it affects nearby trace lines and vice versa. That is, electromagnetic interference, or crosstalk,
occurs there. Crosstalk is a serious problem in the field of electromagnetic compatibility because high densities of
trace lines are demanded in small packages and for high-speed operations. The crosstalk between parallel trace
lines can be analyzed using the telegrapher’s equations for line-voltage and line-current vectors under assumptions
of transverse electromagnetic (TEM) mode propagation or at least quasi-TEM mode propagation. In a PCB,
there are straight lines and bent lines. To analyze these lines, a cascading technique may be used for the straight
parts, but it is unclear whether the technique is adequate for high-frequency operation at high-density wiring.
The telegrapher’s equations are commonly used because they are so concise and simple. Therefore, the limitations
on how they are applied should be clarified. The telegrapher’s equations for multiconductor lines are based
fundamentally on a concept of circuit theory using capacitive and inductive couplings, which correspond to the
electric- and magnetic-field couplings in electromagnetic field theory, respectively.

When a transmission line is excited by external electromagnetic fields, a current is induced in the line. That
is, the coupling phenomenon occurs there. Application of Maxwell’s equations to this phenomenon produced
modified telegrapher’s equations obtained in a form where the external fields play roles of distributed voltage and
current sources along the line, corresponding to magnetic- and electric-field couplings. This technique is called
the “circuit-concept approach”.

In this paper we use this approach to analyze the crosstalk between two bent lines. Taking account of electro-
magnetic fields caused by the currents flowing in various line sections, we derive the network functions in the form
of an ABCD matrix. By comparing the computed and the measured results, we verify the proposed approach.

2 Circuit Concept Approach for Non-parallel-line Coupling
When a transmission line is in an electromagnetic field, an induced current flows in the line. This phenomenon

can be expressed in the form of telegrapher’s equations describing line voltage V and current I [1]-[4]. The
equations are derived from Maxwell’s equations under the assumption that the induced current flows of TEM
mode. In these equations, the effects due to external fields are assumed to be distributed voltage and current
sources along the line, signifying magnetic- and electric-field couplings, respectively. A set of solutions to the
telegrapher’s equations for a line length of � is given as follows in the form of an ABCD matrix using a state
variable [4],[5]: [

V (0)
I(0)

]
= F (�)

[
V (�)
I(�)

]
+
∫ �

0

F (x′)
[
Vf (x′)
If (x′)

]
dx′ (1)

with

F (x′) =
[
A(x′) B(x′)
C(x′) D(x′)

]
=


 cosβx′ jZ0 sinβx′

j
1
Z0

sinβx′ cosβx′


 (2)

and
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[
Vf (x′)
If (x′)

]
=




−jω
∫ h

0

Bzdy
′

jωC

∫ h

0

Eydy
′


 =




−jω
{∫ h

0

(
∂Ay

∂x
− ∂Ax

∂y
)

}
dy′

jωC1

{
−jω

∫ h

0

Aydy
′ +

∇ · A
jωµ0ε0

∣∣∣y′=h
y′=0

}



. (3)

where the line is in the x-direction at height of y = h and is excited by external electric field E(Ex, Ey, Ez) and
magnetic field H(Hx,Hy,Hx). We also assume a lossless transmission line of line inductance L and capacitance
C in free space with permeability µ0 and permittivity ε0. Terms Z0 and β are the characteristic impedance and
the phase constant of the line, respectively.

Term Vf is the distributed voltage source along the line corresponding to the magnetic-field coupling interpreted
by Faraday’s law, and If the current source of the electric-field coupling. In the second term on the right side of
(3), the terms are written in terms of the vector potential of the field.

Even if transmission lines were laid out in arbitrary directions, coupling between them would occur. When the
transmission lines are parallel, the coupling can be estimated by using a multiconductor transmission line theory
based on the telegrapher’s equations. However, when two parallel transmission lines are bent in the same direction,
the transmission line theory would not be applicable because the bent corner effect is not taken into account by
the theory. We focus on this configuration and investigate whether the theory is applicable. A current flowing in
a transmission line generates electromagnetic fields, and the fields affect nearby transmission lines. This effect is a
physical phenomenon similar to the coupling of electromagnetic fields to transmission lines. The coupling between
non-parallel transmission lines has been studied using this concept [6],[7],[8]. In these studies, two transmission
lines are straight, and terminal or riser effects are taken into account for fields affecting another line. Here, we
consider the crosstalk phenomenon between two parallel lines bent in the same direction, as shown in Fig. 1. We
assume the coupling level is so weak that the characteristic impedance is similar to that of an isolated line.
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(a) Coordinate system (b) Top view of experimental model
Fig. 1 A model of two parallel lines bent in same direction

First, consider the electromagnetic fields created by a finite-length line bent in the z-x plane and with the same
height (y = h) as another line, as shown in Fig. 1. Let the line system consist of two parts of a finite line length,
�1 and �2, and let the line ends have risers. For a straight line, the electromagnetic fields are generated by currents
flowing in the line section and its image in the x direction, and at the risers at both line ends in the y direction.
Then the components of the vector potential are written as

Ax =
µ0

4π

∫ �

0

{
e−jβRx1

Rx1
I(x′) − e−jβRx2

Rx2
I(x′)

}
dx′ , Ay =

µ0

4π

∫ h

−h

{
e−jβRy0

Ry0
I(0) − e−jβRy�

Ry�
I(�)

}
dy′ (4)

with
Rx1 =

√
(x− x′)2 + (y − h)2 + z2 Rx2 =

√
(x− x′)2 + (y + h)2 + z2

Ry0 =
√
x2 + (y − y′)2 + z2 Ry� =

√
x2 + (y + y′)2 + z2

(5)

and current I(x′) at arbitrary point x′ can be expressed in terms of the line-terminal voltage and current as

I(x′) = −j V (0)
Z0

sinβ(x′) + I(0) cosβ(x′) = j
V (�)
Z0

sinβ(�− x′) + I(�) cosβ(�− x′). (6)
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Thus, the vector potential can be also written in terms of terminal voltage Vt(·) and current It(·), so that the
second term on the right side of (1) is written as

∫ �

0

F (x′)
[
Vf (x′)
If (x′)

]
dx′ = f(0)

[
Vt(0)
It(0)

]
= f(�)

[
Vt(�)
It(�)

]
(7)

For a bent line consisting of two line sections (�1 and �2), the network function can be written in the following
form:
[
V1(0)
I1(0)

]
= F 1(�1)

[
V1(�1)
I1(�1)

]
+ f12(�2)

[
V2(�2)
I2(�2)

]
,

[
V2(0)
I2(0)

]
= F 2(�2)

[
V2(�2)
I2(�2)

]
+ f21(0)

[
V1(0)
I1(0)

]
.

