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Energy Invariants to Composition Rules for Scattering
and Transfer Matrices of Propagating and Evanescent

Waves in Dielectric Structures

Y. N. Barabanenkov
Institute of Radioengineering and Electronics of Russian Academy of Sciences, Russia

M. Y. Barabanenkov
Institute of Microelectronics Technology and High Purity Materials of Russian Academy of Sciences, Russia

Abstract—We present as a basis to modern wave multiple scettering theory an extended unitarity for the S-
scattering matrix and an extended pseudo-unitarity for the transfer matrix of propagating and evanescent (near
field) electromagnetic waves in a volume or surface lossless dielectric structure with spatial inhomogeneities of
any dimension. The formalism of angular spectrum wave amplitudes is used. The presented extended unitarity
and pseudo-unitarity are shown to be energy invariants to composition rules for the S-matrix and the transfer
matrix,respectively. From composition rules, we derive a complete system of nonlinear differential equations for
blocks of the S-matrix, with Riccati equation being a main one, and a linear equation for the transfer matrix.

Section 1.
During the last one and half decade the wave multiple scattering theory based on composition rule [1] for

scattering operator (T -matrix) was reformulated in terms of virtual splitting the volume or surface inhomo-
geneous dielectric structure into a stack of elementary layers (slices), with slices being perpendicular to an
embedding parameter and separated by splits, which may be vanishingly thin. In result using the Sommerfeld-
Weyl angular-spectrum decomposition of wave amplitudes, a system of exact equations (transfer relation) [2]
was obtained for the operator wave reflection and transmission coefficients of the structure and the operator
wave amplitudes of waves in splits between slices (local fields).

The report aims to show that the recently derived, at study the effect of energy emission from an evanescent
wave, extended unitarity of the 2×2 block S-scattering matrix [3] is an energy invariant to a specific composition
rule for S-matrix, which is a consequence from the transfer relations. This composition rule describes the
incremental change of S-matrix of subsystem of slices upon attachment an additional subsystem of slices. In
the case of infinitesimally thin attached slice, we obtain a complete system of nonlinear differential equations for
blocks of the S-matrix, with Riccati equation being a main one and taking into account a strong singularity of
the electric field Green tensor function in a background. The S-matrix is closely related to the transfer matrix,
for which we derive a linear equation with an energy invariant in the form of an extended pseudo-unitarity of
the transfer matrix.

Section 2.
Let a volume or surface dielectric structure with scalar dielectric permittivity ε(~r) occupies a region be-

tween planes z = 0 and z = L of Cartesian coordinate system x, y, z. The electric field of monochromatic
electromagnetic wave to be incident onto the left boundary plane z = 0 is written as (see details in [2] and [3])

(2π)−2
∫
d~k⊥ exp(i~k⊥~r⊥)E◦

α(~k⊥) exp(iγkz). Here ~k⊥ is the transverse to the z axis component of a wave vector ~k,

and the angular spectrum amplitude E◦
α(~k⊥) of the incident electric field describes either propagating or evanes-

cent wave, depending on k⊥ < k◦ and γk =
√
k2
◦ − k2

⊥ is real or k⊥ > k◦ and γk = i
√
k2
⊥ − k2

◦ is purely imaginary
quantity, respectively. The quantity k◦ is the wave number in a background with dielectric permittivity ε◦. The
angular spectrum amplitudes of electric field, transmitted through and reflected from the structure, are written
in terms of the tensor operator transmission Aαβ(~k⊥, ~k′⊥) and reflection Bαβ(~k⊥, ~k′⊥) coefficients of plane wave,

which may be evanescent, as (2π)−2
∫
d~k⊥Aαβ(~k⊥, ~k′⊥)E◦

β(
~k′⊥) and (2π)−2

∫
d~k⊥Bαβ(~k⊥, ~k′⊥)E◦

β(
~k′⊥), respec-

tively. An electromagnetic wave may be incident upon the right boundary plane z = L with angular spectrum
amplitude Ẽ◦

α(~k⊥). In this case the angular spectrum amplitudes of electric field, transmitted through and re-

flected from the structure, are written in terms of the tensor operator transmission Ãαβ(~k⊥, ~k′⊥) and reflection

B̃αβ(~k⊥, ~k′⊥) coefficients of plane wave.
The 2 × 2 block S-matrix of the structure is defined in terms of the above tensor coefficients of wave

transmission through and reflection from structure as follows
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S =

(
A B̃

B Ã

)
(1)

Physically the S-matrix transforms the angular spectrum amplitudes of incident forward and backward going
waves, with respect to positive direction of the z axis,into the angular spectrum amplitudes of scattered forward
and backward going waves.

Section 3.
Split virtually the dielectric structure under consideration into a stack of n slices with splits between them,

as in Fig. 1 of [2]. According to this reference, the composition rule [1] for the scattering operator (T -matrix)
together with condition of non-overlapping the slices lead to a mixed system of exact equations-transfer relations
for blocks of the S-matrices of subsystems of slices and amplitudes of local waves inside splits. As doing so the
tensor coefficients of the local fields waves in splits can be eliminated from the transfer relations and expressed
in terms of blocks of the S-matrices, S1,m and Sm+1,n. After this elimination, the transfer relations give the
separate system of recurrent equations that describes the incremental change of the S-matrix of subsystem of
slices with numbers 1, . . . ,m upon attachment of additional subsystem of slices with numbers m+1, . . . , n. This
system of recurrent equations has been got in [2] for the case of 2D dielectric structure and TE polarization,
with m = n− 1, and for general case has a form

A1,n = Am+1,n(I − B̃1,mBm+1,n)
−1A1,m,

B1,n = B1,m + Ã1,mBm+1,n(I − B̃1,mBm+1,n)
−1A1,m (2)

and
Ã1,n = Ã1,m(Ĩ −Bm+1,nB̃1,m)−1Ãm+1,n,

B̃1,n = B̃m+1,n +Am+1,nB̃1,m(Ĩ −Bm+1,nB̃1,m)−1Ãm+1,n (3)

The symbols I and Ĩ denote some identity tensor operators, Iαβ(~k⊥, ~k′⊥) = P trαβ(k̂
+)δ~k⊥, ~k′⊥ and Ĩαβ(~k⊥, ~k′⊥) =

P trαβ(k̂
−)δ~k⊥, ~k′⊥ , acting in the subspaces of transverse inhomogeneous plane waves going forward and backward

with the wave vectors ~k± = ~k⊥ ± γkẑ, respectively, where ẑ is the unit vector along the z axis. Besides, the
units vectors along these wave vectors are defined by, k̂± = k̂±/k◦, and a tensor, P trαβ(k̂), means the orthogonal

projector in direction perpendicular to the unit vector k̂. One should note here that in the scalar case a system
of recurrent equations similar to Eqs. (2, 3) has been got by Redheffer [4] as the functional relations (semigroup
property) associated with the Riccati system of equations for the reflection and transmission coefficients of
waves propagating in transmission lines. In this case, Regheffer has introduced an useful notion star product,
(*), of the scattering matrices, which enables us to rewrite the above system of reccurrent Eqs. (2, 3) shortly as
S1,n = S1,m ∗ Sm+1,n.

Section 4.
Turn to the composition rule for S-matrix in Eqs. (2, 3) and consider the case of thin attached nth slice, m =

n− 1. We introduce a useful renormalized version S of the scattering matrix (1) putting S = diag(γ1/2, γ1/2)S
diag(γ−1/2, γ−1/2) and suppose the S-matrix of the nth slice to be small deviated from an identity matrix,
I= diag(I, Ĩ), and subject to a condition, Sn,n = I + δS∆z. Here a thickness ∆z of the nth slice tends to
zero and an infinitesimal scattering matrix δS is obtained by a solution to the Lippman-Schwinger equation for
T -matrix in the form

δS =

(
U++ U+−

U−+ U−−

)
(4)

The blocks of this infinitesimal scattering matrix are given by

Uξη
αβ(

~k⊥, ~k′⊥; z) =
1

2i
exp[−i(ξγk − ηγk′)z]

1√
γk
U ξηαβ(

~k⊥, ~k′⊥; z)
1√
γk′

(5)

with

U ξηαβ(
~k⊥, ~k′⊥; z) = P trαµ(k̂

ξ)Uµν(~k⊥ − ~k′⊥, z)P
tr
νβ(k̂

η′)

Uαβ(~k⊥, z) = V (~k⊥, z)(x̂αx̂β + ŷαŷβ) + v(~k⊥, z)ẑαẑβ

where ξ, η = ±, V (~k⊥, z) and v(~k⊥, z) are the spatial Fourier transforms of the scalar potential V (~r) = −k2
◦[ε(~r)−

ε◦]/ε◦ and a function v(~r) = −k2
◦[ε(~r)−ε◦]/ε(~r), respectively, with respect to transverse to the z axis component
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of the position vector, x̂ and ŷ are unit vectors along the x and y axes, respectively. Substituting the obtained
asymptotics for the S-matrix of thin nth slice into composition rule in Eqs. (2), (3) gives the following systems
of differential equations for blocks of the S-matrix

dB̃

dz
= U+− + U++B̃ + B̃U−− + B̃U−+B̃, B̃(z = 0) = 0 (6)

dÃ

dz
= Ã(U−− + U−+B̃), Ã(z = 0) = Ĩ (7)

dA

dz
= (B̃U−+ + U++)A, A(z = 0) = I (8)

dB

dz
= ÃU−+A, B(z = 0) = 0 (9)

Klyatskin [5] derived a matrix Riccati equation similar to Eq. (6) in scalar case.

Section 5.
By straightforward calculation, one can verify that the infinitesimal scattering matrix (4) satisfies the fol-

lowing extended unitarity condition

(Hpr + iHevΣx)δS + [(Hpr + iHevΣx)δS]† = 0 (10)

where Hpr and Hev denote projectors on propagating and evanescent waves, respectively, and Σx=( 0 1
1 0 ) is a

block Pauli matrix (see [3]). On the other hand, one can also prove that the star product of two S-matrices
does satisfies the extended unitarity from [3] in the form

(HprS)†(HprS) = HprIHpr − i[HevΣxS − (HevΣxS)†] (11)

if the both S-matrices satisfy (11) separately. Bearing in mind that the star product is associative [4], we
conclude that a solution to the derived Riccati system of equations satisfies the extended unitarity (11).

Section 6.
The transfer matrix M transforms, in different from the S-matrix, the angular spectrum amplitudes of

forward and backward going waves on the left side of the structure into ones on the right side of the structure.
This definition gives the known relation between matrices under consideration (see, e. g., [2]) and leads from the
derived Riccati-system of equations to the following linear differential equation for the transfer matrix

dM

dz
= ΣzδSM, M(z = 0) = I (12)

were Σz=
(

1 0
0 −1

)
is a block Pauli matrix. Starting with the extended unitarity (10) for the infinitesimal scattering

matrix one can verify by direct differentiation that a solution to the obtained linear equation has an energy
invariat in a form of the following extended pseudu-nitarity for the transfer matrix

M†Σz(H
pr − iΣxH

ev)M = Σz(H
pr − iΣxH

ev) (13)

This extended pseudu-unitarity for the transfer matrix generalizes the known pseudu-unitarity constraint [6] on
the case when evanescent waves may be present.

7. Conclusion
Summarizing, the presented complete system of differential equations for blocks of the S-matrix and differ-

ential equation for the transfer matrix together with their energy invariants can be considered as an analytical
basis to incorporate the modern theory of electromagnetic wave multiple scattering by dielectric structures with
near field effects.
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Local Dielectric Measurement by Waveguide-type
Microscopic Aperture Probe

T. Suzuki, K. Sugimoto, Y. Yamagami, T. Negishi, and Y. Watanabe
Nippon Institute of Technology, Japan

Abstract—For dielectric constant measurement of areas smaller than the wavelength, this paper proposes a
method of employing waveguide-type microscopic aperture probe. The probe is made of WR-15 waveguide
with one end shielded with metal plate of 0.3 mm, on which a 0.5 mm-dia or a 0.1mm-dia aperture is made.
The dielectric constant is derived from the slope of phase difference swept over 50-70 GHz between the cases of
free-space transmission with and without the dielectrics. In order to evaluate the system, the dielectric constant
of Teflon has been measured by three cases of using the probes of 0.5 mm-dia and 0.1 mm-dia, and two V-band
corrugated horns. The results show good agreement.

1. Introduction

One of the well-established dielectric measurement methods in millimeter and submillimeter wave bands is
the free-space transmission method using two horns[1]. That is sufficient for large objects compared to the
wavelength. For the measurement of microscopic regional dielectric distribution of heterogeneous dielectric
materials and cellular tissues, the aperture must be downsized so as the spatial resolution to be smaller than
the wavelength [2].

As the embodiment of small aperture, waveguide-type probes are employed in this research. The probe
is made of WR-15 waveguide with one end shielded with metal plate of 0.3 mm, on which a 0.5 mm-dia or a
0.1 mm-dia aperture is made. Figure 1 shows the outline. The probe replaces one horn at the transmission side
in the free-space transmission measurement.

A microscopic aperture illuminates the region comparable to the aperture size, so that it realizes high
spatial resolution of scanning microscopy for surface topography. Furthermore, employing the millimeter and
submillimeter wavebands enables spectroscopic analysis, for example, oxygen content analysis by 60 GHz band
as envisioned. On the other hand, it must be experimentally investigated to evaluate the decrease of the
signal-to-noise ratio.

In order to evaluate the system, the dielectric constant of Teflon has been measured both by the proposed
system and the free-space transmission method using two V-band corrugated horns with the aperture diameter
31 mm.

WR-15 

aperture  

0.5 mm / 0.1 mm 

thickness  =  0.3 mm

metal plate
6 mm6 mm

Figure 1: Waveguide-type probe.

2. Measurement

The dielectric constants is obtained from the slope of phase difference between the case of free-space trans-
mission with and without the dielectrics. Relative dielectric constant εr is derived by

εr = (
300∆φ

360d
+ 1)

1
2 (1)
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where ∆φ (degree/GHz) is the slope of the phase difference, and d (mm) is the sample thickness. As a dielectric
sample, a Teflon plate 100mm × 100mm × 4.1mm (thickness) is used. The Teflon plate is contacted with the
transmission side horn or the probe.

The phase difference is measured by using the vector network analyzer MVNA 8-350 (AB Millimeter, France).
The lower frequency limit of the probe is determined by the cutoff frequency 40 GHz for the TE10 mode of WR-
15. The frequency is swept over 50-70 GHz at 0.1 GHz step.

3. Result

The measurement of phase difference is made three times to obtain the average εr. One result by each
system is shown in Figure 2. The solid line shows the measured phase difference, and the dotted line is derived
by the least square method. As the aperture is smaller, the phase variance is increasing. The two-horn system
gives εr = 1.99 and the proposed system gives εr = 1.89 with 0.5 mm aperture and εr = 1.93 with 0.1 mm
aperture. They show good agreement, although the proposed systems have larger variance of phase difference.
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(a) Two-horn system.
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(b) Probe with 0.5 mm-dia aperture.
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(c) Probe with 0.1 mm-dia aperture.

Figure 2: The phase difference and the slope measured by the two-horn free-space transmission method (a) and
the proposed probes (b) and (c).

4. Conclusion

The dielectric constant has been measured by the waveguide-type microscopic aperture probes with 0.5 mm
and 0.1 mm-dia, and the standard two-horn free-space transmission method as a reference. There is a good
agreement between three results, while they show slightly small values compared to the nominal value of Teflon
2.1. The next step is the measurement by scanning with improved accuracy.
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Power Absorption of Near Field of Elementary
Radiators in Proximity of a Composite Layer

M. Y. Koledintseva, P. C. Ravva, J. Y. Huang, and J. L. Drewniak
University of Missouri-Rolla, USA

M. Sabirov, V. V. Bodrov, I. V. Sourkova, and V. I. Sourkov
Moscow Power Engineering Institute (Technical University), Russia

Abstract—Near-field behavior of elementary electric and magnetic dipoles close to a plane layer (or layers) of
engineered composite materials is analyzed using the rigorous analytical approach. Some results of computations
are represented for composite media containing conductive inclusions. These composites provide shielding mainly
due to absorption of electromagnetic energy. The effect of conductivity of inclusions and their geometry (through
their aspect ratio) on the absorption and radiation efficiency of a radiator near composite layers is analyzed.

1. Introduction

The problems of studying electromagnetic interaction of different radiators with composite layered structures
both in far- and near-field zones arise at the development of shielding enclosures for different electronic devices.
In [1], the approach to engineering composites with the desired frequency response based on Maxwell Garnett
(MG) formulation and a genetic algorithm is presented. An engineered infinitely large composite layer of finite
thickness in [1] is considered for both normal and oblique incident plane waves. However, concepts of reflection
and transmission coefficients, as well as of angles of incidence and polarization, are applicable only to the far-field
region. In the near-field zone, it is better to consider field intensity attenuation due to such effects as excitation
of evanescent waves, scattering, and different mechanisms of ohmic loss and energy transformation. In [2], the
notions of absorption and radiation efficiencies in terms of power are introduced, and the corresponding power
fluxes are calculated rigorously and explicitly via the spectra of the fields using the known solutions of boundary
problems for parallel-plane, cylindrical, and spherical cases.

This paper considers the near-field behavior of elementary electric and magnetic dipoles close to a plane layer
(or layers) of engineered composites, and the effect of conductivity of inclusions and their geometry (through
the aspect ratio) on the absorption and radiation efficiency of a radiator near composite layers is studied.

2. Mathematical Model

2.1. Maxwell Garnett Formalism for Composites Containing Conductive Inclusions
The MG formulation is well-suited for modeling of linear electrodynamically isotropic multiphase mixtures

of metallic or dielectric particles in a homogeneous dielectric base, where the parameters of the mixture do not
change in time according to some law as a result of some external force—electrical, mechanical, etc.; inclusions
are at the distances greater than their characteristic size; and the characteristic size of inclusions is small
compared to the wavelength in the effective medium. The generalized MG mixing formula for multiphase
mixtures with randomly oriented ellipsoidal inclusions is [1, 3],

εeff = εb +

1
3

n∑
i=1

fi(εi − εb)
3∑
k=1

εb

εb+Nik(εi−εb)

1 − 1
3

n∑
i=1

fi(εi − εb)
3∑
k=1

Nik

εb+Nik(εi−εb)

(1)

where εb(jω) = ε∞b+χb(jω) and εi(jω) = ε∞i+χi(jω) are the relative permittivity of the base and of the i-th
type of inclusions, respectively. In (1), fi is the volume fraction occupied by the inclusions of the i-th type; Nik
are the depolarization factors [4] of the i-th type of inclusions, where indices k = 1, 2, 3 corresponds to x, y, and
z coordinates. If the inclusions are thin cylinders, their two depolarization factors are close to 1/2, and the third
can be calculated as in [5], N ≈ (a)−2 ln(a), where a = l/d is a cylinder’s aspect ratio (length/diameter). Since
the MG formula is linear, the resultant effective permittivity of the mixture can be also represented through
effective high-frequency permittivity and susceptibility function,

εeff (jω) = ε∞eff + χeff (jω). (2)

If inclusions are conducting (metallic), their frequency characteristic in terms of relative permittivity is

εi(jω) = ε′ − jε′′ = ε′ − jσ/ωε0. (3)
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The MG rule is applicable when the concentration of the conducting particles is below the percolation
threshold, pc ∼= C/a � 1, where a is an aspect (axis) ratio for the inclusions in the form of highly prolate
spheroids [6], and C is the experimental coefficient depending on the composite morphology (typically, C =
1− 10). Otherwise, the different approximations from the general effective medium theories should be used, for
example, McLachlan [7] or Ghosh-Fuchs approximations [8].

The base material might be quite transparent over the frequency range where high shielding effectiveness is
desirable. However, if there are conducting inclusions, the shielding effectiveness will be provided by absorption
of electromagnetic energy due to conductivity loss and to the dimensional resonance in the particles. Presence
of conductive particles will also increase reflection from the composite layer. In this paper, non-conductive
composite materials (with dilute phase of conducting inclusions) are modeled. Non-conductive composites
mainly absorb (rather than reflect) the energy of unwanted radiation. The effect of conductivity of inclusions
and their geometry on the absorption and radiation efficiency of a radiator near composite layers is studied
using the method described below.

2.2. Power Fluxes and Radiation and Absorption Efficiency in a Parallel-plane Structure
The near-field behavior of elementary radiators in proximity of a composite planar layer is studied using the

unified rigorous analytical approach developed in [2, 9]. Herein, this approach is specified for the parallel-plane
geometry. Power radiation efficiency and absorption efficiency are calculated, using formulas similar to those
introduced in [2],

ηrad = 10 log10[(Prad − Ploss)/Prad] and ηabs = 10 log10[Ploss/Prad]. (4)

The radiated power Prad and the power loss Plos are defined for a parallel-plane dielectric layer (see Figure 1):

Prad = PZ1 + PZ2; Ploss = PZ1 − PZ3. (5)

The z-component of the Poynting vector in the parallel-plane geometry is

pz = 0.5Re(ExH
∗
y − EyH

∗
x), (6)

Figure 1: Parallel-plate geometry with a dielectric layer.

where Ex,y and Hx,y are the corresponding phasors for the tangential components of electric and magnetic
field, and the asterisk stands for complex conjugating. The power through any cross-section S in the plane z is
Pz =

∫∫
S

pzdS.

As is done in [10], the spectral densities Ue,m and Ie,m of scalar electric (e) and magnetic (m) potentials
are introduced, and the expansion in terms of the complete system of eigenfunctions (Fourier representation)
is applied. The scalar potentials Ue,m and Ie,m play part of the generalized voltages and currents, respectively,
and they are used instead of the unknown field components. The potentials are obtained from the rigorous
solution of the boundary problem, taking into account physical effects of diffraction, absorption, refraction, and
numerous reflections. The tangential components of the electromagnetic field contain spatial spectra of the
scalar potentials,

~Eτ =

∫

χ1

∫

χ2

(Ue~t+ Um ~f)dχ1dχ2; ~Hτ =

∫

χ1

∫

χ2

(Ie~t+ Im ~f)dχ1dχ2. (7)

The complete system of vector eigenfunctions is

~t = (−jχ1~x0 − jχ2~y0)e
−jχ1x−jχ2y; ~f = (−jχ2~x0 + jχ1~y0)e

−jχ1x−jχ2y (8)

Vectors ~x0 and ~y0 are the Cartesian unit vectors. Then, the power flux is
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Figure 2: Complex permittivity of the composite: base material is Teflon (ε′ = 2.2); aspect ratio for inclusions
a = 1500; volumetric fraction of inclusions is 0.15%; conductivity of inclusions σ is a parameter.

Figure 3: Complex permittivity of the composite: base material is Teflon (ε′ = 2.2); volumetric fraction of
carbon inclusions is 0.7/a < pc; conductivity is σ = 40000 S/m2; aspect ratio a is a parameter.

Pz = 2π2Re

∫

χ1

∫

χ2

χ2(UeIe∗ + UmIm∗)dχ1dχ2, (9)

where χ2 = χ2
1 + χ2

2, and χ1,2 are the spatial frequencies along x− and y-coordinates in Fourier representation
for the field components. Substitution of the Fourier representation for the field components (7) into Maxwell’s
equations yields the 2-nd order differential equations for Ue,m and Ie,m. In the cross-sections z1 and z2, where
the reflected waves exist, and inside the dielectric layers, the solutions for Ue,m and Ie,m are

Ue,m = Ue,minc · e−γz + Ue,mrefl · e+γz, Ie,m = (Ue,minc · e−γz − Ue,mrefl · e+γz)/Ze,m, (10)

where γ2 = χ2 − k2
0 is the square of the propagation constant, and k0 = ω

√
µ0ε0 is the wave number in free

space. The characteristic impedance of the medium is Ze,m. The scalar potentials Ue,min and Ue,mr correspond to
the incident and reflected waves, respectively. They are obtained as the coefficients of two linearly independent
solutions for the boundary problem formulated for the one-dimensional Helmholtz equation (in z-direction). In
the cross-section z3, there are no reflected waves, and the values Ue,mrefl and Ue,mrefl are zero. To calculate the
power flux through the cross-section z1 in a lossless medium, two cases should be considered: |χ| < k0, and
|χ| > k0.
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d
B   

 d
B

Figure 4: Shielding effectiveness (SE) in terms of plane wave formulation for an infinite layer of a composite
material: (a) corresponding to Figure 2; (b) corresponding to Figure 3.

 

Figure 5: FDTD modeled power decrease through the composite layer. Field is radiated by the electric dipole
placed at h = 5 mm below the layer (see Figure 1).

Case 1. When |χ| < k0, the propagation constant γ = jβ is imaginary in a lossless case, and the impedances
Ze = γ/(jωε0) and Zm = jωµ0/γ are real , so the power flux for propagating waves is

Pz prop = 2π2

∫

χ1

∫

χ2

χ2
[(

|Ueinc|2 − |Uerefl|2
)
/Ze +

(
|Uminc|2 − |Umrefl|2

)
/Zm

]
dχ1χ2. (11)

Case 2. When |χ| > k0, the propagation constant γ = β is real, and the characteristic impedance Ze,m = jXe,m

is imaginary. The power flux for evanescent waves in this case is

Pz evan = 4π2

∫

χ1

∫

χ2

χ2
[
Im(UeincU

e∗
refl)/X

e + Im(UmincU
m∗
refl)/X

m
]
dχ1dχ2. (12)

The exact expressions for the coefficients Ue,minc and Ue,mrefl are found from the solution of a boundary problem
with the known volume densities for the source. Obviously, the power flux through the surface that crosses a
medium without loss is independent of the z-coordinate, because the coefficients Ue,minc and Ue,mrefl are independent
of the propagation z-coordinate. The total power flux (11), (12) is comprised of two terms: one is determined
by the propagating waves ves with γ = jβ, while the second is determined by evanescent waves with γ = β.
Only for the regions where there are no reflected fields, (Ue,mrefl and Ie,mrefl are zero) the power flux is determined
only by propagating waves. In general case, the propagation constant is complex. For multilayered structures,
the cascading of transfer matrices can be used even for near fields, as is done in [9].
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3. Computations

The frequency dependences for permittivity of the Teflon-based composites containing conductive fibers
modeled using (1) are shown in Figures 2 and 3. The corresponding frequency dependences of shielding ef-
fectiveness (SE = −20 log10(Etr/Einc)) defined in a plane-wave formulation for infinite plane panels made of
these composites are presented in Figure 4. S.E. increases with the increase of conductivity and aspect ratio of
inclusions. Figure 5 shows the rate of power decrease through the absorbing layer ηtrans = −10 log10(Pz/Pref ).
The results in Figure 5 are modeled using FDTD codes. The source is an elementary electric dipole parallel to
the layer. The 20-mm thick layer is a Teflon-based (εb = 2.2) composite with conducting inclusions (a = 100;
σ = 40000 S/m; concentration is 0.7/a, below the percolation threshold). The reference plane for calculating
Pref is z = −1 mm.

Figures 6 and 7 show the dependences of the absorption coefficient (4) versus distance of the electric dipole
from the composite layer for different frequencies, conductivities of inclusions, and their aspect ratio. The
electric dipole is parallel to the layer surface. When the point of observation is in the far-field region, the
absorption in composites increases with the increase of conductivity and aspect ratio of inclusions. In contrast
to the far-field region, in the near-field zone the higher conductivity and higher aspect ratio do not necessarily
lead to greater absorption. Absorption depends on the source type, distance between the source and the layer,
and the effective constitutive parameters of the composite [2]. Trends of the curves in Figures 6 and 7 at varying
a and σ are different for different frequencies. This can be explained by variations in frequency dependences of
the effective parameters of composites.

Figure 6: Absorption coefficient versus distance h between the electric dipole and the composite layer (d =
1 mm); frequency is 0.1 GHz, 0.5 GHz, 3 GHz, and 9 GHz. Conductivity σ of inclusions is a parameter.
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Figure 7: Absorption coefficient versus distance h between the elementary electric dipole and the composite
layer (thickness d = 1 mm); frequency is 0.1 GHz, 1 GHz, 3 GHz, and 9 GHz. Aspect ratio a of inclusions is a
parameter.

4. Conclusions

In this paper, the analytical formulas for absorption and radiation coefficients for radiators near a composite
dielectric layer are obtained by rigorous boundary problem solution. The complex frequency-dependent per-
mittivity of a composite dielectric containing conductive inclusions is modeled using Maxwell Garnett effective
medium formulation. The results of computations for near-field of an elementary electric dipole close to a plane
composite layer show that the behavior of absorption of near fields in the composite layer with respect to the
conductivity and aspect ratio of inclusions is different from the far-field behavior. Near-field absorption in a
layer depends on the distance of the radiator from the composite layer and the particular effective permittivity
of the composite layer at the particular frequency.
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The Imbedding Method in the Theory of Horn Array
Antennas—Hypershort Impulses and the Near Fields

V. L. Kuznetsov
Moscow State Technical University of Civil Aviation, Russia

Abstract—The problem of hyper short impulses distortion with horn array antennas radiation considers from
spectrum analysis point of view. As main reason for misphasing of Fourier-components of field the collective
effect resonances of horns overirradiaton were considered. The imbedding equations for transparent coefficients
(field directional diagram) and reflection coefficients of linear HAA as functions of radiated field frequency have
been build. Some results of numerical experiment are given and a part of near fields (inhomogeneous modes)
was discussed.

1. Introduction

The usage of nanotechnologies in radiolocation has met some problems with distortion of hyper short (HS)
impulses being radiated by horn array antennas (HAA). Qualitative explanation of this effect is connected with
arising of reactive fields formed near antenna’s system. But quantitative description based on the traditional
methods meets serious difficulties. For correct description of radiation of ultra wide band (UWB) impulse
process it’s necessary to examine the internal problem of electrodynamics of HAA. Let’s take into consideration
that models usually used to describe narrow band signals radiation can’t be considered adequate for UWB
impulses.

Using the spectral method distortion of UWB signal during the radiation can be explained by misphasing
and changing of its Fourier-component’s amplitudes, arising in horn band. The latter can be considered as a
transitional layer, matching waveguides with free space. If field in feeding waveguides −Ein and in free space
−Eout is written in the mixed representation

E(~q, z;ω) =

∫
d~ρ · E(~ρ, z;ω) exp {−i~q~ρ} , ~ρ = (x, y) , (1)

than the main characteristic of HAA—the transparence coefficient T (~q, ~q′;ω) can be determent as a kernel of
integral equation

Eout(~q, z;ω)|z=H =

∫
d~q′ T (~q, ~q′;ω) · Ein(~q′, z;ω)

∣∣∣
z=0

(2)

Here H is thickness of the transition layer or horns height.
It’s clear that when describing UWB impulse radiation in terms of spectral theory the demand to the

measurement accuracy T (~q, ~q′;ω) is much bigger than in the case of narrow band signal. In particular, the
wide spectrum of the signal forces to take into consideration the group effects—i. e., overirradiation of horns
in grating. This is usually neglected in narrowband field. Periodic property of grating space structure in
combination with wide space signal spectrum leads to the fact that the definite group of frequencies inevitably
lays in the field of Wood anomalies, where the important role is played by near fields—inhomogeneous modes
of space spectrum of the radiation field.

Thus, the basic problem at the spectral approach to the solution of a problem on radiation of UWB-impulses
by HAA consists in a choose of method allowing to solve the internal problem of HAA electrodynamics maximum
correctly and to describe amplitude, phase and spatial vector of radiation of a monochromatic signal as function
of its frequency. As such an approach it is proposed to use the imbedding method.

2. Imbedding Equations for Linear HAA

The imbedding method is used as base for getting the equation for transparent coefficient of HAA. The
kernel of this method is in the following. A great number of solutions of similar problems is examined, these
problems differ only with the value of one parameter—the imbedding parameter. In the considered case such
a parameter is the height of the horn h—transparent layer thickness. The “utmost” solutions are: the field
radiated by the system of the feeding waveguides (h = 0) and the field of researched HAA (h = H). Farther
the solutions evolution equation is built in this functional space. Thus there can be established the connection
between the solutions of the problems with corresponding different values of the parameter. The solution with
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one value of the imbedding parameter is relatively simple and is taken as known (h = 0). Than the solution of
the researched problem (h = H) can be received as the solution of the Cauchy problem for imbedding equation
(first order differential equation) with the initial condition as a solution of the problem at h = 0. Let’s take into
consideration that problems of waveguides radiation (h = 0) are rather simpler than problem of HAA radiation
(h = H).

Thus, the transition from electrodynamics characteristics of waveguides’ cut (h = 0) to the corresponding
characteristics of horns can be seen in describing intermediate systems—the elements of the truncated horns
family received one from another by increasing the height of the walls as it’s shown in Fig. 1

Figure 1: The evolution of horn layer under increasing the imbedding parameter.

To make the problem simpler let’s use the method of periodical prolongation of the structure, i. e., let’s
add the researched HAA, consisting of N horns, with identical systems to the left and to the right to make
it periodical structure. Under such a representation of horn grating its space spectrum of radiation becomes
discrete. From the mathematical point of view it means that we change integral equations to matrix equations.

Farther it is necessary to express the transparence coefficient of “increased” HAA T (h + ∆h) in terms of
T (h), the reflection coefficient r(h, ∆h) and transparence coefficient t(h, ∆h) of the elementary layer.

According to the ideology of the works [1–2] the field being necessary for calculating T (h+∆h) is considered
in endless thin (virtual) clearance that divides the truncated horn of height h from the increased elementary
layer. The clearance borders can be considered semitransparent mirrors with transparent coefficients r(h, ∆h)
and R(h). Here R(h) it is a reflection coefficient and of truncated HAA of height h. Taking into consideration
multiple reflections of field from the layer’s borders the next equation [3] takes place

T (h+ ∆h) = [R(h+ ∆h) − r(h+ ∆h, ∆h)] · t−1(h+ ∆h, ∆h) ·R−1(h) · T (h), (3)

written in finite difference.
Imbedding equation (3) is not closed, there is an unknown function R(h) in it. The equation for reflection

coefficient for truncated HAA can be received by variation of co-relations of integral equations method also
known as MMM [4]. This method gave good results in the description of reflection from ideally conducting
surfaces.

The distinctive part of the problem for HAA is the presence of waveguides—special insertions in ideally
conducting surfaces. On these parts of the surface the Dirichlet condition doesn’t take place that leads to
essential complication of the method equation. Generalizing of method equations can be received knowing that
the field in the spaces where Dirichlet condition doesn’t take place can be represented as the superposition of
waveguide’s modes.

The equation for R(h), evident view of which has being shown in [5] is a following matrix Riccati equation

1

2i

dR̂

dz
= R̂(Î − ˆ̃

D)V̂ −1 − R̂
[
ˆ̃
D(Î − ĤV̂ ) + (Î − ˆ̃

D)ĤV̂
]
V̂ −1R̂+ (Î − ĤV̂ )V̂ −1R̂ (4)

Here
ˆ̃
D = Ŵ−‘1 ˆ̃

C
−1

F̂ , Ĥ = F̂ K̂−1Ŵ−1, K̂ = V̂ Ĉ − 1
Λ µ̂. Matrix

ˆ̃
C has the following components C̃kl =

1
Λ

Λ∫

0

e−i
2π
Λ (k−l)x+ivlh(x)dx, and matrix C̃−Ckl = 1

Λ

Λ∫

0

e−i
2π
Λ (k−l)x−ivlh(x)dx, h(x) is the form of a horn’s profile,

Akn =

Λ∫

0

dx

∞∫

−∞

dx′H(1)
0 (x, x′, h(x), h(x′)) · e−iqkx+iqnx

′

, µkn = 4
b ·

∞∑
p=1

χ̃kp
1
ν̃p
χkp, ν̃p =

√
k2
0 − q̃2p, q̃p = π

b p, b is
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waveguide width, χpn =

Λ+b
2∫

Λ−b
2

ϕp(x−
Λ − b

2
)·eiqnxdx, ϕp(·) is p-th waveguide’s mode, ˆ̃χ = χ̂∗T , Wmn = eivnz1 ·δnm,

δnm is Kronecker’s symbol, Î is identity matrix. Fkn = 2
Λx·sin c

[
2
Λ (k − n)x

]
, matrix V̂ is diagonal with elements

vpk = 2
vk

· δkp.
As the initial condition for it serves the reflection coefficient of system of feeding waveguides, which could

be found by using the mode-matching method.

3. A Physical Picture of Distortions of a UWB Signal at Radiation by HAA. Wood
Resonance and Near Fields

Periodic expansion of HAA used in the stated approach allows not only to simplify a problem in mathe-
matical aspect, but also to make more clear interpretation of destruction mechanism of the signal’s form. It is
known, that at interaction of a field with periodic structure there only components of a discrete spectrum are
interconnected. In case of linear HAA it is possible to present a set of the wave vectors forming this spectrum,
as ~kn = (νn, q0 + nk), here k = 2π/Λ—is a vector of the inverse lattice, Λ is distance between the nearest
radiators, n ∈ Z, νn =

√
k2 − (q0 + nk)2 and q0 is a corresponding projection of allocated components of field

angular spectrum. In case of the scattering problem, usually it is a projection of an external field’s wave vector.
If frequency of a field ω = ck is such that one of its space components gets in area of Wood resonance νn ∼= 0,

then anomalies are observed in distribution of a field on modes.
At radiation of the narrowband signal, carrying (central) frequency is chosen so that the condition λ0 >

Λ (k0 <
2π
Λ ) is satisfied. In this case in a space spectrum of radiation only one mode is homogeneous (lateral

petals in the directional diagram are absent). Thus all field modes, both homogeneous, and inhomogeneous,
are far from Wood’s resonance (Fig. 2 (a)). Therefore the problem of distortion of the form of the narrowband
signal usually does not arise.

For a UWB signal the range of wave numbers change is great. It grasps a lot of resonant points (Fig. 2 (b)).

Figure 2: The range of wave numbers change for narrowband -(a) and UWB -(b) signal.

As follows from the formula (1), the transparency coefficient (the directional diagram) HAA is substantially
determined by the feature of matrix reflection coefficient R(h). Let’s present its elements as

Rn,m(ω) = |Rn,m(ω)| · exp{iΦn,m(ω)}
The magnitude τn,m(ω) = − d

dωΦn,m(ω) defines a group delay for n-th mode of a scattering field. The index

m defines an external field wave vector νm =
√
k2 − (q0 + k ·m)2. If τn,m(ω) varies with change of frequency

then the output form of a signal most likely is distort. In other words, any deviation of frequency dependence
τn,m(ω) from the linear law must be analyzed.

On Fig. 3 diagrams of dependences |Rn,m(k′)| and Φ(k′) are presented. They are calculated with the help
of imbedding method represented for a case of normal falling (q0 +k ·m = 0) of an external field on the periodic
surface modeling linear HAA.

Here wave parameter k′ is a dimensionless wave vector k′ = kΛ/2π = ω′. Let’s notice, that deviations from
linear dependence near the values of parameter k′ = n, n ∈ Z corresponding to points of Wood’s resonance, are
observed.
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Figure 3: The diagrams of dependences |Rn,m(k′)| and Φ(k′).

Let’s note also, that far from resonant points, the kind of dependence Φ = Φ(ω′) can be counted linear,
but in the different areas of a frequency spectrum separated by resonant values of parameter, the corner of
an inclination of curves essentially differs. As the spectrum of a UWB signal spans the big number of such
areas even without taking into account Wood’s anomalies dependence Θ = Θ(ω′) can be approximated only by
wiselinear, but not linear dependence. It also is necessary to take into account at the analysis of the reasons of
the distortion of the form of radiated signal.

Complete results of the carried out numerical experiment will be submitted in the report.

4. Conclusion

The problem of ultra short impulses radiated by HAA is observed. From the spectrum analysis point of
view impulse distortion depends on its Fourier components misphasing. To describe this effect the matrix
transparence coefficient T̂ (ω) of horns layer is introduced as transitional layer that matches waveguides with
free space. To calculate T̂ (ω) the imbedding equations were built. They allow considering horns overirradiation
effects and borders effects that bound with its finite dimensions. Group delay variation that leads to signal
disintegration can be represented as resonant interactions (Wood anomalies).

Reactive fields formed near antenna’s system can be represented as superposition of inhomogeneous modes.
The importance of near fields (inhomogeneous modes) grows sharply near the points of Wood resonant.

This quality summary were confirmed by diagrams of Rnm(ω) dependence that were calculated using imbed-
ding equations describing external field interactions with periodical surface that models linear HAA.
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Near-field Response in Lossy Media with Exponential
Conductivity Inhomogeneity

R. J. Riddolls
Defence R&D Canada–Ottawa, Canada

Abstract—This paper examines the near-field response to source currents in lossy media with exponential
conductivity inhomogeneity. The motivation for this work is to understand the modification of the polar
ionosphere D region (50–90 km altitude) by powerful high frequency transmitters. The transmitted waves heat
the D region plasma, causing a localized conductivity perturbation. In the presence of the DC electric field
of the polar electrojet, the conductivity perturbation produces a current perturbation referred to as “antenna
current” that can drive extremely/very low frequency radiation. Here we seek to understand the production
of antenna current in a strongly inhomogeneous plasma. In the lower D region, the static approximation is
valid, and we solve using a scalar potential description. In the upper D region, we use the magnetoquasistatic
approximation and solve using a vector potential approach.

1. Introduction

We begin the formulation by defining standard scalar and vector potentials for the electric and magnetic
field perturbations introduced by the conductivity perturbation. In time-harmonic form, we have

E = iωA −∇Φ B = ∇× A, (1)

where i is the imaginary unit and ω is frequency. Let us suppose that the charge relaxation time and elec-
tromagnetic transit time are both small compared to the time scale of interest. This assumption allows us to
ignore the effect of displacement current, so that current consists of only the imposed antenna current Js due
to the conductivity perturbation, and a self-consistent conduction current σE, where σ is the conductivity of
the medium. Adopting a Coulomb gauge, the wave equation is given by

∇2A + iωµ0σA = −µ0Js + µ0σ∇Φ, (2)

where µ0 is the permeability of the medium, assumed the same as free space. The two terms on the right side
can be viewed as source terms for the vector potential. We will proceed as follows. In the lower ionosphere D
region, the conductivity is small such that the magnetic relaxation time is fast compared to the time scale of
interest, and thus we ignore effects of vector potential. In the upper D region, the conductivity is large such that
the magnetic relaxation time is slower than the time scale of interest. In this case, magnetic diffusion dominates
the behaviour of the system, and we ignore the effects of space charge and its associated scalar potential. We
will analyze each of the two limits.

The above statements assume a simple scalar conductivity. In practice, the plasma conductivity is anisotropic
and requires a matrix representation. In the northern polar region the direction z (altitude) is antiparallel the
earth’s magnetic field. The appropriate conductivity tensor is given by

σ = ehz




σP σH 0
−σH σP 0

0 0 σ0


 , (3)

where 1/h is the scale height of the conductivity. Here, the exponential factor models the variability in the
plasma conductivity due to the plasma density inhomogeneity, and the matrix entries are constants pertaining
to the anisotropic plasma conductivity tensor. The quantity σP is the Pedersen conductivity, σH is the Hall
conductivity, and σ0 is the specific conductivity. We are assuming that all conductivities vary in altitude at the
same rate. Strictly speaking this is not the case as the specific conductivity increases with altitude somewhat
more rapidly than the Pedersen or Hall conductivities. However, for the purposes of a simple treatment, we
ignore the fine details of the altitude dependence of the individual conductivity elements.
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2. Static Solution

We now turn to the problem of determining the scalar potential Φ in the static limit. If we incorporate the
tensor definition for σ into Equation (2), ignore the vector potential, and take the divergence of both sides, we
find that

∇2Φ +
( σ0

σP
− 1
)∂2Φ

∂z2
+
hσ0

σP

∂Φ

∂z
=
e−hz

σP
∇ · Js ≡ S(r), (4)

where S(r) is the source distribution. Let us expand the right and left sides of Equation (4):

S(r) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dr0S(r0)δ(r − r0) (5)

Φ(r) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dr0S(r0)GΦ(r, r0). (6)

Inserting these expansions into Equation (4) yields an expression for the Green’s function GΦ(r, r0):

∇2GΦ(r, r0) +
( σ0

σP
− 1
)∂2GΦ(r, r0)

∂z2
+
hσ0

σP

∂GΦ(r, r0)

∂z
= δ(r − r0). (7)

This is a constant coefficient equation, and therefore GΦ(r, r0) is the same as GΦ(r − r0). We can write

∇2GΦ(r) +
( σ0

σP
− 1
)∂2GΦ(r)

∂z2
+
hσ0

σP

∂GΦ(r)

∂z
= δ(r). (8)

This equation solves easily using the method of Fourier transforms. Taking the Fourier transform of Equation (8),
solving for GΦ(k), and then inverse transforming, results in the following solution for GΦ(r):

GΦ(r) = − 1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dk

eik·r

k2
x + k2

y + (σ0/σP )k2
z − ih(σ0/σP )kz

. (9)

We can now convert Equation (9) to cylindrical co-ordinates (ρ, φ, z) and (kρ, α, kz) and perform the integrals:

GΦ(r) = − 1

8π3

∫ ∞

0

dkρkρ

∫ ∞

−∞
dkz

eikzz

k2
ρ + (σ0/σP )k2

z − ih(σ0/σP )kz

∫ 2π

0

dαeikρρ cos(φ−α) (10)

= − 1

4π2

∫ ∞

0

dkρkρJ0(kρρ)

∫ ∞

−∞
dkz

eikzz

k2
ρ + (σ0/σP )k2

z − ih(σ0/σP )kz
(11)

= − e−hz/2

2πσ0/σP

∫ ∞

0

dkρ
kρJ0(kρρ)e

−
√

(h/2)2+(σP /σ0)k2
ρ|z|

√
(h/2)2 + (σP /σ0)k2

ρ

(12)

= −e
−hz/2−h

√
(σ0/σP )ρ2+z2/2

4π
√

(σ0/σP )ρ2 + z2
. (13)

The integral over kz above is facilitated by the residue theorem, and the integral over kρ uses the following
identity

∫ ∞

1

due−αuJ0(β
√
u2 − 1) =

e−
√
α2+β2

√
α2 + β2

, (14)

which can be found in standard tables. The scalar potential for a given source distribution can then be found by
integrating this Green’s function over the source distribution. The basic form of the scalar potential is similar
to that of sources in homogeneous isotropic media, except there is exponential decay in the upward direction,
and the potential is squeezed in the ρ direction compared to the z direction by a factor corresponding to the
degree of anisotropy σ0/σP . We also note that the Hall conductivity σH does not play a factor in the static
scalar potential.
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3. Static Solution Example

In this section, we provide an example of the static solution. Let us consider a current source Js that consists
of a horizontal cylinder-like structure modelled by

Js = x̂Iδ(y)δ(z)[µ(x+ L/2) − µ(x− L/2)], (15)

where I is the current and L is the cylinder length. The source distribution is given by

S(r0) = (e−hz/σP )∇ · Js (16)

= (I/σP )[δ(r0 + x̂L/2) − δ(r0 − x̂L/2)]. (17)

The potential is given by

Φ(r) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dr0S(r0)GΦ(r − r0) (18)

=
Ie−hz/2

4πσP

{
e−h

√
(σ0/σP )[(x−L/2)2+y2]+z2/2

√
(σ0/σP )[(x− L/2)2 + y2] + z2

− e−h
√

(σ0/σP )[(x+L/2)2+y2]+z2/2

√
(σ0/σP )[(x+ L/2)2 + y2] + z2

}
. (19)

The total current J = Js − σ · ∇Φ, near the z axis, is given by:

J(x,y)≈0 = (Js − σ · ∇Φ)(x,y)≈0 (20)

= x̂Iδ(y)δ(z) − (x̂σP − ŷσH)ILσ0(1 + hw/2) exp[h(z − w)/2]/(4πσ2
Pw

3), (21)

where w =
√

(σ0/σP )(L/2)2 + z2. The conduction current −σ · ∇Φ flows largely above the origin, opposite the
source current, effectively forming a vertical current loop. The conduction current distributions are shown for
L = 15 km and the cases of homogeneous isotropic, inhomogeneous isotropic, and inhomogeneous anisotropic
media.

Figure 1: Static conduction current distributions. Solid line: homogeneous isotropic media. Dashed line:
inhomogeneous isotropic media (1/h = 2.5 km). Dotted line: inhomogeneous anisotropic media (1/h = 2.5 km,
σ0/σP = 2).

4. Magnetoquasistatic Solution

Let us now consider the problem of determining the vector potential relevant to the magnetoquasistatic
limit. Returning to Equation (2), we ignore the scalar potential so that we have

∇2A + iωµ0σ · A = −µ0Js. (22)
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By Equation (4), the z component is decoupled from the x and y components. Since the current perturbation
Js is generally horizontally directed in practical situations, Az is not driven, and we assume it is zero. The x
and y components are decoupled by transforming to a basis of eigenvectors of the conductivity tensor:

[
Âx
Ây

]
=

1√
2

[
1 −i
1 i

] [
Ax
Ay

]
. (23)

After the transformation the equations for the vector potential components Âx and Ây can be written as

∇2

[
Âx
Ây

]
+ iωµ0e

hz

[
σP + iσH 0

0 σP − iσH

] [
Âx
Ây

]
= − µ0√

2

[
Jsx − iJsy
Jsx + iJsy

]
≡ −µ0Ĵs. (24)

The Green’s function for a component of Â is given by
[
∇2 + iωµ0e

hz(σP ± iσH)
]
GÂ(r, r0) = δ(r − r0). (25)

In view of the ehz factor, GÂ(r, r0) = GÂ(x− x0, y − y0, z, z0) 6= GÂ(r − r0). Thus we write

[
∇2 + iωµ0e

h(z+z0)(σP ± iσH)
]
GÂ(x, y, z + z0, z0) = δ(r). (26)

A solution by the method of Fourier transforms is confounded by the ehz factor. Thus we transform in the x and
y directions only, which converts the partial differential Equation (25) into an ordinary differential equation:

[ ∂2

∂z2
− k2

ρ + iωµ0e
h(z+z0)(σP ± iσH)

]
GÂ(kx, ky, z + z0, z0) = δ(z). (27)

The solutions are the Bessel functions Jν [λe
h(z+z0)/2] and Yν [λe

h(z+z0)/2], with λ = 2
√
iωµ0(σP ± iσH)/h and

ν = 2kρ/h. In the z → ∞ limit, the only bounded linear combination of solutions for 0 < arg(λ) < π is a

Hankel function of the form C1H
(1)
ν [λeh(z+z0)/2]. Similarly, in the z → −∞ limit, the only bounded solution

for all complex λ is a Bessel function of the form C2Jν [λe
h(z+z0)/2]. To determine the constants C1 and C2 we

impose that the solutions in the regions z > 0 and z < 0 are continuous at z = 0:

C1H
(1)
ν

(
λehz0/2

)
− C2Jν

(
λehz0/2

)
= 0, (28)

and that inhomogeneous Equation (27) is satisfied, which is done by integrating over a small interval at z = 0:

C1H
(1)′

ν

(
λehz0/2

)
− C2J

′
ν

(
λehz0/2

)
= 2/

(
hλehz0/2

)
. (29)

Recalling the Wronskian relationship Wz[Jν(z),H
(1)
ν (z)] = 2i/(πz), the solution for C1 and C2 is

C1 = −iπJν
(
λehz0/2

)
/h C2 = −iπH(1)

ν

(
λehz0/2

)
/h. (30)

GÂ(x, y, z + z0, z0) is found by performing the inverse Fourier transforms, which in cylindrical coordinates are

GÂ(x, y, z + z0, z0) =
1

4π2

∫ ∞

0

∫ 2π

0

dkρdαkρe
ikρρ cos(φ−α)GÂ(kρ, α, z + z0, z0) (31)

= − i

2h

∫ ∞

0

dkρkρJ0(kρρ)Jν

[
λeh(z+z0)/2µ(−z)

+λehz0/2µ(z)
]
H(1)
ν

[
λeh(z+z0)/2µ(z) + λehz0/2µ(−z)

]
, (32)

where µ(z) is the Heaviside step function. Therefore GÂ(r, z0) is given by

GÂ(r, z0) = − i

2h

∫ ∞

0

dkρkρJ0(kρρ)Jν

[
λehz/2µ(z0 − z)

+λehz0/2µ(z − z0)
]
H(1)
ν

[
λehz/2µ(z − z0) + λehz0/2µ(z0 − z)

]
. (33)

We find A by integrating GÂ(r, z0) over the source −µ0Ĵs and transforming Â to A using Equation (23).
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5. Magnetoquasistatic Solution Example

We consider, as an analytically tractable example, the response to a current sheet

Js = x̂Kδ(z), (34)

where K is a surface current density. The response for a component of Â is found as follows

Â = −µ0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dr0Kδ(z0)GA′(r, z0) (35)

=
iKµ0

2h

∫ ∞

0

∫ 2π

0

dρ dφρ

∫ ∞

0

dkρkρJ0(kρρ)Jν

[
λehz/2µ(−z) + λµ(z)

]
H(1)
ν

[
λehz/2µ(z) + λµ(−z)

]
(36)

=
iπKµ0

h

∫ ∞

0

dkρδ(kρ)Jν

[
λehz/2µ(−z) + λµ(z)

]
H(1)
ν

[
λehz/2µ(z) + λµ(−z)

]
(37)

=
iπKµ0

h
J0

[
λehz/2µ(−z) + λµ(z)

]
H

(1)
0

[
λehz/2µ(z) + λµ(−z)

]
. (38)

The x component of the conduction current iωσ·A is shown in Fig. 2. The upper cutoff of the conduction
current distribution results from the exponential increase in magnetic diffusion time with altitude, and the
lower cutoff arises from the exponential decrease in conductivity.

Figure 2: Magnetoquasistatic conduction current distributions. Solid line: 1/h = 2.5 km, 1/
√
ωµ0σp = 100 km,

σP = σH . Dashed line: 1/h = 5.0 km, 1/
√
ωµ0σp = 100 km, σP = σH .

6. Conclusion

This work has determined the response of inhomogeneous, anisotropic media to conductivity perturbations
in the static and magnetoquasistatic limits. The responses have been characterized as Green’s functions, which
can provide the response current distribution if the source currents are known a priori. Some simple source
currents have been considered here. More discussion of ionospheric source currents can be found in [1].

REFERENCES

1. Stubbe, P. and H. Kopka, “Modulation of the polar electrojet by powerful HF waves,” Journal of Geo-
physical Research, Vol. 82, 2319–2325, 1977.

2. Zhou, H. B., K. Papadopoulos, A. S. Sharma, and C. L. Chang, “Electronmagnetohydrodynamic response
of a plasma to an external current pulse,” Physics of Plasmas, Vol. 3, 1484–1494, 1996.



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 31

An Analysis of Coaxial Line Slot antenna for
Hyperthermia Treatment by Spectral Domain Approach

T. Nakata, H. Yoshitake, K. Wakino, Y.-D. Lin, and T. Kitazawa
Ritsumeikan University, Japan

Abstract—An extended spectral domain approach (ESDA) is applied to evaluate the scattering parameter
of laterally slotted coaxial antenna for hyperthermia treatment. The results calculated by ESDA are in good
agreement with that by Finite Element Method (FEM) simulation. Computational labor of the present method
is far lighter than that of FEM, and the method is suitable for the iterative computation that is required for
the optimization of antenna design. The present method can afford to consider the effect of the metallization
thickness in the outer conductor.

1. Introduction

In the fields of medical application, microwave is utilized for various purposes in the examining and treatment
equipment [1]. The characteristics of coaxial line slot antenna for microwave hyperthermia applicators have been
investigated [2]. This treatment thrusts a coaxial line applicator into the affected cancer part, heats up selectively
the affected area and fixes the cancer cells. The currently used coaxial line applicator is not optimized in the
point of view of impedance matching between applicator and human tissue, so that the radiation efficiency into
the affected area is not good. In this paper, we analyze the radiation characteristics of applicator using efficient
simulation technique and proposed the optimized design that presents high radiation efficiency.

The formulation procedure utilized in this paper is based on the extended spectral domain approach (ESDA).
This procedure can afford to consider the effect of thickness of outer conductor of coaxial cable. The results
calculated by ESDA are compared with that by FEM simulation and excellent agreement have been obtained
between both results.

Figure 1: Schematic structure of coaxial line slot an-
tenna.

Figure 2: Aperture electric fields.

2. Theory

Figure 1 shows the schematic structure of coaxial line slot antenna whose outer conductor has finite thickness
t and has a ring slot of W in width cut laterally near the termination. A perfect electric conductor (PEC) sheet
is introduced for convenience of analysis in the position apart g from the tip of coaxial line. It is assumed that
the relative complex permittivity of material in each region is εr1, εr2, εr3, εr4, respectively. The radiation char-
acteristics of coaxial line slot antenna are analyzed based on the extended spectral domain approach (ESDA) [3].
In the procedure, first the aperture fields are introduced in the aperture of outer conductor designated as ea1z (at
ρ = b), and ea2z (at ρ = b + t) (Fig. 2), respectively. Whole analytic space is divided into four regions, that
is, region I (a ≤ ρ ≤ b, −∞ ≤ z ≤ 0), region II (b ≤ ρ ≤ b + t, −c − w/2 ≤ z ≤ −c + w/2), region III (
b + t ≤ ρ ≤ r, −∞ ≤ z ≤ d + g), and region IV (0 ≤ ρ ≤ b + t, d ≤ z ≤ d + g), as shown in Fig. 1. These
regions can be treated independently resorting to equivalence theorem, and the electromagnetic fields in each
region are Fourier transformed with respect to the z-direction. When the dominant TEM mode

Eρ =
E0

ρ
exp(−jk1z), Hφ =

√
εr1ε0
µ0

E0

ρ
exp(−jk1z) (a ≤ ρ ≤ b) (1)

enters the coaxial line slot antenna, there exist the incident and the scattered waves in region (I) and total
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Figure 3: Edge singularities in aperture fields. Figure 4: Convergence of the reflection coefficients
with respect to number of basis functions. a =
0.24 mm, b = 0.8 mm, c = 2.5 mm, d = 5.0 mm,
w = 2.0 mm, t = 0.1 mm, εr1 = 2.1 − j0.0005,
εr2 = εr3 = εr4 = 43 − j12.38, f = 2.45 GHz.

electromagnetic fields are expressed by Fourier integrals as,

E(I)
ρ (ρ, z) = −j 2E0

ρ
sin(k1z) +

√
2

π

∫ 0

−∞
Ẽ(I)
ρ (ρ) sin(α1z)dα1,

E(I)
z (ρ, z) =

√
2

π

∫ 0

−∞
Ẽ(I)
z (ρ) cos(α1z)dα1,

E
(I)
φ (ρ, z) =

√
εr1ε0
µ0

2E0

ρ
cos(k1z) +

√
2

π

∫ 0

−∞
H̃

(I)
φ (ρ) cos(α1z)dα1 (2)

Similar expressions are available in region (III). The electromagnetic fields in regions (II) and (IV) are expressed
by Fourier series instead of Fourier integrals to satisfy the boundary conditions on the side walls. Fields in regions
(II) are expressed as

E(II)
ρ (ρ, z) =

∞∑

n=1

Ẽ(II)
ρ (ρ) sinα2(z + c+

W

2
), E(II)

z (ρ, z) =

∞∑

n=0

Ẽ(II)
z (ρ) cosα2(z + c+

W

2
),

H
(II)
φ (ρ, z) =

∞∑

n=0

H̃
(II)
φ (ρ) cosα2(z + c+

W

2
), α2 =

nπ

W
. (3)

And similar expressions are available in region (IV).
These expressions of electromagnetic fields are substituted into Maxwells field equations. The general solu-

tions of the transformed field equations can be expressed in terms of Bessel functions and Neumann functions
in regions (I), (II) and (IV), and in terms of second kind of Hankel functions in region (III) as

H̃
(i)
φ (αi; ρ) = A(i)J1(ξiρ) +B(i)N1(ξiρ) in regions(I), (II) and (IV) (4)

H̃
(III)
φ (α3; ρ) = C(III)H

(2)
1 (ξ3ρ) in regions(III) (5)

where A(i), B(i) and C(III) are unknown constants and ξi =
√
ω2εriε0µ0 − α2

i . These unknown constants can

be related to the aperture fields ea1z , ea2z and ebz by applying the continuities of electric fields at interfaces. Then
the electromagnetic fields in each region are expressed in terms of the aperture fields, for example,

H
(I)
φ (ρ, z) =

√
εr1ε0
µ0

2E0

ρ
cos(k1z) +

∫ −c+W/2

z′=−c−W/2
Y (I)(ρ, z|ρ′ = b, z′)ea1z (z′)dz′ in region(I) (6)

where Y (I) is the Green’s function and it can be derived easily in the transformed domain. Similar expressions
are derived in other regions, which relate the fields to the involved aperture fields. The remaining boundary
conditions, i. e., the continuity of the magnetic field at the interfaces between adjacent regions, are applied to
obtain a set of the integral equations on the aperture fields. The aperture fields can be determined by applying
the Galerkin’s procedure to these coupled integral equations, and the scattering parameter (complex reflection
constant) S11 are obtained by taking the inner product between the aperture field ea1z and the eigen function of
coaxial line.
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Figure 5: Convergence of reflection coefficients with
respect to the distance of g. a = 0.24 mm, b =
0.8 mm, c = 2.5 mm, d = 5.0 mm, w = 2.0 mm,
t = 0.1 mm, εr1 = 2.1 − j0.0005, εr2 = εr3 = εr4 =
43 − j12.38, f = 2.45 GHz.

Figure 6: Gap discontinuity in coaxial line.

Figure 7: Phase variation of the reflection versus the
frequency. a = 3.10 mm, b = 7.14 mm, d = 0.57 mm,
εr1 = εr2 = 2.1.

Figure 8: Frequency dependency of reflection coef-
ficients of coaxial line slot antenna. a = 0.24 mm,
b = 0.8 mm, c = 2.5 mm, d = 5.0 mm, w = 2.0 mm,
t = 0.1 mm, εr1 = 2.1 − j0.0005, εr2 = εr3 = εr4 =
43 − j12.38.

3. Numerical Procedure and Result

The numerical procedure is based on Galerkin’s procedure, and the unknown electric aperture fields ea1z , ea2z
and ebz are expanded in terms of the appropriate basis functions,

eiz(z) =

N∑

k=1

aikf
i
k(z) (7)

The basis functions f ik(z) are chosen taking the edge singularities near conductor edge into consideration (Fig. 3),

fa1k (z) = fa2k K(z) =
Tk−1{ 2

W (z + c)}√
1 − { 2

W (z + c)}2
, f bk(z) =

T2(k−1){ 1
g (z − d− g)}

√
1 − { 1

g (z − d− g)}2
(8)

where Tk(x) is Chebyshev polynomials of the first kind.
Preliminary computations are carried out to investigate the convergence of the reflection coefficients with

respect to the number of basis functions. This method was settled by a little number of basis functions as shown
in Fig. 4, and N = 8 is used in the following computations. Fig. 5 examines the effect of the fictious perfect
electric conductor sheet placed at distance g ahead the tip of coaxial line slot antenna (Fig. 1). The influence
of the conductor sheet decreases rapidly with g, and the sufficient spacing g = 40 mm is chosen in the following
simulations.

To author’s knowledge there is no published theoretical result to permit direct comparison with the present
method for the reflection characteristics of coaxial line slot antenna. We apply the present method to analyze
the gap discontinuity in the inner conductor of shorted coaxial line (Fig. 6) to show the validity of the method.
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3
Figure 9: SAR distribution of coaxial line slot an-
tenna.

Figure 10: Variation of the reflection versus the slot
position. a = 0.24 mm, b = 0.8 mm, w = 2.0 mm,
t = 0.1 mm, εr1 = 2.1 − j0.0005, εr2 = εr3 = εr4 =
43 − j12.38, f = 2.45 GHz.

The formulation procedures are similar to those explained above and also the similar basis functions (8) are used
in the numerical computation. Fig. 7 shows the phase variation of the reflection coefficient versus the frequency,
comparing the results by mode-matching method [4] and Marcuvitzs analytical results [5]. Our results are in
good agreement with [5] for wide frequencies.

Figure8 shows the frequency dependency of reflection coefficients of the coaxial line slot antenna (applicator)
thrust into the liver. The figure includes the values by FEM for comparison, and excellent agreement is observed
between both methods over wide frequencies. Fig. 9 shows the SAR distribution calculated by both methods
at f = 2.45 GHz.

The present method is numerically efficient and is suitable for the optimization of the coaxial line applicator,
which requires the iterative computations. Fig. 10 shows the optimization of coaxial line by changing a slot
position when the operation frequency is 2.45 GHz. The optimal value at this condition takes the reflective
coefficient 0.32 at c − w/2 = 1.5 mm and d = 5 mm. This figure also includes the values by FEM and again
good agreement is confirmed, although FEM calculations are time consuming and are presented only at discrete
frequencies.

4. Conclusion

In this paper, we proposed the novel analyzing technique for the coaxial line slot antenna by ESDA, and
carried out extraction of scattering parameters. This method can take the thickness effect of outer conductor
into consideration. This method also secures the high accuracy by considering the singularities of fields near
the conductor edge properly. The computational labor of the new method is far lighter than that of FEM, so
that novel method is suitable for the time consuming iterative computation such as optimization procedure of
antenna design.
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Critical Study of DCIM, and Development of Efficient
Simulation Tool for 3D Printed Structures in

Multilayer Media

M. I. Aksun and T. Onal
Koc University, Turkey

Abstract—Since the discrete complex image method (DCIM) has been widely used in conjunction with the
Method of Moments (MoM) to efficiently analyze printed structures, some lingering issues related to the im-
plementation of DCIM and their brief clarifications are first reviewed. Then, an efficient and rigorous electro-
magnetic simulation algorithm, based on the combination of MoM and DCIM, is proposed and developed for
the solution of mixed-potential integral equation (MPIE) for printed structures with multiple vertical strips in
multilayer media. The algorithm is possibly the most efficient approach to handle multiple vertical conductors,
even spanning more than one layer, in printed circuits.

1. Introduction

Spatial-domain method of moments (MoM) is a widely used technique for the solution of mixed-potential
integral equation (MPIE) for printed geometries in multilayer planar media [1], thanks to the introduction
of an efficient closed-form approximation method [2] and its improved versions of the spatial-domain Green’s
functions [3, 4]. This approach, known as discrete complex image method (DCIM), basically approximates the
spectral-domain Green’s functions in terms of complex exponentials, and then casts the integral representations
of the spatial-domain Green’s functions into closed-form expressions via Sommerfeld identity [5]. Although
DCIM is quite robust and works well to get the closed-form Green’s functions, it has some limitations in the
form of a limited range of validity depending upon the implementation of the method.

Some issues originating from the implementation of DCIM are discussed and possible clarifications are
provided in Section 2. In Section 3, application of the closed-form Green’s functions in conjunction with the
spatial-domain MoM is reviewed, with the emphasis given to efficient handling of multiple vertical conductors.
Finally, conclusions are provided in Section 4.

2. Discussions on Closed-form Green’s Functions

It is well known that spectral-domain Green’s functions can be written analytically in planar multilayer
media, and their spatial-domain counterparts can be obtained from the inverse Hankel transform of the spectral-
domain Green’s functions [4, 6], as

G =
1

4π

∫

SIP

dkρkρH
(2)
0 (kρρ)G̃(kρ) (1)

where k2
ρ = k2

x + k2
y, ρ is the variable in cylindrical coordinate system, G and G̃ are Green’s functions in the

spatial and spectral domain, respectively, H
(2)
0 is the Hankel function of the second kind and SIP is the Som-

merfeld integration path. Since the integrand usually exhibits oscillatory nature and slow convergence, rendering
the transformation computationally very expensive, spectral-domain Green’s functions can be approximated by
complex exponentials, via the generalized pencil-of-function (GPOF) method [6], to obtain closed-form expres-
sions from the inverse Hankel transform. Since the crucial step in this approach is the approximation of the
spectral-domain Green’s functions, which is detailed in [3, 4], discussions on the accuracy of the method for large
distances have concentrated mainly on the approximation procedure, because the resulting closed-form Green’s
functions are, in general, accurate enough for distances as far as k0ρ = 20 − 30 (ρ/λ = 3 − 4), beyond which
they may deteriorate significantly.

In the literature, there were basically three attributable sources of problems in the implementation of DCIM:
(i) not extracting the quasi-static terms, (ii) introducing a wrong branch point in the process of approximation,
and (iii) not extracting the surface wave poles (SWP). In the original implementation of DCIM, as introduced
in [2], there were only one level of approximation, and it was necessary to extract the quasi-static terms to
make the remaining portion of the spectral-domain Green’s functions converge to zero for large kρ values.
However, with the introduction of two-level and multi-level approximation algorithms [3, 7], the necessity of
finding the quasi-static terms and their extraction before the approximation has been eliminated. The issue of
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introducing wrong branch point originates from the following observations: spectral-domain Green’s functions,
when the source is in a bounded layer, have no branch point at kρ = ks, although they have kzs term in the
denominator, where ks is the wave number of the source layer; and the approximating exponentials with kzs
factor in the denominator seem to have branch point at kρ = ks. However, one should note that the exponential
approximation is always performed over the deformed path of SIP and the function to be approximated over this
path is single valued with the right choice of the branch. Therefore, the resulting exponentials divided by kzs is
a singlevalued function with this right choice of the branch. The last problem concerning the SWPs is inherent
to the approach unless the SWP contributions are totally extracted from the functions to be approximated.
The detailed discussions on these issues and some clarifications can be found in [4].

3. MoM-DCIM Application for Multiple Vertical Strips

In the analysis of printed geometries with multiple vertical strips, a method based on MoMDCIM is employed,
as proposed in [7], and it is extended to efficiently handle multiple vertical strips. The algorithm and its efficient
handling of multiple vertical strips can be described by examining one of the inner-product terms in the MoM
matrix entries, as follows:
〈 ∂

∂x
Tx(x, y), G

q
z ∗

∂

∂z
Bz(y, z)

〉
=

∫∫
dxdy

∂

∂x
Tx(x, y) ·

∫
dy′Bz(y

′)

∫
dz′

∂

∂z′
Bz(z

′)Gqz(x− x′, y − y′, z, z′) (2)

where Tx(x, y) and Bz(x, y) are the testing and basis functions used in the evaluation of corresponding MoM
matrix entry. Writing the spatial-domain Green’s function Gqz in terms of its spectral-domain representation

G̃qz, followed by the change of the order of integrations, (2) can be cast into the following form
〈 ∂

∂x
Tx(x, y), G

q
z ∗

∂

∂z
Bz(y, z)

〉
=

∫∫
dudvF qz (u, v, z = cons)

∫
dyBz(y − v)

∂

∂x
Tx(x

′ + u, y) (3)

where x− x′ = u, y − y′ = v and

F qz
∼= 1

4π

∫

SIP

dkρkρH
(2)
0

(
kρ
∣∣ρ − ρ′∣∣) ·GPOF

{∫
dz′

∂

∂z′
Bz(z

′)G̃qz(kρ, z = cons, z′)

}
(4)

Note that the auxiliary function Fz(u, v) is obtained analytically in terms of complex exponentials and it is an
explicit function of u = x−x′ and v = y−y′, and the inner integral of (3) can easily be obtained analytically for
most basis and testing functions. Therefore, the same inner-product terms corresponding to other vertical strips
can be obtained simply by evaluating Fz(u, v) for different values of u and v, as long as the basis functions used
to represent the current densities along them have identical z′-dependencies. Consequently, having more than
one vertical conductors in a printed circuit would not require significant amount of additional computation.

The formulation described above is applied to a microstrip line lying along x-direction with four vertical y-
spanning strips to assess and demonstrate the computational efficiency of the method. Here are the parameters
of the microstrip line: the dielectric constant of the medium is 4.0; the length and width of the line is 18.0 cm
and 0.1 cm, respectively; the thickness of the substrate is 0.4 cm; the frequency of operation is 2 GHz; and 71
horizontal basis functions along x-direction are employed. As the thickness of the substrate is uniform, which
is usually the case for most of antenna and microwave applications, two basis functions are used over every
vertical strip, and naturally they have the same z and z′ dependencies, satisfying the only criterion for the
efficiency of the method for multiple vertical strips. To validate the method, the current distribution along the
microstrip line is first obtained, and compared to that from a commercially available EM simulation software,
em by Sonnet, as shown in Fig. 1. An excellent agreement is observed; slight differences in the amplitude can be
attributed to the inherent models of the approaches: em by Sonnet solves the problem in shielded environment
while the method proposed here solves it in open environment, which inevitable causes some slight differences
on the resonant frequencies of the structure.

Once the validation is complete, the computational efficiency of the proposed method is assessed in terms
of the CPU time obtained from a 1.5 GHz Centrino CPU. The microstrip line is first analyzed with one vertical
strip (at x = 7.0 cm), and then the number of vertical strips is increased to four by one-by-one. As the ultimate
measure for the efficient handling of multiple vertical metallization, in addition to the first one, matrix fill time for
additional vertical strips are listed in Table 1. For the matrix fill times in case I, the necessary auxiliary functions
are calculated only once and used repeatedly, but for case II, the auxiliary functions are re-calculated for every
entry corresponding to each basis and testing functions introduced with the addition of new vertical strips. It
is observed that efficient use of auxiliary functions has significantly reduced the computational complexity of
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the whole method. This can be stated with adding new vertical strips to the microstrip line with one vertical
strip costs about 4.0 seconds whereas it requires 70.0 seconds in case of not using auxiliary functions repeatedly.
Note that CPU times are obtained by using only the symmetry of the MoM matrix and it has not been used
any acceleration technique for the evaluation of MoM matrix entries.

Figure 1: Magnitude of the current along the microstrip line with 4 vertical strips.

Table 1: MoM matrix fill times for each additional vertical strip.