(8)
Here, applying the continuity condition, V1(�1) = V2(0) and I1(�) = I2(0), at a connecting point, such as point A
in Fig. 1 (a), gives the final network function:

[
V1(0)
I1(0)

]
= {U − F 1(�1)f21(0)}−1 {F 1(�1 + �2) + f12(�2)}

[
V2(�2)
I2(�2)

]
(9)

where we assume F 1(x) = F 2(x) for the same cross-sectional dimensions in both line sections.
Next, consider the application of the above concept to the model shown in Fig. 1. The equations corresponding

to (8) are written by adding all other effects due to the line sections and then rewritten as
 U − F 1(�1)f21(0) −F 1(�1)f23(0) − f13(0)

−F 3(�3)f41(0) − f31(0) U − F 3(�3)f43(0)






[
V1(0)
I1(0)

]
[
V3(0)
I3(0)

]

 =


 F 1(�1 + �2) + f12(�2) F 1(�1)f24(�4) + f14(�4)

F 3(�3)f42(�2) + f32(�2) F 3(�3 + �4) + f34(�4)






[
V2(�2)
I2(�2)

]
[
V4(�4)
I4(�4)

]

 . (10)

From the above equation, the final ABCD matrix can be obtained, and, from that, the scattering matrix can be
derived.

3 Experiment and Discussion
We did an experiment using the model shown in Fig. 1. Wire lines of 0.5mm in diameter and 200mm in length

were set 4 mm above an aluminum ground plane. The characteristic impedance for the isolated line was about
208 Ω. Ports 1 and 3 were the line ends of one line, and ports 2 and 4 those of the other line. The near-end and
far-end crosstalks, in terms of scattering matrix parameters S21 and S41, were estimated when the line ends were
terminated with 50-Ω loads. Figure 2 is for S21, and Fig. 3 for S41.
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Fig. 2 Comparison between calculated and measured results of near-end crosstalk S21: (a) magnitude and (b)
phase.
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Fig. 3 Comparison between calculated and measured results of far-end crosstalk S41: (a) magnitude and (b)
phase.

In Fig. 2, the calculated, the measured, and the results simulated by a commercical solver are shown together.
These magnitude and phase results are in good agreement.

In Fig.3, the results are also in good agreement. The agreement between the measured and calculated results
shows that the proposed circuit-concept approach can be used for analysis of crosstalk on various types of lines.

4 Conclusion
We proposed a circuit-concept approach to analyze the crosstalk between nearby transmission lines of finite

length. Electromagnetic fields caused by line sections and risers at the line ends are taken into account in applying
the approach. The agreement between calculated results and results measured from crosstalk between two lines
bent parallel to each other above a ground plane shows that our approach can be used.

Acknowledgements
This work was supported in part by the Joint Project of the Japan-Korea Basic Scientific Cooperation Program

of the Japan Society for the Promotion of Science, and by the Korea Science and Engineering Foundation Grant
funded by the Korean government (MOST), (KRF - 2005 - 215 - D00284).

Reference
[1] C.D. Taylor, R.S. Satterwhite, and C.W. Harrison,“The response of a terminated two-wire transmission line

excited by a nonuniform electromagnetic field,” IEEE Trans. Antennas and Porpag., AP-13, 6, pp.987-989,
Nov. 1965.

[2] C.R. Paul, “Frequency response of multiconductor transmission lines illuminated by an electromagnetic field,”
IEEE Trans. Electromagn. Compat., EMC-18, 4, pp.183-190, May 1976.

[3] A.K. Agrawal, H.J. Price, and S.H. Gurbaxani, “Transient response of multiconductor transmission lines
exited by a nonuniform electromagnetic field,” IEEE Trans. Electromagn. Compat., EMC-22, 2, pp.119-129,
May 1980.

[4] Y. Kami, and R. Sato, “Circuit-concept approach to externally excited transmission lines,” IEEE Trans.

Electromagn. Compat., EMC-27, 4, pp.177-183, Nov. 1985.

[5] C.R. Paul, “Efficiet numerical computation of the frequency response of cable illuminated by an electromagnetic
field,” IEEE Trans. Microwave theory Tech., MTT-22, 4, pp.454-457, Apr. 1974.

[6] W. Liu and Y. Kami, “Analysis of coupling between transmission lines in arbitrary directions,” Proc. 1998

IEEE EMC Symposuim, pp. 952-957, Denver Aug.24-28, 1998.

[7] F. Xiao, W. Liu and Y. Kami, “Analysis of crosstalk between finite-length microstrip lines: FDTD approach
and circuit-concept modeling,” IEEE Trans. Electromagn. Compat., vol. 43, no. 4, pp. 573-578, Nov. 2001.

[8] S. W. Park, J. C. Ju, and D.C. Park, “Analysis of crosstalk between multiconductor transmission lines in
arbitrary directions using a circuit-concept approach,” IEICE Trans. Commun., vol. E88-B, No. 8, pp. 3189-
3194, Aug. 2005.

Progress In Electromagnetics Research Symposium 2006-Tokyo, Japan, August 2-5 1P3



Determination of Absorbing Materials’ Complex EM-parameters via 
Scalar Reflectometer 

 
Chun-Ping Chen1, Zhewang Ma2, Tetsuo Anada1, Jui-Pang Hsu1 

 
1High-Tech Research Center, Kanagawa University, Japan, email: chen@kanagawa-u.ac.jp 

2Department of Electrical and Electronic Systems, Saitama University, Japan 
 
 

Abstract: A scalar reflectometer based, low cost, method, named “multi-thickness method”(MTM), is 
proposed for nondestructively and simultaneously charactering complex permittivity and complex 
permeability via an open-ended coaxial probe. The measurement system is established, while the 
sample-loaded open-ended coaxial probe is modeled by Spectral domain immitance method. A 
discussion about how to select the multi thicknesses of test sample is also included. A typical 
absorbing material is measured under different thickness combination conditions. The results agree 
well with the reference data, which validates the feasibility and effectiveness of this technique. 
Key Words: Multi-thickness method(MTM), Scalar reflectometer, Permittivity, Permeability 
 

I.  INTRODUCTION 
 

Recently, with the ever-growing application of the high-loss materials in electromagnetic 
compatibility (EMC), radar stealth technology etc., simultaneous complex EM parameters( ε , μ )’ 
characterization techniques, especially nondestructive ones, are becoming more and more important 
for materials’ development, detection and application[1][2]. Since most of the resonance methods 
need carefully sample preparation, transmission/reflection method with open-ended sensors is more 
suitable for nondestructive test[2]. Compared with transmission method, reflection method requires 
less in sample preparations(only a reflectometer, one sensor and more simple test fixtures)[2]. 
Accordingly, it is more suitable for practical application. Furthermore, because of its intrinsic merits 
such as broadband-capability, opened-structure and wide-compatibility, etc., open-ended coaxial 
reflection probe(OECRP) is essentially applicable for nondestructive and broadband testing of 
materials’ EM parameters at microwave frequency[1]-[7]. So far, some OECRP-based, 
complex-EM-parameters characterization method have been proposed, e.g. “two-thickness 
method”(TTM) [1]-[5], “frequency-varadation Method” (FVM)[1][2][6], “combination method”[2][5], 
etc.. All the above-mentioned methods are based on measuring the complex reflection coefficients of 
the sample loaded OECRP by the vector reflectometer.  

Obviously, for vector reflection, accurate phase detection, which relies strongly on the test sample’s 
surface condition, requires more carefulness in sample preparation and more cost for test 
instrumentation [2][7]. Especially, the price of vector reflectometer is generally more than twice 
higher than scalar one. Accordingly, to cater for the always-requirement of costdown, in this paper, an 
improved, lower cost(scalar reflectometer based) method for complex EM parameters will be studied. 

As well known, in reflection method, EM parameters are indirectly determined from the 
information of reflection coefficients. To simultaneously obtain two complex EM-parameters( ε , μ ), 
which embody 4 scalars, the key point is to find at least 4 scalar reflections under different test 
conditions. Here, for a primary research, the method to get multi-reflections under different thickness 
of sample-----“multi-thickness method”(MTM) will be studied, with an amphasis on the validation of 
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its feasibility. 
  

II.  THEORETICAL MODELING 
 

In MTM, the tested samples’ two complex EM-parameters ε  and μ  are simultaneously 
determined via measuring the reflection coefficients’ magnitude of a sample-loaded OERCP. 
Theoretically, MTM could be applied in either the half space infinite sample case, or the air-backed 
case, or the metal-backed case[1]. But, because the latest case is most suitable and easiest in practical 
application, in this paper, we will choose such case as an example. Fig.1 depicts the measurement 
configuration of a short-circuited microwave absorbing coating with a flanged open-ended coaxial 
probe, assuming infinitesimal dimension of flange, short-circuited plane and test sample. 
Correspondingly, SDI (Spectral Domain Impedance) method could be introduced to construct the 
full-wave spectral domain model [6]. The matrix equation that specifies the input admittance could be 
established as:  

( ) 0 0 0
0

N

i ij i ij j j
i

A Y Y Aδ δ
→∞

=

⎡ ⎤Γ ⋅ + ⋅ = ⋅ −⎣ ⎦∑  (1) 

where i, j = 0, 1, 2, … are the mode indices. i = j = 0 gives 
dominate TEM mode; iΓ  denotes the vector voltage reflection 
coefficient at z = 0 while Yi is the mode admittance in coaxial line. 

ijA  can be treated as equivalent input admittance in space 
domain, for we shall obtain ( ) ( )00 0 0 01 1A Y= ⋅ − Γ + Γ  in 
considering merely the dominant TEM mode in the coaxial line. 
For interested readers, please refer to [6] for the detail.  
 

II.  MEASUREMENT SYSTEM 
 

The measurement system for MTM is the same as TTM, which has been shown in Fig.2[3]. In 
MTM, four needed scalar ( ), , , ,r r f dε μΓ  are recorded by measuring a sample with four different 
thicknesses d1, d2, d3 and d4, respectively. Then, a right rε  and rμ  pair should lead the calculated 
reflection coefficients as little difference as possible to the measured ones:    

      

( )
( )
( )
( )

1 1 1

2 2 2

3 3 3

4 4 4

, , , , ,
, , , , ,
, , , , ,
, , , , ,

m c r r r r

m c r r r r

m c r r r r

m c r r r r

f d
f d
f d
f d

ε ε μ μ
ε ε μ μ
ε ε μ μ
ε ε μ μ

⎧ ′ ′′ ′ ′′=
⎪

′ ′′ ′ ′′=⎪
⎨ ′ ′′ ′ ′′=⎪
⎪ ′ ′′ ′ ′′=⎩

Γ Γ

Γ Γ

Γ Γ

Γ Γ

    (2) 

where the subscripts m denotes “measured”, c 
denotes “calculated”. Then, from (2) we are able to 
work out through numerical iterations the both 

( )1 tanr r j εε ε δ′= ⋅ −  and ( )1 tanr r j μμ μ δ′= ⋅ − .  
Obviously, in MTM, the key technique is to 

reasonably choose 4 thicknesses of the test sample. In our experiment, we found the proper thickness 
selection is strongly relative to the properties of the sample itself. In the following, we will make a 
discussion about the this technique in MTM, with an emphasis on the material with very high loss. A 
typical absorbing material Sj1 will be studied as an example. Fig. 3 shows the variation of the 
calculated Γ  of Sj1 along with its (electrical) thickness in X-band modeled by Fig.1. The shape of 
curves corresponding to different frequency seem alike and are very similar to a damped evanescent 
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Fig. 2 The flow-graph of measurement system 
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sinusoidal wave. Firstly, in region I of Fig. 3, Γ  declines very fast with the increase of d/λg, i.e. a 
small uncertainty in measured thickness d will possibly introduce a big uncertainty of Γ . For 
example, for Sj1 (at 10GHz, 0.56 0.1d mm= ± ), the corresponding 0.05Δ Γ ≈ . Accordingly, one 
must pay great attention to the accuracy of measured sample’s thicknesses if they are selected in 
region I. Secondly, in region III, Γ  varies very slowly with d/λg. As well known, the sensitivity of 
general reflectometer for Γ  is about 0.01. Practically, if we choose more than one thicknesses in 
region III, the corresponding equations in (2) will be correlated and sometimes result in an 
unacceptable errors in solutions. In other words, from physical meaning point of view, in III, Γ  is 
no longer the function of d, which contradicts with the assumption of MTM. Thirdly, based on above 
discussion, for Sj1, region II seems the best proper region for selecting the measured thicknesses. 
However, one point should be mentioned: the more thicknesses to be selected in II, the smaller 
intervals between neighboring thicknesses will 
be got. This will sometimes deteriorate accuracy 
of measured EM-parameters because of the 
errors in direct measurement quantities. So, 
based on the author’s experience, to choose one 
or two thicknesses in region I and III will 
sometimes get more accurate results, which 
could be found in next session.  

 
III.  EXPERIMENTAL VERIFICATION 

 
A measurement system has been set up as Fig. 