Number of vertical MoM matrix fill-time (sec)

strips CASE I CASE II

1 11.8 69.8

2 4.0 68.6

3 4.1 72.2

4 4.2 75.8

4. Conclusions

Issues related to the implementation of DCIM have been first clarified, as it is used in conjunction with the
MoM in the algorithm proposed in this paper. The algorithm, based on the DCIM-MoM technique, is assessed
in terms of its accuracy and the efficiency in the analysis of printed geometries with multiple vertical conductors.
It has been shown mathematically and numerically that, as long as the vertical dependencies of the basis or
testing functions are chosen to be the same, the inclusion of additional vertical conductors is extremely efficient.
Therefore, this approach seems to be a good candidate to use in conjunction with an optimization algorithm in
a CAD tool.
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Analysis of Cylindrical Microstrip Line with Finite
Thickness of Conductor
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Ritsumeikan University, Japan

Abstract—Novel analytical method based on extended spectral domain approach (ESDA) is presented for
cylindrical microstrip line. The method utilizes the aperture fields as the source quantities, as opposed to the
conventional methods, which have used the current on the strip as the source. The whole region can be divided
into sub-regions by the introduction of aperture fields, and each sub-region can be treated independently. This
method makes possible the analysis both of zero and finite thickness of the strip conductor. The numerical
procedure incorporates the effects of the edge singularities properly and can afford the efficient and accurate
calculations for the phase constants and characteristic impedances of a microstrip line with zero- and finite-
thickness conductor. The calculated results by the present method reveal the effect of conductor thickness on
the characteristics of a cylindrical microstrip line.

1. Introduction

Recently, curved surface substrates have attracted an attention as materials of antennas and front ends for
portable terminals. A lot of analyses of the propagation characteristic of the stripline and the coplanar waveguide
composed on a cylinder substrate are reported [1–6], including the moment method, the FDTD method [3], and
the finite element method [5]. However, their works assumed the conductor thickness to be zero, and the report
concerning the effect of the conductor thickness on the propagation characteristic has not be found. Recently,
authors reported on the effect of the finite thickness of a conductor on electric characteristics of cylindrical
coplanar waveguides (CCPWs) by using the extended spectral domain approach (ESDA).

In this paper, we report on the analytical method of the cylindrical microstrip line based on ESDA, and
the effect of conductor thickness by numerical calculation. The present method utilizes the electric fields at
the interface of the aperture as the source quantities, as opposed to the conventional methods [1, 2], which
have used the current on the strip as the source. The accurate and efficient numerical procedure, which makes
consideration for the field singularities near the conductor edge of zero- and finite-thickness, reveals the effect of
the curvature and the finite thickness of a conductor on the characteristic impedances and the phase constants
of the cylindrical microstrip line.

2. Theory

Cross section of a microstrip line on a cylindrical dielectric substrate is shown in Fig. 1(a). Curvature R of
the cylindrical substrate is defined as the ratio of inner and outer diameter of substrate,

(a) Cross section. (b) Aperture fields.

Figure 1: Schematic structure of cylindrical microstrip line.
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R =
a

b
= 1 − h

b
(1)

where h = b − a is substrate thickness. A signal conductor of W in width is put on the substrate, which is
backed by the ground conductor. Both conductors are assumed to be perfect electric conductor (PEC), but
the signal conductor has the finite thickness t, as opposed to the previous reports. A single-layered substrate
is assumed in the following explanation for the simplicity, although the method is applicable to multilayered
and/or overlaid structure problem. The theoretical scheme is based on the ESDA [8–10]. The method has
been successfully worked out to analyze the effect of the conductor thickness of the various types of planar
transmission lines. Here, in this study, the method is extended further to the analysis of the effect of conductor
thickness in cylindrical microstrip line. In the ESDA, first the aperture electric fields are introduced at the
circumferential surfaces of dielectric substrate at ρ = b, eb(φ), and the upper surface of signal conductor at
ρ = b+ t, ec(φ) shown in Fig. 1(b). By introducing these aperture fields and utilizing the equivalence theorem,
the whole region is divided into subregions, i. e., (I) the outer (ρ > b + t), (II) the aperture (b < ρ < b + t)
and (III) the substrarte (ρ < b) subregions. After dividing the region, each subregion can be treated separately,
and then the longitudinal components of electromagnetic fields in each subregion are expressed in terms of the

appropriate eigenfunctions Φ
(i)
n (φ), Ψ

(i)
n (φ), which satisfy the boundary conditions in the φ-direction.

E(i)
z (ρ, φ)e−jβz =

∞∑

n=0

Ẽ(i)
z (ρ)Φ(i)

n (φ)e−jβz (2)

H(i)
z (ρ, φ)e−jβz =

∞∑

n=0

H̃(i)
z (ρ)Ψ(i)

n (φ)e−jβz (3)

i = I, II, III

where β is the unknown phase constant and Ẽ
(i)
z is the transform of E

(i)
z . The transversal (ρ, φ) field components

can be related to the longitudinal components E
(i)
z and H

(i)
z by utilizing the field equations. The general solution

of the transform Ẽ
(i)
z in region (i) can be expressed as

Ẽ(i)
z (ρ) = A(i)Jn(βcρ) +B(i)Yn(βcρ) (4)

βc =
√
ω2εµ− β2

where A(i), B(i) is unknown constants, and they are determined by the boundary conditions at the interfaces.
The continuities of electric fields are expressed as

E
(III)
φ (ρ = a+ 0, φ) = 0, E(III)

z (ρ = a+ 0, φ) = 0 at ρ = a (5)

E
(II)
φ (ρ = b+ 0, φ) = E

(III)
φ (ρ = b− 0, φ) = ebφ at ρ = b (

φW

2
< φ < π) (6)

E(II)
z (ρ = b+ 0, φ) = E(III)

z (ρ = b− 0, φ) = ebz (7)

E
(I)
φ (ρ = b+ t+ 0, φ) = E

(II)
φ (ρ = b+ t− 0, φ) = ecφ at ρ = b+ t (

φW

2
< φ < π) (8)

E(I)
z (ρ = b+ t+ 0, φ) = E(II)

z (ρ = b+ t− 0, φ) = ecz. (9)

These continuity conditions are transformed into spectral domain and they are used to relate the unknowns
A(i), B(i) to the aperture fields. The fields are then related to the aperture fields as follows

E(II)(ρ, φ) =

∫

φ′

{T
(II)

(b, φ|b+ t, φ′) · ec(φ′) + T
(II)

(b, φ|b, φ′) · eb(φ′)}dφ′ (10)

H(II)(ρ, φ) =

∫

φ′

{Y
(II)

(b, φ|b+ t, φ′) · ec(φ′) + Y
(II)

(b, φ|b, φ′) · eb(φ′)}dφ′ (11)
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where, T ′
s, Y

′
s are the dyadic Green’s functions. Then, the integral equations on the aperture fields are obtained

by using the continuities of magnetic fields at the aperture surfaces,

H
(II)
φ (ρ = b+ 0, φ) = H

(III)
φ (ρ = b− 0, φ) (

φW

2
< φ < π) (12)

H(II)
z (ρ = b+ 0, φ) = H(III)

z (ρ = b− 0, φ) (13)

H
(I)
φ (ρ = b+ t+ 0, φ) = H

(II)
φ (ρ = b+ t− 0, φ) (

φW

2
< φ < π) (14)

H(I)
z (ρ = b+ t+ 0, φ) = H(II)

z (ρ = b+ t− 0, φ). (15)

Applying the Galerkins procedure to these integral equations, we get the determinant equation for the phase
constant β. In the Galerkins, the unknown aperture fields are expressed in terms of the appropriate basis
functions ξφi(φ) and ξzi(φ) as,

ebφ(φ) =

N∑

i=1

bφiξφi(φ), ebz(φ) =

N∑

i=1

bziξzi(φ) (16)

ecφ(φ) =

N∑

i=1

cφiξφi(φ), ecz(φ) =

N∑

i=1

cziξzi(φ) (17)

where bφi, bzi, cφi, and czi are the unknown expansion coefficients. The basis functions ξφi(φ), ξzi(φ), which
incorporate the singularities of fields properly near the conductor edge [8–10], are used in the following compu-
tations. For the case with the conductors of zero thickness, the aperture region (II) will be eliminated in the
procedure and the aperture field eb equals to ec.

The definition of the characteristic impedance is somewhat ambiguous for the hybrid mode propagation
along microstrip line. We adopt the voltage-current definitions

ZV I =
Vo
Io

(18)

where Vo is the voltage between the center strip and the ground conductor, and Io is the total current flowing
in the z-direction on the strip conductor. The voltage Vo is evaluated by integrating the radial component of

electric field E
(III)
ρ between the ground (ρ = a) and the signal (ρ = b) conductors,

V (φ) =

∫ b

a

Eρ(ρ, φ)dρ (19)

where φ may be any in 0 < φ < φW /2. Therefore V (φ) is integrated with φ over 0 < φ < φW /2 to get

Vo =
2

φW

∫ φW
2

0

V (φ)dφ. (20)

The current Io can be evaluated by the line integral C of the magnetic field around the strip conductor [7]

Io =

∮

c

H · dl. (21)

3. Numerical Procedure and Results

The conventional methods have treated the propagation characteristics of a microstrip line on a cylindrical
substrate assuming the conductor thickness to be zero [2]. The present method, when the aperture field is
adopted as the source quantity in the formulation, can afford to present the characteristics of the case with
finite as well as zero thickness. Also, the present formulation procedure could employ the current on the strip
instead of the aperture field as the source quantity, although this procedure could be applied only to the case
with zero thickness. Fig. 2 shows the frequency dependency of the effective dielectric constant εeff and the
characteristic impedance ZV I of a microstrip line on a cylindrical substrate with larger R [2]. The effective
dielectric constant εeff is obtained in terms of the phase constant β as

εeff = {β/ω√ε0µ0}2 (22)
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The results of zero thickness conductors are calculated by both the aperture field and the current bases, and
both results are in excellent agreement and they agree well with the conventional ones [2] over the frequencies.
The figure includes the results of the case with finite thickness of the strip conductor (50µm) showing the effects
of the conductor thickness on εeff and ZV I .

(a) εeff . (b) ZV I .

Figure 2: Frequency dependency of propagation characteristics. εr = 9.6, h = 1mm, W = 1mm, R = 0.9.

(a) εeff . (b) ZV I .

Figure 3: Curvature dependency of propagation characteristics. εr = 9.6, h = 1mm, W = 1mm, f = 10GHz.

Figure 4: Thickness effect on propagation characteristics. εr = 9.6, h = 1mm, W = 1mm, R = 0.9.

The present methods is equally applicable to the a cylindrical microstrip line with larger and smaller curva-
ture rate R. Fig. 3 shows the curvature dependency of εeff and ZV I . The value of εeff increases rapidly when
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curvature rate R is 0.5 or less. That is, the concentration of the electromagnetic field in the dielectric substrate
becomes stronger as the curvature ratio becomes smaller. Therefore, the effect of the thickness of the conductor
becomes smaller for the smaller R. Fig. 4 shows the conductor thickness effect where the relative changes of εeff
and ZV I are presented with the thickness variation of conductor. Both εeff and ZV I are decrease monotonously
up to 100µm thickness conductor. It should be noted that the effect of the conductor thickness becomes smaller
for higher frequency (f = 18 GHz), as opposed to a cylindrical coplanar waveguides (CCPWs), where the effect
becomes larger for higher frequency. This is why the electromagnetic field concentrates more in the dielectric
substrate between the strip and the ground conductors and the effect of conductor thickness becomes smaller
for higher frequency.

4. Conclusion

Novel analytical method based on extended spectral domain approach (ESDA) is presented for a cylindrical
microstrip line. The method is able to treat the effect of the finite thickness of a strip conductor by utilizing the
aperture electric fields as source quantities. The numerical procedure incorporates the effects of the edge singu-
larities properly and can afford the efficient and accurate calculation method for the characteristic impedances
in addition to the phase constants of a cylindrical microstrip line. The calculated results for zero-thickness
conductor by both procedures, based on current or aperture field, are in good agreement and also they agree
well with the published data. The results obtained by the present method show the curvature dependency of
the propagation characteristics and reveal the effect of conductor thickness, which is different from that of a
cylindrical coplanar waveguides (CCPWs).
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Detection of Small Tumors in Microwave Medical
Imaging Using Level Sets and Music
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Abstract—We focus on the application of microwaves for the early detection of breast cancer. We investigate
the potential of a novel strategy using shapes for modeling the tumor in the breast. An inversion using a
shape-based model offers several advantages like well-defined boundaries and the incorporation of an intrinsic
regularization that reduces the dimensionality of the inverse problem whereby at the same time stabilizing the
reconstruction. We explore novel level-set techniques as a means to detect the tumor without any initialization
of its position and size. We present some numerical resonstructions and we compare them with the conventional
MUSIC algorithm, in particular with respect to the frequency which is used for the investigation. We show that
for different frequencies these two methods show a different qualitative behaviour in the reconstructions.

1. Introduction

Microwave imaging shows significant promise as a new technique for the early detection of breast cancer
(see [5] and references therein). This is so because of the high contrast between the dielectric properties of the
healthy breast tissue and the malignant tumors at microwave frequencies. As a consequence, microwave imaging
may be used as a clinical complement to the conventional mammography which is based on the attenuation of
X-rays that go through the breast. We note that mammographies offer high resolution images but with low
contrast.

Several image reconstruction algorithms have been investigated during the last years for the detection and
location of breast tumors using active microwave imaging. In this application, one is typically not so much
interested on the detailed reconstruction of the spatial distribution of the dielectric properties (which would
require by far more data than there are usually available), but mainly to answer in a fast, harmless and inex-
pensive way the following three questions: (i) whether or not there is a malignant tumor, (ii) its (approximate)
location, and (iii) its (approximate) size. Once these questions have been answered reliably, more details can
be investigated if necessary by alternative (but then typically more expensive) imaging techniques.

In this paper we investigate the use of the level set technique (see [4, 7–11] and references given there for
details) as a means to detect the presence, location and size of small tumors if their properties are assumed
to be known. The main difficulty in this work is the extremely limited view to the domain of interest due to
a very specific source-receiver geometry: all sources and receivers are located at the same side of the domain.
Our observation from earlier work [4] has been that in these situations the level set iteration, when initiated
with an arbitrary starting guess for the shape, tends to suffer from local minima, which makes it difficult to
reliably detect the correct location of the tumor. Therefore, we have investigated an adaptation of our level set
approach to this new situation which is able to start without any pre-specified starting guess for the shape. Our
algorithm is able to create shapes in any location of the domain. It does so during the early iterations taking
into account the data and the sensitivity mapping of the inverse problem. Once a good first approximation for
the shape is found, it continues in a completely automatic way with optimizing this shape until the data least
squares cost functional is sufficiently reduced. We compare the results of numerical experiments for this new
reconstruction algorithm with those of a straightforward (and non-optimized) implementation of the MUSIC
algorithm (for a detailed theoretical and numerical investigation of this imaging scheme see for example [1–3, 6]
and the references given there). Some conclusions of this comparison are given at the end of this paper.

2. Level Set Formulation of the Problem

For modelling TM-waves in Microwave imaging we use a scalar Helmholtz equation for u(x) describing one
component of the electric field. It is

∆u + κ(x)u = q(x) in Ω = IR2 (1)

with κ(x) = ω2µ0ε0

[
ε(x) + iσ(x)

ωε0

]
. The field u is required to satisfy the Sommerfeld radiation condition, and it

is assumed to be continuous together with its normal derivatives across interfaces. In the shape inverse problem



44 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

x (mm)

z
 (

m
m

)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x (mm)

z
 (

m
m

)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x (mm)

z
 (

m
m

)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x (mm)

z
 (

m
m

)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

plane z=0

S+S(y )

shape d+S S

(S)y

dS+S(y ) y (S) dy ( S)= +

x

y

z

level set function level set function

d

Figure 1: Left: The MUSIC estimate (10), normalized to one, of the location of one tumor in a homogeneous
medium. The exact location and the size of the 2×2 mm2 tumor is denoted by the square. The tumor is located
less deeper in the top row than in the bottom one. The frequencies used in these images are 3 GHz (left column)
and 4 GHz (right column). Right: Evolution of a shape by a level set formulation.

we assume that the parameter distribution is described by

κ(x) =

{
κi in S
κe in Ω\S (2)

where S defines the shape of the tumor. For the formal derivation of our reconstruction approach we introduce

the one-dimensional Heaviside function H(ψ) which is defined as H(ψ) =

{
1 , ψ > 0
0 , ψ ≤ 0

We call ψ a level

set representation of the shape S if

κ(ψ) = κeH(ψ) + κi(1 −H(ψ)). (3)

Using the level set representation, ψ(x) the shape S is characterized by all those points x ∈ Ω where ψ(x) ≤ 0,
and the region Ω\S is characterized by those points x ∈ Ω where ψ(x) > 0 (see Fig. 1 on the right). The
boundary of the shape S is then modeled by the zero level set ∂S = {x ∈ Ω : ψ(x) = 0 }. It is clear that the
level set representation of a given shape S is not unique. However, every continuous function ψ uniquely specifies
a corresponding shape (which we denote S[ψ]) by the above definitions. We now define the least squares data

misfit cost functional J (ψ) = 1
2

∥∥R(κ(ψ))
∥∥2

, where R(κ(ψ)) denotes the difference between measured data and
those calculated by a forward solver using the parameter distribution κ (modeled by the level set function ψ).
The goal during the shape reconstruction problem will be to find an evolution of the level set functions ψ in
artificial evolution time t which reduces and eventually minimizes this cost functional. We consider the general
evolution law

dψ

dt
= f(x, t, ψ,R, . . .) (4)

for the level set function ψ describing the shape S during the artificial evolution. Then the unknown which we
are looking for is the forcing term f(x, t, ψ,R, . . .), which might depend on a variety of parameters as indicated.
Formally differentiating (3) with respect to ψ yields dκ

dψ = (κe − κi)δ(ψ) where δ(ψ) = H ′(ψ) is the one-

dimensional Dirac delta distribution. Formally differentiating the least squares cost functional J (κ(ψ(t))) with
respect to the artifical time variable t and applying the chain rule yields

dJ
dt

= Re

∫

Ω

R′
l(κ)

∗R(κ) (κe − κi)δ(ψ) f(x, t, ψ,R, . . .) dx , (5)

where Re indicates the real part of the corresponding quantity. In (5), R′
l(κ)

∗ denotes the formal adjoint of
the linearized Residual operator R′

l(κ) and the expression R′
l(κ)

∗R(κ) coincides with the pixel-based Frechét
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Figure 2: Reconstruction of a small tumour with the level set formulation. Left: using frequency 1 GHz. Right:
using frequency 4 GHz. More details can be found in the text.

derivative of the parameter-to-data mapping of the corresponding parameter reconstruction problem [10]. Using
the fact that formally δ(ψ) > 0 in (5), we can define the search or descent direction as

f
d
(x) = − Re ((κe − κi)R′

l(κ)
∗R(κ)) for all x ∈ Ω. (6)

In contrast to more tradional level set approaches which typically use a Hamilton-Jacobi-type formulation, our
search direction f

d
(x) has the property that it can be applied even if there is no initial shape available when

starting the algorithm. Therefore, it allows for the creation of objects at any point in the domain, by lowering
a positive level set function until its values arrive at zero. This property is useful for avoiding certain types
of local minima which often occur in level set formulations which are solely based on the propagation of an
already existing shape. Numerically discretizing (4) by a straightforward finite difference time-discretization
with time-step τ > 0 and interpreting ψ(n+1) = ψ(t+ τ) and ψ(n) = ψ(t) yields the iteration rule

ψ(n+1) = ψ(n) + τf
d
(x), ψ(0) = ψ0. (7)

3. MUSIC formulation of the problem

We consider an array of N electromagnetic transducers located at positions xn, n = 1, 2, . . . , N . Two
adjacent transducers are separated by a distance λ0/2, where λ0 denotes the wavelength of the signal emmited
by the array. With this arrangement the transducers do not behave like separate entities but like an array having
an aperture a = (N − 1)λ0/2 that interrogates the medium. Within the medium there are M targets (tumors)
located at positions ym, m = 1, . . . ,M . The scattered echos by the tumors are recorded at the array. We call
the resulting data set the multistatic response matrix (MSR matrix) K = (Kij), whose entries are defined by
the scattered field detected at the ith transducer (in receive mode) when the jth transducer (in active mode)
emits an electromagnetic signal. The goal is to estimate the location ym of the tumors from the knowlegde of
the MSR matrix. The singular value decomposition of the MSR is given by

K = UΣV H , (8)

where the superscript H denotes the hermitian matrix. In (8), Σ is a diagonal matrix whose diagonal entries
σ2 are the eigenvalues of the time reversal matrix (TR matrix) T = KHK. If there are less targets than array
elements (M < N) there are at most M non zero eigenvalues indexed from 1 to M , and N −M zero eigenvalues
indexed from M + 1 to N . The column vectors of the matrix U in (8), denoted by Uk (k = 1, . . . , N), are
the eigenvectors of T = KHK normalized to one. The column vectors of V , denoted by Vk (k = 1, . . . , N),
are the complex conjugates of Uk. It can be shown that the N dimensional space of signal vectors applied to
the N element antenna array can be expresses as the direct sum S ⊕ N [6]. The signal subspace S can be
spanned by the significant eigenvectors of the TR matrix T , i. e., by Uk with k = 1, . . . ,M , while the null space
N is spanned by those eigenvectors having zero eigenvalues, i. e., by Uk with k = M + 1, . . . , N . The MUSIC
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Figure 3: Reconstruction of a small tumour with the level set formulation. Left: using frequency 1 GHz. Right:
using frequency 4 GHz. More details can be found in the text.

algorithm exploits the fact that the MSR matrix is a projection operator onto the signal subspace S which is
also spanned by the complex conjugates of the vectors

g(ym) = (G(x1,ym), G(x2,ym), . . . , G(xN ,ym))t , (9)

where m = 1, . . . ,M , the superscript t denotes the transpose, and G(r, r′) is the deterministic two-point Greens
function of the background medium. Therefore, we have that < Uk, g

∗(ym) > for k = M + 1, . . . , N . Then, we
can display the objective functional

F(ys) =
1

∑N
k=M+1 | < Uk, g∗(ys) > |2

(10)

for the search points ys in the domain. Since g∗(ys) is orthogonal to Uk, with k = M + 1, . . . , N , whenever the
search point ys equals a tumor location, (10) will exhibit a peak at those positions. We will normalize (10) to
one. We note that

N∑

k=M+1

| < Uk, g
∗(ys) > |2 = |g∗(ys) −

M∑

k=1

(Ut
k g

∗(ys))U∗
k|2 . (11)

Since in our application we will consider only one tumor (M = 1) it is more efficient to compute F(ys) =
(|g∗(ys) − (Ut

1 g
∗(ys))U∗

1|2)−1, normalized to one, instead of (10).

4. Numerical Experiments

In the numerical experiments shown here, the domain of investigation consists of (simulated) tissue of the
size 10 × 8 cm2 in which a tumour of size 2 × 2 mm2 is imbedded at different positions as shown in Figs. 2
and 3. The relative electric permittivity values are 9 in the background medium and 49 inside the tumor. For
simplicity, the conductivity value is assumed here to be a small constant of value 0.001 S/m everywhere in the
medium. 8 transducers are equidistantly positioned at the top side of the medium. They illuminate the medium
with microwaves of different frequencies (we use here 1, 3 and 4 GHz). We solve (1) with a second order finite
differences scheme and a perfectly matching layer (PML). The received numerical data have been perturbed by
5 % white Gaussian noise. Fig. 1 shows on the left the MUSIC estimate for the two target locations. In the
top row the target is located at a less deep position than in the bottom row. We have used frequencies of 3
GHz (left column) and 4 GHz (right column). Figs. 2 and 3 show the estimates of the level set based algorithm
for the two different locations of the hidden tumor. Each of these two figures is divided into two panels of 4
subfigures (the left panel shows results for frequency 1 GHz and the right one for 4 GHz). Each panel of figures
is structured in the following way. Top left: true permittivity distribution; top right: reconstructed permittivity
distribution; bottom left: final level set function viewed from the side; bottom right: horizontal cross section of
the final level set function through the location of the recovered tumor.
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5. Observations and Conclusions

We observe in our numerical experiments that the MUSIC algorithm provides a good estimate of the cross-
range for high frequencies (4 GHz) with a resolution that decreases with depth (compare the top right and
bottom right images of Fig. 1). However, range information is lost (in particular at the deep location), and
therefore it should be obtained separetely. See for example Ref. [2]. For a lower frequency (3 GHz) both, range
and cross-range resolution decrease. For frequencies lower than 3 GHz we were not able to get useful estimates
of the tumor locations with the MUSIC algorithm.

On the other hand, the level set based reconstruction scheme shows a somehow reversed behavior compared
to the MUSIC results. For lower frequencies (here 1 GHz) it shows a quite stable estimate of the approximated
tumor location, whereas for higher frequencies (here 4 GHz) the corresponding oscillations in the electromagnetic
fields tend to introduce artifacts in the reconstructions. As a consequence, the estimate using the level set
algorithm gives rise to a ghost location of the tumor in addition to its correct location. We note that the
resolution provided for the level set algorithm is much better than that given by the MUSIC algorithm. We also
want to mention here that the level set reconstruction method has also the potential of iteratively finding the
contrast values of the tumors from the given data if they are not a-priori known. Although this has not been
implemented so far in our algorithm, some related approaches can be seen in [7, 10–11]. The MUSIC algorithm
is not easily extendable to incorporate this feature.

We conclude that level set based algorithms can provide a useful and flexible strategy for the early detection
of small tumors in tissue with microwaves. In the future we plan to extend our method to the more complex
situation in which the dielectric properties of the healthy tissue and the tumor are unknown and need to be
reconstructed from the given data.
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Abstract—We consider the recovery of smooth 3D region boundaries with piecewise constant coefficients in
Optical Tomography (OT). The method is based on a parametrisation of the closed boundaries of the regions
by spherical harmonic coefficients, and a Newton type optimisation process. A boundary integral formulation
is used for the forward modelling. An advantage of the proposed method is the implicit regularisation effect
arising from the reduced dimensionality of the inverse problem. Results of a numerical experiment are shown
which demonstrate the performance of the new method in a realistic situation.

1. Introduction

In this paper, we explore a technique for the retrieval of the internal boundaries of 3D regions in fre-
quency domain Diffusive Optical Tomography (DOT), [3]. The optical parameter of interest in this application
are µa being the absorption coefficient, µ′

s being the (reduced) scattering coefficient, and their combination
D = 1

3(µa+µ′
s) being the diffusion coefficient. They are assumed to take piecewise constant values in the three

dimensional bounded domain Ω with jumps at the interior interfaces. There are several physiologically interest-
ing observations which can be derived from the knowledge of the absorption and diffusion of light in tissue. This
includes tissue oxygenation, blood volume and blood oxygenation [1, 2]. Primary applications are the detection
and classification of tumourous tissue in the breast, monitoring of the oxygenation level in infant brain tissue,
and functional brain activation studies.

Our model for light propagation in biological tissue is the diffusion equation [3]

−∇ ·D(r)∇Φ(r) + µa(r)Φ(r) +
iω

c
Φ(r) = q(r) (1)

where Φ(r) is photon density, c is the speed of light in the medium, and q(r) describes the source term. It
represents the number of photons per unit volume at the source position r. ω is the modulation frequency. The
appropriate boundary condition is of the Robin type (given by (4)). However, if we assume that the distribution

of the optical parameters inside the body Ω is arranged into L disjoint regions Ωj , so that Ω =
⋃L
j =1 Ωj , which

are separated by smooth closed interfaces Γj , and have piecewise constant optical properties {Dj , µa,j}, we may
describe the propagation of light by a set of coupled Helmholtz equations

− ∆Φj + k2
jΦj = qj in Ωj , (2)

with boundary conditions

Φj+1 = Φj , Dj+1
∂Φj+1

∂ν
= Dj

∂Φj
∂ν

on Γj , (3)

Φ1 + 2AD1
∂Φ1

∂ν
= 0 on ∂Ω . (4)

Here, A models the refractive index difference at the boundary ∂Ω. The respective (complex) ‘wavenumbers’

are k2
j (ω) =

µa,j+
iω
c

Dj
.

The described inverse problem of 3D DOT is severely ill-posed due to the diffusive behavior of the fields
in the tissue and the relatively small number of available noisy data. This typically leads to quite unstable
reconstructions, unless strong regularization is applied. One possible way of regularizing the problem is to take
advantage of prior information about the general structure of the expected parameter distribution, which often
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Figure 1: Segmented MRI data of a baby’s scalp and as voxel volume (left), (Thanks to Richard Bayford,
Middlesex University).The mapping of the surface on the sphere (middle). The parametric representation with
11 degrees of spherical harmonics (right).

is available in medical applications from alternative imaging modalities or from general anatomical knowledge.
This will be our approach in this paper, assuming that the domain of interest can be divided into basically two
different zones: a background distribution and an embedded object whose shape can be approximately described
by a given (small) number of spherical harmonics parameters.

2. Parametric Representation of Surfaces

Our main interest lies in the use of geometric prior information in order to create a sufficiently realistic
model of the different subregions of an anatomical structure. Having in mind applications in head and brain
imaging, we decided to use the head’s geometry as a test bed. We can use good resolution MRI or CT-scan
images as prototypes. Both imaging modalities use voxel maps to create an image. The voxel faces comprising
the boundary surface are mapped to the surface of a sphere by a method described in [9].

Since our application is not limited to star-shaped objects, a harmonic distribution of the extracted surface’s
net onto the sphere’s surface was chosen instead of a direct radial function. Having defined coefficients {Cml },
we can use them to create the parametric description of the surface by weighted averaging with the relevant
spherical harmonics

υ =





υx(ϑ, ϕ) =
∑$
l=0

∑l
m=−l C

m
l,xY

m
l (ϑ, ϕ),

υy(ϑ, ϕ) =
∑$
l=0

∑l
m=−l C

m
l,yY

m
l (ϑ, ϕ),

υz(ϑ, ϕ) =
∑$
l=0

∑l
m=−l C

m
l,yY

m
l (ϑ, ϕ) .

(5)

Here, $ is the maximum degree of spherical harmonics that we used for the particular representation. In
practice, to ensure that only real surfaces are represented, we define a real basis as

Ỹ ml (ϑ, ϕ) :=

{
Re[Y ml ](ϑ, ϕ), when m ≤ 0,
Im[Y ml ](ϑ, ϕ), when m > 0,

(6)

for which the orthogonal condition 〈 Ỹ ml , ¯̃Y m
′

l′ 〉 = δmm′δll′ still holds. For simplicity we introduce the notation
γj = {Cml }j , with l = 1, · · · ,$ and m = −l, · · · , l which describes the finite set of spherical harmonics
coefficients for the surface Γj up to degree $ .

3. The Forward Problem

As in conventional pixel based reconstruction we assume multiple sources ps, s = 1, . . . , S and detectors md,
d = 1, . . . ,M , located at the surface ∂Ω. During the experiment, light is emitted from one source at a time
and the photons leaving the domain are collected at all the detectors. We denote by gs,d the measurements
which corresponds to detector d and source s. The combined measurements for a source s are denoted by gs. A
boundary integral formulation is used to simplify the discretisation of the volume of the domain Ω to that of the
interfaces Γj of the disjoint regions that comprise Ω. The shapes and locations of the boundaries are described
by finite sets of shape coefficients γ = {γj}. The forward problem uses a Boundary Element Method (BEM) to
discretise the mapping from the shape coefficients {γj} and the optical parameters values {Dj , µa,j} to the data
g = M(γ)Φ on the surface ∂Ω, where M denotes the linear measurement operator which typically takes point
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evaluations of the fields Φ at few discrete points of the surface ∂Ω. The inverse problem in this setup amounts
to finding the representation {γj} and the values {Dj , µa,j} from observed or simulated measurements g.

Discretising our forward problem (2)–(4) by the so-called ‘collocation Boundary Element Method’ [4, 8] we
construct a linear matrix equation of the form

T(γ)f = q (7)

The matrix T(γ) (which depends in a nonlinear way on the shape parameters γ) takes the form of a dense
non-symmetric block matrix. The corresponding system is solved using a preconditioned GMRES solver. To
relate the BEM approach to the forward model, we introduce the linear measurement operator M. Then we
have

gs = Ks(γ,D, µa) = MT−1(γ)qs, (8)

where gs are the measured data at the discrete points md, d = 1, . . . ,M corresponding to the source qs, and
Ks(γ,D, µa) denotes the nonlinear forward operator mapping unknown shape parameters to the corresponding
measurements [3]. In the following we will omit the subindex s in the notation for simplicity.

4. The Shape Inverse Problem

Starting from a geometric configuration defined by the set of shape coefficients (γ0), we will try to search for
the set (γ∗) that minimises the distance between computed data K(γ,D, µa) and given data g. Our approach
will be a cost minimisation procedure:

find γ∗ so that Ξ(γ∗) = min
γ

‖g −K(γ,D, µa)‖2 (9)

A typical way to minimise such a cost function is a Newton-type method, [7], where we search for a minimum
for Ξ(γ) by iterations of local linearisation and Taylor expansion around the current estimate γk as

γk+1 = γk + (JTk Jk + Λ)−1JTk (g −K(γk,D, µa)). (10)

Λ is a Levenberg-Marquandt control term [5]. In our implementation, we take Λ to be the identity.
The modified Newton method (10) for the minimisation of the residual (9) produces the descent direction

in the parameter space by providing a step δγk = γk+1 − γk. In practice, moving Ξ(γ) to the full step length
δγk could lead the residual far from the actual minimum. A quadratic fit line search method is introduced in
order to avoid detours in the downhill direction and speed up the optimisation.

5. Construction of the Jacobian

One of the key elements in the implementation of the optimisation scheme (10) is the calculation of the Jaco-

bian J = ∂K(γ,D,µa)
∂γ of the forward operator K with respect to the shape coefficients γ. Since the measurement

operator M is linear, this amounts essentially with (8) to calculating ∂T(γ)−1

∂γi
in an efficient way. In our numer-

ical calculations we have implemented a semi-adjoint scheme for calculating these expressions. Assume that the

matrix T is invertible and differentiable with derivative ∂T(γ)
∂γi

. Differentiation of the identity T(γ)−1T(γ) = I

yields by the product rule
∂T(γ)−1

∂γi
= −T(γ)−1 ∂T(γ)

∂γi
T(γ)−1 (11)

Denote fs = T(γ)−1qs(γ) the solution vector for the sth source vector by qs(γ), and let ed = [ 0 0 · · · 0 1 0 · · · 0 0 ]
the standard dth unit vector where the value 1 is at dth position. Then, the measurement at the dth detector
corresponding to source s can be written as

gsd = eT
d · fs = eT

d · T(γ)−1 · qs(γ) (12)

By differentiation with respect to γi and using the identity (11) we get

∂gsd
∂γi

= eT
d · T −1(γ) · ∂ T(γ)

∂γi
· T −1(γ) · qs(γ) + eT

d · T −1(γ) · ∂qs(γ)

∂γi
(13)
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Figure 2: Recovery of inhomogeneity shape from OT measurements on the surface with known a-priori optical
parameters. (left) the target; (right) red: the initial guess, green: the reconstructed shape.
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Figure 3: Relative data error, ‖g−1(g −K(γk,D, µa))‖ on the left, and parameter space error
∑
n ‖(γtarget,n −

γk,n)‖2, on the right.

Denoting furthermore

f+
d = eT

d · T−1(γ), Qs = T−1(γ) · ∂ qs(γ)

∂γi
(14)

we finally arrive at
∂gsd
∂γi

= f+,T
d · ∂ T(γ)

∂γi
· fs + eT

d · Qs. (15)

We notice that ∂gsd

∂γi
are the actual entries of the Jacobian J. The derivative of the BEM system matrix T with

respect to the geometrical parameter γi is now done using a finite difference method

∂ T(γ)

∂γi
=

T(γ1, · · · , γi + εi, · · · , γn) − T(γ1, · · · , γi, · · · , γn)
εi

(16)

The practical choice of εi requires a trade-off between the mathematical accuracy of the derivative approximation
and the computer roundoff error consideration [7]. In our case it is chosen empirically as 10−4γi.

6. Results from 3D Simulations

In our experimental setup, a geometric model for an infant’s head (Figure 1) is created and treated as a
homogeneous domain with an embedded randomly shaped inhomogeneity, which we try to recover. The optical
parameters chosen for the homogeneous background are µa = 0.01 cm−1 and µs = 1 cm−1, and for the internal
region Ω2 we have µa = 0.05 cm−1 and µs = 2. cm−1. The inhomogeneity’s surface is described by 16 spherical
harmonic coefficients γ0 for each cartesian coordinate x, y, z. This defines a parametric surface using up to the
3rd degree spherical harmonics. A regular mesh with 48 elements and 98 nodes is mapped onto that surface to
create the discrete approximation necessary for the BEM calculation, see Figure 2.
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Using this geometric setup, we assign 20 sources and 20 detector positions at the surface of the head . The
modulation frequency on the sources in set to 100 MHz. Synthetic data are then collected at the 20 detectors
using the forward model K(γ0) with one source illuminated at a time. We split this data into real and imaginary
parts of its logarithm to get a vector g ∈ R

800. Gaussian random noise with a standard deviation of 1% of the
measured signal is added to these data. As the initial guess for the reconstruction we select a closed surface
centred at a random position. In this case, we use 9 parameters for each direction in a 2nd degree spherical
harmonics description. This choice leads to a search space of dimension 3 × 9 = 27. The solution follows the
residual minimisation technique described above. The reconstructed boundary is displayed in Figure 2. Figure 3
shows the relative data error ‖g−1(g−K(γk,D, µa))‖ versus iteration index k on the left hand side. On the right
hand side of this figure, a measure for the quality of the approximation of the shape is displayed. Due to the
larger number of coefficients γ0 used for the construction of the target than for the definition of the evolution
shape γk, we define γtarget to be the set of spherical harmonics coefficients that define the target truncated up
to the degree used for the evolution. So the residual of Figure 3 is chosen to be

∑
n ‖(γtarget,n − γk,n)‖2, with

n summing up to the degree of spherical harmonics used for the evolution shape.
As can be seen, the location and the approximate shape of the simple 3D homogeneous region can be

recovered with good accuracy from noisy data. The minimisation of the least squares functional has completed
successfully with the distance norm becoming 33 times smaller that the initial value after only 5 iterations. On
the other hand, the distance between the shape coefficients shows good convergence if we take into account that
a different degree of spherical harmonics was used for the creation of the simulated data than for the evolving
shape during the reconstruction.

7. Conclusion

In the paper we have proposed a novel reconstruction scheme for a shape based three dimensional inverse
problem in DOT. In our method, the search space for the solution of the inverse problem is defined in terms
of a spherical harmonic expansion of the unknown region surfaces which are not restricted being star-shaped.
Doing so we incorporate in our scheme an implicit regularisation, where the regularisation parameter is the
degree of spherical harmonics used for representing the surfaces. A semi-adjoint formulation of the parameter-
or shape-sensitivities has been derived. In our numerical experiments, using the semi-adjoint form, we have
demonstrated that our scheme is able to reconstruct in a stable and efficient way low-parametric approximations
of more complicated shapes from few given data.
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On the Intermittency of the Light Propagation in
Disordered Optical Materials

Y. A. Godin and S. Molchanov
University of North Carolina at Charlotte, USA

Abstract—We consider propagation of light through an ensemble of N � 1 statistically independent optical
fibers of length L whose refraction coefficient is a random function of length. We introduce the generalized
transmission coefficient |t(k, L)|p for energy k2 and study its quenched and annealed Lyapunov exponents. For
small disorder we calculate the Lyapunov exponents in asymptotic form.

1. Introduction

The idea of intermittency was originally proposed in the study of turbulent flow [1] and has become
widespread in statistical particle physics. Intermittency means random deviations from smooth and regular
behavior. To illustrate it, we consider a bundle of N , N � 1, statistically equidistributed independent optical
fibers of a fixed length L whose refractive index changes randomly along the length of the fiber. If one face of
the bundle is illuminated then, due to reflection of the light and its localization in the fibers, one might expect
that the outlet of the bundle will be uniformly dark. However, because of strong statistical fluctuations of the
transparency (that is a typical manifestation of the intermittency), the exit of the bundle will look like a dark
sky with sparse bright stars. This model was proposed by I. M. Lifshits [2] to explain high irregularity of the
light distribution after propagation through a thick layer of a disordered optical material. Propagation of light
in each fiber is described by the equation

− ψ′′ + σVj(x)ψ = k2ψ, j = 1, 2, . . . , N, (1)

where Vj(x) are homogeneous random potentials equal zero outside the fibers and constant σ characterizes
strength of the disorder.

Equation 1 has scattering solutions

ψk,j(x) =

{
eikx + rj(k) e

−ikx, x < 0,

tj(k) e
ikx, x > L,

(2)

where tj(k) and rj(k) are random complex transmission and reflection coefficients, respectively, such that

|tj(k)|2 + |rj(k)|2 = 1. We also introduce the empirical mean
1

N

N∑

j=1

|tj(k)|2 for the transmitted energy provided

the energy density of the incident wave equals one for each waveguide, and for fixed L and N → ∞

1

N

N∑

j=1

|tj(k)|2 a.s.−→ 〈|t(k, L)|2〉, (3)

where a.s. means almost surely (with probability one). Expressions |t(k, L)|p and 〈|t(k, L)|p〉 are decreasing ex-
ponentially as L→ ∞ whose logarithmic rate of decay we call the quenched and annealed (moment) transmission
Lyapunov exponents, respectively,

γTq (k, p) = lim
L→∞

ln |t(k, L)|p
L

= p lim
L→∞

ln |t(k, L)|
L

= pγT (k), (4)

µTa (k, p) = lim
L→∞

ln〈|t(k, L)|p〉
L

. (5)

Using this notation we can quantitatively characterize intermittency: after propagation through the fiber
bundle light exhibits intermittency if

|µTa (k, 2)| < |γTq (k, 2)|. (6)

The stronger inequality (6) is, the more intermittent is the distribution of energy on the exit of the fiber bundle.
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2. Analytical Tools

The study of equation 1 with representative potential V (x) is based on the phase-amplitude formalism.

Let ψ
(i)
k (x), i = 1, 2, be the fundamental set of solutions of (1) with initial values ψ

(1)
k (0) = 1, d

dxψ
(1)
k (0) = 0,

ψ
(2)
k (0) = 0, d

dxψ
(2)
k (0) = 1. The matrix

Mk([0, L]) =




ψ
(1)
k (L) kψ

(2)
k (L)

1

k

d

dx
ψ

(1)
k (L)

d

dx
ψ

(2)
k (L)


 (7)

is the propagator of (1) whose determinant equals one.
For the general solution of (1) we put

ψk(x) = rk(x) sin θk(x),
dψk(x)

dx
= krk(x) cos θk(x). (8)

Then for θk and ln rk we obtain the following system [2], [3]

dθk(x)

dx
= k − σV (x) sin2 θk

k
, (9)

d ln rk(x)

dx
=

1

2k
sin 2θk(x)V (x). (10)

In most cases of interest [2], [3], the phase θk(x) ∈ [0, π) represents either a Markov process with generator L
(white noise potential) or a component of a multidimensional Markov process (the Kronig-Penny model). To
illustrate intermittent behavior of light distribution, we use the simplest case when the potential V (x) = ḃ(x)
is the white noise (the derivative of the Brownian motion b(x)).

Equations 9–10 are understood as Itô’s stochastic differential equations with Stratonovich corrections. In
our case, the generator of the diffusion process (9) has the form [4]

(Lf)(θ) =
B2(θ)

2

d2f

dθ2
+

(
A(θ) +

(BB′)(θ)

2

)
df

dθ
, (11)

where A(θ) = k, B(θ) = −σ sin2 θ

k
. Similarly,

d(ln r(x)) =

(
α(θ(x)) +

1

2
βB(θ(x))

)
dx+ β (θ(x)) · db(x) (12)

with α = 0 and β(θ) =
σ sin 2θ

2k
. Hence,

rp(x) = e

∫ x
0
D(θ) · db(z) +

∫ x
0
C(θ) dz, (13)

where D(θ) = pβ(θ(z)) and C(θ) = p(α + 1
2βB)(θ(z)) dz. If up(x, θ) = 〈rp(x)|θ(0) = θ〉 is the expectation of

rp(x), then up(x, θ) satisfies the Feynman-Kac formula which for the white noise potential has the form

∂up
∂x

=
σ2 sin4 θ

2k2

∂2up
∂θ2

+

(
k +

σ2(1 − p) sin2 θ sin 2θ

2k2

)
∂up
∂θ

+
σ2p sin2 θ cos θ(p cos θ − sin θ)

2k2
up = L̃pup. (14)

Formula (14) allows to calculate the Lyapunov exponent for the amplitude r(L). In the quenched case we have

ln r(L)

L
=

1

L

∫ L

0

1

2
βB(θ(x)) dx+ β(θ(x)) · db(x) a.s.−→ 〈1

2
βB〉η

= − σ2

4k2

∫ π

0

η(θ) sin 2θ sin2 θ dθ = γq(k). (15)

Here η(θ)dθ is the invariant measure for the phase θ(x) which satisfies the equation

L∗η =
d2

dθ2

(
σ2 sin4 θ

2k2
η

)
− d

dθ

[(
k +

σ2 sin2 θ sin 2θ

2k2

)
η

]
= 0 (16)

that can be solved exactly.
Consider now the moment Lyapunov exponent
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µa(p) = lim
L→∞

ln〈rp(L)〉
L

. (17)

According to Perron–Frobenius theorem about positive semigroups, µa(p) equals maximum eigenvalue of the

nonsymmetric operator L̃p (14)
L̃pψ = µa(p)ψ (18)

and the corresponding eigenfunction ψ(x) is strictly positive.
The Lyapunov exponent γ(k) of the amplitude r(L) and µ(p) have the following properties:

(a) γ(k) > 0. This property leads to the localization theorem for the Hamiltonian Hψ = −ψ′′+σV (x)ψ = λψ
on the whole real axis [2], [3].

(b) For fixed k the annealed Lyapunov exponent is analytic in p and convex.

(c) µ(p) is symmetric with respect to p = −1: µ(p) = µ(−p − 2) and
dµ

dp
(0) = γ(k). In particular, µ(0) =

µ(−2) = 0 (Fig. 1).

(d) For small disorder constant σ and fixed k γ(k) =
πσ2B̂(2k)

4k2
(1+o(σ)), where B̂(2k) is the spectral density

of the potential V . For the white noise γ(k) =
σ2

8k2
(1 + o(σ)) and µa(p) ≈

1

2
p(p+ 2)σ2γ(k) as σ → 0.

 3  2  1 0 1 2 3

 µ
 a

 (p)  µ
 a

T
 (p)

Figure 1: Graphs of the annealed moment Lyapunov exponent µa(p) (solid line) and transmission Lyapunov

exponent µTa (p) (crossed line) for fixed k and small σ.

The energy transmission coefficient can be calculated through the matrix Mk([0, L]) (7) as follows

|t(k, L)|2 =
4

2 + ‖Mk([0, L])‖2
, (19)

where the norm is understood as the sum of the squares of matrix’s entries. Then ‖Mk([0, L])‖2 = [r
(1)
k (L)]2 +

[r
(2)
k (L)]2. From asymptotic behavior of the amplitudes ln r

(i)
k (L) ≈ γ(k)L, i = 1, 2, with probability one as

L→ ∞ we conclude that ln ‖Mk([0, L])‖ ≈ γ(k)L. Therefore,

ln |t(k, L)|
L

=
1

L
ln

√
4

2 + ‖Mk([0, L])‖2
→ −γ(k). (20)

Thus, the quenched transmission Lyapunov exponent is

µTq (k, p) = lim
L→∞

ln |t(k, L)|p
L

= −pγ(k) < 0. (21)

Calculation of the annealed Lyapunov exponent is more difficult. Typically rk ∼ eLγ(k). However, with expo-
nentially small probability rk(L) can be of the order e−δL, δ > 0. Then 〈rpk(L)〉 = e−pδLP{ln rk(L) < −δL},
and for very negative p the product tends to +∞ (Fig. 1). We use large deviation theory [5] to calculate
µTa (k, p). Let us take 0 ≤ β < γ and estimate P{rk(L) < eβL}. Using exponential Chebyshev inequality with
optimization over parameter p ≤ 0 we obtain
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P{rk(L) < eβL} = P{rpk(L) > epβL} ≤ min
p≤0

〈rpk(L)〉
epβL

∼ min
p≤0

e(µa(k,p)−pβ)L = eµ
∗(k,p)L, (22)

where µ∗(k, β) = max
p

(−pβ + µa(k, p)) is the Legendre transform [6] of µ(k, p) for fixed k with respect to

parameter p. It is well-known that in the Markov case it is not only estimation from above but the logarithmic

equivalence: P{rk < eβL} log∼ e−µ
∗(k,p)L. Now for p > 0

〈|t(k, L)|p〉 log∼
∫

1

e−pβL + epβL
dP{rk < eβL} = max

0≤β≤γ
e−pβL−µ

∗(k,β) =

{
eµ(k,−p)L, 0 < p ≤ 1,

eµ(k,−1)L, p > 1.
(23)

For small σ we can use parabolic approximation for µTa (k, p) that gives

γTq (k, p) = −pπB̂(2k)

4k2
σ2(1 + o(1)) (24)

and

µTa (k, p) =





p(p+ 2)
πB̂(2k)

8k2
σ2(1 + o(1)), p ≤ 1,

−πB̂(2k)

4k2
σ2(1 + o(1)), p > 1,

(25)

where B(x) = Cov(V (y)V (y+x)) is the covariance of random potential V (x), and B̂(k) =
1

2π

∫ ∞

−∞
e−ikxB(x) dx

is the corresponding energy spectrum of V (x) (Fig. 1). In particular, for p = 2

µTa (k, 2) ≈ 1

4
γTq (k, 2) < 0. (26)

This relation is the manifestation of the strong intermittency (cf. [1]). It shows that the main contribution to
the transmitted energy comes not from “typical” fibers where the logarithmic rate of energy decay is γTq (k, 2),

but rather from few rare fibers (the probability of their occurrence is e
1
4 γ

T
q (k,2)L) through which significant part

of the energy of order O(1) is transmitted. Thus, we have the I. M. Lifshits picture described in the introduction.

3. Conclusion

We have considered propagation of light through a bundle of independent optical fibers whose refractive
index is a random function of length. It is found that distribution of energy at the exit of the bundle has inter-
mittent behavior. For quantitative estimation of irregularity we introduced the generalized energy transmission
coefficient and studied its Lyapunov exponent. Essential difference in the quenched and annealed energy trans-
mission Lyapunov exponents is suggested as a manifestation of intermittency. In the case of small randomness
of the fiber refractive index it is found that the energy transmission Lyapunov exponent of a typical single fiber
is four times bigger than the average one of the bundle. Unlike the moment Lyapunov exponent µa(p) for the
amplitude which has quadratic dependence on the moment p, the transmission moment Lyapunov exponent is
constant for p ≥ 1.
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A Novel Multiband and Broadband Fractal Patch
Antenna

J. J. Huang, F. Q. Shan, and J. Z. She
Tsinghua University, China

Abstract—a novel multiband and broadband fractal patch antenna is presented in this paper. The proposed
antenna is compact, simple to design and fabricate. The impedance bandwidth of the proposed antenna could
reach 18%, which has rarely been reported for single layer and single patch antennas. Multiband characteristics
are also observed and analyzed. All results are proved by simulation and experiment.

1. Introduction
Microstrip patch antenna (MPA) has attracted wide interest due to its important characteristics, such as

light weight, low profile and low cost, mechanically robust, simple to manufacture, easy to be integrated with
RF devices, allow multi-frequency operation to be achieved, etc. However, its further use in specific systems is
limited because of its relatively narrow bandwidth. The impedance bandwidth of a typical patch antenna may
be just 1–2%. Much intensive researches have been done in recent years to develop bandwidth-enhancement
techniques: using a thick air or foam substrate results in a maximum bandwidth of less than 10%; using stacked
or co-planar parasitic patches [1] obtains a bandwidth of 10%–20%; using a gap-coupled probe feed [2] achieves
a bandwidth of 16%; more recently, the addition of a U-shaped slot [3] and the use of an L-shaped probe have
both been shown to provide bandwidth in excess of 30%. However, these techniques increase antenna volume,
complicate the design and fabrication of the antennas.

Fractal geometries have recently been introduced in the design of antennas. It has been shown that fractal
shaped antennas exhibit characteristics that are associated with the geometric properties of fractals. One
property associated with fractal geometry that is used in the design of antennas is self-similarity. A fractal
antenna can be designed to receive and transmit over a wide range of frequencies using the self- similarity
properties associated with fractal geometry structures.

In this paper, a novel multi-band and broadband fractal patch antenna is designed, measured and analyzed.
The impedance Antenna Structure bandwidth of the proposed antenna could reach 18%, which has rarely been
reported for single-layer and single-patch antennas. As the scale Ra increases, multi-band characteristics are
observed. All results are validated by simulations and experiments.

2. Antenna Structure

 

Figure 1: Geometry of the broadband and multi-band fractal microstrip antenna with a tuning stub.

Figure 1 shows the geometry of the fabricated antenna. The exact dimensions for the proposed antenna are
also given in Figure 1. The patch is printed on a microwave substrate FR4 of the thickness H = 1 mm and the
relative permittivity εr = 4.4. The antenna is fed through a 50 ohm microstrip line of the width W = 2 mm.
As the FR4 substrate is not suitable to be used at frequencies above 4 GHz, R0 should not be too small. For
the present design R0 = 40 mm. The radiation elements are composed of ten similar orthogonal bars. Both the
length and width of the orthogonal bar are magnified by the factor of Ra ∗ Ra. Four antennas with different
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Ra (1.01, 1.02, 1.03 and 1.05) are simulated, fabricated and measured. A tuning stub with the width T and the
length L is added to the feed-line of the antenna of Ra = 1.01 to get a wider bandwidth of 18%.

3. Simulated and Measured Results
The proposed antenna is simulated using Ansoft HFSS 9.2 and measured with a HP8510C network analyzer.

Figure 2 compares the simulated and measured return loss of the antenna of Ra=1.01. The measured impedance
bandwidth of the un-tuned antenna is approximately 11% (2.996 GHz–3.321 GHz) while that of the tuned
antenna is approximately 18% (3.03 GHz–3.65 GHz). In addition, the antenna has a resonant frequency around
0.9 GHz, which proves the electrically small characteristics of the antenna. Good agreement can be seen between
the simulated and measured results.

(a) Return loss of the un-tuned antenna (Ra = 1.01).

 

(b) Measured return loss of the proposed antenna
(Ra = 1.01, S = 3mm, T = 2.5 mm, L = 4mm).

Figure 2: Return loss of tuned and untuned antenna.

 

(a) f1=2.92 GHz

 

(b) f2=3.02 GHz

 

(c) f3=3.12 GHz

Figure 3: Surface current distribution at f1, f2 and f3.

From Figure 2(a), one can see that three frequencies f1, f2 and f3 which are close to each other result
in a wide bandwidth. Figure 3 shows the simulated surface current density of the three frequencies. When
working frequency increases, the area surface current mainly distributed on moves from outer bars to inner
bars. Because the dimension of the bars vary slowly by the factor of Ra ∗ Ra = 1.02, the antenna has several
resonant frequencies close enough to each other to form a wide bandwidth. One can see that f1, f2 and f3
increase by the factor of 1.03, which agrees with the geometry of the structure.

Four antennas of Ra = 1.01, 1.02, 1.03 and 1.05 are fabricated and measured to study the influence of the
parameter Ra on the antenna’s characteristics. Figure 4 shows each return loss of the antennas. Figure 4 also
shows that when Ra increases, the antenna change from a broadband antenna (Ra = 1.01 and 1.02) into a
multi-band antenna (Ra = 1.03 and 1.05). As Ra becomes larger, the dimensions of the bars and the working
region vary faster, the resonant frequencies is not close enough to each other to form a wide bandwidth.

The radiation characteristics are also studied. Typical results of the tuned antenna at 3.30 GHz are shown
in Figure 5.
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Figure 4: Return loss of four antennas with different Ra.

  

Figure 5: Radiation pattern at 3.3 GHz of the tuned antenna.

4. Conclusion
A novel fractal microstrip antenna with multi-band and broadband characteristics has been successfully

demonstrated. The obtained impedance bandwidth of the antenna (Ra = 1.01) can be 18% around 3.3 GHz. As
Ra increases, Multi-band characteristics of the proposed antennas are also observed. The antenna is compact,
simple to design and easy to fabricate.
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Improvement of Reflectarray Performances at Millimeter
Waves by Reduction of the Cell Size

J. Lanteri, C. Migliaccio, J. Y. Dauvignac, and C. Pichot
Université de Nice Sophia-antipolis, France

Abstract—In this paper we discuss the advantages and limitations of reducing the cell size of reflectarrays
elements. Reflectarrays have demonstrated their utility at mm-Wave because of their compactness, flexibility
and quasi-optical feed that reduces losses. Several applications have been covered such as the automotive cruise
control including beam scanning. Most of them use λ/2 cell sizes. We have investigated and compared perfor-
mances of reflectarrays with 15 mm and 50 mm diameters using λ/2 and λ/4 cell sizes at 94 GHz. Measurements
on reduced cell size reflectarrays have demonstrated a loss of 1 dB over 60◦ beam scanning whereas it is of 3 dB
for the λ/2 structure in the case of the smaller reflector. Nevertheless, this effect is not demonstrated on the
largest one because of the phase compensation range that is limited by the variation in the patch dimensions.
The maximum corrected phase values are of 320◦ and 240◦ for λ/2 and λ/4 cells respectively. Furthermore a
program based on the ray tracing theory has been developed in order to evaluate the influence of the cell size
on the array performances.

1. Introduction

Reflectarrays consist of printed elements, typically patches or dipoles representing the elementary cell of
the array. They are designed to scatter the incident field, coming from a feeding antenna, with the proper
phase required to form a planar phase surface. They have been developed in the millimeter-wave domain
since over 10 years [1] in regards to their low profile and low cost. Most of the classical array characteristics
have been studied in order to obtain beam scanning [2], or high aperture efficiency both for linear or circular
polarization [3]. Efforts have been made for finding appropriated patch shapes for increasing the variation of
the reflected phase, the bandwidth or the fabrication simplicity [4, 5].

In this paper, we investigate the influence of the cell size on the gain and beam scanning performances. The
elementary cell consists in a rectangular patch printed on a thin substrate. As the patch shape is not the aim of
this work, it has been chosen in order to be simple to design regarding to the cell size variation. The first section
describes the measured performances of two small reflectarrays with cell sizes of λ/2 and λ/4 respectively, at the
operating frequency of 94 GHz. In the second section, a program based on the ray tracing theory is presented
and tested on different structures in order to demonstrate the effects of the cell size reduction. Finally limitations
are discussed.

2. Influence of the Cell Reduction on a 15 mm Diameter Reflectarray

Two reflectarrays of 15 mm diameter were designed and measured at 94 GHz. They are chosen to be small
(about 5λ) in order to avoid the effect of the phase compensation limitation. Indeed, when frequency increases,
it becomes difficult to cover 360◦ of reflection phase with a square patch since its dimensions become too small
to be fabricated by classical printed circuit techniques. One solution could be to use sophisticated lithography,
like the one based on glass mask. It drastically increases the fabrication cost, thus decreases the competitivity
of reflectarrays toward other high gain antenna systems such as dielectric lenses or parabolic reflectors.

The primary source is a standard WR-10 open waveguide that radiates a power pattern that can be ap-
proximated by cos5(θ). Considering the spillover and taper efficiencies relations given in [1], a diameter to focal
length ratio of 2 provides spillover and taper efficiencies of 87 and 89% respectively. Thus focal length is chosen
to be of 7.5 mm. Figure 1(a) and (b) show the upper side of the two reflectarrays. Patch size is optimised
by numerical simulations provided by the commercial three-dimensional finite element method solver (HFSS)
using the periodic structure module. The substrate is Duroid of dielectric constant 2.2 and 0.381 mm thickness.
Phase range compensations are of 320◦ for the λ/2 cell and 240◦ for the λ/4 one. Nevertheless, due to the small
size of the reflector, the number of rings with missing phase values is only of one. Thus their effect is decreased.

Reflectarrays are measured at 94 GHz for a scan angle up to 60◦ as described in Figure 2. Results are
reported in Figure 3(a) and 3(b). A reflectarray with λ/2 cells performs a loss of gain of 3 dB while scan angle
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moves. The λ/4 cells exhibit only 1 dB loss. These results are expected due to the increase of phase accuracy.
Additionally, an increase of 2.3 dB is observed on the gain when the cell size is λ/4.

(a) (b)

Figure 1: (a)(λ/2) cell, (b)(λ/4) cell.

Figure 2: Measurement setup.

(a) (b)

Figure 3: (a)D = 1(λ/2) cell size, (b)(λ/4) cell size.

3. Analysis Program

A program based on ray tracing theory was developed in order to investigate the influence on the cell size
reduction. It was implemented using Scilab [6]. The surface of the reflectarray is divided into square cells of λ/2
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or λ/4 size depending on the structure under study. Values of the desired compensation phases are calculated
taking into account the directions of incident spherical and reflected plane wave, including offset feeds and scan
angles as described in [1]. A complex amplitude coefficient is affected to each cell. Its module is the value
of the power pattern described before. The phase is the difference between the formerly calculated one and
the compensated one computed by simulations. If the 360◦ phase could be covered by the square patch, this
difference should be of zero in the desired maximum radiation direction. A matrix of complex coefficient is
generated. If we denote θ the angle with respect to the z axis described in Figure 2, power density along θ
is calculated by making the sum of all the coefficients of the complex matrix for each angle θ. The advantage
of using a software as scilab is the possibility to create 3D matrix whose two first dimensions represent the
physically 2D reflector and the third one represents the scan angle θ. As a consequence, the time of calculation
is reduced. Radiated power is calculated over the power density integration assuming that the radiation pattern
is the same over the ϕ angle. This does not take into account the real primary source radiation pattern such as
the square shape of the reflectarray. Radiation pattern is finally plotted after the normalization of the power
density by the radiated power. Figure 4 shows the results for the 15 mm reflector. It is obvious that the effect
on the beam scanning improvement is the same as the measured one. Gain values are much higher in the
simulation. It can be explained by several factors: the simulation does not take into account the primary source
blockage, neither the coupling between primary the source and the reflectarray which are both critical in regard
to the very short focal length.

Figure 4: Simulated radiation pattern of the 15 mm
reflectarray with different cell sizes.

Figure 5: Simulated radiation pattern of Fresnel re-
flectors with D = 100 mm.

The same program is tested on reflector using Fresnel zones phase compensation, whose formula is reminded
bellow:

Rn =

√(
2n

λ

P

)
+
(
n
λ

P

)2

where Rn is the radius of the Fresnel zone referred to the reflector center, λ the free space wavelength, f the
focal length and P the Fresnel correction factor (for example P = 2 for a half-wavelength Fresnel reflector). In
this case, the effect of the cell size reduction can be seen with different approaches.

First, we consider the effect on size reduction with the same Fresnel correction factor. The improvement of
maximal gain is of about 1 dB for a 100 mm diameter half-wavelength reflector.

Second, the space dedicated to each Fresnel zone, defined by (Rn+1 − Rn) decreases when n increases. As
a consequence, high values of P cannot be obtained because the cell size becomes larger than the space for the
zone. It can be overcome by using a reduced cell size. The same reflector as described above can be simulated
with P = 4 if λ/4 cell size is used whereas cell size of λ/2 limits P to 2. Results are plotted in Figure 5. The gain
increases of 4.4 dB which corresponds to a 50% improvement due to the passage from half- to quarter-wavelength
Fresnel reflector enhanced by the cell reduction.

4. Limitations

Larger reflectors of 50 mm diameter have been made and tested without performing the formerly described
ameliorations. Considering the limit values of the corrected angles, which are of 320◦ for the λ/2 cell and 240◦
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for the λ/4 one, the program has been modified including this limitation. The number of uncorrected rings
increases in comparison to the smaller reflector as shown in Figure 6. Results are plotted in Figure 7. It is
obvious that the formerly improvements disappear when the phase compensation range of 360◦ is not covered.

Figure 6: 50 mm diameter reflectors with uncorrected zones.

Figure 7: Simulated radiation pattern showing the limitation of cell sizes reduction.

5. Conclusion

We have shown that the cell reduction of reflectarrays provide a gain enhancement and better beam scanning
for classical reflectarrays. In case of Fresnel reflectors, the increase of the gain is more important since the cell
size reduction enables to increase the Fresnel correction factor P . Nevertheless, making reflectors with cell of
(λ/4) encounters the difficulty to obtain a phase reflection compensation of 360◦, specially at mm-Wave. In this
case, performances are strongly decreased. New patch shapes have to be investigated in order to overcome this
problem.
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Array Patterns Synthesizing Using Genetic Algorithm

J. Jin, H. L. Wang, W. M. Zhu, and Y. Z. Liu
Nanjing Institute of Communications Engineering, China

Abstract—A planar array antenna with arbitrary geometry synthesis technique based on genetic algorithm
is discussed. This approach avoids coding/decoding and directly works with complex numbers to simplify
computing programming and to speed up computation. This approach uses two crossover operators that can
overcome premature convergence and the dependence of convergence on initial population. Simulation results
show that this method is capable of synthesizing arrays whose elements are located on irregular grids, and
generates quite complex shapes and can realize good sidelobe suppression at the same time.

1. Introduction

In the interests of efficiency, the shape of a footprint pattern radiated by a satellite-borne array antenna
should conform precisely to the shape of the region on Earth for which coverage is required. Alternatively, in
order to achieve “isoflux” illumination [1] on the earth surface through multi-beams, the size and the shape of
the footprint should be precisely controlled.

Previous works on the synthesis of arrays for arbitrary footprint shapes include Chebyshev method, modified
Woodward–Lawson method and a series of methods based on sampling a circular Taylor distribution [2–4]. But
these methods have the drawback that they require the arrays to lie on a rectangular lattice or circular lattice.
Some methods require the aperture of the array to be regular shape.

Genetic algorithm (GA) has a high ability in global optimization. It is an increasingly popular optimization
method being applied to many fields of endeavor, including electromagnetic optimization problems.

Use genetic algorithm to synthesize array pattern has no limitation on lattice shapes and aperture shapes.
It can synthesize planar array with arbitrary geometry and generating arbitrary patterns. Conventional GAs
[5, 6] with binary coding and binary genetic operation are inefficient and inconvenient for array pattern synthesis
problems to optimize complex numbers. Unlike conventional GAs, this approach avoids coding/decoding and
directly deals with complex excitation vectors.

Compared with other numerical methods [7, 8], this approach has unique features to treat complicated
problems (complicated arrays and complicated pattern shapes).

2. Problem Formulation

The far-field radiation pattern F (θ, ϕ) at a far-field angle (θ, ϕ) from array broadside is given by

F (θ, ϕ) = EF (θ) ·AF (θ, ϕ) (1)

where

EF (θ) = cos1.5(θ) (2)

is the element radiation pattern; AF (θ, ϕ) is the array factor. For an arbitrary array, the Array Factor (AF )
can be expressed by the general function:

AF (θ, ϕ) = Is(θ, ϕ) (3)

I = [I1, I2, ..., IN ], In ∈ Cn,
s = [ejkr1â(θ,ϕ), ejkr2â(θ,ϕ), ..., ejkrN â(θ,ϕ)]T ,
rn = âxxn + âyyn + âzzn,
â(θ, ϕ) = âx sin θ cosϕ+ ây sin θ sinϕ+ âz cos θ

where, I is the excitation vector, s is the steering vector, Cn is the set or subset of all complex numbers, rn is
the element location vectors, â(θ, ϕ) is unit vector of distance ray of spheric coordinate, and θ and ϕ are the
elevation and azimuth angles respectively. GA is applied to find proper excitation coefficient vector I to achieve
desired pattern shape, sidelobe suppression and steering.
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3. The Genetic Algorithm

The GA process could be simplified as following: 1) Initialize a random pool of Individuals. 2) Evaluate each
Individual. 3) Choose couples (Mating). 4) Breed them together (Crossover). 5) Evaluate each Individual. 6)
Selection. 7) Mutation. 8) If the pool has converged, or a number of pre-determined cycles have been completed,
finish the cycle. If not, return to step #3.
A. Construction of Chromosomes

In this approach, chromosomes are represented directly by complex excitation vectors I. N elements complex
excitation coefficients are genes of the chromosome.
B. Fitness Function

Evaluation plays a very important role in the GA process. Fitness function maps all the properties of an
individual to a floating-point number, essentially, giving it a rank and a place amongst the other individuals in
the pool. Creating the fitness function is one of the most difficult works in the creation of a GA solution.

In this approach, we desired that the magnitude |F (θ, ϕ)| of the far-field pattern remain bounded between
some specified limits as ∣∣Fmin limit(θ, ϕ)

∣∣ ≤ |F (θ, ϕ)| ≤
∣∣Fmax limit(θ, ϕ)

∣∣ (4)

A cost measure to be minimized is the sum of the squares of the excess far field magnitude outside the specified
bounds. This can be written as

f1 = c1

J∑

j=1

K∑

k=1

max(|F (θj , ϕk)| −
∣∣Fmax limit(θj , ϕk)

∣∣ , 0)2

+c2

J∑

j=1

K∑

k=1

max(
∣∣Fmin limit(θj , ϕk)

∣∣− |F (θj , ϕk)| , 0)2 (5)

where, |F (θ, ϕ)| are the far field pattern values from (1) evaluated at J ×K far-field angles (θj , ϕk). θj and ϕk
are spaced in some rules. This will be decided by the beam-pointing angle. c1, c2 are weights.

If the dynamic range ratio |Imax/Imin| is too large, the excitation will not easy to realize. We can limit it
using the following fitness function:

f = f1 + c3(|Imax/Imin|) (6)

where, c3 is a weight parameter. Lower values of f indicate better fitness.
C. Mating Scheme

Yeo [9] discussed three mating schemes and thought if one or more near-solutions were added to an initial
population of random individuals, EMS scheme usually yields the best chromosome among these three methods.
However, this scheme always results in prematurity. In this approach, we make use of a stochastic mating scheme.
All individuals have chance to mate and no one can mate two times.
D. Crossover

The crossover operator is the most important operator and it is the operator that combines two individuals
to create (a) new individual(s), which will, it is hoped, become better than his/their parents. This might and
can work because the selection operator chooses the better individuals.

Real coded GAs usually use interpolate cross operator to breed offspring. Its operating process can be
described as follows,

I1 and I2 are parents. The chromosomes of them have N genes. The offspring of them can be written as

I1′

i = cI1
i + (1 − c)I2

i (7)

I2′

i = cI2
i + (1 − c)I1

i (8)

where, c∈[0, 1], i=1, 2, . . . , N.
Extrapolate cross operator is another real number cross operator. The offspring genes of I1 and I2 can be

written as

I1′

i = I1
i − (I2

i − I1
i )c (9)

I2′

i = I2
i + (I2

i − I1
i )c (10)
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The two real number operator can work with complex number as well. Interpolate cross operator has
advantages of fast convergence. Extrapolate cross operator expand the search space. Combining two operators
can overcome premature convergence and the dependence of convergence on initial population.

The range of genes is |Ii| ≤ 1. If genes generated by crossover are out of the bound, then

Ii = Ii/ |Ii| (i = 1, 2, . . . , N) (11)

E. Selection
The selection operator distinguishes the better individuals from the worse individuals using their fitness. In

this approach, both the child and parent populations are ranked together in ascending order. Then, based on
the principle of survival of the fittest, those producing superior output survive, while those producing inferior
output die off. Please note that the competitors for survival selection include both parents and their children so
that the members of next generation may include members of the previous generation. This guarantees that the
new generation performs no worse than older ones. In other words, the cost f versus generation curve decreases
monotonically. This selection scheme includes optimum maintaining strategy.
F. Mutation

The mutation operator plays a secondary role with respect to crossover operators. It can maintain the
diversity of the population. Mutation is a minor change to the genes of an individual, in a hope to find
an even better solution, or rather, to expand the search space to a point where normal breeding might not
reach. Mutation effectively slows down convergence, but might yield better and closer-to-best individuals. If an
individual is “pushed” to a different peak area, a higher one, it might “pull” other individuals with the crossover
process to the new peak, thus climbing a better and higher peak, and achieving a better solution. Both the
probability and the range of mutation can affect convergence [10].

Nevertheless, mutation is required to prevent an irrecoverable loss of potentially useful information that
occasionally reproduction and crossover can cause.

The fitness of mutated individual usually has low value. If put mutation in front of selection. The mutated
individuals would die off because of the child and parent competition. In this approach mutation is put after
selection.

Assuming Pm is the mutation probability, the mutation is as follows: P real numbers are generated in [0, 1]
randomly. Each number corresponds to an individual of the population. Set the number corresponding to
current optimum to “1” to avoid being mutated. An individual whose corresponding number less than Pm will
be muted use (12).

I
′

= I + d (12)

where, d is a vector dimension same as I.
G. Convergence Observation

For fast convergence, the initial population can include approximate excitations by other techniques (such
as Fourier expansion method [11], etc.) We care about not only the shape of main beam, but also the sidelobe
level. In order to obtain the required sidelobe level rapidly, we put the optimization result of adjacent beams
into initial population which can reduce optimization time largely.

In this approach, two crossover operators are used to generate offspring. Adjusting proportions act on
population of two operators, i.e., 40% population use interpolate cross operator to generate offspring and 60%
population use extrapolate cross operator to generate offspring, can makes the algorithm has a good performance.

4. Simulation Results

This subsection presents a shaping example based on a Low Earth Orbit (LEO) satellite-born antenna array.
As shown in Figure 1, a 61 elements antenna array with hexagonal (or equilateral triangular) grid is used.

In order to achieve “isoflux” illumination on the earth surface, a circularly symmetric cell layout was decided
as shown in Figure 2 after calculation. Wedge shaped cells are arranged in rings about nadir. There are 23
beams requiring shape, and 30 dB sidelobe suppression is needed.

Figure 3 is the pattern of beam 1. Gain in main beam edge is higher than that in beam center. This can
compensate the path loss due to the slant range differences from satellite to earth. Figures 4, 5 and 6 are the
patterns of beam 2, 3 and 8. It is observed that the main lobe satisfy the requirement, and side lobe level
suppress reach 30 dB which is outstanding the results of [7, 8]. If the dynamic range ratio |Imax/Imin| is too
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Figure 1: 61 elements antenna array.
 

Figure 2: Cells arranged in rings, U=θcosϕ, V=θsinϕ.

 
Figure 3: Pattern of beam 1, u=sinθcosϕ, v=sinθsinϕ.

 
Figure 4: Pattern of beam 2.

large, the excitation will not easy to realize. For beam 1 shown as Figure 2, |Imax/Imin| = 20. For beams in
ring 2 and a sidelobe level of –30dB , an |Imax/Imin| < 40 can be reached. For beams in ring 3 and a side lobe
level of −30 dB, an |Imax/Imin| < 50 can be reached. These excitations are easily to realize.

 
Figure 5: Pattern of beam 3.