2. An ANA(Agilent8722ES) is used as the 
reflectometer while an APC-7 compatible 
flanged open-ended coaxial probe was fabricated to measure the absorbing coatings modeled by Fig. 1. 
An X-band frequency-swept measurement was carried out on a typical absorbing material Sj1. The 
fitted measurement results by both MTM under different thicknesses combinations and TTM are 
shown in Fig.4. Then we can get some results: 1). The results measured by MTM under all 3 
selections of thicknesses combinations have good agreements with the reference data by TTM. The 
maximum deviations of all the results are limited to 10% for εr, 0.03 for tanδε , 5% for μr and 10%   
for tanδμ, which verified the effectiveness of MTM; 2). In comparison, for MTM, the test results of C 
(thickness combination)1 and C2 seem agree more well with the reference data than those of C3. This 
is most probably because of the influence of the smaller intervals of the adjacent test thicknesses, 
which makes equations in (2) correlated and increased the measurement uncertainties. On the other 
hand, these results also verified the critical influence of sample’s thicknesses selection on the accuracy 
of measured results.  

 
IV.  CONCLUSIONS 

 
An improved method, named “multi-thickness method”(MTM) was proposed for nondestructively 

and simultaneously charactering complex permittivity and complex permeability. Compared with 
two-thickness method(TTM)(need vector reflectometer), MTM requires only scalar reflectometer, 
which simplifies the test system and lowers the cost. (Although it requires more samples with 4 
different thickness, practically, we can try to get more sample thicknesses by piling-up or folding the 
samples.) In this paper, the basic measurement system was set up while the key point of how to 
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reasonably select sample’s test thicknesses has been discussed. The experiments on a typical 
absorbing material under different thicknesses combinations have been conducted. The good 
comparison between MTM results with reference data(by TTM) validated the feasibility of this 
improved technique.   

ACKNOWLEDGMENT  

 
This study was partly supported by High-Tech Research Center Project from the Ministry of 

Education, Culture, Sports, Science and Technology, Japan. 
 

REFERENCES  
 
[1] Xu Deming, et al, “Recent Advance on Open-Ended Coaxial probe measurement Techniques,” 2002 APMC 

Proceedings, vol.2, Japan, 2002, pp.999-1006. 
[2] L.F. Chen, Microwave electronics: measurement and materials characterization, New York: Wiley, 2004. 
[3] Chen ChunPing, et al, “Uncertainty Analysis for the Simultaneous Measurement of Complex 

Electromagnetic Parameters Using an Open-ended Coaxial Probe,” Proceedings of IMTC2004, vol.1, Italy, 
May, 2004, pp. 61-65 

[4] Chen ChunPing, et al, “Further Study on Two-Thickness-Method for Simultaneous Measurement of 
Complex EM Parameters Based on Open-ended Coaxial Probe,” EuMC2005, Paris, Oct.,2005 

[5] Niu Maode, Su Yong, et al, “An Improved Open-Ended Waveguide Measurement Technique on Parameters 
ε  and μ  of High-Loss Materials,” IEEE Tran. on IM-47, no.2, pp.476-481, April 1999. 

[6] Shoujun Wang, Maode Niu,and Deming Xu, “A frequency-Varying method for simultaneous Measurement 
of complex permittivity and permeability with an open-ended coaxial probe, ” IEEE Trans. MTT-46., No.12, 
pp.2145-2147, December 1998. 

[7] James Baker-Jarvis et al., “Analysis of an Open-Ended Coaxial Probe with Lift-Off for Nondestructive 
Testing, ” IEEE Transactions on IM-43, no.5, pp.711-717, Oct. 1994. 

8 9 10 11 12
10.5

11.0

11.5

12.0

12.5
 TTM  (d2,d4)
 MTM C1(d1,d2,d4,d5)
 MTM C2(d1,d3,d5,d6)
 MTM C3(d2,d3,d4,d5)

 

 

ε r

f(GHz)  
8 9 10 11 12

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

 TTM  (d2,d4)
 MTM C1(d1,d2,d4,d5)
 MTM C2(d1,d3,d5,d6)
 MTM C3(d2,d3,d4,d5)

 

 

ta
nδ

ε

f(GHz)  

8 9 10 11 12
1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85
 TTM  (d2,d4)
 MTM C1(d1,d2,d4,d5)
 MTM C2(d1,d3,d5,d6)
 MTM C3(d2,d3,d4,d5)

μ r

f(GHz)    
8 9 10 11 12

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

 TTM  (d2,d4)
 MTM C1(d1,d2,d4,d5)
 MTM C2(d1,d3,d5,d6)
 MTM C3(d2,d3,d4,d5)

ta
nδ

μ

f(GHz)  

Fig.4 Broadband frequency-swept measurements for sample Sj1(Refer to Fig.3 for the value of d1~d6) 

(a) (b) 

(c) (d) 

Progress In Electromagnetics Research Symposium 2006-Tokyo, Japan, August 2-5 1P3



A Stable and Fast 3-D Imaging Algorithm for UWB Pulse Radars
with Fractional Boundary Scattering Transform
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Abstract

Radar imaging for a nearby target is known as an ill-posed inverse problem, on which various studies have been
done. However, conventional algorithms require too long computational times. In order to resolve this difficulty,
SEABED algorithm was developed. This algorithm is based on a reversible transform between the real and data
spaces. In a noisy environment, the performance of the SEABED algorithm is severely degraded. In this paper,
we newly introduce a fractional IBST, which is obtained by expanding the conventional IBST, which enables
us to deal with the intermediate space between the real and data spaces, and propose a stable 3-D imaging
algorithm by using the FIBST.

1 Introduction

The UWB (ultra-wideband) pulse radar is a promising candidate as an environment measurement method for
robots. Radar imaging for a nearby target is known as an ill-posed inverse problem, on which various studies
have been done. However, conventional algorithms require long computational time, which makes it difficult to
apply them to real-time operations of robots. We have proposed a fast radar imaging algorithm, the SEABED
algorithm, for UWB pulse radars [1, 2, 3]. This algorithm is based on a reversible transform, IBST (Inverse
Boundary Scattering Transform), between the target shape and the observed data. This transform enables us to
estimate target shapes quickly and accurately in a noiseless environment. However, in a noisy environment the
image estimated by the SEABED algorithm is degraded because IBST utilizes differential operations. In this
paper, we newly introduce a FIBST (Fractional IBST), which is obtained by expanding the conventional IBST,
which enables us to deal with the intermediate space between a real and data spaces, and propose a stable 3-D
imaging algorithm by using the FIBST. We investigate the estimation errors for the conventional algorithms
and the proposed one with numerical simulations.