 
Figure 6: Pattern of beam 8.

If Woodward-Lawson method was used, it requires the elements to lie on a rectangular lattice and require
the aperture of the array to be rectangle. And the |Imax/Imin| of the solution will reach 800 or even higher [3].

The −3 dB contour of each beam after being shaped is shown in Figure 7. Notice the shape of beams, for
example beams in ring 2, for perfection beamforming the footprints shape should wedge-shaped. Of course, it
is achievable only by an infinitely large array. Due to the limitation of aperture size and restriction of elements
number, the footprint shapes are kidney-shaped. However, it can satisfy the requirements of isoflux illumination.
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Figure 8 shows the gain of beams along U = 0◦ of the satellite coverage. Path loss due to the slant range
differences from satellite to earth is considered. From the slice figure we can see that gain is higher than 13 dBi,
and ripples lower than 3 dB.

 
Figure 7: −3 dB contour of each beam.

 
Figure 8: Slice figure of U = 0◦.

5. Conclusion

A complex coded GA based method is discussed for the synthesis of planar arrays with arbitrary geometry
that generate footprints of arbitrary shape. This approach is capable of synthesizing quite complex shapes of
3D patterns for main lobe and can realize good sidelobe suppression at the same time. The method has been
proved to be useful for the synthesis of large array antennas whose elements are located on irregular grids.
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Space-filling Patch Antennas with CPW Feed

M. R. Haji-Hashemi, H. Mir-Mohammad Sadeghi, and V. M. Moghtadai
Isfahan University of Technology, Iran

Abstract—In this paper, the performances of some space-filling monopole antennas with coplanar waveguide
have been investigated. It may be contended that the bends and corners of these geometries would add to the
radiation efficiency of the antenna, thereby improving its gain. Advantage of these configurations is that they
lead to multiband conformal antennas. A new version of Gosper curve patch antenna is introduced and its
performance has been compared to conventional Gosper curve patch antenna.

1. Introduction

Fractal shaped antennas exhibit some interesting features that stem from their inherent geometrical prop-
erties. The self-similarity of certain fractal structures results in a multiband behavior of corresponding fractal
antennas and frequency-selective surfaces (FSS) [1, 2].

On the other hand, the high convoluted shape and space-filling properties of certain fractals allow reducing
the volume occupied by a resonant element. Theses properties are useful in designing multiband antennas and
FSS, and reducing the size of certain antennas.

Figure 1: 4th order of Hilbert patch antenna with
CPW monopole feed.

Figure 2: Lozenge shape patch antenna with CPW
monopole feed.

Figure 3: CPW-fed Gosper curve
patch antenna.

Figure 4: Another version of
Gosper curve patch antenna.

Figure 5: Circular disc CPW-fed
monopole antenna.

Microstrip patch Antennas are very popular in many fields as they are low-profile, low weight, robust and
cheap. In last years new techniques employing fractal geometries are studied and developed. One of them is the
fractalizing of antenna’s boundary where new qualitative effect as the higher localized modes appear, that result
in directive radiation patterns [3]. Another technique that has been studied in this paper is using space-filling
curves as patch radiator.
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Space-filling curves map the multi-dimensional space into the one-dimensional space. A space-filling curve
acts like a thread that passes through every cell element (or pixel) in the n-dimensional space so that every
cell is visited only once. Therefore, the space-filling curve does not self-intersect. Thus, a space-filling curve
imposes a linear order of the cells in the n-dimensional space. These geometries have the following properties:
Self-Avoidance (as the line segments do not intersect each other), Simplicity (since the curve can be drawn with
a single stroke of a pen) and self-similarity [4].

Figure 6: Return loss vs. frequency of antenna con-
figuration in Fig. 1.

Figure 7: Return loss vs. frequency of antenna con-
figuration in Fig. 2.

Figure 8: Return loss vs. frequency of antenna con-
figuration in Fig. 3.

Figure 9: Return loss vs. frequency of antenna con-
figuration in Fig. 4.

Figure 10: Return loss vs. frequency of antenna configuration in Fig. 5.

There are many types of space-filling curves (SFCs), e. g., the Peano, Hilbert, and Gosper curves, to name
a few. They differ from each other in the way they visit and cover the points in space.
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Figure 11: Maximum total field gain and total gain normal to antenna plane vs. frequency of Hilbert curve and
lozenge shape antennas (left to right).

Figure 12: Maximum total field gain and total gain normal to antenna plane vs. frequency of antenna configu-
ration in Fig. 3 and Fig. 4 (left to right).

In other hand, coplanar waveguide feed is a well-known technique for increasing the bandwidth of patch
antennas [5].

Figure 13: Maximum total field gain and total gain normal to antenna plane vs. frequency of circular monopole
antenna (Fig. 5).

In this paper, this technique has been imposed on some types of fractal space-filling monopole antennas such
as Hilbert curve antenna and Gosper curve antenna.
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Figure 14: Elevation pattern gain display of Hilbert curve CPW-fed monopole antenna and lozenge shape
CPW-fed monopole antenna in 9 GHZ.

Figure 15: Elevation pattern gain display of two versions of Gosper curve CPW-fed monopole antenna (Fig. 3
and Fig. 4) in 9 GHZ (left to right).

2. Proposed Antenna Configurations

Schematic of studied structures are shown in Figs. 1–5. These configurations are in a single layer metallic
structure. Hilbert curve and Gosper curve radiators are fed through coplanar wave guide monopole feed. For
comparison the Euclidean counterparts of these structures have been studied.

Each section of Ground plane has the dimension of 6 cm×4 cm, the width of microstrip feed in every config-
uration is 1.45 mm while the gap between the strip and coplanar ground plane is 0.1 mm.

The overall height of each space filling curve is assumed to be about 10 cm.

3. Simulation Results

Simulation of the above structures has been done using IE3D MOM-based code. In Figs. 6–10, Return losses
versus frequency of these antennas are shown.

Simulation results show that space-filling patch antennas are conformal multiband antennas.
Making a direct relationship between antenna characteristics and geometrical properties of inscribed geome-

tries is not easy. However we can say the results of return loss versus frequency of theses structures show that
in same overall dimensions, the space-filling CPW-fed monopole antennas have better performance in input



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 73

Figure 16: Elevation pattern gain display of circular disc CPW-fed monopole antenna (Fig. 5) in 9 GHz.

matching characteristics, number of resonant frequencies and bandwidth than their Euclidian counterparts. For
instance compare the results of return loss versus frequency of Hilbert curve CPW-fed monopole antenna and
lozenge shape CPW-fed monopole antenna (Fig. 6 and Fig. 7) and the results of two versions of Gosper curve
CPW-fed monopole antenna and circular disc CPW-fed monopole antenna (Fig. 8 and Fig. 9 with Fig. 10).

Main resonant frequencies of Hilbert curve CPW-fed monopole antenna and lozenge shape CPW-fed monopole
antenna are very close together. This can be seen about two version of Gosper curve CPW-fed monopole antenna
and circular disc CPW-fed monopole antenna.

The results of maximum total field gain vs. frequency and total gain normal to antenna plane (Z-direction)
vs. frequency of these structures are shown in Figs. 11–13. From these results we can see that the space-filling
CPW-fed monopole antennas have better gains in the direction perpendicular to antenna plane.

In Figs. 14–16, elevation pattern gain displays of these structures in 9 GHZ are shown. In this frequency
all configurations have relatively good input matching characteristics. According to the fact that there is no
ground plane except CPW ground plane, elevation pattern display in each structure is bilateral.
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The Power Line Transmission Characteristics for an
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Abstract—In this paper, we measured what influence the sinusoidal transmission characteristics of the electric
power line with various forms gave to the transmission characteristic of OFDM (Orthogonal Frequency Division
Multiplexing) signal through PLC (power line communication system) modem. The electric power line trans-
mission line with various forms in a real environment is classified into two basic elements, which are an outlet
type branch and a switch type branch. Next, PHY rate (Physical rate) is measured for each basic element
connected with the PLC modem. At this time, the transmission characteristics of the electric power line are
simulated from measured data. OFDM sending and receiving systems are composed on the computer, and the
PHY rate is simulated. By comparing with measured and calculated values, it is revealed that PHY rate of
PLC modem is most affected in the case of the power line transmission characteristics having broad band and
high level attenuation and is not affected in the case of that having narrow band group delay variation.

1. Introduction

Recently, Internet users are increasing by the rapid spread of the Internet and the Internet user needs
the broadband that are high-rates and inexpensive communication service. While the access networks such
as FTTH (Fiber To The Home) and xDSL (Digital Subscriber Line) spread, PLC attracts attention as the
Internet connectivity from each room, and a home network, which controls household-electric-appliances. In
PLC, since a communication network can be realized by using the existing power line, it is not necessary to
install a transmission cable in addition, and a convenience outlet serves as a connection port of network at a
general home, and office and factory. Moreover, since network connection and an electric power supply can be
made together, we can use PLC like Wireless LAN [1–3].

However, power lines differ from telephone lines in that they are bus-type wiring and a great variety of device
are connected to them. Thus, the impedance, transmission line loss and noise level of power line fluctuate
greatly according to how the devices are connected and their operating conditions. To realize stable high-
speed communication even under such circumstances requires the use of technology that is employed in wireless
communication, such as OFDM [4, 5]. In OFDM method, it is excellent in the efficiency of the frequency use,
because a lot of sub-careers are orthogonal in the frequency domain. Therefore, a lot of sub-careers can be used,
and it is possible to follow to the transmission line characteristic flexibly. Moreover, in the OFDM method,
when the electromagnetic wave from PLC influences other existing systems, it is possible not to use the career
frequency of this band or it can be set to lower the sending level. From such a feature, the adoption of the
OFDM method is a mainstream in the PLC modem [4–6].

In such a background, a real environmental test with PLC modem using the OFDM method is progressed.
And, there is a report concerning the electromagnetic compatibility technology [6–9]. There are various exami-
nations for the electromagnetic radiation characteristic and quantification method [9–12]. On the contrary, as
one of the concerns for which the user uses PLC, the communication should be high-quality and be seamless in
wiring in the home. If maximum 200 Mbps is achieved in the PLC modem under development without trouble,
it is possible to adjust to a large data transfer of the personal computer peripherals in recent years. When
paying attention to such a viewpoint, there are a lot of uncertain parts what influence the characteristic of a
complex electric power line gives to the OFDM signal. In the past, the influence of the transmission character-
istic of the electric power line has been verified by real environmental experiment. Therefore, the example of
the quantitative examination is few.

In this paper, in such a background, we first measured the transmission characteristic of the electric power line
with branch [11]. The electric power line transmission line with various forms in a real environment is classified
into two basic elements, which are an outlet type branch and a switch type branch. Next, PHY rate (Physical
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rate) is measured for each basic element connected with the PLC modem. OFDM sending and receiving systems
are composed on the computer, and the PHY rate is simulated. By comparing with measured and calculated
values, we try to make clear what influence the sinusoidal transmission characteristics of the electric power line
with branch gave to the transmission characteristic of OFDM (Orthogonal Frequency Division Multiplexing)
signal through PLC modem.

2. Measurement of Electric Power Line Transmission Characteristic to Sinusoidal Wave
Signal

2.1. Basic Elements of Power Line Transmission Model
When measuring the transmission characteristic of the power line with PLC modem, it is necessary to use

shield room. However, since we have only G-TEM (Giga-hertz Transverse Electro-Magnetic) Cell, we composed
the concise electric power line transmission line model as shown in Figure 1. The VVF (Vinyl insulated and
Vinyl sheathed Flat type) cable with a conductor diameter of 1.6 mm is used for the power line. The electric
power line transmission line with various forms in a real environment is classified into basic elements as shown
in Figure 1, which are important elements influencing the power line transmission characteristics.

(a) No branch. (b) Outlet type branch. (c) Switch type branch.

Figure 1: Power line transmission model.

(a) No branch: The total length is 110 cm.

(b) An outlet type branch: The main cable length is 110 cm. The branch cable with length of 10 cm or 160 cm
is branched at the middle point of the main cable (55 cm). The terminal form of the branch cable is open
or short.

(c) A switch type branch that is used in a power line for lamp: Cable configuration is almost the same as the
outlet type branch, but the branch cable is connected only one line of main cable. Terminal condition of
branch cable is on or off.

2.2. Measurement of Transmission Loss Characteristics
Figure 2 shows the measurement system of the transmission loss characteristic for the basic element as shown

in Figure 1 by using a network analyzer. The electric power line composing the basic element is transmission
line with balance type, but a coaxial cable from the network analyzer is transmission line with unbalance
type. Therefore, we used a balun at the connected point of the electric power line and the coaxial cable. The

Figure 2: Measurement system of transmission loss characteristic.
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measurement frequency is from 1 MHz to 100 MHz corresponding to the assurance frequency of balun.
Figures 3 and 4 show the measurement results of transmission loss characteristics for the basic element. The

(a) Terminating condition: “open”. (b) Terminating condition: “short”.

Figure 3: Transmission loss characteristics of power line (Outlet type branch).

(a) Switching condition: “off”. (b) Switching condition: “on”.

Figure 4: Transmission loss characteristics of power line (Switch type branch).

insertion loss of balun is subtracted from the measurement value of the transmission loss by using normalizing
function of the network analyzer. First, the characteristic for “outlet type branch-open” in Figure 3(a) has
approached the characteristic for “no branch” by decreasing in branch length. On the other hand, sharp
attenuation like the resonance appeared on the low frequency band by increasing in branch length. Especially,
the transmission loss reaches up to 20 dB around the frequency of 24 MHz when the branch length is 160 cm. This
band is used with the PLC modem. Next, the transmission loss for “outlet type branch-short” in Figure 3(b)
becomes very large on the low frequency band according to decreasing in branch length. The transmission loss
at the branch length of 10 cm became 25 dB at the frequency of 5 MHz, but the transmission loss is improved as
the frequency become higher. In addition, the transmission loss at the branch length of 160 cm is not so large
in all frequency band. On the other hand, the transmission loss for “switch type branch-off” in Figure 4(a) is
very large in all frequency band, the maximum transmission loss reaches 20 dB around the frequency of 50 MHz
when the branch length is 10 cm, because one of two lines is disconnected. But, transmission loss is improved
according to increasing branch length. The transmission loss characteristics for “switch type branch-on” in
Figure 4(b) are similar to that for “outlet type branch-open” in Figure 3(a) in the all frequency band.

Though this model as shown in Figures 1 is small-scale, the basic characteristics of an electric power line
can be measured. Therefore, it is thought that this model is applicable as an electric power line model in the
transmission measurement using the PLC modem as shown in paragraph 3.

2.3. Measurement of Group Delay Characteristic
The group delay can be calculated by the following expressions.

∆t[s] = −dφ
df
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The group delay reaches a constant value if a transmission media has a linear characteristic. Oppositely, the
group delay increases if the transmission media has the nonlinearity. As an influence of the group delay to
the transmission characteristic, it is considered that the guard interval length on the transmission system using
OFDM is affected by the group delay. Therefore, it is very important to understand the amount of the change
of the group delay, and evaluate the transmission characteristic from such a viewpoint.

Figures 5 and 6 show the measurement result of the group delay characteristics. In the case of “outlet type

(a) Terminating condition: “open”. (b) Terminating condition: “short”.

Figure 5: Group delay characteristics of power line (Outlet type branch).

(a) Switching condition: “off”. (b) Switching condition: “on”.

Figure 6: Group delay characteristics of power line (Switch type branch).

branch 160 cm open” as shown in Figure 5(a), the group delay changes sharply at the frequencies of 24 MHz
and 75 MHz, which correspond the frequency occurring sharp attenuations like resonance in transmission loss
characteristic for the same branch condition as shown in Figure 3(a). On the other hand, in the case of “outlet
type branch 10 cm short” as shown in Figure 5(b), the group delay around low frequency band does not change
in spite of large transmission loss around the same frequency band as shown in Figure 3(b). And, there is
a similar tendency in the case of “switch type branch 10 cm off” as shown in Figure 4(a). In this case, the
transmission loss is large at all frequency band, but the group delay does not change as shown in Figure 6(a).
It is clear from these results that the group delay characteristic does not relate the amount of the transmission
loss, but the change of the transmission loss.

3. Transmission Characteristics Measurement System of OFDM Signal Using PLC Mo-
dem

3.1. Measuring Method of Transmission Characteristic with Modem
We measured the transmission characteristic for the OFDM signal using PLC modem made of Sumitomo

Electric Industries, LTD. Figure 7 shows the measurement system. Sending and receiving PCs is connected
through the PLC modem and each model of the transmission line as shown in Figure 1. The bandwidth of the
PLC modem is from 4 to 34 MHz. Next, the communication link between sending and receiving PCs through
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the modem is established and measured PHY rate (Physical rate). The measurement system set in a G-TEM
(Giga-Hertz Transverse Electromagnetic) cell in order to suppress power supply coupling between sending and
receiving modems. Normally, PLC modem is connected to AC power line, but in this case, the measurement
system connected to DC power line as shown in Figure 7 is provided to suppress the power supply coupling.
We considered on a grand side, and each electric power line in the GTEM Cell is set above 10 cm high from a
metal floor of the GTEM cell, in order to suppress the influence of the metal floor.

Figure 7: Transmission characteristics measurement system of OFDM signal using PLC modem.

3.2. Method of Simulating Transmission Characteristics Using PLC Modem
First, we modeled the PLC modem with the computer software and composed the OFDM sending and

receiving system and simulated the transmission characteristics of the OFDM signal, that is, PHY rate for the
electric power line as shown in Figure 1. Figure 8(a) shows the simulation block chart of the OFDM sending
and receiving system and, Figure 8(b) shows that of the mock electric power transmission line. It is assumed
that the sending and receiving systems are composed by the OFDM system based on a general FFT (Fast

Figure 8: Simulation model of transmission characteristics for OFDM signal using PLC modem.

Fourier Transform) [13, 14]. First, the input random binary signal is converted into the frame data in the S/P
(Serial/Parallel) block, and converts into a multilevel symbol by QAM (Quadrature Amplitude Modulation)
in the Mapping block for each sub-career. Next, Orthogonal transform is processed in the IFFT (Inverse Fast
Fourier Transform) block. As a result, base-band OFDM signal is generated, and converted into the pass-band
signal by the Up-Conversion block. Here, the Channel block consists of Figure 8(b), and the composition is
as follows. Wideband and constant signal attenuation are imitated in the ATT (attenuator) block. In the
Digital Filter block, each electric power line is composed by using the measurement data of the transmission
loss and the group delay characteristics. Moreover, the thermal noise of the equipment is imitated by the AWGN
(Additive White Gaussian Noise) block. On the other hand, the receiving system is reversely converted about
the sending system. The receiving signal is equalized by the Channel Estimator block. The equalization method
is division of the complex number that uses the pilot-careers. Finally, the receiving binary data is compared
with the sending binary data and BER (Bit Err Rate) is calculated. PHY rate is calculated from the receiving
bits and the sample rate. Receiving bits are the subtraction of the error bits from all sending bits. For the
simulation parameter, we calculated by using the simplified model compared with an actual modem because
each parameter used for the actual modem is not obtained as public information. Therefore, the calculation of
PHY rate is adjusted to measurement data when using the parameter as shown in Table 1.
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Table 1: Simulation parameter for OFDM signal using PLC modem.

number of sub-careers 1400

first modulation 1024QAM=10 bits

use band 4M∼34 MHz

sub-career interval 43 kHz

maximum PHY rate 186 Mbps

symbol length 23 µs

guard interval length 360 ns

AWGN S/N=50dB

3.3. Measurement and Calculation Results of Transmission Characteristic Using PLC Modem

Table 2 shows the results of PHY rate corresponding to each basic element as well as their termination
conditions, and the calculated values agree well with the measured values. It became clear that basic element
(b) with termination condition of “10 cm short” influences most for the PHY rate and basic element (c) with
termination condition of “160 cm on” influences next. It is thought that the transmission loss was the largest
in the use band of the modem. Therefore, it is clear that the transmission loss is main factor for decreasing
PHY rate. On the other hand, when comparing “outlet type branch 160 cm open” with “switch type branch
160 cm on”, PHY rate for “switch type branch 160 cm on” was lower. Oppositely, variable quantities of the
group delay characteristic for “outlet type branch 160 cm” were larger. Therefore, it is considered that PHY
rate is hardly influenced if the amount of the group delay is below guard interval length. In fact, PHY rate of
PLC modem is most affected in the case of the power line transmission characteristics having broad band and
high level attenuation.

Table 2: Measured and calculated results of PHY rate for PLC modem.

4. Conclusion

In this paper, we measured and calculated what influence the transmission characteristics of the electric
power line with basic element gave to the transmission characteristic of OFDM signal through PLC modem.
The following items are clear by comparing with the measurement and the calculation values:

(a) The electric power line transmission line with various forms in a real environment is classified into two
basic elements, which are an outlet type branch and a switch type branch. Therefore, even if a small-scale
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electric power line model is used, it is able to measure the characteristic of large-scale and complicated
electric power line.

(b) PHY rate of PLC modem is most affected in the case of the power line transmission characteristics having
broad band and high level attenuation and is not affected in the case of that having narrow band group
delay variation.

In future, it is necessary to examine transmission characteristic for OFDM signal by using a complex trans-
mission line model.
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Relation Between Balance-unbalance Conversion Factor
and Leaked Electric Field in Power Line with Branch for

PLC
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Abstract—In this paper, we calculated balance-unbalance conversion factor and leaked electric field in the
power line with branch in high frequency. We paid attention to two typical branch such as outlet branch and
lamp switch branch about the branch of the electricity distribution lines, and calculated the model which is
combination of those divergences. To verify the validity of the calculation, we measured the model similar to the
calculation, and compared with calculation results. As a result, the measurement and calculation values were
approximated well both balance-unbalance conversion factor and leaked electric field, It was shown that the
calculation model in the method of moments was effective to the analysis of the power line communication. And
from the comparison of the calculation results, it was shown to have good correlation between balance-unbalance
conversion factor and leaked electric field.

1. Introduction

The number of Internet users has recently seen explosive growth and demand for home LAN has increased,
too. The means that the network can be easily constructed domestically is demanded. As one of the some so-
lutions, there is a high-speed power line communication (PLC). PLC transmits data by using the conventional
power line laid to supply commercial electric power both inside and outside the home in stead of telecommu-
nication line. The practical application of PLC as realization approach of Home LAN is strongly hoped with
the transmission speed improving in recent years. But there is a possibility that the leaked electromagnetic
wave influences a radio service of high frequency band (3–30 MHz) by using PLC, because PLC uses this high
frequency band. However, there is movement to develop the leaked electric field decreasing technology and to
aim for realization of PLC, because the convenience of PLC is very large. From such a background, the Ministry
of Internal Affairs and Communications (MIC) inaugurated the “Study Group for Power Line Communication
Facilities” in April, 2002 [1]. And, High Speed Power Line Communication Promoters’ Alliance of Japan (PLC-
J) was established by the Japanese electric power company and the manufacturer, and they are doing various
examinations of the leaked electric field decreasing technology. Now, various experiments are conducted [2], but
it is difficult to verify all cases by experimental examination. Therefore, it is necessary to study a computer
calculation method that can imitate the experiment.

In an experimental examination, the leaked electric field emitted from power lines has been analyzed quanti-
tatively by using the degree of unbalance to ground, such as Longitudinal Conversion Loss (LCL) and common
mode current, as an index [3]. Thus, the simulation method that can calculate LCL, common mode current,
and leaked electric field is needed. There is a method of using four port network theory [4] about the calculation
method, but we focused attention on method of moments (MoM) that was one of the electromagnetic field
analysis method. We thought that the calculation was easily possible in a large-scale system, so that the MoM
has the feature with comparatively short calculation time.

Based on above, in this paper, we report on the result of the calculation of LCL, the common mode current
distribution, and the leaked electric field in the electric power line using the MoM. And, to verify the effectiveness
of the calculation, we measured the characteristics of power line system with branch under PLC-J cooperation
[5]. By comparing the measurement results with the calculation one, we will clarify the effectiveness of the
calculation method as well as the relation between the balance-unbalance conversion factor and the leaked
electric field.

2. Power Line Model

A general domestic power line has diverged variously, but it is possible to classify it into an outlet branch
and a lamp switch branch by dividing a complex divergence of each element. In the outlet branch, both two
lines of a pair line composing power line is diverged to make the outlet branch as shown in Figure 1(a), but
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in the lamp switch branch, only one line of the pair line is lengthened to make an ON/ OFF switch as shown
in Figure 1(b). In this paper, we paid attention to element of branch such as the outlet branch and the lamp
switch branch, and “1 branch model” connected only the outlet branch line and “2 branch model” connected
both the outlet branch line and the lamp switch branch line are measured and calculated respectively.

Figure 2 shows configuration of the 2 branch model, and size of the 2 branch model is shown in Figure 3.
The outlet branch line of 5.6 m in total length and the lamp switch branch line of 4.0 m in total length are
connected to the backbone line like a gate form. On the other hand, in the 1 branch model, the lamp switch
branch line as shown in Figure 2 is not connected. The VVF (Vinyl insulated and Vinyl sheathed Flat type)
cable with a conductor diameter of 1.6 mm is used for power line. And the size of this model reduces twice from
the size of actual power line system, because an actual power line system is large-scale and then it is difficult
to construct the power line model in a measurement site for radiated emission. To imitate the lamp, a terminal
resistor of 100 Ω is connected in the lamp switch branch line. We connected the line of 1 m in length as a switch
line, and connected the switch as the terminal. There is a possibility that ON / OFF of this switch influences
the characteristic of the power line. Thus, we examined the changing characteristics to switching condition of
ON/OFF. Each balun terminal has lengthened line to 40 cm in the height of 20 cm as shown in Figure 4, based
on regulations of the line terminal in CISPR, and this size is also reduced to half.

In order to imitate the influence of grounding one wire of the pair line in pole transformer applied to Japanese
power line, we grounded one wire of the pair line in balun on opposite side of the signal impression, that is, far
end side from a domestic outlet. It is a factor that one of the pair line grounding lowers the balance-unbalance
conversion factor of the power line. But, the structure to extend one wire of the pair line for the switch line is
also cause of unbalance in the power line. We studied the model on the side where grounded line and switch
line were the same in measurement and calculation, because the combination of the same sides acts additively
to the characteristic of power line.

(a) Outlet branch. (b) Lamp switch branch.

Figure 1: Classification of the branch.

Figure 2: Configuration of the 2 branch model.

3. Measurement Method

3.1. LCL Measurement Method
In this paper, we paid attention to the value of balance-unbalance conversion factor, common mode current,

and leaked electric field as EMC characteristics of the PLC, and measured these values and compared it with the
calculation value. First, we measured LCL that was the ratio of the differential mode voltage and the common
mode voltage in the input side as balance-unbalance conversion factor. LCL is defined by the following formula.

LCL = 20 log10

VCin
Din

[dB] (1)
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Figure 3: Size of the 2 branch model. Figure 4: Configuration of power line terminal.

Here, VCin is a common mode voltage in the input side, and VDin is differential mode voltage in the input side.
LCL was obtained by measuring the voltage appeared in the differential mode port when impressing the signal
to common mode port of the balun, by using a network analyzer as shown in Figure 5.

Figure 5: LCL measurement method. Figure 6: Common mode current measurement
method.

3.2. Common Mode Current Measurement Method
We impressed the no modulated sine wave with power of 11 dBm from the signal generator to differential

mode port of the balun, and measured the common mode current by using the current probe and spectrum
analyzer synchronized the signal generator. Figure 6 shows the common mode current measurement system.
The current distribution was obtained by measuring the current at intervals of 50 cm from signal input side
balun.
3.3. Leaked Electric Field Measurement Method

In order to measure the leaked electric field from the power line, the power line model as shown in Figure 2
is set up on a large-scale turntable with radius of 5.0 m, and the no modulated sine wave signal of 11 dBm
is impressed from the signal generator to differential mode port of balun. And we measured an electric field
strength by a loop antenna, which is set at the point of 12 m from the center of turntable that arranged the
power line model. We measured the electric field strength to horizontal, vertical and radial polarizations of
loop antenna, and added all of three polarizations. The height of the antenna is 1.0 m. In the leaked electric
field strength measurement, we rotated the turntable at intervals of 30 degrees. In frequency characteristics of
the leaked electric field strength, the maximum value among many measured values obtained by rotating the
turntable was adopted as the measured values at a frequency. Figure 7 shows the relation among arrangement
of power line model and the receiving antenna position and the rotation angle of turntable.

4. Calculation Method

4.1. Calculation Model
The measurement system consisted of the power line as shown in Figure 2 was converted to an equivalent

circuit of a differential transmission line to construct the calculation model by MoM as shown in Figure 8, and
calculated each characteristics with MoM by using NEC2 as a calculation software [6]. Shape and size of the
calculation model are completely equal to the measurement model. And we defined the model of the far end
grounding by connecting the ground line of the impedance 0 Ω at far end side, because it is necessary to consider
one wire grounding of pair line in the calculation model [7].
4.2. LCL Calculation Method

The electric field and magnetic field can be calculated by MoM as well as the current distribution along con-
ductive wire, but the balance-unbalance conversion factor (for example LCL) cannot be calculated directly by
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Figure 7: Configuration of power line model and receiving antenna on leaked electric field measurement systems.

Figure 8: Calculation model by MoM. Figure 9: LCL calculation method by MoM.

MoM. However, as discussed previously, the method of simulation that can calculate LCL is demanded, because
LCL is an important index of the characteristic of the power line. Thus, we devise a method of calculating
LCL by the MoM. The method is shown here. First, to imitate the common mode input, we impressed the
in-phase voltage at the feeding point of two wires as shown in Figure 8, because LCL is a conversion ratio from
the common mode signal to the differential mode signal at the input side. When grounding one wire of pair
line at the far end, the current phase in an in-phase signal is greatly influenced by the grounding. Therefore,
the difference of complex current appears in both lines on the segment of input side, and the subtracted value
does not become 0, when one wire of the pair line is grounded on far end. This current can be considered as a
differential mode current, and differential mode voltage (VDin) is obtained by multiplying this differential mode
current and differential mode impedance. LCL can be calculated from the ratio of VDin and voltage (VCin)
developed by one-quarter impedance of differential mode impedance.

4.3. Common Mode Current Calculation Method
We calculated the common mode current distribution by the method similar to the calculation of LCL, but,

feeding power to each wire is impressed in reversed phase. A complex current is added to each segment at the
same position of both lines, in order to calculate the common mode current distribution.

4.4. Leaked Electric Field Calculation Method
We calculated the leaked electric field at the point of 12 m from the center of power line model and 1m

in height. The maximum value obtained by sweeping the angle at intervals of 30 degrees like measurement is
adopted as a calculated value in calculation frequency range from 1 MHz to 30 MHz, according to the frequency
range measurable by the loop antenna. And we calculated the magnetic field and converted it into the electric
field by multiplying magnetic field and free space impedance.

5. Measurement and Calculation Results

5.1. LCL Calculation Result
Figure 10 shows LCL measurement and calculation results for the 1 branch model, and Figure 11 shows

LCL for the 2 branch model. In Figure 10, the point is measurement value, and the solid line is calculation
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Figure 10: LCL for the 1 branch model. Figure 11: LCL for the 2 branch model.

value. In Figure 11, ∆ is measurement value for turning on switch (abbreviated as SW-ON), O is the one for
turning off switch (abbreviated as SW-OFF). And the solid line is calculation value for SW-ON, the dotted
line is the one for SW-OFF. From these figures, it is understood that average LCL for the 1 branch model is
about 28 dB and the one for the 2 branch model is about 30 dB. In addition, it is also clear that LCL is not
so affected by switching condition, but the frequency appearing hump changes a little. From the comparison
of these values, measurement and calculation values are almost corresponding though the hump position is
different. The calculation value shifts the hump position to the high frequency side, and this cause is considered
that dielectric constant of shielding material in each wire of the power line cannot be defined in the method of
moment. Though the difference has extended in the 2 branch model, this cause is thought that the equivalent
circuits for the switch and the lamp are not imitated accurately. However, it can be considered that the LCL
calculation by MoM is effective, because measurement and calculation values are a similar tendency.

5.2. Common Mode Current Calculation Result
Figure 12 shows measurement and calculation values for the common mode current distribution along the

backbone line in 1 branch model at frequencies of 1 MHz, 20 MHz, 40 MHz and 60 MHz. Figure 13 shows the
current distribution along the outlet branch line in 1 branch model, and Figure 14 shows that along the backbone
line in 2 branch model (SW-ON). The result in other cases was omitted, because the results were almost similar
to that mentioned above.

Figure 12: Common mode current for 1 branch
model (backbone line).

Figure 13: Common mode current for 1 branch
model (outlet branch line).

From the current distribution along the backbone line shown in Figs. 12 and 13, in both the measurement
and the calculation, the current has changed suddenly in 5.0 m. This position is the connecting point to each
branch line and backbone line. Thus, it is understood that the common mode current flowing along the back-
bone line flows greatly to the line where common mode impedance is lower in the position of branch. From
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comparing the results, calculation values at the position of antinodes and nodes on the standing wave agree with
measurement values, and the level of the common mode current is also almost equal to each other. Therefore,
it was confirmed that the calculation of common mode current distribution by MoM was effective.

Figure 14: Common mode current for 2 branch
model (backbone line).

Figure 15: Leaked electric field for 1 branch model.

5.3. Leaked Electric Field Calculation Result

Figure 15 shows the value of leaked electric field for the 1 branch model. The leaked electric field for the 2
branch model (SW-ON) is shown in Figure 16, and that for the 2 branch model (SW-OFF) in Figure 17. A thin
solid line in figures is ambient noise such as the broadcasting waves and noise level of the interference wave for
the measuring instrument on an open area site. From those Figs. 15, 16, and 17, tendencies of the calculated
frequency characteristics for the electric field strength are almost equal to measured ones. It is considered that
the influence of dielectric material for power line appears as mentioned already for being a difference in the hump
position, but it was revealed that the calculation for the leaked electric field by MoM was effective, because
measurement and calculation values are a similar tendency.

5.4. Relation between Balance-unbalance Conversion Factor and Leaked Electric Field

Figure 18 shows a relation between balance-unbalance conversion factor and leaked electric field for the 1
branch model, and Figure 19 shows the relation for the 2 branch model. From comparing the relation between
LCL and leaked electric field in these figures, if LCL reaches a low value, the leaked electric field becomes a
high value, regardless of the switching condition. Conversely, if LCL reaches a high value, the leaked electric
field becomes a low value. Thus, it is confirmed that there is relation of inverse proportion between LCL and
leaked electric field. In addition, it is thought that such relation maintain regardless of the difference of the
branch form and the switching condition.

Figure 16: Leaked electric field for 2 branch model
(SW-ON).

Figure 17: Leaked electric field for 2 branch model
(SW-OFF).
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Figure 18: Relation (LCL-E-field) for 1 branch
model.

Figure 19: Relation (LCL-E-field) for 2 branch
model.

6. Conclusion

In this paper, we focused attention on a power line communication using in high frequency band, and
calculated balance-unbalance conversion factor and leaked electric field in the power line with branch by MoM.
In order to confirm the validity of the calculation, we measured balance-unbalance conversion factor and leaked
electric field for the same model as the calculation model, and compared the measurement value with the
calculation value. As a result, the calculation value agreed well with measurement value, and then it was
revealed that the calculation model of the PLC using the MoM was effective. In addition, it is confirmed that
the influence of grounding one wire of the pair line in pole transformer applied to Japanese power line is small
to LCL of the power line in the home, because LCL of the power line including each branch model is about
30 dB. Moreover, it was clear that there was a good correlation between LCL and the leaked electric field. The
future task is expanding this branch model greatly, and applying it to power line model in the home.
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On the Application of the Radiative Transfer Approach
to Scattering from a Random Medium Layer with

Rough Boundaries

S. Mudaliar

Air Force Research Laboratory/SNHE, USA

Abstract—For studying the problem of scattering from a random medium layer with rough boundaries the
radiative transfer (RT) approach is widely used. In order to better understand this procedure we compared
it with the statistical wave approach. Two such wave approaches are presented in this paper: the surface
scattering operator (SSO) approach, and the unified approach. In both wave approaches two conditions are
essential for arriving at RT system: the ladder approximation to the intensity operator, and the quasi-stationary
approximation of fields. With these approximations one arrives at the integro-differential equations of the RT
system. However, to arrive the at the RT boundary conditions, one has to impose further approximations. In
the SSO approach weak surface correlation must be imposed. In the unified approach, one has to ignore the
terms involving volumetric spectral densities, and consider only single scattering from the rough boundary when
deriving the boundary conditions.

1. Introduction

The analysis of scattering from a random medium layer with rough boundaries is a difficult problem. This is
the kind of problem one often encounters in remote sensing applications. People have used the phenomenological
radiative transfer approach to study this problem (Ulaby et al., 1986; Lam and Ishimaru, 1993; Shin and Kong,
1989). This approach is conceptually simple and yet very effective for studying multiple scattering processes.
Here one uses the transport equations corresponding to the random medium of the layer and then one imposes
the relevant boundary conditions. Although this procedure appears to be heuristically sound it is not clear
what approximations are involved, and under what conditions such a procedure may be used for the problem
at hand. One way to better understand this radiative transfer approach is to compare and relate it to the
statistical wave approach. For the case of unbounded random media it has been demonstrated how the ladder
approximated Bethe-Salpeter equation reduces to the radiative transport equation (Barabanenkov et al., 1971).
We found that this procedure can be applied to the problem of random medium layer with planar boundaries
and arrive at the radiative transport system as given in Ulaby et al., (1986). However, if the boundaries are
statistically rough, the problem is considerably more complicated and we need special procedures to deal with
them. We have employed two different statistical wave approaches for such problems. In the first approach we
assume that we know the solution of the problem without the volumetric fluctuations. The second approach is
based on the solution of the problem where all the fluctuations vanish. We shall compare the results of these two
approaches with those of the radiative transfer (RT) approach. This will enable us to understand and meaning
and import of the radiative transfer approach as applied to our problem. To keep discussions in a simple setting
we will consider the scalar problem and keep the lower boundary alone as rough.