2 System Model

In our system model, UWB mono-cycle pulses are transmitted at a fixed interval and received by the same
omni-directional antenna. We express a real space with the parameters (x, y, z). The antenna is scanned on
the x-y plane in the real space. We define s(X,Y, Z) as the electric field received at the antenna location
(x, y, z) = (X,Y, 0), where we define Z with time t and the speed of the radiowave c as Z = ct/(2λ). It should
be noted that the received data is expressed with (X,Y, Z), and the target shapes is expressed with (x, y, z).
We define a data space as the space expressed by (X,Y, Z). The transform from the data space (X,Y, Z) to
the real space (x, y, z) corresponds to the imaging we deal with in this paper. We normalize x, y, z, X, Y and
Z by λ, the center wavelength.
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3 Conventional SEABED Algorithm

In the SEABED algorithm, quasi-wavefronts (X,Y, Z) are easily extracted from the received data s(X,Y, Z).
We apply IBST to the quasi-wavefront to obtain the final image as

⎧⎪⎨
⎪⎩

x = X − Z∂Z/∂X,
y = Y − Z∂Z/∂Y ,

z = Z

√
1 − (∂Z/∂X)2 − (∂Z/∂Y )2

.

(1)

This technique is very simple, but it works well only for noiseless environments. Eq. (2) contains the derivative
operations, which make the obtained image degraded with random components. Therefore, we have to utilize
smoothing algorithm to stabilize the estimated image.

We utilized the following simple smoothing technique [4]. In the conventional smoothing technique, we
apply smoothing to the quasi-wavefront to suppress the noise. Next, we apply the IBST to the smoothed quasi-
wavefront to obtain the final stabilized image. We have clarified that this simple technique can stabilize the
image to some extent. However, the smoothing process can distort the final image because the quasi wavefronts
are not necessarily smooth even if the true target is smooth. On the other hand, the target shape itself is not
guaranteed to be smooth, which implies that the smoothing of the final image is neither suitable. Consequently,
the both of the smoothing processes in the data and real spaces are inappropriate, which is a fundamental
problem for the stabilization.

In order to solve the problem, we have developed the new smoothing technique in the intermediate space
between the real and data spaces for 2-dimensional imaging. The data in the intermediate space is guaranteed to
be smooth regardless of the target shape. We need the transform FIBST in order to deal with the intermediate
space. In the next section, we expand the 2-dimensional FIBST to the 3-dimensional one, to stabilize the
3-dimensional radar imaging.

4 Proposed Extended-SEABED Algorithm

The simple smoothing effectively works for convex targets because the quasi-wavefront is smooth for a convex
shape. However, for general cases the quasi-wavefront is not necessarily smooth, so the image resolution can be
degraded by unsuitable smoothing. To resolve this problem, we introduce FIBST by expanding the conventional
IBST, and transform the data to an intermediate space between the real and data spaces, where the smoothing
process hardly degrades the resolution. FIBST is expressed as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
xθ,α,β

yθ,α,β

]
=

[
X
Y

]
− ZR(−θ)

[
α 0
0 β

]
R(θ)

[
∂Z/∂X
∂Z/∂Y

]
,

zθ,α,β = Z

√
1 − [ ∂Z/∂X ∂Z/∂Y

]
R(−θ)

[
α 0
0 β

]
R(θ)

[
∂Z/∂X
∂Z/∂Y

]
.

(2)

In our proposed stable imaging algorithm, we select suitable parameters (θ, α, β) depending on the roughly
estimated target shape, and apply the smoothing process to (xθ,α,β, yθ,α,β , zθ,α,β) and finally apply FIBST
again to obtain the final image. The procedure of the proposed algorithm is shown in Fig. 1 in contrast with
the conventional one. First, the proposed algorithm estimates the rough image by utilizing the conventional
algorithm. In this step, the image is severely distorted by the inappropriate smoothing process. Next, we
calculate the Hesse matrix of the rough image for each point on that. Then, we obtain the eigenvalues and
eigen vectors of the Hesse matrix. We determine the parameters α, β and θ based on the eigenvalues and the
eigen vectors. We apply the FIBST with these parameters to the original quasi wavefront. Then, we apply a
smoothing to the obtained FIBST. Finally, we apply the residue FIBST with 1−α, 1− β and −θ to obtain the
final image.

5 Numerical Simulations

We show some results of the numerical simulation to investigate the performance of the conventional and
proposed algorithms. We assume the true targets shape in Fig. 2, which has saddle points. We adopt this
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Figure 2: True target shape used in our numerical simulation.

shape because the saddle point is unique for 3-dimensional system compared to the 2-dimensional shape. The
quasi-wavefront for a convex target is smooth, and the quasi-wavefront for a concave target is sharp and not
smooth. The saddle point contains both of these effects, which is very difficult to adequately deal with.

The quasi-wavefront for the true target shape is shown in Fig. 3. We see that the quasi-wavefront is sharp
in the direction of Y , which is caused by the concave target shape in the y direction. On the other hand, the
quasi-wavefront is smooth in the direction of X, which corresponds to the convex target shape in the x direction.
It is obvious that the conventional simple smoothing distorts the quasi-wavefront for Y direction.

In this paper, we omit the process of calculation of eigenvalues and eigen vectors for simplicity. We assume
that the suitable parameters α, β and θ are chosen before the application of the FIBST. We adopt α = 0.1,
β = 0.9 and θ = 0 here. We assume noiseless environment in order to evaluate the distortion of image without
noise. The performance evaluation with noise is an important future task. We set the correlation length of the
smoothing is equal to the center wavelength. The smoothing process of the conventional and proposed methods
are displayed in the α-β diagram as in Fig. 4. Here, we assume θ = 0 is fixed for simplicity. The parameters of
FIBST α and β determine the space of the processed data. The point (0, 0) is the data space, where the data is
an original quasi-wavefront extracted with the received data. The point (1, 1) is the real space, where the data
directly express the real target shape. Other points (α, β) for 0 < α < 1, 0 < β < 1 correspond to the fractional
data spaces. Especially, we apply the smoothing in the fractional data space (α, β) = (0.1, 0.9) as described
above.

The estimated target shape by the proposed method is shown in Fig. 5. The estimation errors of the images
with the conventional algorithm and the proposed algorithm are shown in Fig. 6 and Fig. 7. The estimation
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accuracy for the proposed algorithm is higher than that of the conventional one by more than 2 times.

6 Conclusion

In this paper, we newly introduced the 3-dimensional fractional inverse boundary scattering transform (3-
D FIBST), which enables us to deal with the intermediate space between the real and data spaces for 3-D
problem. By utilizing the 3-D FIBST, we have clarified that we can apply a smoothing process with distortion
suppressed.
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A Robust and Fast Imaging Algorithm
with an Envelope of Circles for UWB Pulse Radars
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Abstract

UWB pulse radar systems are promising as high-resolution imaging techniques for household or rescue
robots. We have already proposed a fast imaging algorithm called SEABED based on a reversible transform
BST(Boundary Scattering Transform) between the received signals and the target shape. However, the
image obtained with SEABED deteriorates in a noisy environment because it utilizes derivative of received
data. In this paper, we propose a robust and fast imaging method with an envelope of circles.