2. Geometry of the Problem

The geometry of the problem consists of a random medium layer with a rough bottom boundary. The
permittivity of the layer medium consists of a deterministic part ε2 and randomly fluctuating part ε̃ε2· z = 0
and z = −d+ ζ(r⊥) describe the upper and lower boundary of the layer. We assume that ε̃ and ζ are small and
smooth zero-mean stationary processes independent of each other. The medium above the layer is homogeneous,
and we impose the Neumann boundary condition on the lower boundary. This layer is excited by a wave incident
from above and we are interested in the scattered waves.

3. Radiative Transfer Approach

The classical equation of radiative transfer is given as

ŝ · ∇I(r, ŝ) + ηI(r, ŝ) =

∫
dΩ′P (ŝ, ŝ′)I(r, ŝ′) (1)
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Figure 1: Geometry of the problem.

where P (ŝ, ŝ′) is the phase function and η is the extinction coefficient. This equation was originally intended
for unbounded scattering medium. However it can be applied to bounded medium with arbitrary geometry by
imposing appropriate boundary conditions. For layer geometry we have the following set of coupled integro-
differential equations.

cos θ
d

dz
Iu(z,Ω) + ηIu(z,Ω) = Icu +

|k|4
4π

∫
dΩ′ {Φ(θ, θ′;φ− φ′)Iu(z,Ω

′) + Φ(θ,−θ′;φ− φ′)Id(z,Ω
′)} (2)

cos θ
d

dz
Id(z,Ω) − ηId(z,Ω) = −Icd +

|k|4
4π

∫
dΩ′ {Φ(−θ, θ′;φ− φ′)Iu(z,Ω

′) + Φ(−θ,−θ′;φ− φ′)Id(z,Ω
′)}(3)

Eqs. (2) and (3) follow from (1) noting that the problem is translationally invariant in azimuth. Iu and Id
represent the incoherent part of radiant intensities corresponding to upward and downward travelling waves
inside the layer. Icu and Icd represent the corresponding contributions due to coherent intensities. Φ represents
the spectral density of the volumetric fluctuations. Eqs. (2) and (3) are solved using the following boundary
conditions.

Id(0,Ω) = |R12(Ω)|2Iu(0,Ω) (4)

Iu(−d,Ω) =

∫
dΩ′〈|R32(Ω,Ω

′)|2〉Id(−d,Ω) (5)

The extinction coefficient η is readily derived from the differential scattering cross section of the random medium.
R12 is the reflection coefficient at the upper boundary for waves incident from below. R32 is the reflection
coefficient at the lower boundary for waves incident from above. Thus we see that the formulation in the
radiative transfer approach is simple and straight forward, and can be applied to a variety of different geometries.
The fundamental quantity in this approach is the radiant intensity and hence is not suitable to represent wave
phenomena such as diffraction, interference, etc. A more general approach to this problem is the statistical
wave approach. In this paper we will describe two such approaches and compare them with that of radiative
transfer.

4. Surface Scattering Operator Approach

We start with the following equations governing the Green’s functions of the problem.

4G12 + k2
1G12 = 0

4G11 + k2
1G11 = −I

4G21 + k2
2G21 = −qG21

4G22 + k2
2G22 = −I − qG22

(6)
where q = ω2µε̃ε2 represents the volumetric fluctuations. We write the above system as

LG = −I −QG (7)

where G ≡ {Gij}, L = diag{L1, L2}, Lj = 4 + k2
j , Q = qdiag{0, 1}. For multiple scattering analysis it is

convenient to convert (7) into the following integral equation.

G = Ğ+ ĞQG (8)
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where Ğ is the Green’s function of the problem without volumetric fluctuations. In principle, one can construct
such Green’s functions using surface scattering operators (Voronovich, 1994; Soubret et. al., 2002). First average
(8) w. r. t. volumetric fluctuations.

〈Gv〉 ' Ğ+ Ğ〈Q〈G〉vQ〉〈G〉v (9)

On operating this by L we obtain
L〈G〉 = −I − 〈Q〈G〉vQ〉〈G〉v (10)

From this we find that

L1〈G11〉v = −I (11a)

L2〈G22〉v = −I − 〈G22〉v〈qq〉〈G22〉v (11b)

Next average (11) w. r. t. surface fluctuations

L1〈G11〉vs = −I (12a)

L2〈G22〉vs = −I − 〈〈G22〉v〈qq〉〈G22〉v〉s (12b)

We infer from (12a) that the mean propagation constant in Region 1 is unaffected by the fluctuations of the
problem. To interpret (12b) we approximate 〈〈G22〉v〈qq〉〈G22〉v〉s as 〈G22〉vs〈qq〉〈G22〉vs. As we shall see, this
kind of approximation is essential for arriving at the RT system as given in the previous section. Thus

(4 + k2
2)〈G22〉vs = −I − 〈G22〉vs〈qq〉〈G22〉vs (13)

This implies that
k2
2m = k2

2 + 〈G22〉vs〈qq〉 (14)

This is the operational definition for the mean propagation constant in the layer region. With this we can
proceed to construct the mean Green’s functions.

We next turn our attention to the second moments of the fields. Taking the tensor product of (8) with its
complex conjugate and performing volumetric averaging leads to

〈G⊗G∗〉v = 〈G〉v ⊗ 〈G〉∗v{I +K〈G⊗G∗〉v} (15)

where K is the intensity operator corresponding to the volumetric fluctuations. Hence the equation for field
correlation is

〈ψ ⊗ ψ∗〉v = 〈ψ〉v ⊗ 〈ψ〉∗v + 〈G〉v ⊗ 〈G〉∗vK〈ψ ⊗ ψ∗〉v (16)

Averaging this over surface fluctuations we have

〈ψ ⊗ ψ∗〉vs = 〈〈ψ〉v ⊗ 〈ψ〉∗v〉s + 〈〈G〉v ⊗ 〈G〉∗vK〈ψ ⊗ ψ∗〉v〉s (17)

Now we employ the following two approximations essential for arriving at the radiative transfer system.

〈〈G〉 ⊗ 〈G〉∗vK〈ψ ⊗ ψ∗〉v〉s ' 〈〈G〉v ⊗ 〈G〉∗v〉sK〈ψ ⊗ ψ∗〉vs (18a)

K ' 〈Q⊗Q∗〉 (18b)

The first is the weak surface correlation approximation. The second is called the ladder approximation. Thus
we arrive at the following equation for the second moment of the fields inside the layer

〈ψ2 ⊗ ψ∗
2〉vs = 〈〈ψ2〉v ⊗ 〈ψ2〉∗v〉s + 〈〈G22〉v ⊗ 〈G22〉∗v〉sK〈ψ2 ⊗ ψ∗

2〉vs (19)

Observe that ψ2 = 〈ψ2〉vs + ψ̃ and 〈ψ2〉v = 〈ψ2〉vs + 〈ψ̃2〉v where tilde is used to denote the fluctuating part.
Using these relations in (19) we obtain

〈ψ̃2 ⊗ ψ̃∗
2〉vs = 〈〈̃ψ2〉v ⊗ 〈̃ψ2〉

∗
v〉s + 〈〈G22〉 ⊗ 〈G22〉∗v〉s〈q ⊗ q∗〉〈ψ2 ⊗ ψ∗

2〉vs (20)

We next introduce Wigner transforms of the wave functions and the Green’s functions in (20) and obtain

Ẽ(z, k) = Ẽs(z, k) +
|k2|4
(2π)6

∫
dz1

∫
dα

∫
dβG(z, k; z1, α)Φv(α− β)E(z1, β) (21)
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where Ẽ , Ẽs, E and G are the Wigner transforms of ˜〈ψ2 ⊗ ψ̃2
∗〉vs, 〈〈̃ψ2〉v ⊗ 〈̃ψ2〉

∗
v〉s, 〈ψ2 ⊗ ψ∗

2〉vs and 〈〈G22〉v ⊗
〈G22〉∗v〉s, respectively. Φv is the spectral density of volumetric fluctuations. Boundary conditions relate radiant
intensities arriving at and departing the boundary. Therefore, we need to split Ẽ into upward and downward
travelling components. Assume that the fields are quasi-stationary and hence only waves travelling over similar
paths will be correlated. This leads to the following approximation.

G = Go + Guu + Gud + Gdu + Gdd (22)

Go is the Wigner transform of Go ⊗ Go∗ where Go is the singular part of 〈G22〉. Guu is the Wigner transform
corresponding to that part of 〈G22〉 involving the surface scattering operator 〈Suu〉 and so on. Using this
decomposition we split (21) as follows.

Ẽu(z, k) = Ẽsu(z, k) +
|k2|4
(2π)6

∫ z

−d
dz1

∫
dα

∫
dβG>(z, k; z1, α)Φ(α− β)E(z1, β)

+
|k2|4
(2π)6

∫ 0

−d
dz1

∫
dα

∫
dβ{Guu + Gud}(z, k; z1, α)Φ(α− β)E(z1, β) (23a)

Ẽd(z, k) = Ẽsd(z, k) +
|k2|4
(2π)6

∫ 0

z

dz1

∫
dα

∫
dβG<(z, k; z1, α)Φ(α− β)E(z1, β)

+
|k2|4
(2π)6

∫ 0

−d
dz1

∫
dα

∫
dβ{Gdu + Gdd}(z, k; z1, α)Φ(α− β)E(z1, β) (23b)

On using the expressions for G’s the above pair of equations can be represented as the following integro-
differential transport equation system

[dz + 2η
′′

]Ẽu(z, k⊥) = Ecu+
|k2|4

16π2|η|2
∫
dα⊥{Φv(k⊥−α⊥; η′−η′α)Ẽu(z, α⊥)+Φv(k⊥−α⊥; η′+η′α)Ẽd(z, α⊥)} (24a)

[dz − 2η
′′

]Ẽd(z, k⊥)=−Ecd+
|k2|4

16π2|η|2
∫
dα⊥{Φv(k⊥−α⊥;−η′−η′α)Ẽu(z, α⊥)+Φv(k⊥−α⊥;−η′+η′α)Ẽd(z, α⊥)}(24b)

Here Ecu and Ecd are the contributions due to coherent intensities. The associated boundary conditions are
obtained as

Ẽd(0, k⊥) = |R12(k⊥)|2Ẽu(0, k⊥) (25a)

Ẽu(−d, k⊥) = 〈|R32(k⊥, k
′
⊥)|2〉Ẽd(−d, k⊥) (25b)

where R12 and R32 are the reflection coefficients at the lower and upper boundaries for waves in the layer. In
the process of obtaining (25) we had to impose the following approximation

〈[R32 ⊗R∗
32][(I + Sdd) ⊗ (I + Sdd)

∗]〉 ' 〈R32 ⊗R∗
32〉〈(I + Sdd) ⊗ (I + Sdd)

∗〉 (26)

This is similar to the weak surface correlation approximation in the sense that we assume that the influence

of the boundary fluctuations result in local relations. On observing that I(z,Ω) =
εck2

2

(2π)2 E(z, k⊥) cos θ we find

that the system of integro-differential Eqs. (24) and (25) is identical to the radiative transfer equation system
(2)–(5). The conditions under which this has been possible are:
1. ladder approximation to the intensity operator
2. quasi-stationary approximation for fields
3. weak surface correlation
For unbounded random media and random medium layer with planar boundaries we find that the first two
conditions are sufficient. But for random media with rough boundaries we need in addition the third approxi-
mation.

5. Unified Approach

The system of equations that we start here is the same as that in the surface scattering operator (SSO)
approach, viz. , (6) and (7). However, the integral equation representation is different. In the SSO approach we
did not directly deal with the boundary conditions. The role of the boundaries are represented entirely by the
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SSO. Indeed the boundary conditions are essential to determine the SSO. However, in the unified approach we
will directly make use of the boundary conditions. At the top surface the boundary conditions are given as

G12(r⊥, 0; r′) = G22(r⊥, 0; r′)

ε2∂zG12(r⊥, 0; r′) = ε1∂zG22(r⊥, 0; r′) (27)

There is a similar pair of relations at the top surface involving G11 and G21. At the bottom surface we have

∂nG21(r⊥, ζ; r
′) = ∂nG22(r⊥, ζ; r

′) = 0 (28)

These boundary conditions are translated on the plane z = −d by using the following approximation which
applies when the surface fluctuations are small and smooth.

∂zG21(r⊥,−d; r′) = HG21(r⊥,−d; r′)
∂zG22(r⊥,−d; r′) = HG22(r⊥,−d; r′) (29)

where H = ∇⊥ζ · ∇⊥ − ζ∂2
z . Using (29) we can convert the differential equation system of our problem into the

following integral equation system.
G = Go +GoQG (30)

where
Q = Qv +Qs (31a)

Qv = qN Qs = −Hδ(z + d)N (31b)

Qv and Qs represent the volumetric fluctuation and the surface fluctuation, respectively. Go is the Green’s
function for the unperturbed problem, viz., the problem when all the fluctuations vanish. Notice that, in this
approach, volumetric and surface fluctuations are treated on equal footing. Thus statistical averaging over
volumetric and surface fluctuations are carried out at the same step. Therefore we do not have any subscripts
for the averaging operations. This is in contrast with the SSO approach where these operations are carried
out separately at different stages of the analysis and we had to use subscripts to indicate whether it is w. r. t.
volumetric fluctuations or surface fluctuations.

First average (30) to get
〈G〉 = Go +Go〈Q〈G〉Q〉〈G〉 (32)

This is the mean Green’s function that we will use in our analysis of the second moments of the fields. Details of
the analysis of (32) are given in Mudaliar (2005). We proceed to the calculation of the field correlation described
by the following equation

〈ψ ⊗ ψ∗〉 = 〈ψ〉 ⊗ 〈ψ〉∗ + 〈G〉 ⊗ 〈G〉∗K〈ψ ⊗ ψ∗〉 (33)

where
K ' 〈Q⊗Q∗〉 = 〈Qv ⊗Q∗

v〉 + 〈Qs ⊗Q∗
s〉 (34)

We employ the Wigner transforms in (33) as before and obtain

E(r, k) = Ẽm(r, k) +
1

(2π)6

∫
dr1

∫
dα

∫
dβG(r, k; r1, α){Tv + Ts}E(r1, β) (35)

where Tv and Ts are spectral representations of 〈Qv ⊗ Q∗
v〉 and 〈Qs ⊗ Q∗

s〉, respectively. As before we employ
the quasi-stationary field approximation, use (22), and hence arrive at a system of integro-differential equations.
The system thus obtained in identical to that in SSO approach. However, the boundary conditions are quite
complicated and we have

Ẽ(0, k⊥) = Ẽo(0, k⊥) +

∫ 0

−d
dz1

∫
dα⊥W (0, k⊥; z1, α⊥)Ẽ(z1, α⊥) (36a)

Ẽ(−d, k⊥) = Ẽo(−d, k⊥) +

∫ 0

−d
dz1

∫
dα⊥W (−d, k⊥; z1, α⊥)Ẽ(z1, α⊥) (36b)

where Ẽo is the single scattering solution, and W is a 2 × 2 matrix given in the appendix. Observe that
the boundary conditions are not localized. Furthermore, W involves both surface scattering and volumetric
scattering. Thus our system incorporates volumetric and surface scattering interactions. However, if we let
Φv → 0 and consider only single scattering from the rough boundary, then we obtain the boundary conditions
used in the radiative transfer approach, viz., (25).
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6. Conclusion

Radiative transfer approach is very efficient and at the same time simple for describing multiple scatter-
ing phenomena. Quite rightly this approach is very popular and is used in a wide variety of applications.
Consequently, there are several different interpretations of the meaning and domain of applicability of this ap-
proach. One good way to understand this approach is to compare and relate it to the statistical wave approach.
Its relation to the wave approach has been well established for the case of unbounded random media. The
primary conditions for establishing this equivalence are: ladder approximation to the intensity operator and
quasi-stationary approximation of the fields. We find these two conditions are the only requirements even for
random media with plane parallel boundaries. However, if the boundaries are statistically rough we need to im-
pose additional restrictions. To illustrate this point we considered two statistical wave approaches: the surface
scattering operator approach and the unified approach. In both approaches the integro-differential equations for
intensities are the identical to those used in the RT approach. However the boundary conditions are different
from those in the RT approach. In the case of SSO approach we need to impose the weak surface correlation
approximation to arrive at the boundary conditions of the RT approach. In the case of unified approach we had
to let Φv → 0 and consider only single scattering from the rough surface while deriving the boundary conditions.
With these additional conditions all the three approaches result in the same system of equations. This study has
thus helped us to better understand the three approaches and in particular the relation between the radiative
transfer approach and the statistical wave approach when applied to the problem of scattering from a random
medium layer with rough boundaries.
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Appendix

Wuu =
1

(2π)2
e−2q′′z{|k2|4T vuu + T suu}

T vuu = rect{z,−d}|S>|2e2η′′z1Φv(k⊥ − α⊥; η′ − η′α) + |Suu|2e2η′′z1Φv(k⊥ − α⊥; η′ − η′α)

+|Sud|2e−2η′′z1Φv(k⊥ − α⊥;−η′ − η′α)

T suu = {|Suu|2e−2η′′d + |Sud|2e2η′′d}Φs(k⊥ − α⊥){(k⊥ − α⊥) · α⊥ − η
′2
α }2

Wud = Wuu{η′α → −η′α}

Wdu =
1

(2π)2
e2q

′′z{|k2|4T vdu + T sdu}

T vdu = rect{0, z}|S<|2e−2η′′z1Φv(k⊥ − α⊥;−η′ − η′α) + |Sdu|2e2η′′z1Φv(k⊥ − α⊥; η′ − η′α)

+|Sdd|2e−2η′′z1Φv(k⊥ − α⊥;−η′ − η′α)

T sdu = {|Sdu|2e−2η′′d + |Sdd|2e2η′′d}Φs(k⊥ − α⊥){(k⊥ − α⊥) · α⊥ − η
′2
α }2

Wdd = Wdu{η′α → −η′α}
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Abstract—ENVISAT-ASAR acquires data at different incidence angles. For temporal soil and vegetation
parameters retrieval it is necessary to normalize the radar data for the angular behavior of the radar backscatter.
A simple method for characterizing the angular behavior is by plotting the measurements of the backscattering
coefficient during the dry season (stationary target) as a function of the incidence angle and considering that this
angular dependence is conserved throughout the rainy season as well. However, this method is not sufficiently
precise for data gathered in the rainy season since the scattering mechanisms of the vegetation and soil are
different. Instead, we propose the use of a coherent scattering model for vegetation in order to carry out a more
precise angular normalization. With this method, a higher precision is obtained for the normalization of the
backscattering coefficient at VV polarization during the rainy season, in which the main contribution to the
backscatter is attributed to vegetation.

1. Introduction

The ENVISAT satellite was launched by ESA (European Space Agency) in March 2002 on a sun-synchronous
orbit at a mean altitude of 800 km and an inclination angle of 98.5◦. In this study, we analyzed the data gathered
by the multimode ASAR (Advanced Synthetic Aperture Radar) sensor [1], which operates at C-band at VV,
HH, HV and VH polarizations. Its incidence-angle range is from 15◦ to 45◦.

Due to the fact that data acquisition for a given spot is provided at different polarizations and incidence
angles, it is necessary to perform an angular normalization before exploit the data. When only measured
data are available, a simple procedure to normalize them is by considering that the angular dependence is
conserved during dry and humid seasons. For the gathered 2004 ENVISAT data, it is possible to employ the
HH-polarization response in the dry season to obtain the adjusted angular-dependence curve.

2. Background

The study site is located in northern Mali, in the Gourma region. Its geographical coordinates are 15.35◦ N
and 1.48◦ W.

The site Agoufou is steered by a semi-arid tropical climate defined by the water resources, the day duration
and the temperature amplitude. The rainy season, during the African monsoon, generally starts at the end of
June and finishes in September. The vegetation dynamic is mainly determined by rainfall during the monsoon
[2]. Vegetation development starts after the first rain (not prior to June) and unless the annual plants wilted
before maturity due to lack of rain, the senescence follows the fructification that matches with the end of the
rainy season. This vegetation is composed by shrubs (1% cover), trees (3% cover) and annual herbaceous layer
(5–40% cover). Soil cover range is between 60% and 95% depending on the season. Trees can be classified
into four species: Acacia senegal, Acacia raddiana, Balanites aegyptica and Leptadenia pyrotechnica which
is the main species. During the dry season (from October to June), there is no green vegetation apart from
exception of shrubs and trees. The soil is essentially composed of sand (91.2%) and of clay (4.5%) [2]. Figure 1
shows physical characteristics of soil and vegetation. The vegetation input data were derived from terrain
measurements performed during the 2004 rainy season. The characteristics of both trees and soil roughness are
assumed to be constant throughout all the year.

The herb description is 10 cm length, 0.3 cm width, 0.03 cm thickness and with an erectophile orientation
(0 < α < 360◦, 0◦ < β < 35◦, 40◦ < γ < 50◦). We assume that branch and trunk moistures are constant
throughout the year and are set at 50% and 60%, respectively and its geometrical characteristics are shown in
Tab. 1.
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Figure 1: Vegetation parameters and soil moisture content (data taken in 2004).

Table 1: Tree description.

Layer Layer Vegetal Height Diameter Density orientation

height [m] scatterer [m] [cm] [#/m3] β[◦] γ[◦]

1 (bottom) 0.15 Trunk 0.15 5 0.04 0–30 0–30

2 0.65 Branch 0.65 4 0.036 0–30 0–30

3 0.60 Branch 0.60 2.5 0.098 0–35 0–50

4 (top) 0.60 Branch 0.60 1.76 0.05 0-35 0-50

3. Angular Normalization Algorithm

Currently, angular normalization is based on the hypothesis of the angular dependence preservation through-
out all the year. For ENVISAT 2004 data this process is applied because most of them were gathered at HH
polarization; at this polarization, the main contribution can be assigned to scattering from the soil.

The use of only HH-polarization data does not give enough information about the Sahelian grassland, hence
it is also necessary the VV polarization to understand the savanna response. This establishes the requirement
of a general normalization procedure considering as well the grass contribution when it exits.

To normalize angularly the ENVISAT data, we propose a hybrid algorithm using both measurements and a
coherent scattering model. This algorithm is composed of three main steps:

1. Determination of the soil contribution from the backscattering coefficient data at HH polarization during
the dry season. For this extraction, we consider that soil properties do not suffer any change during this
season.

2. Simulation of the backscattering coefficient as a function of both time (during the growing season) and
incidence angle σ(t,θi) employing the roughness parameters obtained from Step 1 and ancillary data
(vegetation type, density, etc). This allows for a first-order correction to gentle angular variations of
backscattering coefficient.
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3. Determination of the angular normalization factor plot of normalized backscattering coefficient σθ0 (nor-
malized to mean incidence angle) as a function of time to monitor long term temporal variations.

4. Coherent Model

 
Figure 2: Coherent model description.

This paper is based on a coherent model for forest scattering [3], which has been adjusted to the grassland
case. In this model, the vegetation is described as a discrete medium placed on a dielectric soil and composed
of superposed horizontal layers. Each layer is defined by its height and the characteristics of the individual
scatterers. Each scatterer type is described by its dimensions, its spatial density, its moisture content and its
spatial description (orientation and position). The vegetation is represented as a cluster of scatterers composed
of smooth dielectric circular cylinders and thin dielectric ellipsoids [4, 5]. The vegetation generation is based
on the description of each layer. The scatterers are positioned, taking into consideration the no-superposition
condition between elements enforcing a minimal distance between them and using a probabilistic function to
have a realistic distribution.

The coherent model inputs are the scatterer description, the number and the height of layers, the rough-
surface description and radar parameters. The coherent model outputs are the backscattering coefficient (cal-
culated by adding coherently the scattered fields of the observed region), the different scatterer contributions
and the scattering-mechanism contributions. A schematic representation of the model is shown in Figure 2.
The scattering matrix describing each element of the vegetation is built considering four main scattering mech-
anisms: direct scattering from vegetation scatterers, soil-vegetation interaction, vegetation-soil interaction and
soil-vegetation-soil interaction. In this analysis, multiple scattering between scatterers is neglected. In order to
take into account superior layer influence, all of these contributions are attenuated and shifted in phase using
Foldy’s approximation [6]. By adding coherently these two results, the vegetation backscattering coefficient is
obtained.

Soil contribution is then reduced taking into account the attenuation due to vegetation layers. Finally, the
total backscattering coefficient is the addition of the vegetation contribution and the soil contribution. An
average backscattering-coefficient value is obtained by performing the backscattering coefficient over several
realizations to warrant the convergence of the response (100 realizations for the grassland case).

For the case of the Sahelian grassland, trees and herbs were separately generated due to our model generator.
Herbs were modeled enclosed in only one layer and trees were divided in 4 layers. Herbs are modeled as thin
ellipsoids (stems contribution is neglected) and trees as smooth dielectric cylinders (trunks and branches). Total
backscattering coefficient is then built by the incoherent addition of herb and tree contributions.



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 97

5. Simulation Results

Figure 3 shows the ENVISAT measured data for the site 17 (Agoufou) at Global Monitoring Mode without
any normalization, and the angular dependence curve for measured soil contribution. The start of the dry season
is supposed to be on October 3rd (day 277).

 

 
(a) (b)

Figure 3: HH polarization ENVISAT-ASAR measured data without any normalization. b) Angular dependence
curve for the HH polarization acquired during the dry season.

 
   

(a) (b)

Figure 4: a) HH polarization factor plot surface for the angular normalization. b) Comparison between simple
method and hybrid method for 23◦ incidence angle (vertical bars represent temporal rainfall).
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The surface representing the backscattering coefficient at HH polarization as a function of time and incidence
angle is presented in Figure 4 (a). It is shown that as the incidence angle increases, the grass contribution is
more significant to the total backscattering coefficient in the growing period, changing in this way, the incidence
angular dependence depicted during the dry season.

Figure 4 (b) presents the comparison between the simple procedure and the hybrid method for the HH
polarization for 23◦ incidence angle. The simple method depicts a higher dynamic (5.4 dB), in contrast the
hybrid method presents a lower dynamic (4.4 dB).

Both two methods describe a similar behavior but with different maximum levels (about 1.6 dB of difference)
on 29 August (day 242), for which soil moisture content is maximal. The main differences occur during the
period of maximal grass biomass (from 28 July up to 17 September). This confirms the contribution of grass
to the total backscattering coefficient shape and the importance of taking into account grass influence in the
normalization process.

6. Conclusion

This paper proposes a hybrid algorithm to normalize angularly the ENVISAT-ASAR data for the Sahelian
grassland and a comparison with a simple normalization. This algorithm allows a correction to get a more
accurate angular normalization than that obtained by the simple method.

The most important contribution of the hybrid algorithm is the grass-effect calculus on the backscattering-
coefficient shape causing a difference of about 1.5 dB; however it has two important limits: the need of the
ground data and the computing time to carry the simulations out.

This study shows differences when grass contribution is considered within the normalization procedure. In
this case, only HH polarization was analyzed. Following this algorithm, differences with the simple method
could be amplified at VV polarization for which the vegetation contribution is more significant.
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Abstract—Studies of the biological effects and any health related consequences of extremely low frequency
(ELF) electromagnetic fields (EMF) have been going on for over half a century however with contradictory
outcomes. Hence, it is now necessary to stress on standardizing the EMF-health research experiment procedures
in order to enable such experiments become replicable and results comparable. In 1998, a review of several of the
ELF EMF human biological interaction mechanisms regarding field intensities and frequencies was presented to
the Australian Radiation Laboratory of Commonwealth Department of Community Services and Health in 1988
by Andrew W. Wood. Wood’s 1988 assertion of the importance of understanding the interaction mechanisms
did not alter even after a decade when the NIEHS RAPID (http://www.niehs.nih.gov/) gathering of world
experts produced their statement, in which quoted, there have been experiments on possible mechanism/s in
support or refutation of the various proposals however none were replicated. Valberg (Valberg et al., 1997) also
summed up some but failed to include all the claimed proposed mechanisms at the time. This paper is to present
a complete list of the allegedly possible interaction mechanisms to date.

This paper will also report on an academic research on computer modeling of biological effects of ELF
EMF using one of the proposed mechanisms. The research reported here has generally aimed at modeling
the proposals using computer. The initial phase of this effort has concentrated on Ca effect as the number of
publications referencing that was considerable. Calcium is a key element in the biological performance of every
organ in the human body. Thus it deemed imperative to study the effect of EMF on Ca channels of a living
cell.

Furthermore, considerations for setting standards in EMF experimental research protocols are recommended.
Developing a standard protocol allows results of future experiments to be comparable; and, the chance of
replicability in EMF-health improve, which this aspect has indisputably been absent in EMF research projects
thus far. Replication is desirable mainly because it eliminates bias, artifact and systematic errors. Replication
is almost impossible in the case of epidemiological studies however in experimentation is possible if the details
are specified in full. To authenticate any effect of MF, it is not satisfactory to present experimental results
without reporting the experimental settings in their entirety.

1. Introduction

Allegations of the biological effects and health hazards of extremely low frequency (ELF) electromagnetic
fields (EMF) have been debated for over fifty years. The epidemiological and experimental studies and clari-
fication of conclusions of both research methods have been contradictory. Hence, stipulations have arisen for
standardizing EMF-health research experiment procedures so that results of various experiments can be repli-
cated and compared. This paper is to present a list of interaction mechanisms suggested thus far followed by
a discussion on setting standard protocols in EMF experimental research. Using a standard protocol allows
outcomes of experiments become comparable and replicable. The replicability attribute has undeniably been
missing in EMF research projects to date [35].

2. Introducing the Proposed Interaction Mechanisms

Non-ionising radiations are those EMF with frequencies less than 2×1016 Hz. They can be grouped into: (i)
frequencies over 1 GHz e.g., microwave, infrared and visible light; (ii) frequencies over 3 kHz but below 1 GHz
e.g., those in communication systems; and, (iii) frequencies less than 3 kHz known as extremely low frequency
or ELF.
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The higher frequency exposure can cause dielectric heating by enforcing intra-molecular friction via vibrating
momentum increase in water molecules as happens in a kitchen microwave cooking oven. Radiation in this
domain can primarily affect the human superficially e.g., skin, cranium, eyes etc and the heat generated can
subsequently move deeper onto the body and effectively heat all the internal human organs. Radiation in the
GHz range, e.g., mobile phone handsets, antenna and towers’ exposure can cause a heating effect penetrating
more inside the human body. In the ELF range (< 3 kHz) for instance. when one is exposed to power-line
frequencies and/or home appliances, the effects are not yet well clarified. In other words, the jury is still out
on what the interaction mechanism is. Unlike the higher frequency radiations stated above, the electric and
magnetic fields in the ELF range can be considered de-coupled. The electric component may barely diffuse
in the human body. A widespread observation is via skin hair and only for high flux EMF. But, magnetic
component may well penetrate the body nearly un-attenuated.

A review [41] of some of the ELF EMF human biological interaction mechanisms with respect to field
intensities and frequencies was presented to the Australian Radiation Laboratory of Commonwealth Department
of Community Services and Health in 1988. Wood’s 1988 affirmation of the importance of understanding the
interaction mechanisms did not alter even after a decade years when the NIEHS RAPID [27] gathering of world
experts released their report, in which cited, there have been experiments on possible mechanism/s in support
or refutation of the various proposals3 however none were replicatedThe interaction mechanisms proposed to
date are:

(1) Magnetite;
(2) Free radical;
(3) Cell membrane;
(4) Cell nuclei;
(5) Heat shock proteins;
(6) Resonance;
(7) Blood-brain barrier;
(8) Spatial summation;
(9) Field induction;
(10) Energy; and,
(11) Corona.

Describing all the above require a book to be written. However, we will endeavour to introduce these in
layman terms briefly in the presentation. The suggested references in support and/or refutation and for better
understanding each of the proposed mechanisms are as listed below [35].
Magnetite: Kirschvink et al. [2001], Phillips [1996] and NIEHS [1997].
Free radical: Valberg et al. [1997], Adair [1994] and NIEHS [1997].
Cell membrane: Miles [1969], Cotman and McGaugh [1980], McLeod [1995], Kavaliers et al. [1996], Adey
[1981], Blackman et al. [1988], Wood [1988], Ueno [1996], Manni et al. [2002] and Szabo et al. [2001].
Cell nuclei: Lai and Singh [1997], Goodman and Blank [2002], Adair [1998], Ruiz-Gmez et al. [2002], Yomori
et al. [2002] and Blank and Goodman [1998].
Heat shock proteins: Zryd et al. [2000].
Resonance: Blackman et al. [1985], Liboff et al. [1987], Lednev [1991], NIEHS [1997], Prato et al. [1996], Prato
et al. [1997], Hendee et al. [1996] and Prato et al. [2000].
Blood-brain barrier: Andreassi [1995], Salford et al. [1994] and Lai [1992].
Spatial summation: Valberg et al., [1997] and Astumian et al. [995].
Field induction: Gailey et al. [997], Dimbylow [1998], Baraton and Hutzler [1996], Sagan [1996] and Kaune
et al. [2002].
Energy: Valberg et al. [1997].
Corona: Fews et al. [1999], Hopwood [1992], Wood [1993].

Any experimental design to authenticate our theoretical model needs to be replicable. Replication is desirable
mainly because it eliminates bias, artifact and systematic errors4. Replication is almost impossible in the case of
epidemiological studies however in experimentation is possible if the details are specified in full. To substantiate
any effect of MF, it is not adequate to present experimental results without reporting the experimental settings
in their entirety.

A research has begun by our team using computer simulation of the proposed mechanisms starting with
modeling the effect of ELF EMF on the calcium channels. The research project team preparing this paper has
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also aimed at modeling the proposals using computer. The initial phase of this study concentrated on Ca effect.
Calcium is a crucial element in the biological functioning of every organ in human body. Thus it is important
to study the effect of EMF on Ca channels of a living cell.

3. Replication in EMF Research

Replication in EMF research is advantageous since it eradicates bias, artefact and systematic errors [35].
Replication is almost impossible in the case of epidemiological studies but in laboratory experimentation is
achievable if the details are specified completely. To validate any biological effect of EMF, it is inadequate
to present experimental results without reporting the settings fully. This would make certain the effects are
replicable. A proper EMF replication necessitates applying excellent quality assurance measures to ensure
matching exposure parameters [34]. These include the human biological endpoint of interest, field characteristics,
exposure timing, physical dimensions of the exposure (local or whole body), field strength, DC or AC (sinusoidal
or pulsating) frequency, harmonics, field alignment, field direction (linear vs. polarised), instrumentation,
laboratory temperature, air-conditioning, light quantity, quality and intensity, background and environmental
EMF, time of day, subject’s history of exposure, subject’s prior to experiment exposure, subject’s adaptability
to environmental factors, food intake and many others. Obviously, one has limited control over the subject’s
individual biological condition prior to the experiment [35].

Range of some of the parameters listed above may be controlled using correctly planned, designed and
executed protocols. In planning a laboratory research project on the human health effects of EMF, biological
measures chosen for the study need to be relevant.

4. Results and Discussion

The ELF bioelectromagnetics biological effects research has entrapped the scientists and the public in a maze
since 1960’s; no one has yet rescued the concerned community by provision of replicable proof [35]. Besides, a
synthesis of the above-listed mechanisms may have to be considered if reasonable in an endeavor to formulate
an indisputable interaction mechanism theory verifiable by experimental work.

This area of science is widely accepted as an area of controversial results. The proposed interaction mecha-
nisms were: Magnetite; Free radical; Cell membrane; Cell nuclei; Heat shock proteins; Resonance; Blood-brain
barrier; Spatial summation; Field induction; Energy; and, Corona. Acceptance or rejection of the proposals is
impossible due to lack of independently replicable experiment. The parameters to be considered in a replication
include the biological endpoint, field characteristics, strength, signal waveform, frequency, harmonics, alignment,
direction, exposure timing, physical dimensions, instrumentation, laboratory temperature, air-conditioning, light
quantity, quality and intensity, background and environmental EMF, time of day, subject’s history of exposure,
subject’s prior to experiment exposure, subject’s adaptability to environmental factors, food intake and many
others. Obviously, one has limited control over the subject’s individual biological condition prior to the experi-
ment.

5. Conclusions

None of the alleged interaction mechanisms were proven with replication. Hence, it was concluded that,
there was vividly a need for future experimental research in this field using a standard set of experimental
research protocols.