1 Introduction

UWB pulse radar systems have a great potential for a high-resolution imaging, which is suitable and e±cient
for measuring techniques of house-hold and rescue robots. While many imaging algorithm for radar systems
have been proposed, they require intensive computations. To solve this problem, we have already proposed a
fast imaging algorithm called SEABED (Shape Estimation Algorithm based on BST and Extraction of Directly
scattered waves) for UWB pulse radars based on a reversible transform BST between the received signals and the
target shape [1, 2]. However, the estimated image with SEABED is not stable in a noisy environment because
it utilizes derivatives of the received data. In this paper, we propose a robust and fast imaging algorithm
without derivative operation. We utilize circles with the estimated delay for each antenna location. We follow
the principle that these circles circumscribe the target boundary [3]. By utilizing this principle and the inverse
transform of BST, we prove that the boundary of a convex and a part of concave targets are expressed as a
boundary of an union set of these circles. This method does not depend on a derivative of a received data,
and enables us to realize a robust imaging even in a noisy environment. We show application examples of the
proposed method with a numerical simulation.

2 System Model

We show the system model in Fig. 1. We deal with 2-dimensional problems and TE mode waves. We assume
that a target has a uniform permittivity, and surrounded by a clear boundary which is composed of smooth
curves concatenated at discrete edges. We also assume that the propagation speed of the radio wave is constant
and known. We utilize a mono-static radar system. The induced current at the transmitting antenna is a
mono-cycle pulse. We de¯ne r-space as the real space, where targets and the antenna are located. We express
r-space with the parameters (x, y). An omni-directional antenna is scanned along x axis. Both x and y are
normalized by ¸, which is the center wavelength of the transmitted pulse. We assume y > 0 for simplicity. We
de¯ne s′(X,Y ) as the received electric ¯eld at the antenna location (x, y) = (X, 0), where we de¯ne Y with time
t and speed of the radio wave c as Y = ct/(2¸). We apply the matched ¯lter with the transmitted waveform
to s′(X,Y ). We de¯ne s(X,Y ) as the output of the ¯lter. We de¯ne d-space as the space expressed by (X,Y ),

x

y

X

Y ε0

Target

ε1 (x,y) 

θ

Figure 1: System model.
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Figure 2: Quasi wavefront with noise (Left side), and an estimated image with the SEABED (Right side).

and call it a quasi wavefront. The transform from d-space to r-space corresponds to imaging which we deal with
in this paper.

3 Conventional method

We have already developed a non-parametric shape estimation algorithm called SEABED [1]. This method
utilizes a reversible transform BST between the point of r-space (x, y) and the point of d-space (X,Y ), which
is extracted by the received signal s(X,Y ). IBST (Inverse BST) is expressed as

x = X ¡ Y dY/dX.

y = Y
√

1 ¡ (dY/dX)2,

¾
(1)

where |dY /dX| ≤ 1 holds. This transform gives us a complete solution for an inverse problem. SEABED has
an advantage that it can directly estimate target boundaries with IBST, and achieves a fast and high resolution
imaging. However, the estimated image with the SEABED easily deteriorates in a noisy environment because
IBST utilizes the derivatives of the quasi wavefront as dY/dX. The left side of Fig. 2 shows a quasi wavefront
with random error whose standard deviation is 0.01¸. Here, we smooth the quasi wavefront with a Gaussian
¯lter, whose standard deviation is 0.05¸. The right side of Fig. 2 shows the estimated points with IBST. The
estimated points with SEABED have large errors, and the maximum error is over 0.5¸, which is not acceptable.
We con¯rm that the estimated point with IBST should exist on the circle whose center is (X, 0) and radius is
Y . The angle µ shown in Fig. 1 is determined with dY/dX, which is sensitive to a noise. The accuracy of µ
strongly depends on that of dY/dX. Therefore, the estimated point readily moves around this circle in a noisy
environment. To suppress the deterioration of the estimated image with SEABED, the methods for stabilizing
images have been proposed [4]. However, they cannot completely remove the error occurred by the derivative
operations because they utilize an inverse transform with dY/dX.

4 Proposed method

To solve the instability of SEABED, we propose a new imaging algorithm based on an envelope of circles. First,
we clarify the relationship between the group of points on a target boundary and the points on an envelope
of circles. We assume that the target boundary ∂T is expressed as a single-valued and di®erentiable function.
(X,Y ) is a point on the quasi wavefront of ∂T , and we de¯ne ∂D as the quasi wavefront. We de¯ne Γ as the
domain of X for ∂D. We de¯ne g(X,Y ) = X ¡ Y dY/dX, and γ as a domain of g(X,Y ). We de¯ne S(X,Y ) as
an open set which is an interior of the circle, which satis¯es (x¡X)2 + y2 = Y 2. Fig. 3 shows the relationship
between d-space and set of circles in r-space. If ∂D is a single-valued and continuous function, we de¯ne S+

as S+ = f(x, y) | (x, y) ∈ ⋃X∈¡ S(X,Y ), x ∈ γg. We de¯ne ∂S+ as the boundary points of S+. Here the next
proposition holds

Proposition 1. If ∂g(X,Y )/∂X > 0 satisfies, the next equation holds

∂T = ∂S+. (2)

2
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Figure 3: Quasi wavefront in d-space (Left side) and a set of circles in r-space (Right side).

A proof of the proposition 1 is given in the appendix A. Proposition 1 says that ∂S+ expresses a part of the
target boundary. Under the condition ∂g(X,Y )/∂X > 0, all ∂S(X,Y ) in (X,Y ) ∈ ∂D circumscribe ∂T . Also
∂g(X,Y )/∂X > 0 satis¯es at the case of a general convex target and a part of concave targets as shown in
Fig. 3. We also con¯rm that the edge can be estimated as the intersection point of circles ∂S(X,Y ) when a target
boundary includes an edge, where (X,Y ) is transformed into the edge point (x, y) with the IBST. Therefore,
the target boundary ∂T with edges can be expressed as ∂S+. In our proposed method, we estimate the target
boundary with an envelope of circles by utilizing these relationships. This method enables us to transform the
group of the points (X,Y ) to the group of the points (x, y) without the derivative operation.

We explain the actual procedures of the proposed method as follows. Here we de¯ne R(X,X
′
) as x coordi-

nates of the intersection point of ∂S(X,Y ) and ∂S(X′ ,Y ′ ). We de¯ne Xmax and Xmin as maximum and minimum
X ∈ Γ. We also de¯ne ∆X as the sampling interval of the antenna.