Finally, experimental design efforts for testing the interaction mechanism/s theories in our research group
are currently tending to focus on protein folding and Ca channels which are slow biological processes. Any
experimental design to verify our theoretical model must be replicable. A replication necessitates applying
excellent quality assurance measures to match exposure parameters and conditions.
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Abstract—Since the 1990’s, use of mobile phones has augmented worldwide generating a public concern as
to whether frequent utilization of such devices is unsafe. This provoked EMF researchers to find suitable
techniques of assessing radiation blueprint and exposure hazards if any. Most research groups focused on two
techniques: experimental measurements and finite-difference time-domain (FDTD) computations. Computation
of the specific absorption rate (SAR) generated by cellular phones inside two models of the human head is
presented in this paper. Two models of mobile phones were considered working at 900 and 1800 MHz bands
according to the Global System for Mobile Communication. Radiated energy distributions and averaged SAR
values in 1 g and 10 g of tissue were computed inside the models of head using FDTD. Computations were
compared with a realistic head model constructed with the MRI scans. The distribution of the local SAR in the
head was similar to that of the simplified head models. The maximum local SAR calculated was 53.43 W/kg and
the maximum SAR(10 g) was 2.96 W/kg, both for 1 W output power from the antenna. The results indicated
the area of the maximum local SAR was situated in outer layer of skull, where muscle and skin were. The
important parameters in absorbed energy in the head were the type of antenna, current distribution and the
distance between head and antenna. The head models used for simulation proved as insignificant parameter in
the calculations.

1. Introduction
Within only the last ten years, mobile phone usage has been rapidly spread globally. In chorus with the

expanding usage, a question has been raised repeatedly as to whether frequent usage of such a device which
radiates GHz electromagnetic field onto the human head is unsafe. This rapid expansion has thus pushed
the research toward the necessity of finding a reliable means of analyzing mobile phone for radiation pattern
performance to address the safety concerns. It is broadly accepted that mobile phones cause heating of the
human organ exposed to their radiation and specifically the human head. The current exposure limits are
based on Specific Absorption Rate (SAR) of the exposure heat. A SAR limit of 2 W/kg averaged over any
contiguous 10 g head tissue was recommended by the Council of European Union [1] for the general public. This
recommendation in a way acknowledged that a simple cubical geometry used may yield calculated dosimetric
quantities of conservative values corresponding to the exposure guidelines.

It has been a while since, most research groups studying biological effects of mobile phones have focused on
two methods: experimental measurements and finite-difference time-domain (FTDT) computations [2–5]. While
experimental measurements make use of the actual mobile phone being tested [6], there remains a question of
appropriateness of representing the human head with simplified phantoms that for compliance testing include,
at most, two or three tissue type materials [4, 5]. The FDTD method, on the other hand, can be questioned
on its lack of a realistic anatomically heterogeneity representation of the radiation exposure of mobile phone
through the human head model [7].

In the research work reported here, the authors focused on the absorption of energy in the human head from
near-field radiation of wireless phones. Two models for mobile phone (half-wavelength dipole and a quarter-
wavelength monopole) and two simple models for head (homogenous and multi-layer spherical) were considered.
A modern method for calculating maximum SAR (10 g) was introduced and the results were compared with a
realistic MRI model of head [6, 7].

2. Numerical Method and Modeling
Two models used for the human head were spheres of 20 cm diameter. The first model was a sphere consisting

entirely of material with the electric properties of brain tissue. The second model comprised three layers as
illustrated in Fig. 1. The spherical model had a uniform content at its core (representing the human brain) and
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the core was surrounded by two spherical shells representing the skull (bone) and the muscle and skin (skin)
with their respective electromagnetic properties.

Figure 1: The model of the layered sphere. Figure 2: The model of the monopole antenna
mounted on top of the metal box.

The handset has been modeled in two different ways, namely a half-wavelength dipole and a quarter-
wavelength monopole both mounted on top of a metal box. The thickness of the antennas in both cases
was one FDTD cell. The antennas were centered on the top surface of a conducting box with dimensions
120mm× 55mm× 20mm (see Fig. 2). The face of the metal box next to the user was covered with a dielectric
material of 5 mm thickness. The feeding gap of the dipole antenna was placed at a distance of 0.5 mm from
the sphere. However, the feeding gap of the monopole antenna located 2 cm away from the sphere, since the
minimum distance between the sphere and metal box was again 0.5 cm [4, 5, 8].

The simulation was performed at the two common telecommunication carrier frequencies of 900 MHz and
1800 MHz. The handset antenna model length was adjusted according to the wavelength in free space obviously
corresponding to the frequency in use. Combinations of the cases were also investigated as detailed in Table 1.
The properties of tissue material considered in the computer simulation modeling at both frequencies [3] were
as tabulated in Table 2.

Table 1: Description of the cases examined.

Case Homogeneous Sphere Layered Sphere 900MHz 1800 MHz Dipole Monopole

1 ∗ ∗ ∗

2 ∗ ∗ ∗

3 ∗ ∗ ∗

4 ∗ ∗ ∗

5 ∗ ∗ ∗

6 ∗ ∗ ∗

7 ∗ ∗ ∗

8 ∗ ∗ ∗

A software sourced from the Utah University of Technology (http://www.fdtd.org) was used for the simula-
tion. The lattice for all cases was formed by a uniform rectilinear grid with a space step of 2.5 mm in all three
directions. The simulation time was twenty periods of the source signal. A hard source model was positioned
at the feeding gap, which had the size of one cell [3, 9–12]. The source had a sinusoidal time behavior and was
switched on at the beginning of the computer run. In all simulations the output power of the antenna was 1 W.
Mur’s second-order absorption boundary conditions [13, 14] were used to truncate the computational domain.

The distribution of the local SAR values can be calculated directly from the electric field distribution, which
results from the computer run. This was achieved using Eq. (1) as the sinusoidal source leads to a steady state
electric field, numerically analogous with the same sinusoidal variation [3–6].

SAR =
σE2

max

2p
(1)
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Table 2: The properties of the materials used in the simulations.

Material
900 MHz

εr

900MHz
σ

1800 MHz
εr

1800 MHz
σ

Mass Density
(Kg/m3)

Skin 39.5 0.7 38.2 0.9 1080

Bone (cortical) 12.5 0.17 12.0 0.29 1180

Brain (Grey matter) 56.8 1.1 51.8 1.5 1050

Dielectric Phone Cover 2.7 0.0016 2.7 0.003 -

To test the hypothesis that steady state was reached after twenty periods of the numerical source signal,
the time evolution of the electric field at several points in the lattice was monitored during each computer run
[3, 7, 15]. It was found that for all the cases examined, the simulation time was more than enough to arrive at
steady state.

The derivation of the average SAR values needs some post-processing of the simulation results. The SAR val-
ues were averaged over 1 g and 10 g of tissue. The way averaging volume was selected was crucial for the derived

Figure 3: The cube volumes used for
calculating the SAR (10 g) values.

average SAR distributions [3, 7, 15]; hence the averaging procedure
adopted had to be clarified. The edge of each cell in the lattice was
2.5 mm which allowed for a 1 cm cube to be considered per four cells.
This cube provided 1 g of tissue for a mass density of 1 g/cm3. Noting
that the area of SAR (10 g) was situated outside of the skull area (in
the muscle) and the size of the cube was sufficiently small. There-
fore, the computation output results allowed direct calculation of the
maximum SAR. Conversely, it was impossible to have a cubic volume
of tissue with a mass of 10 g; and, as in the previous method a cube
of 2.25 cm sides (nine cells) was considered (method 1). In this case,
due to the long length of the cube and its location with different SAR
specially in between skull/brain and skull/muscle, the calculations re-
sulted in a noticeable difference with previously published studies. The
process details were reviewed and checked again and found to be pre-
cise. Furthermore, two cubes were considered, 1.75 cm3 (seven cells)
and 2.25 cm3 (nine cells) co-centered as illustrated in Fig. 3. The SAR (10 g) value was subsequently calculated
considering the contribution of the smaller cube and the contribution of the cubical shell around it each with a
predefined weighting coefficient using Eq. (2).

SAR(10 g) =

∑
v1

(SAR)imi +
∑

v2−v1
(SAR)jmj

∑
v1

mi +
∑

v2−v1
mj

(2)

where mi = ρi∆V and mj = Pj∆V
10−V1

V2−V1
[3]. Index i refers to the lattice cells inside the inner cube and index

j to those around it (method 2).

Table 3: Total absorbed power, maximum SAR(1 g), maximum SAR(10 g) and local SAR in the head model
(antenna output power 1 W).

Case Pabs

(W)
SAR(1g)max

(W/kg)

SAR(10g)max

(W/kg)
(Method 1)

SAR(10g)max

(W/kg)
(Method 2)

Local
SARmax

(W/kg)

1 0.77 2.45 2.96 1.89 26.19

2 0.41 0.74 0.82 0.53 4.23

3 0.75 4.67 6.15 3.89 70.16

4 0.24 0.52 0.63 0.41 3.92

5 0.76 1.64 1.91 1.22 18.86

6 0.48 0.5 0.58 0.37 3.72

7 0.83 4.13 5.01 3.18 54.14

8 0.30 0.59 0.69 0.44 4.87
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3. Results

Table 3 presents a summary of the total absorbed power, the maximum SAR (1 g), the SAR (10 g) and
local SAR values. These results indicated that the model of the handset device played a more important role in
dosimetry than the model of human head. This was evident when looked at the difference in calculated values; for
instance, considering case 1 (homogeneous sphere, 900 MHz, λ/2 dipole) with case 5 (layered sphere, 900 MHz,
λ/2 dipole) yielded smaller figures than when the case 1 was considered with case 2 (layered sphere, 900 MHz,
λ/4 monopole). As reported previously [4, 5, 8], this research confirmed that in most cases the homogeneous
sphere resulted in a larger SAR values than the layered sphere. It was also apparent from the results in Table 3
that modeling the handset as a dipole yielded higher SAR values than modeling it as a monopole.

However a direct comparison between the respective pairs of cases was not possible, beecause it could be
argued that the smaller distance of the dipole feeding gap to the head may account for the larger SAR values.
So, the distance of the λ/2 dipole was varied for case 3 (homogeneous sphere, 1800 MHz, λ/2 dipole) to study
its significance. As shown in Fig. 4, at 2 cm distance the values obtained with the λ/2 dipole are still larger
than case 4 (homogeneous sphere, 1800 MHz, λ/4 monopole). It can be noted from Fig. 4 that the maximum
local SAR doesn’t fall off inversely proportional to the square of distance, as it would in the far field.

Figure 4: Variation of maximum local SAR values.

The effect of different operating frequencies was as illustrated in Fig. 5 and Fig. 6. An observation was that
the SAR decreased faster in the higher frequency range as expected due to the smaller penetration depth.

Figure 5: The profile of local SAR across the ho-
mogeneous spherical head model. The distance was
measured from the point of the source closest to the
head model. The SAR values were normalized to the
maximum to show the effect of frequency.

Figure 6: The profile of local SAR across the lay-
ered spherical head model. The distance was mea-
sured from the point of the source closest to the head
model. The SAR values were normalized to the max-
imum to show the effect of frequency.

4. Comparison between Case Study and MRI Human Head Model

The MRI model used in this work was the Bradford University Telecommunication Research Center Tissue-
classified high-resolution voxel image of a human head [6, 7]. The original resolution of the model was 0.909 mm
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in the x and y direction on the axial plane and 1.480 mm in the z (vertical) direction. The phantom was re-
sampled to have cubic voxels with each side of 0.25 mm length. A λ/4 monopole on top of a metal box was
used for the device model, with the source operating at 900 MHz. The distribution of the local SAR in the head
(Fig. 7) was similar to that of the simplified head models. The maximum local SAR calculated was 53.43 W/kg
and the maximum SAR(10 g) was 2.96 W/kg, both for 1 W output power from the antenna.

Figure 7: Distribution of the local SAR on a) the middle coronal plane and b) the middle axial plane of the
MRI head model for the monopole on top of the Box operating at 900 MHz. The values are normalized to the
maximum local SAR.

5. Discussion and Conclusions

The maximum SAR(10 g) value was higher than the basic limit of 2 W/kg SAR(10 g) over 6 minute period
according to the widely adopted exposure guidelines [1]; however, the following points must be noted:

1)In the simulations, it was assumed that the device was operating continuously. Nevertheless, time-
averaged power of a GSM device under real operating conditions was 1/8 of its nominal power. Therefore, for

Figure 8: Percentage of volume in the spherical
head models for which the local SAR has a value
smaller than 10% of the maximum local SAR.

a nominal operating power of 1W the actual time-averaged
output power was 0.125W [see also 3–5, 7, 8, 15].

2)The introduction of a dielectric scatterer like the human
head in the vicinity of the radiating antenna alters the input
impedance of the latter. In the calculations it was assumed
that all the power generated and transmitted by the electronic
devices to the antenna was fully radiated out; i.e., the antenna
and the transmission line were completely matched. This as-
sumption represented the worse case since only a portion of
the power was radiated from the antenna.

3)It was shown that the use of a metal box model for the
phone instead of a CAD model gives more conservative results,
i.e., higher SAR values [6].

Although the total absorbed power in most cases was lower
for 1800 MHz than for 900 MHz, the maximum SAR values are
higher for the higher frequency. The distribution of SAR in
the spherical head models shown as in Fig. 7, indicated that
the large SAR values were restricted within a volume close to
the surface of the model. In fact, in more than 94% of the head model volume the SAR was smaller than 10%
of the local maximum SAR for each case (see Fig. 8).

Finally, the results demonstrated that the area of the maximum local SAR was situated in outer layer
of skull, where muscle and skin were located. Since the maximum difference in dielectric properties between
muscle and skull was more than other tissues, the maximum reflection happened around the boundary of the
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two tissues. Thus maximum absorption power was seen in this border; and, because of the skin effect, with
increasing frequency the situation of the maximum local SAR would get closer to the outer layer of the head.
Also the results showed that the maximum SAR (10 g) was about 20% to 30% lower than maximum SAR (1 g)
under similar conditions.

In conclusion, the important parameters affecting the absorbed energy in the human head exposed to mobile
phone radiation were the type of antenna, current distribution and the distance between head and antenna;
and, head models used for simulation did not play any significant role in the calculations.
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Abstract—Microwave engineering now a days plays a vital tool in diagnostic and therapeutic medicine. A
quality evaluation of human semen at microwave frequencies using the measurements made at different intervals
of time by cavity perturbation technique in the S-band of microwave spectrum is presented in this paper. Semen
samples were also examined in the microscopic as well as macroscopic level in clinical laboratory. It is observed
that conductivity of semen depends upon the motility of sperm and it increases as time elapses, which finds
applications in forensic medicine.

1. Introduction

Accurate information about the dielectric properties of tissues and biological liquids is important for studies
on the biological effects at radio and microwaves frequencies. In macroscopic level, these electrical properties
determine the energy deposition patterns in tissue upon irradiation by an electromagnetic field. In microscopic
level, they reflect the molecular mechanisms, which underlie the absorption of electromagnetic energy by the
tissue or liquids. Knowledge of the microwave dielectric properties of human tissues is essential for the under-
standing and development of medical microwave techniques. Microwave thermography, microwave hyperthermia
and microwave tomography all rely on processes fundamentally determined by the high frequency electromag-
netic properties of human tissues. Tissue temperature pattern retrieval in the microwave thermography is
achieved using models of the underlying tissue structure, which depend particularly on the dielectric properties
of the tissue [1]. A recent review of published data on animal and human dielectric parameters shows that for
most tissue types animal measurements are good substitute for human tissues [2].

Gabriel et al., Cook and Land et al., reported the dielectric parameters of various human tissues at different
RF frequencies. [3–6]. Microwave study of human blood using coaxial line and wave-guide methods was carried
out by Cook [7]. Tissue samples of human brain at microwave frequencies were analysed using sample cell
terminated transmission line methods [8]. Open-ended coaxial line method allows measurements of tissue
samples over a wide range of frequencies [9].

Microwave medical tomography is emerging as a novel non-hazardous method of imaging for the detection
of fracture, swelling and diagnosis of tumors. Active and passive microwave imaging for disease detection and
treatment monitoring require proper knowledge of body tissue dielectric properties at the lower microwave
frequencies [10–12]. Studies on the variation of dielectric properties of body fluids and urinary calcifications at
microwave frequencies have revealed that diagnosis is possible through cavity perturbation technique [13–15].
The present paper reports dielectric properties of semen at microwave frequencies as well as the quantitative
analysis in the clinical laboratory. It is observed that conductivity of semen depends upon the motility of sperm
as well as the time elapses after ejaculation.

2. Materials and Methods

The experimental set-up consists of a transmission type S-band rectangular cavity resonator, HP 8714 ET
network analyser. The cavity resonator is a transmission line with one or both ends closed. The resonant
frequencies are determined by the length of the resonator. The resonator in this set-up is excited in the TE10ρ

mode. The sample holder which is made of glass in the form of a capillary tube flared to a disk shaped bulb at
the bottom is placed into the cavity through the non-radiating cavity slot, at broader side of the cavity which
can facilitate the easy movement of the holder. The resonant frequency fo and the corresponding quality factor
Qo of the cavity at each resonant peak with the empty sample holder placed at the maximum electric field are
noted. The same holder filled with known amount of sample under study is again introduced into the cavity
resonator through the non-radiating slot. The resonant frequencies of the sample loaded cavity is selected and
the position of the sample is adjusted for maximum perturbation (i.e., maximum shift of resonant frequency
with minimum amplitude for the peak). The new resonant frequency fs and the quality factor Qs are noted.
The same procedure is repeated for other resonant frequencies.
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3. Theory of Cavity Perturbation

When a material is introduced into a resonant cavity, the cavity field distribution and resonant frequency are
changed which depend on shape, electromagnetic properties and its position in the fields of the cavity. Dielectric
material interacts only with electric field in the cavity.

According to the theory of cavity perturbation, the complex frequency shift is related as [16]

− dΩ

Ω
≈

(ε̄r − 1)

∫

Vs

E.E∗
0dV

2

∫

Vc

| E0 |2 dV
(1)

But
dΩ

Ω
≈ dω

ω
+
j

2

[
1

Qs
− 1

Q0

]
(2)

Equating (1) and (2) and separating real and imaginary parts results

ε′r − 1 =
fo − fs

2fs

(
Vc
Vs

)
(3)

ε′′r =
Vc

4Vs

(
Qo −Qs
QoQs

)
(4)

Here, ε̄r = ε′r−jε′′r , ε̄r is the relative complex permittivity of the sample, ε′r is the real part of the relative complex
permittivity, which is known as dielectric constant. ε′′r is the imaginary part of the relative complex permittivity
associated with the dielectric loss of the material. Vs and Vc are corresponding volumes of the sample and the
cavity resonator. The conductivity can be related to the imaginary part of the complex dielectric constant as

σε = ωε′′ = 2πfε0ε
′′
r (5)

4. Results and Discussion

Table 1: Variation of dielectric constant with frequency at different time intervals.

Frequency (MHz)
T = 5 minutes

M23 M24 M29 M33
2439.019
2683.882
2969.983

11.93
11.91
12.12

12.90
12.44
13.92

11.17
10.93
11.96

14.11
12.52
13.21

T = 15 minutes
2439.019
2683.882
2969.983

12.73
11.87
11.77

12.97
12.76
13.01

11.21
12.53
10.11

13.12
11.77
12.23

T = 30 minutes
2439.019
2683.882
2969.983

11.01
12.37
13.53

12.60
12.56
12.90

12.86
12.38
12.71

14.01
13.81
13.92

T = 45 minutes
2439.019
2683.882
2969.983

13.31
13.80
13.06

12.61
12.11
12.84

11.74
11.82
11.95

13.22
13.71
13.51
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Table 2: Quantitative analysis of semen in the clinical laboratory.

SEMEN ANALYSIS

M23 M24 M29 M33

Time of
collection

12.00 PM 12.15 PM 12.30 PM 12.35 PM

Time of
liquefaction

12.30 PM 12.45 PM 1.00 PM 1.05 PM

MACROSCOPIC EXAMINATION

Volume 1 ml 1.5 ml 0.5 ml 1 ml

Colour Opaque grey Opaque grey Opaque grey Opaque grey

Viscosity Normal Normal Normal Normal

pH 8.0 8.0 8.0 8.0

Liquefaction Within 30 Within 30 Within 30 Within 30

minutes minutes minutes minutes

MICROSCOPIC EXAMINATION

Motility

Quick 55 % 60 % 70 % 45 %

Sluggish 15 % 15 % 10 % 15 %

Dead 30 % 25 % 20 % 40 %

Sperm count 85million/ml 95 million/ml 100 million/ml 75million/ml

Pus cells 2-3/hpf 2-4/hpf 1-2/hpf 1-2/hpf

Morphology

Normal 85 % 90 % 88 % 89 %

Giant Head 3 % 2 % 3 % 3 %

Round head 4 % 4 % 2 % 2 %

Pin head 5 % 2 % 4 % 5 %

Double head 3 % 2 % 3 % 1 %

The microwave studies on the samples are done by cavity perturbation technique and the results are shown
in Table 1 and in Figures 1 and 2. The clinical evaluation of the semen samples are done and the results
are tabulated in Table 2. Table 1 indicates the variation of dielectric constant of different semen samples at
different time intervals after ejaculation. It is observed that the dielectric constant is consistent at all frequencies
at different intervals of time after ejaculation. From Figure 1, it is observed that the conductivity of the semen
samples increases as frequency increases. This indicates that semen is lossier at higher frequencies due to the
presence of the high motile quick sperms and its absorption of electromagnetic energy. The conductivity of
the sample is more for high motile quick sperms and low conductivity for the dead sperms. From Figure 2,
it is observed that the conductivity of semen increase as time elapses. This is due to the clotting enzyme of
the prostatic fluid, which forms a coagulum in early stages after ejaculation, which makes the sperm remain
relatively immobile, because of the viscosity of the coagulum [17]. The conductivity is relatively low due to this
effect in early stages. As coagulum dissolves during the next 5 to 15 minutes, sperms become highly motile,
which causes an increase in the conductivity.

This has potential application in forensic medicine in that the elapsed time after ejaculation is directly
related to the conductivity of semen.
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Figure 1: Conductivity of semen.

Figure 2: Temporal behaviour of conductivity of M24.

5. Conclusion

The microwave study of the semen samples is done using cavity perturbation technique. This technique
requires very small volume of sample and it is particularly applicable to biological samples like semen. The
study shows that the dielectric constant of given semen sample does not show appreciable variation with time or
with frequency. But it is observed that the conductivity of the semen sample increases as frequency increases,
which shows that semen is lossier at higher frequencies. Samples with high conductivity indicates the presence
of more high motile quick sperms and low conductivity indicate the more dead sperms. The conductivity of
semen increases as time elapses and this finds application in forensic medicine to find the elspsed time after
ejaculation.
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Effects from the Thin Metallic Substrate Sandwiched in
Planar Multilayer Microstrip Lines

L. Zhang and J. M. Song
Iowa State University, USA

Abstract—This paper studies the dispersion characteristics of open multilayer microstrip lines with a thin
highly-conductive metallic substrate using the spectral domain approach. From the numerical results, it is
found that, in both lossy (metal-insulator-silicon structure such as Si-SiO2) and lossless configurations (thin
metal between lossless dielectric microstrip line), at the low frequency range, this thin metallic substrate can
excite slow waves. And accordingly the frequency dependent transmission-line characteristics of interconnects,
such as propagation constant, attenuation and the characteristic impedance, can change remarkably with the
existence of the thin metallic substrate.

1. Introduction

The lossy transmission line structures gain more attentions due to the fast development of the VLSI semicon-
ductor circuits. In this case, multilevel interconnect networks are introduced into multilayer silicon structures
to enable great efficiency of semiconductor integration. But this is also accompanied with many challenges to
interconnect in circuit design. From the viewpoint of signal integrity, these complicated structures of intercon-
nect network make the circuit much vulnerable to the substrate coupling of noise, power supply noise, ground
bounce, crosstalk, ringing, antenna effects etc.

As one solution, very thin highly-conductive substrates are added into multilayer structures as ground to
depress or shield away the harsh effects. Cregut et al., showed that, by certain metallic substrate configuration,
the crosstalk can be reduced as well as the transient performance improved [1]. However, at some low RF and
microwave frequencies, the skin depth may be much larger than the metal thickness of profile. The electro-
magnetic wave can penetrate the thin metallic substrate and reach further deeply into the layers underneath.
In another words, the electromagnetic wave can “see through” and consequently interact with the multilayer
configuration underneath. Considering this phenomenon, Song et al. found the frequency dependent character-
istics or dispersion characteristics of interconnects, such as resistance, inductance, capacitance, and conductance
(RLCG) per unit length, change remarkably with the existence of thin metallic substrate [2].

The previous work of planar multilayer microstrip line starts with the hypothesis of the perfect electric
conductor (PEC) ground plane or impedance boundary condition (IBC), and considers the effects of the strip
with finite conductivity or thickness. This paper focus on the effects of this thin but highly conductive substrate
in the middle substrate. To adequately analyze this effect, the spectral domain approach (SDA) is used [3, 4].
The simplified model of an open microstrip line is proposed, and the corresponding 2-dimensional Green’s
functions of multilayer microstrip line are deduced. The method of moments is applied to solve the related
eigenvalue problem numerically. Thus the dispersion performances of the propagation constant, attenuation
and the impedance of open multilayer microstrip lines are simulated numerically. It also shows that the slow
wave can be excited.

2. Modelling and Spectral Domain Approach

The open microstrip line with considered thin metallic substrate is shown in Fig. 1. The substrates are
assumed to be uniform and infinite in both the x and z directions. The signal strip as well as the lowest ground
plane is taken as infinitesimally thin and PEC. After taking a spatial Fourier transformation in the x direction,
the coupled integral equations on the surface of the strip line become the algebraic ones as following

[
Ẽx(α, ys)

Ẽz(α, ys)

]
=

[
Z̃xx(α, ys) Z̃xz(α, ys)

Z̃zx(α, ys) Z̃zz(α, ys)

] [
J̃x
J̃z

]
(1)

where Z̃xx, Z̃xz, Z̃zx and Z̃zz are the dyadic Green’s functions for microstrip geometry. α denotes the spectral
domain variable in x direction. ys stands for the interface where the signal strip located on. The immittance
approach [3] decouples the field into two independent configurations as transverse electric (TEy) and transverse
magnetic (TMy) modes. Using the transmission line modelling (TLM), the Green’s functions are derived as
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Figure 1: Configuration of 3-layer open microstrip line with very thin metallic substrate with thickness t (grey).

parallel combination of the admittance seen above and below the interface ys. Then the Galerkin’s method
is used to solve the equation (1) for the propagation constant. The current density J̃x and J̃z are separately
expanded into a series of basis functions as

J̃x =

M∑

m=1

amJ̃xm, J̃z =

N∑

n=1

bnJ̃zn, (2)

where the am and bn are the coefficients of current basis function. After substituting the current expansions
(2) into (1) and doing the scalar product on both sides, based on the Parseval theorem, the integral equation
is discretized into a homogeneous system with M +N linear equations. Consequently the value of propagation
constant is directly correspondent to the eigenvalue of the system which makes the determinant of the following
equation equal to zero.

M∑

m=1

amK
xx
i,m +

N∑

n=1

bnK
xz
i,n = 0 (i = 1, . . . ,M)

M∑

m=1

amK
zx
j,m +

N∑

n=1

bnK
zz
j,n = 0 (j = 1, . . . , N) (3)

The real part of the complex wave number is related directly with the propagation wavelength and phase velocity
while the imaginary part is the attenuation per unit length along the z direction.

3. Dispersion Characteristics

In this section, the influences of this very thin metallic substrate on the performance of microstrip are simu-
lated. One thin metallic substrate is inserted into a metal-insulator-semiconductor (MIS) structure and a loss-
less microstrip line, which results in two multilayer cases respectively: the metal-insulator-metal-semiconductor
(MIMS) and metal-insulator-metal-insulator (MIMI) to be studied in the following.

3.1. Very Thin Metallic Substrate in Lossy System
Here one modified case of MIS structure is considered with a thin metallic substrate inserted between the

dielectric SiO2 and lossy Si as shown in Fig. 2(b). The εr of the silicon dioxide is 4 and its thickness is 1µm. The
width of strip is 160µm. The thickness of the silicon layer is 250µm with εr = 12 and conductivity δ = 5 S/m.
Fig. 2 shows the frequency dependence of the attenuation constant and the normalized guiding wavelength,
which is equivalent to the phase velocity normalized by the speed of the light in free space. When the t equals
to zero, this modified structure is degraded into the typical metal-insulator-silicon structure previously studied
by the Hasegawa et al. [5]. Our results agree well with the one calculated by Cano, Medina and Horno shown
as rectangular dots in Fig. 2. The further validation can be found in [7].

In Figure 2(a), as the frequency decreases, the normalized guiding wavelength converges to about 0.06. So
the wave propagates on the microstrip lines much slower than in free space, which is known as the slow wave
effect. In addition, several “limit” curves are marked. When the thickness of the middle metallic substrate grows
to infinity, the effect of the silicon substrate and PEC ground underneath become negligible. Another curve is
obtained by treating the middle metal as PEC to make the transmission system become lossless. This curve fits
well with the result of Pramanick’s and Bhartia’s formula [8] shown as circle dots. With increasing the frequency,
each curve with different thickness converges consequently to the critical curve representing the infinite metal
thickness. This attributes to the fact that the skin depth decreases as the frequency increases. Physically it
means the electromagnetic field experiences more attenuation when penetrating the same conductive metallic
substrate. Thus at some points, the whole substrate can become opaque and block the field from reaching the
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(a) Normalized wavelength (b) Attenuation constant

Figure 2: Dispersion performance of a 3-layer MIMS open microstrip under different thicknesses t. (lower silicon
thickness: 250µm; εr: 12; σ: 5 S/m; thin metal σ: 5.8(107) S/m; upper silicon-dioxide: 1µm, εr: 4; w: 160µm;
circle dots: Pramanick and Bhartia’s results [8] for lossless microstrip lines; rectangular dots: Cano, Medina
and Horno’s results [6] for MIS structure).

(a) Real part (b) Imaginary part

Figure 3: Frequency behavior of the (a) real and (b) imaginary parts of the characteristic impedance for the
MIMS structure shown in Fig. 2 (using Z0 = V/I definition, rectangular dots: Cano, Medina and Horno’s
results [6] for MIS structure).

lower substrate. At the high frequency, the thin metallic substrate will work as infinite thick metal ground,
when the metal thickness equals to 2 to 3 times of the skin depth. For example, at 1 GHz, the skin depth of
copper is about 2µm. The curve with thickness of 2µm converges at around 4 GHz, almost 2 times thicker
than the skin depth at 4 GHz. Similarly for 1µm curve, the convergence point is about 25 GHz with skin depth
0.4µm. In most of the frequency range shown, the normalized guiding wavelength decreases as the frequency
decreases. When the skin depth is about 10 times more than the metal thickness, the wave becomes a slow
wave.

Figure 2(b) also shows the behavior of the attenuation. The attenuation constants under different thickness
of thin ground substrate approach consequently to the critical curve of infinite thickness. At the high frequency
range, the attenuation is proportional to square root of the frequency. This is because the electric current flows
through a region proportional the skin depth that is proportional to the inverse square root of the frequency.
On the contrary, at the low frequency region, it is observed that the slopes of the curves are proportional to the
square of the frequency, which is due to the ohmic loss of the electric current flowing in the metallic ground and
substrate. In addition it is observed that the curves for finite thickness converge to the infinite thick metallic
substrate when the thickness is equal to the skin depth. For example, the curve of 2µm converges to the infinite
thick at about 1 GHz. It shows that the concept of skin depth has more direct connection with the attenuation
constant other than the phase velocity in Fig. 2(a).
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(a) Normalized wavelength (b) Attenuation constant

Figure 4: Dispersion performance of a 3-layer MIMI open microstrip under different thicknesses t of thin metallic
substrate. (lower dielectric substrate: 80µm; εr: 10.2; thin metal σ: 5.8(107) S/m; upper dielectric substrate:
20µm, εr: 10.2; w: 200µmm; circle dots: Pramanick et al. results [8] for lossless microstrip lines).

Figure 3 shows the relation of characteristic impedance versus frequency computed by using the definition
of voltage-current. The voltage is defined as the path integral of the electrical field Ey on the y axis from the
strip center to the ground plane and the current is the longitudinal current flowing through cross section of
the strip. When the thickness t becomes zero, our result is validated by the result from Cano et al., [6] again.
The figures show that when the thickness of the thin metallic substrate becomes larger, the characteristic
impedance decreases. This behavior is very like the one when directly increasing the conductivity of silicon
layer in MIS structure. The thicker this metallic substrate is, the more current flows through its cross section.
Or equivalently, the impedance of this thin metal becomes smaller. When t becomes PEC, the impedance
become pure resistance with the smallest value as shown (circle dots) in Fig. 3(a).

3.2. Very Thin Metallic Substrate in Lossless System

As demonstrated before, the slow-wave is a comprehensive effect due to the influence coming from the lower
lossy silicon substrate and this thin metal. To identify the influence of this thin metallic substrate only, a thin
metal layer is inserted into a lossless microstrip line as shown in Fig. 4(b). The lossless dielectric material
(εr = 10.2) is divided into two parts as 20µm and 80µm. The width of the metal strip line is 200µm. The
corresponding dispersion characteristics are calculated and shown in the Fig. 4(a) and 4(b). The similar patterns
reoccur and accord with the previous figures and discussions. This also illustrates that the thin metal layer with
finite conductivity in a lossless substrate can introduce the slow wave phenomenon at the low frequency range.

(a) Real part (b) Imaginary part

Figure 5: Frequency behavior of the (a) real and (b) imaginary parts of the characteristic impedance for the
MIMI structure in Fig. 4 (using Z0 = V/I definition, circle and diamond dots: Pramanick and Bhartia’s results
[8] for lossless microstrip lines with 100µm and 20µm dielectric substrates repectively).
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In addition the remarkable difference between the PEC and real metal shows that the slow wave exists even
when the thickness is only small fraction of the skin depth. This is a phenomenon that the PEC cannot describe
appropriately. It is concluded that this thin metallic substrate has great impact on the dispersion characteristics
of microstrip lines.

In Figure 5, the real and imaginary parts of the impedance are also plotted. when t equals to zero, our
result agrees with the Pramanick’s. The imaginary parts of the impedance is relatively small compared with
the real parts. At the same time, when the metallic substrate becomes thicker, the impedance converges to the
PEC (diamond dots in the figure) faster at the higher frequency range. This is because the reduction of the
skin depth with increasing frequencies makes the thin metallic substrate more likely act as the good conductor
with infinity thickness.

4. Conclusion

The effects of a thin metal ground with finite conductivity on the dispersion characteristics of loss and lossless
multilayer microstrip line have been examined using the rigorous spectral domain approach. The numerical
results show that electromagnetic field can penetrate the metal layer and interact with layers underneath. It
is found that the thin metallic substrate in both lossy and lossless cases has a great impact on the dispersion
characteristics, such the propagation constant, attenuation constant and characteristic impedance of multilayer
microstrip lines even the thickness is much less than the skin depth. If considering the signal phase constant or
velocity, the thin metallic substrate with thickness greater than 2 to 3 times of the skin depth can be regarded as
infinite thick. At the same time, if merely the attenuation considered, the thin metal with only one skin-depth
thickness is enough to make the ground like infinite thick. The results show that, at the low frequency range,
the thin metallic substrate can excite a slow wave in both lossy and lossless multilayer microstrip lines.
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Extraction of Chip Power Delivery Current and Activity
Variations

I. Kantorovich, V. Drabkin, C. Houghton, and J. St. Laurent
Intel Corporation, USA

Abstract—It is extremely difficult to directly measure power delivery current on chip under operating condi-
tions. We discuss an approach of extracting PDS current through measurement of impedance of power delivery
system and voltage. Because impedance extraction, in turn, requires knowledge of power delivery current, we
use a controlled process for which power delivery current can be predicted. The paper provides a method of
current extraction for impedance measurement.

1. Introduction

Current on power delivery system (PDS) of a chip and activity variation are major indicators of chip and
package performance. Knowledge of PDS current is also important to assess worst case power delivery noise
[1]. Current on a functioning die is generated by chip operation. Therefore it cannot be measured directly.
The only exception is the case when chip activity is unchanged (for example, when the only process on chip
is clock operation). In this case PDS current averaged over clk period is DC current which can be measured
directly in any accessible location of power delivery loop far from chip. Because in general on-chip current is
AC we need to look for indirect methods of current extraction. Because measurement of PDS voltage is easy
to perform on a functioning chip, PDS current can be extracted from measured PDS voltage if PDS impedance
of a chip is known [2]. There are two major obstacles preventing from measurement of PDS impedance on a
functioning chip. First, because chip and package are not separated, a longer interconnect is required to allow
connection with the probe. On-die PDS impedance is very low, in milliohm or sub-milliohm range, which is
thousands time less than impedance of connecting wires. The second obstacle is that to extract impedance
one needs to know both PDS voltage V cc and current Icc, so we return to the problem of current extractions.
In conventional methods involving VNA [3], current is injected into the system and can be measured directly.
Although an attempt to extract PDS current on operating chip using PDS impedance stumbles, looping back
to the problem of measurement of PDS current, it has an advantage: Instead of extracting PDS current for
an arbitrary unpredictable computer process we can now focus on a particular controlled process of our choice
because impedance of PDS does not depend on variations of chip activity.

The paper discusses an approach of extracting PDS current through measurement of PDS impedance and
voltage. For impedance measurement we consider a controlled process for which PDS current can be pre-
dicted. The paper provides a method of PDS current extraction for impedance measurement and considers a
methodology of extraction of PDS current and switching activity variations for any computer process.