Step 1). Apply the matched ¯lter to the received signals s
′
(X,Y ) and obtain the output s(X,Y ).

Step 2). For each X, determine Y as Y = maxY ′ s(X,Y
′
), and extracts (X,Y ) as quasi wavefront ∂D.

Step 3). Extract boundary points (x, y) on ∂S+ as y = maxX∈¡

√
Y 2 ¡ (x¡X)2 where x is sampled at an

equal interval in the domain Γ.

Step 4). Determine ∂T = ∂S+, (xmin ≤ x ≤ xmax), where xmin = R(Xmin, Xmin + ∆X) and xmax =
R(Xmax, Xmax ¡ ∆X).

5 Performance Evaluation

We show an application example of SEABED and the proposed method as follows. The signals are received
at 101 locations for ¡2.5¸ ≤ x ≤ 2.5¸. We add a white noise to the received data s

′
(X,Y ) calculated with

the FDTD method. In this case, S/N is about 7.0 dB. The left and right side of Fig. 4 show the estimated
image with SEABED and the proposed method, respectively. We set the standard deviation of Gaussian ¯lter
as 0.05¸. We con¯rm that the image obtained with SEABED is not accurate, especially around the edges of the
target. On the contrary, the image obtained by the proposed method is stable and expresses an almost accurate
target boundary. This is because the proposed method does not spoil the information of the inclination of the
target shape. The calculation time of the algorithm is within 0.1 sec with a Xeon 3.2 GHz processor, which is
short enough for a realtime imaging.

To evaluate a limitation of the imaging stability v.s. S/N, we introduce two evaluation values, which

are mean value of the error de¯ned as ¹ = 1
N

∑N
i=0 |e(xi)|, and standard deviation of the errors de¯ned as

σ =
√

1
N

∑N
i=0(|e(xi)| ¡ ¹)2 where e(x) = ye(x)¡ytrue(x). Here, ytrue(x) is the true target boundary, and ye(x)

is the estimated image, and N is number of the estimated points. The left and right side of Fig. 5 shows that ¹
and σ for S/N in the case of the target as shown in Fig. 2. We obtain 5 times improvement for ¹, and 2 times
improvement for σ compared to those of SEABED when S/N is over 7 dB. These improvements are obtained
regardless of the noise power. We should notice that this method achieves a fast and robust imaging, which
cannot be obtained with the conventional algorithms. It is important future work to extend this method for a
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Figure 4: Estimated image with the SEABED (Left side) and the proposed method (Right side).
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Figure 5: ¹ (Left side) and σ (Right side) for S/N of an each method.

general target shape including the concave with a large curvature.

6 Conclusion

We proposed a robust and fast imaging method with an envelope of circles. We clari¯ed that a general convex
target and a kind of a concave target boundary can be expressed as a boundary of an union set of circles with
time delays. We also showed that the application range of the proposed method. In the numerical simulation,
we clari¯ed that the proposed method achieves a stable imaging compared with the SEABED. Besides, we
con¯rmed that the proposed method achieves a fast imaging like SEABED algorithm.
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A Proof of Proposition 1

First, let us prove that if ∂g(X,Y )/∂X > 0 holds at (X,Y ) ∈ ∂D, ∂S(X,Y ) circumscribes ∂T . With (x, y) ∈ ∂T ,
the curvature · on ∂T is expressed as

· =
d2y/dx2

(1 + (dy/dx)2)3/2
(3)

=
Ÿ

1 ¡ Y Ÿ ¡ Ẏ 2
. (4)

where we de¯ne Ẏ = dY/dX, Ÿ = d2Y/dX2, and utilize dy/dx = Ẏ /
√

1 ¡ Ẏ 2, d2y/dx2 = Ỹ
(1¡ _Y 2)3/2(1¡Y Ỹ ¡ _Y 2)

,

which are derived [2]. Here, the condition that ∂S(X,Y ) circumscribes ∂T is that · > ¡1/Y holds because a
curvature of ∂S(X,Y ) should be minus at y > 0. If ∂g(X,Y )/∂X > 0 holds, this condition is expressed as
1 ¡ (dY/dX)2 > 0. This equation should hold because y is a real number in IBST. Therefore, the previous
proposition is proved. We utilize this proposition to prove the proposition 1 as follows.

(a) Proof of ∂S+ ⊂ ∂T .
We assume that a point P = (xp, yp), (xp ∈ γ) exists, which satis¯es P ∈ ∂S+, P ∩ ∂T = Á, where Á is a null
set. We de¯ne Q = (xq, yq), (xq ∈ γ) on ∂T which satis¯es that its distance from P is minimum of all points
on ∂T . We de¯ne (Xq, Yq) which is transformed from (xq, yq) with the BST, and R = (Xq, 0). Fig. 6 shows the
relationship between ∂T and P,Q,R.

We de¯ne xmin = g(Xmin, Ymin) and xmax = g(Xmax, Ymax) on ∂T . Here Xmin < Xq < Xmax holds
because ∂g(X,Y )/∂X > 0 and xmin < xq < xmax satis¯es. Here, all ∂S(X,Y ) on ∂D circumscribes ∂T because

∂g(X,Y )/∂X > 0 holds. Therefore, P ∈ Sq satis¯es because PR < QR holds as shown in Fig. 6. P ∈ S+ holds
because of Sq ⊂ S+. Accordingly, P ∩ ∂S+ = Á holds because ∂S+ ∩ S+ = Á satis¯es. However, this equation
contradicts to the previous assumption. Therefore ∂S+ ⊂ ∂T should hold.

(b) Proof of ∂T ⊂ ∂S+.
We assume that P = (xp, yp) will exist where P ∈ ∂T, P ∩ ∂S+ = Á holds. With the IBST, (xp, yp) is
transformed to (Xp, Yp) where

(xp ¡Xp)2 + y2
p = Y 2

p , (5)

satis¯es. For all (X,Y ) ∈ ∂D, (xp¡X)2+y2
p ≥ Y 2 holds because all ∂S(X,Y ) on ∂D circumscribe ∂T . Therefore,

P ∩ S+ = Á satis¯es. If P ∩ ∂S+ = Á holds, (xp ¡X)2 + y2
p > Y 2 should hold in any (X,Y ) ∈ ∂D. However,

this fact contradicts Eq. (5). Therefore the assumption is not true, and ∂T ⊂ ∂S+ is proved. According to the
fact (a),(b), proposition 1 is proved.
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Study on Dielectric Properties of Phantom Material for SAR 
Test in a Human Body 
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Abstract⎯Human body equivalent material would be needed to determine the specific absorption rate of body-mounted 
devices such as a personal digital assistant. In this paper, one-dimensional multi-layered models extracted from a Korean and 
a European voxel models of different physique were used to investigate the SAR level in the human trunk region exposed by 
a plane wave. The multi-layered models over one thousand cover various thicknesses and compositions of chest and abdomen 
parts of the two anatomical models. Peak 1- and 10-g SARs in each model were calculated and compared to those in the 
head-simulating tissue. The results show that a gap between the maximum SARs of the multi-layered models from the trunk 
region and the head-simulating tissue at most frequencies was very wide (the maximum 5.5 dB) and the maximum SAR level 
in the human trunk was too high to allow the equivalent SAR level in any single material. Therefore, a proper scaling factor 
which does not excessively overestimate the test result should be discussed and arranged from the SAR level in the head 
simulating tissue for SAR test for EM exposure at the human body region.  
 
1. Introduction 

The present standards such as IEEE Std 1528 [1] and IEC 62209-1 [2] for compliance test with radiation safety limits 
generally deal with hand held devices to be used close to the human head. Dielectric parameters of tissue simulating liquids 
for the compliance test in these standards are defined based on the worst-case tissue layer composition and thickness for the 
user group including adults and children in the region of the ear and the temporal bone with respect to absorption at each 
frequency. 

Meanwhile the wireless communication devices mounted on the human body such as a personal digital assistant (PDA) 
have been rapidly appeared. The specific absorption rate (SAR) determining procedure for local exposure from body-
mounted devices is under consideration in IEC TC106. The body-mounted devices radiate RF field to waist, abdomen, chest, 
etc of the human body. The compositions and thicknesses of the trunk are significantly different from those of the head.  

In this paper, the peak 1- and 10-g SARs have been analyzed in each one-dimensional multi-layered model for plane wave 
incidence in the frequency range of 300 – 6000 MHz. These models were extracted from two adult trunk parts of Korean and 
European male voxel models. The multi-layered models are extremely various in composition and thickness of tissues. The 
SAR values were analyzed statistically and the 90th and 100th percentile SARs at each frequency were compared with those in 
the head-equivalent tissue and the published data. 

 
2. Material and Method 

The used two anatomical models for implementation of multi-layered tissue models are from Korean and European voxel 
models [3], [4]. These anatomical models have different voxel sizes, partially different tissue types, and different body phy-
sique. The anatomical data of the European model has originated from the US National Library of Medicine and Brooks Air 
Force Base has converted it to the voxel model. The Korean male model is close to the Korean average physique but the 
European model has a big body and the thick layer of fat tissue compared to the Korean model. The dielectric properties of 
the tissues in the frequency range of 300 – 6000 MHz were obtained from [5].  

Table 1 shows the physiques of the bodies, which were obtained mostly at the cross-section views of the voxel models. 
From the data, we can see the wide gaps in physique between the two models. Figure 1 compares the example of tissue lay-
ered models extracted near the omphalos. The thicknesses of the two models are 186 and 261 mm and the skin and fat types 
are different each other. The relative permittivities and conductivities of the skin and fat of the Korean model are 46.08 and 
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0.84 S/m (wet skin) and 11.33 and 0.11 S/m (fat), respectively at 900 MHz and those of the European model are 41.41 and 
0.87 S/m (dry skin), and 5.46 and 0.05 S/m (mean fat). 

The 306 and 728 points evenly at the front surfaces covering the chest and abdomen of the Korean and European models 
were selected for planar multi-layered models. Analysis method to calculate SARs in the multi-layered models is similar to 
that in [6], which considered the various thicknesses according to the age for the tissue composition in the vicinity of the ear 
and used the infinite half-space layered models terminated with the brain tissue. In this paper, the variation of tissue thickness 
according to age was not considered but the various tissue compositions and thicknesses over one thousand for the two adult 
male trunks were analyzed. And each layered model was terminated with the outer air because the real compositions of tis-
sues passing through from the front to the rear of the human body. 

 

 
 

 
(a) Korean model                                     (b) European Model 

Figure 1: Example of planar multi-layered models. 
 

Table 1: Comparison of the physiques.                  (unit: mm) 

Items Korean model European model 
Stature 1761 1874 

Chest breadth 354 384 
Waist breadth 324 358 
Hip breadth 366 406 
Chest depth 216 266 
Waist depth 174 240 

Buttock depth 186 238 

 

3. Results and Discussion 
Effect on SAR result of different tissue types between the two anatomical models was investigated. Figure 2 compares 
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peak SARs according to the frequency variation when the superficial tissue structure is (dry skin-mean fat-muscle) and (wet 
skin-fat-muscle), respectively. The (dry skin-mean fat-muscle) structure roughly produced higher SAR at low frequencies 
than in the (wet skin-fat-muscle) structure and the behavior was reverse at high frequencies. This characteristic was appeared 
in the separately analyzed results of the multi-layered models obtained from the European and Korean male models (MLEM 
and MLKM, respectively); the MLEM contributed dominantly to the peak 1- and 10-g SARs at frequencies below about 2.5 
GHz and the MLKM was dominant at upper frequencies. 

 

 
Figure 2: Effect on SAR of dielectric properties of skin and fat tissues. The incident power density is 1 W/m2. 

 
The mean and standard deviation of peak 1- and 10-g SAR results in the whole layered tissue models (MLEM and 

MLKM) were calculated at each frequency. Figure 3 represents 90th and 100th percentile values of peak 1-g SARs in the 
multi-layered models. The statistically expected value was obtained from the mean and standard deviation at each frequency. 
The graphs show that the statistically expected and the real values fit in well with each other for the 90th percentile value, but 
those for 100 percentile one do not. And the peak SAR in the head simulating tissue is lower than even the 90th SAR value at 
most of the considered frequencies. 

The increase in SAR in the human trunk was observed compared to the head region; the maximum 5.5 dB at 900 MHz be-
tween the statistically expected 100th percentile and the head simulating values. It might be because various compositions of 
tissues at many points of the human trunks were considered. The wide gap of 1.9 – 3.2 dB even between 90th and 100th per-
centile body SARs was observed. 
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Figure 3: SARs in multi-layered models covering the human trunk region and in the head simulating tissue. 

 
4. Conclusion 

First of all, the dielectric properties of the tissue-simulating material for the SAR test ought to be one that the evaluated 
result should not underestimate the real-exposed level. However, the worst case concept such as the maximum SAR level in 
the above graphs could lead to excessively overestimate the exposed level in a general situation. And what is more, the 
maximum SAR levels in this paper were too high at many frequencies considered to be obtained in any real-single material.  

More investigations of SAR levels considering sex, age, etc are desirable but it might just record the higher value in the 
maximum SAR level. Lively discussion among researchers on the proper mark than the renewed maximum level in the SAR 
evaluation seems to be required. 
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