2. Choice of Controlled Computer Process for Impedance Measurement

The controlled computer process must enable one to measure a magnitude of current, and since only direct
on-die current can be measured the computer process has to contain long intervals with unchanged chip’s
activity. The computer process should also be simple because to extract impedance and current one needs to
use Fourier transform and solve de-convolution problem which is sensitive to noise. Therefore the computer
activity profile must be as simple as possible to avoid impedance to be dumped by noise. In [4–7] we suggested
to use a computer process in which chip activity changes step-wise. The step-wise computer process is a good
candidate to meet the above requirements. This process has a wider bandwidth than any continuous process.
Several methods of generation of step-wise computer activity have been presented. For EV7 microprocessor
measurements we used a specially designed computer code [4]. Advantage of this method is that it does not
require any special hardware arrangements. We also used a method in which step-wise activity was generated
by toggling clock frequency between two levels [5, 6]. In this method the profile of chip activity is far less noisy
than the computer code method. A particular case of clock toggling is switching clock on and off [7, 8].
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3. Extraction of PDS Current for Step-wise Computer Process

The rise/fall time limits the bandwidth of PDS current and impedance measurement. For activity step
generated by toggling clock frequency the transition time is about one clock period. For step-wise process
we need to make an assumption about current behavior in the vicinity of the transition period. In [4–6] it
was assumed that current is unchanged beyond transition and changes linearly within the transition interval
(trapezoidal current). This assumption was adopted in other applications of this approach. [7, 8]. However,
more detailed consideration of the current behavior shows that the mean PDS current (averaged over the clock
period) is not trapezoidal. This can be derived from the correlation between the mean PDS current Icc and
mean voltage on PDS Vcc of a chip:

Icc = C ∗ Fcl ∗ V cc, (1)

where Fcl is the clock frequency and C is the effective “switched” capacitance, which depends on the number
of switching gates at a given state. According to Eq. (1), PDS current is not trapezoidal because voltage profile
is not trapezoidal. From measurements it is known that voltage response to step-wise changing activity (step
response) has a rippled profile after transition, exhibiting one or more droops. This means that, PDS current
may not contain long unchanged intervals far from transitions, which are needed to provide us with reference
points for current measurement. Therefore even for a simple, step-wise, change of chip activity PDS current
has a complicated profile and there is no sections on current profile for which current can be measured directly.
To resolve the problem, note that according to Eq. (1) chip can be formally characterized by an equivalent
conductance G:

G = C ∗ Fcl. (2)

Because effective capacitance and/or clock frequency change when computer activity changes, for a computer
process where chip activity toggles between high and low levels, the equivalent conductance will also toggle.
We prefer to use conductance instead of resistance, because the transition time for conductance, unlike for
resistance, properly represents the bandwidth of the process. We will use a representation of a chip through
variable equivalent conductance to extract PDS current for the step-wise process. Figure 1 shows a simplified
equivalent circuit for the power delivery loop.

 

Figure 1: Simplified equivalent circuit of power delivery system.

The right hand side shows a chip represented by variable equivalent conductance. On the left hand side is a
PDS block, which includes power delivery network on PCB, package and die. It also includes a DC voltage
source. For the right-hand side, we can represent current as

Icc = G ∗ V cc (3)

which is Ohm’s law in time domain. This equation allows one to determine PDS current for a step wise process if
variable conductance is known. Fourier component of PDS impedance Z can be determined from the convolution
equation valid for PDS block in Figure 1. It is presented in the form of Ohm’s law in frequency domain:

Z = −V cc(f)/Icc(f), (4)

where f is noise frequency. Eq. (4) is not defined at zero frequency. Note that we independently use Ohm’s law
twice to determine both PDS current and impedance. In this solution the problem of extraction PDS current
is reduced to the problem of extraction variable equivalent conductance of the chip for a step-wise computer
process. Because equivalent conductance changes step-wise, we need to know its high and low levels. We
measure them separately in two independent computer runs, in which the only process running on-chip is a
process with unchanging activity on either high or low level which will be used later on in activity toggling. In
each run we simultaneously measure the mean voltage between power and ground on chip and the mean current.
We cannot measure current on-chip, so we measure it far from chip, on voltage regulator, because current is
unchanged. Each conductance level is determined as a ratio of measured current and voltage.
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Figure 2: Typical measured raw V cc (black) and V cc after noise is filtered out (white).

It is important to accurately measure V cc profile to avoid noise in impedance profile, because current for
any computer process is determined using division by impedance. Most of the noise is a random noise which
can be excluded by averaging over many V cc waveforms. Regular noise can be identified by changing clock
frequency or measurement setup [6]. Figure 2 shows a typical measured raw V cc (black trace) and V cc after
noise is filtered out (white trace).

In the methodology we have just discussed we measure directly only PDS voltage on-die and current on
voltage regulator. With these measurements no calibration and compensation of parasitics is required which is
a nightmare for traditional methods of low impedance measurements using VNA or impedance analyzers. Note
also that by solving the problem of Icc extraction, we actually eliminated the problem of very long interconnect
in measurement of very low impedance.

4. Comparison of Different Methods of Icc Extraction for Step-wise Process

Consider differences between impedance determined through variable conductance representation of a chip,
and assuming trapezoidal current. We do not expect difference in impedance resonance frequencies because
in variable conductance case current ripples follow V cc ripples, so resonance frequency is the same as for V cc
resonances for both assumptions. However, resonance peaks may be different, because Icc varying in accord with
voltage variations can make impedance resonances more pronounced than in the case of trapezoidal current.
Figure 3(a) shows voltage and current waveforms in time domain for measurement simulation made for a Spice
model of a future generation chip. One can see that V cc has an overshoot, and it rapidly returns to its value
before transition. This system has a high Q-factor. Figure 3(b) shows voltage and current in frequency domain.
We can see that both voltage and current for “variable conductance” case have pronounced resonances. The
trapezoidal current does not have resonances.

 

(a)

 

(b)

Figure 3: PDS current and voltage for measurement simulation in time (a) and frequency (b) domains.
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Figure 4: PDS impedance for measurement simulation.

Figure 4 shows impedance of this chip for the two cases. One can see that assuming trapezoidal current
on-chip (white trace) we get to a significant, 3-fold, underestimation of the resonance impedance.

Consider measurement results for EV7 microprocessor. This system has a 3-fold higher decoupling capaci-
tance and an order of magnitude higher resistance in the decoupling loop then in the previous case. Figure 5(a)
shows that V cc after the first droop restores slowly so that the noise at maximum is still half of the noise at
the first droop minimum. The Q-factor for EV7 chip is lower than in the previous example. Figure 6 shows
PDS impedance of the EV7 chip, extracted using the two assumptions on Icc. There is no significant differ-
ence between the results obtained using both methods. Figure 5(b) provides an explanation. It shows Fourier
components of measured V cc and the two currents. The voltage resonance at 60 MHz is shallow, so that the
respective current resonance for “variable conductance” case is hardly noticeable on the steeply declined current
profile. Figure 7 shows the relative difference between values of impedance determined by the two methods
plotted versus Q-factor. The difference goes up linearly with the increase in Q-factor.

 

(a)

 

(b)

Figure 5: PDS current and voltage for EV7 chip in time (a) and frequency (b) domains.

5. Extraction of PDS Current for any Computer Process

Once PDS impedance on chip is known one can extract PDS current for any computer process, not only
step-wise process, by using a de-convolution procedure. Maximum ∆Icc can be obtained running extreme
processes with maximum activity changes (power viruses). To extract the current signature we measure PDS
voltage, and apply FFT to convert V cc to frequency domain. Dividing voltage by known impedance we can
obtain PDS current in frequency domain. Then we apply inverse Fourier transform in order to convert PDS
current from frequency to time domain. Since PDS impedance is not defined at zero frequency, the de-convolved
PDS current is determined up to an additive constant and a reference current is required to determine Icc. The
way to obtain the reference current is to measure Icc at voltage regulator simultaneously with measurement of
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Figure 6: PDS impedance for EV7 chip.

 

Figure 7: Relative difference in PDS impedance.

V cc on-die. This current is averaged over time and is used as a reference for the averaged de-convolved PDS
current. Figure 8 shows a fragment of measured V cc on EV7 chip running the power virus SWIM, and Figure 9
shows the de-convolved PDS current on-chip.

6. Extraction of Activity Variations

We used a term “chip activity” to qualitatively characterize a computer process. Equivalent conductance
can serve as a quantification of the chip’s activity. It best represents the chip activity because supply current
is consumed through switching of on-chip capacitive loads. Changes in activity result from changes in the
magnitude of the capacitive loads or from changes in the frequency at which the capacitive loads are switched.
Because equivalent conductance variation depends on the same changes, the variance in switched activity is
equivalent to a variance in chip equivalent conductance. Actually, chip’s activity rather than chip’s PDS
current can be considered as a stimulus producing PDS noise. The chip’s current is less appropriate because
it is affected by the V cc. Therefore, for PDS noise characterization we need to know ∆G rather than ∆Icc.
We can determine variations of the chip’s activity or equivalent conductance dividing measured PDS current by
voltage in time domain. Equivalent conductance variation for EV7 chip is shown in Figure 10. From Figure 10
one can extract maximum ∆G, knowledge of which is necessary to obtain the absolute maximum PDS noise for
a chip.

Figure 8: V cc on EV7 chip running power virus
SWIM.

Figure 9: Icc on EV7 chip running code SWIM.

Figure 10: Equivalent conductance variation on EV7 chip running power virus SWIM.
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7. Conclusion

There are no direct methods of measurement of PDS current on functioning die. Current can be extracted
indirectly from measured V cc if PDS impedance is known. Measurements of PDS impedance, in turn, requires
knowledge of PDS current. The solution we suggested is to generate a step-wise computer process and predict
PDS current for this process using equivalent conductance representation of a chip. Equivalent conductance can
serve as a quantification of chip switching activity. PDS current and chip activity for any computer process can
be determined by de-convolution involving measured V cc and known PDS impedance. The measurement are
easy to perform because only V cc on-die and current on voltage regulator are measured directly so we can avoid
calibration and compensation that are most challenging parts for conventional measurement techniques. The
proposed methodology is the only available methodology for measurement PDS current and activity variations
on a functioning chip
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Principles of Synthesis of Steerable Reflect-array
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Abstract—The synthesis of steerable reflect-array antennas, as a synthesis of any antenna, should be realized
by solving two problems: external antenna problem and internal antenna problem. The first one includes the
investigation of the antenna radiation pattern. The second one concerns a design of the structure providing
the required amplitude-and-phase distribution along the antenna aperture. The first problem is based on the
theory of antenna array. The distance between the small reflectors and geometry of the array are responsible for
the directivity, the beam width, and the side lobe level of the antenna. The internal antenna problem consists
of finding the phase shift required for each small reflector. Remarkable feature of a tunable reflector made
as a microstrip vibrator or a patch in combination with a tunable device is that the almost 360◦ phase shift
of the reflected wave can be provided with only one tunable device (varactor diodes or ferroelectric tunable
capacitors). Commonly, simulation of the phase shift required is performed with a numerical technique. The
design of reflect-array antenna can be sufficiently simplified, if the simulation by the numerical technique is
amplified with a correct analytical model.

1. Introduction

Reflect-array antennas are being developed during many years [1–3]. Recently the reflect-arrays were sug-
gested as structures with an electronically steered radiation pattern [4, 5]. Such a steerable reflect-array antenna
can be used as a low cost version of a phased array antenna for a wide commercial application. The synthesis
of steerable reflect-array antennas, as a synthesis of any antenna, should be realized by solving two problems:
external antenna problem and internal antenna problem. The first one includes the investigation of the antenna
radiation pattern. The second one concerns a design of the structure providing the required amplitude-and-phase
distribution along the antenna aperture. Any reflect-array antenna consists of primary radiator or illuminator
and a reflecting surface. The primary radiator provides the reasonable amplitude distribution with a minimum
spillover loss. Sophisticated design technique was used to diminish a constructive space occupied by the radi-
ator [6]. The reflected surface is covered by a large number of small reflectors in form of microstrip vibrators
or patches. The vibrators or patches are connected with tunable devices (varactor diodes [4] or ferroelectric
tunable capacitors [7]), which serve for controlling the phase of the wave reflected by each small reflector. The
goal of this paper is to characterize the main stages of synthesis and design of a steerable reflect-array antenna.

2. External Antenna Problem

The scheme of a typical reflect-array antenna is shown in Fig. 1. The system of patches provides transfor-
mation of a spherical wave front of the primary radiator into the plane wave front in the antenna aperture. The
main beam width of an antenna and the directivity of the antenna, which are required, determine the size of
the antenna aperture.

In Fig. 2, radiation pattern of a circle aperture with homogeneous field distribution as a function of a
generalized angle function u is shown [8]. (u = kR sin θ, k = 2π/λ, where λ is wavelength is free space, R is
radius of the circle aperture). In the case of homogeneous field distribution the main beam width in degree is
∆θ◦ = 59 ·λ/2R and level of the first side lobe is -18 dB. The antenna directivity is D = 4π(πR/λ)2. If the field
distribution decays to edge of the aperture, the main beam width is higher and the directivity is lower, the first
side lobe level being decreased.

Forming the radiation pattern is drastically influenced by the inhomogeneity of the phase distribution over
the radiating aperture. In the case of the reflect-array antennas the phase inhomogeneity can be provoked by
inaccuracy of realization of size and position of the elementary radiators (patches). Let us consider a statistical
estimation of the inaccuracy of the array realization [9].

The array radiation pattern can be presented as follows:

Φ(θ, ϕ) =

m∑

i=1

A0,iϕi(θ, ϕ) (1)
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Figure 1: Scheme of a typical reflect-array antenna
with: ground plane (1), dielectric layer (2), patch
reflector (3), spherical wave front (4), plane wave
front (5), primary radiator (6).

Figure 2: Radiation pattern of a circle aperture as a
function of generalized angle function u.

where A0,i is the optimized current amplitude of i-th elementary radiator, ϕi(θ, ϕ) is the pattern of i-th elemen-
tary radiator taking into account the position of the center of its phase pattern, m is the number of elementary
radiator in the array.

If the real current distribution differs from the optimized one

Ai = Ai,0 + ∆i, (2)

the mean-square-error of amplitude/phase distribution over whole array is

βmse =

∣∣∣∣∣

m∑

i=1

|∆i|2/
m∑

i=1

|Ai, 0|2
∣∣∣∣∣

1/2

· (3)

The value βmse can be used to find decay of the array directivity (by the factor g) and increase of the side
lobe by ξsl:

g =
1

1 + β2
mse

, ξsl =
3βmse√
m

(4)

Let us suppose for example: m = 2000, |Ai,0| = 1 for all i, 30% of radiators are characterized by the phase
error of 90◦. Simple calculation gives βmse ∼= 0.85, g = 0.58 (decrease of the directivity in 2.4 dB), ξsl = 0.06
(increase of the side lobe level up to -12 dB).

3. Internal Antenna Problem

The primary radiator provides feed of the reflector patches with amplitude distribution required and with a
minimum spillover loss. The efficiency of the primary radiator can be determined by the following equation:

η(ρ, γ) =

α(ρ)∫

0

[F (θ, γ)]2 sin θdθ/

π/2∫

0

[F (θ, γ)]2 sin θdθ, F (θ, γ) = [cos(θ)]y (5)

where ρ = F/2R, cot(α(ρ)) = 2ρ, F is the focal distance of the patch reflector, R is the radius of the aperture.
F (θ, γ) is the radiation pattern of the primary radiator, the exponent γ determines the directivity of the primary
radiator.

Table 1 illustrates the efficiency of the primary radiator expressed in dB. The data presented are followed
by the conclusion that the preferable values of F and γ are F ≤ R, γ ≥ 1.

The phase of waves reflected by the patch mirror has to meet two principal demands: 1) Transformation
of spherical wave front given by the primary radiator into a plane wave, 2) Providing phase gradient along the
array, which corresponds to the beam deflection required.

The distance between the patches lies in the range s = (0.63 − 0.67)λ. If the linear size of the array (2R)
is much higher than the wavelength (λ), the total phase shift change along the array can be much higher than
360◦. In this case the phase distribution is corrected by reset of the phase by n times 360◦ where n = 1, 2, 3, . . .
Such a phase correction is well known as a characteristic feature of Fresnel mirror.
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Table 1: The primary radiator efficiency η(ρ, γ) in m dB.

ρ 0.2 0.3 0.4 0.5 0.6

γ = 1.5 -0.09 -0.31 -0.71 -1.21 -1.82

γ = 1.0 -0.23 -0.63 -1.20 -1.90 -2.60

γ = 0.5 -0.65 -1.22 -2.18 -3.00 -3.92

Figure 3: The phase shift of wave reflected by a patch
as a function of length and width of the patch in mm
for dielectric constant of the substrate εsab = 1.06.

Figure 4: Distribution of the patch positions and
sizes in array.

The phase shift of the wave reflected by a patch depends on the patch size [1–4, 6]. That is illustrated by Fig. 3
for the operational frequency f = 10 GHz. Commonly, simulations of the required phase shift are performed
with a numerical technique. The result of the phase shift simulation is used for designing the reflect-array
antenna. In photo (Fig. 4) one can see the distribution of the patch sizes over the mirror array.

4. The Steerable Patch Array

The phase shifts (Fig. 3) and an appropriate design of the patch array (Fig. 4) correspond to a nonsteerable
array with a fixed position of the main beam. In order to control the position of the main beam of radiation
pattern, the phase shift of the reflection coefficient of each patch in the array should be controlled. The tunable
devices (semiconductor varactor diodes [4] or ferroelectric tunable capacitors [7]) should be included in each
patch. The state of the tunable device serves for controlling the phase of wave reflected by each small reflector.
Remarkable feature of a tunable reflector made as a microstrip vibrator or a patch in combination with a tunable
device is that the 360◦ phase shift of the reflected wave can be provided with only one tunable device. It should
be reminded that for a realization of a digital transmission-type phase shifter one needs at least 8 tunable
devices [9]. The optimum phase shift of each tunable reflector must be found as a result of a correct simulation
and can be realized by applying to each tunable device the appropriate biasing voltage. The result of the phase
shift simulation must be included in the driving program of the biasing voltage controller.

The problems mentioned above can be sufficiently simplified, if the simulation by the numerical technique
is replaced by using a correct analytical model. The problems mentioned above can be sufficiently simplified,
if the simulation by the numerical technique is replaced by using a correct analytical model. A scheme of a
tunable patch is shown in Fig. 5. The sketch drawn in Fig. 5(a) presents a single patch located in a virtual
waveguide confined by electrical and magnetic walls. The patch is considered as a microstrip vibrator loaded
by the tunable capacitor. The microstrip is formed on a dielectric substrate with a conductive ground plane.
Microwave current in the vibrator is induced by the incident wave. The current distribution along the vibrator
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Figure 5: Scheme of a tunable patch. a) Single patch
located in a virtual waveguide confined by electrical
an magnetic walls and b) Equivalent schematic.

Figure 6: Simulations of the reflected wave phase
shift in the framework of the schematic analytical
model.

is found on a basis of solution to telegraph equations using the method of induced electromotive forth [8].
The equivalent schematic is shown in Fig. 5(b). Two type of resonances can be observed in the circuit shown
in Fig. 5(b). Firstly, fundamental resonance, which corresponds to infinite impedance of the vibrator, which
is presented by the transmission line stub with length l and characteristic impedance ZP . In this case one
observe the reflection from the ground plane through the substrate; the phase of the reflection coefficient is
near to ±180◦. Secondly, anti-resonance, which corresponds to parallel resonance of two transmission line stubs
(l, ZP ) and (H,Z0). In this case one observes the zero phase of reflection from the plane, in which the vibrator
is located. Thus, change of capacitance of the tunable capacitor makes possible to obtain the change of the
reflection phase approximately in the range +180 . . . 0 . . .− 180 degrees. In Fig. 6, results of simulations in the
framework of schematic analytical model are presented [10]. The following data were taken: the square virtual
waveguide 20×20 mm2 with the substrate H = 1 mm, εS = 3.0; dimensions of the patch: w = 2 mm, 2l = 9 mm,
operational frequency f = 9.5 − 10.5 GHz .

Simulations based on the schematic analytical model can be used for the design of a steerable reflect-array
and for developing a driving program of the biasing voltage controller. Some fitting parameters of the analytical
model can be found using a comparison with the full-wave analysis simulation.

5. Conclusion

The development of simple and correct theoretical models and elaboration of material components of reflect-
array antenna is an urgent problem, which solution is important for realization of a cheap steerable antenna for
mass production.
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Abstract—The demonstrator of a steerable reflect-array antenna was designed as a system of dipoles loaded
by varactor diodes. The microwave response of a dipole loaded by varactor has been simulated in closed form
based on equivalent circuit approach. The circuit analytical model has been verified by the full-wave analysis.
Change of the varactor capacitance in the range of 0.3–1.3 pF was provided by biasing voltage 0–20 V. The
array consists of 20 dipoles structured as two parallel lines. The operational frequency is 11 GHz, the length of
the dipole is 9.2 mm, spacing between dipoles is 18 mm. The double-side metallized PTFE with ε = 2.8 and
thickness of 1 mm was used as a substrate. Dipole structure was manufactured by a photolithographic process
and formed with surface mounted varactor diodes. The radiation pattern of the array is characterized by the
width of the main beam ≈ 8◦, the side lobe level -(12÷20) dB, the steering range ±15◦. Control voltage was set
manually with variable resistors separately for each varactor. The fine alignment of the control voltage for each
varactors turned out to be very important. Inherited data are used for correction of the operational principle
of a varactor steerable antenna controller.

1. Introduction

The reflect-array antennas are being studied many years and some theoretical and experimental results have
been obtained [1–3]. The possibility to obtain an electron steering of the radiation pattern of such an antenna
is currently under investigation [4, 5]. The goal of this paper is to discussed an experimental realization of a
steerable reflect-array antenna demonstrator designed as a system of dipoles loaded by varactor diodes. The
GaAs varactors MA46H070 produced by MACOM Inc. were tried. Control voltage applied to each varactor in
the array should provide the phase shift along the dipole structures, which is necessary for transformation of a
spherical phase front of a prime radiator into the plane phase front with the required declination. One should
simulate the distribution of the phase shift of reflection coefficient of each dipole and find the dependence of the
phase shift on the biasing voltage applied to the varactor loading the dipole. A set of error sources complicates
solution to the problem. The following errors should be taken into account. 1) Incorrectness in simulation of
the phase shift of reflection coefficient as a function of the dipole sizes and value of the varactor capacitance. 2)
Dispersion of the dependence of the varactor capacitance on the applied biasing voltage. 3) Fabrication errors
in dimensions of the design components.

In order to overcome difficulties mentioned above, the experience of designing and examination of different
version of steerable reflect-array antenna should be accumulated and used for developing the design procedure.

2. Design of the Demonstrator

In Fig. 1 structure of the array under investigation is shown. The array consists of 20 dipoles structured
as two parallel lines. Spacing between lines and spacing between dipoles in the lines are 18 mm. Each dipole
is loaded by a tunable varactor. The dipole length is 9.2 mm, The doubleside metallized PTFE with ε = 2.8
and thickness of 1 mm was used as a substrate. A dc-rf filter and dc-biasing strip lines are arranged for each
dipole. Fig. 2 shows the equivalent diagram of the bench, which was used for formation of the control voltages.
The control voltages were set manually with variable resistors separately for each varactor. The fine alignment
of the varactor tuning was find to be very important. That can be explained by a sharp dependence of the
phase of the dipole reflection coefficient on value the biasing voltage. Fig. 3 illustrates this dependence, which
was simulated for the dipole considered. Fig. 4 shows the derivative of the reflection coefficient phase with
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respect to the biasing voltage as a function of the biasing voltage. One can see that at the section of curve
(Fig. 3) with the highest slope, the setting the phase shift with accuracy ±45◦ requires the accuracy of setting
the biasing voltage better than ±0.25 V. That relates not only to the accuracy of the biasing voltage control,
but to repitability of the varactor Volt-Farad characteristics.

Figure 1: Structure of the array under investigation.
The array consists of 20 dipoles structured as two
parallel lines. The total length L = 200 mm.

Figure 2: Scheme for formation of the control volt-
ages. The voltages applied to varactors are sepa-
rately registered.

Figure 3: Dependence of the phase of the dipole re-
flection coefficient on biasing voltage.

Figure 4: Derivative of the reflection coefficient
phase with respect to the biasing voltage.

3. Some Experimental Results

The prime radiator was placed in a distance from the surface of the array of 100 mm. The open end of a
rectangular waveguide with the transverse section 23 × 5 mm2 was used as the prime radiator.

The required phase distribution along the array was simulated in closed form based on equivalent circuit
approach. The adequacy of the circuit analytical model has been verified by the full-wave analysis. The
simulation of the required phase distribution was followed by the simulation of distribution of the biasing
voltage applied to all varactors.

Performance of the radiation pattern of the array at the frequency 11 GHz is shown in Fig. 5. Three
positions of the main beam are shown: −10◦; 0◦; +10◦. The amplitudes of the radiation pattern in all positions
are practically the same. While measuring the radiation pattern, the biasing voltage distribution was slightly
corrected to obtain maximum of the signal.

The gain of the antenna was not measured, because the efficiency of the prime radiator had not been
optimized.

Fig. 6 gives the amplitude-frequency response of array in the center position of the main beam. The frequency
band of the antenna is about 2% at the level of -3 dB. Such a narrow frequency band can be referred to a high
quality factor of a resonant tank formed by the dipole and the tunable varactor. It may be assumed that the
reactive parameters of the pair dipole-varactor can be optimized and the frequency band can be extended.
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Figure 5: Radiation pattern of the steerable reflect-
array (three positions).

Figure 6: Amplitude-frequency response of the steer-
able reflect-array.

4. Conclusion

A steerable reflect-array antenna demonstrator was experimentally realized. The results of the demonstrator
investigation are in agreement with the theory of the steerable antenna arrays [6, 7]. That gives possibility to
make a confident conclusion that the steerable reflect-array antenna based on application of the tunable varactors
can be designed and manufactured. Such an antenna can be offered as a cheap version of steerable antenna for
a mass production.
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Abstract—The theoretical analysis of a planar reflect-array antenna consisting of a rectangular microstrip
patch radiators is presented. Such an antenna is to be designed to convert spherical wave radiated by feed horn
antenna into plane wave by phasing of reflected wave due to adjusting the patch sizes and arranging them by
principle of Fresnel mirror. The modelling of array antenna is based on the modelling of elementary equivalent
waveguide cell consisting patch radiator at the interface between superstrate and grounded substrate layers.
Spectral Domain Approach (SDA) of Method of Moments is used to analyse the characteristics of elementary
waveguide cell. Theoretical and experimental results are compared.

1. Introduction

Microstrip reflectarray antenna exploits operational principles of traditional parabolic reflector antenna and
microstrip patch phased array [1–4]. Such a combination allows eliminating two disadvantages of both standard
antennas. For microstrip patch antennas there is a common difficulty to overcome a 30 dB gain limit of phased
array because of lossy feeding network. The conventional high-gain antennas are the parabolic reflectors. Being
the very efficient radiators they are bulky and massive. A flat microstrip refletarray is being developed as a
compact high-gain antenna [2]. Low loss is conditioned by the sizes of most radiators are far from ones of
resonant half-wavelength radiators (used usually with transmission lines for phase adjustment) as well as by
absence of feeding networks. Feeding of the printed radiators is realized quasi-optically.

Such an antenna is to be designed to convert spherical wave radiated by feed horn antenna into plane wave
by phasing of reflected wave due to adjusting the patch sizes and arranging them by principle of Fresnel mirror.

The basic configuration of antenna includes a feed horn antenna and a printed reflectarray. Rectangular
patches arranged in a planar aperture based on metal backed substrate will reradiate illuminated energy into
space. Each radiator’s phase is adjusted to make total reradiated field cophasal and concentrated in a specific
direction. The phasing method is to use a variable size patches to form the front of reflected wave.

A folded version of such reflectarrays has been proposed and realized [1]. The dual polarization properties
of rectangular patch array enable to remove the feed element from the focal point in front of antenna and to
place it at the backside of antenna with polarizing grid for reradiation.

In present paper we describe a code developed for the design of multilayer printed reflectarrays, which adjusts
the sizes of patches to achieve a progressive phase for dual linear polarisation according to both twisting and
focusing requirements.

2. Theory

To build a procedure for calculation of a reflection coefficient of linear polarized wave normally incident on
a patch radiator we assume that no coupling between adjacent patches takes place. Such a situation is valid
for normal incidence on infinite periodical array and gives us a reasonable approximation for most part of finite
nonperiodic array if the distance between adjacent radiators is big enough.

Figure 1 illustrates the normal incidence of the plane wave on a single microstrip patch. With two pair
of opposite perfect electric and magnetic walls corresponding to the case of non-interacting radiators we can
consider the whole structure as a stack of elementary TEM (in z direction) waveguides. Due to partial filling
of such a waveguide with dielectric substrate, air superstrate and current carrying layers an existence of pure
TEM mode represents another assumption and such a waveguide could be called as a quasi-TEM waveguide.
To calculate the reflection coefficient of fundamental TEM mode we use a standard Spectral Domain Approach
of Method of Moment.

General relation between electric fields in the plane of microstrip radiator is

˜̄Etot =
˜̄̄
G · ˜̄J + ˜̄Einc(1 +

˜̄̄
Γ) (1)

where ˜̄Etot is vector of total tangential E-field (superposition of scattered and incident field),
˜̄̄
G is Green’s dyad

for elementary waveguide, ˜̄J is surface current density excited in microstrip dipole, ˜̄Einc is vector of incident
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Figure 1: Equivalent elementary wavegude.

linear-polarized along the microstrip radiator side and
˜̄̄
Γ is a tensor of reflection coefficients. Tilde denotes

operating in Fourier domain.
˜̄̄
Γ can be easily derived by analogy with determination of Green’s dyad using

standard immitance approach.

To approximate unknown current density one has to expand both components of ˜̄J by series of chosen basis
functions.

Assuming that polarization of the incident wave is parallel to one side of rectangular patch, along y-direction
in instance, we can suppose that y-polarized electric field excite only y-component of current density:

˜̄J = Jy · ēy (2)

Then equation (1) transforms to scalar one:

Ẽy,tot = G̃yyJ̃y + Ẽy,inc(l + G̃yy) (3)

where
Jy =

∑

n

Anϕn(x, y) =
∑

n

Anϕ
x
n(x)ϕ

y
n(y) (4)

In order to take into account a priory known current density distribution with zero value at edges parallel to
electric walls and singularity at the edges parallel to magnetic walls, we suggested a set of following separable
expanding functions:

ϕn(x, y) =





cos( 4nπx
w

) sin( (2n+1)π

l ( l
2−y))

w
√

1−( 2x
w

)2
|x| ≤ w

2 , |y| ≤ l
2

0 |x| ≥ w
2 , |y| ≥ l

2

(5)

Here l is the length of rectangular patch, i. e., the length of a side corresponding to the direction of polar-
ization, w is the width, and n is the number of basis function.

In order to find the vector of unknown coefficient {An}, Galerkin’s procedure has to be implemented with
weighting functions the same as the expansion functions. Then the phase of reflected field can easily be found.

Modifying (1) by addition of electric field ˜̄Etr = Rs · ˜̄J we can take into account the losses due to finite
conductivity of patches by using of equivalent surface impedance Rs.

3. Result and Discussion

Figure 2 demonstrates the results of calculation of phase angle depending on length of patch for two different
thickness of single substrate. In order to adjust the sizes of patches to achieve a progressive phase for dual linear
polarisation according to both twisting and focusing requirements the calculation of phase for polarizations
along the both side of patches has to be done. If the dimensions of the patches are chosen in such a way
that the absolute difference between the reflection angle of the two perpendicular polarization is 180◦ then the
polarization of the wave incident on the patch tilted by 45◦ with respect to polarization of incident wave will
be twisted by 90◦.
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(a) (b)

Figure 2: Results of calculation of phase angle depending on patch dimensions (a) Phase angle versus length of
patch (different thickness of the substrate H), (b) Surface plot of phase angle in dependence on both dimensions
of patch. Frequency 10 GHz, thickness of substrate H = 2 mm, dielectric permittivity 1.06, L = 21 mm, range
of patch sizes 5–19 mm.

The phases of the reflected wave have to be attainable in the range of 0–360◦. However the range of real
array is, usually, less then 360 degree [4]. There are two opposite factor which influence the performance of
antenna: the less the thickness of substrate and the bigger ε the greater range of obtainable phase, but the
greater slope of curve and the higher technological requirements for patch size precision. Besides, for twisting
reflectarray there is a gap of unreliazable phases. In Figure 3 the results of calculation of phase for bilayered
substrate (Hupper = 0.12 MM (dacron, εr = 3.2,), Hlower = 1 MM (foam, εr = 1.06)) at 25 GHz are presented.
In order to cover these two gaps about 55◦ each, one needs to use near values of patch sizes what will result in
general error of phase approximately of 28◦.

The validity of presented approach is confirmed by comparison with results of simulation by MS CST and
Ansoft HFSS (Figure 4). Small discrepancy between data may be explained by more accuracy of methods of
simulation based on FE and FDTD. However for acquisition of large arrays of patch dimensions the using MoM
based code is more efficient.

Finally the developed code has been used for design of reflectarray antenna with diameter 300 mm operating
at 25 GHz. More than 400 radiators were used to form a designed gain of 36 dB. Measured gain is around
32 dB, half-power beam width 2.7◦, sidelobes are around 16◦. Difference between measured and calculated
characteristics can be partly explained by mentioned deviation of patch sizes to cover the unreliazable phase
gap. Another reason of discrepancy is due to loss of some part of energy at the edge region of antennas plate.
Moreover, the quasi-optical method to build a Fresnel reflector requires considering the dependence of phase
angle also on angle of oblique incidence of wave on the edge patches.

Figure 3: Dependence of phase angle on patch dimensions.
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Figure 4: Comparison of simulation by presented model and by using microwave simulation packages. H =
0.787 mm, εr = 2.22, L = 6 mm, range of patch sizes from 0.6 to 5.6 mm, f = 25 GHz.

4. Conclusion

The design code based on the Spectral Domain Method of Moments (MoM) for lossy mutilayer periodic
structures and normal incidence of a plane wave has been developed. Specific entire-domain basis functions
have been proposed to achieve a high convergence and accuracy of MoM. Code developed is very efficient
because it combines high calculation speed and high accuracy of full-wave analysis and is very promising for
acquisition of large arrays of patch dimensions.

To validate the design method, a series of reflectarray antennas operating at different frequencies with and
without twisting effect have been designed and manufactured [6]. A good agreement was obtained between
predicted and measured radiation patterns for both polarizations. The measured gains were not less then 32 dB.
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Abstract—In the context of the development of the emerging Ultra-Wide Band (UWB) technology, the mod-
elling and the analysis of the transient waveforms radiated and received in a communication link are proposed.
The modelling developped, based on analytical expressions, allows to consider combinations of thin-wire ele-
ments to represent conductive antennas with a 2 D or 3 D geometry. The propagation channel has been modelled
by the presence of a dielectric material in air. Detailed parametric studies have been performed, and optimiza-
tion of the antenna characteristics has been addressed. This work appears as a synthesis and an extension of
previous studies.

1. Introduction

In recent years, the Ultra-Wide Band (UWB) technology appears as an attractive solution for technical
improvements in conventional narrow band wireless communication systems. Such a technology relies initially
on the transmission of a series of baseband modulated (in amplitude or phase) short pulses (less than 1 ns) with a
low duty cycle. Such signals have an energy which is spread thinly across the entire broadband spectrum (greater
than 500 MHz with a fractional bandwidth of more than 20%), thus allowing the UWB technology to coexist with
other wireless systems without licence. This technology offers several advantages such as: transmission at a high
bit rate, low cost, low probabilities of interception and detection, separation of multipath... Therefore, several
applications are being implemented including communications, networking, radar (GPR, vehicular, surveillance)
imaging (medical, through-wall, construction materials, security, GPR), and measurement devices (sensors,
positioning). Currently, the FCC has regulated UWB power levels emitted by defining a spectral mask in
the -10 dB bandwidth between 3.1 and 10.6 GHZ in order to limit interferences with existent licensed wireless
systems (WLANs, GPS). Efforts are under way by the IEEE community for standardizing the use of UWB
systems in indoor (home and office) multimedia transmissions.

Because of the very wide frequency band of the transmitted signal, novel studies concerning the modelling
and the characterization of the propagation channel and of the antennas have to be achieved; it appears that
in such a case the studies are best performed in the time domain Therefore, we have focused our studies on
the modelling and on the parameter analysis of the physical phenomena involved in the transient radiation,
propagation and reception of a pulse signal in a simplified multipath propagation channel including a dielectric
sample in air. The modelling tool uses extended analytical expressions, in the transmission and reception
configurations, to describe the responses of conductive antennas made of a combination of infinitely and loaded
linear thin-wire elements, representing several 2 D or 3 D antenna geometries (V-dipole, bow-tie, butterfly, TEM
horn...). Such an original tool which includes extended developments of previous work allows to highlight the
pulse-shaping process in the spatio-temporal domain [1, 3, 5].

2. Transient Responses of Thin-wire Elements

The basic transmission link is composed of single transmitting and receiving antennas separated by a distance
d in the far-field zone of each other over the operating frequency bandwidth; the major component of the
radiating field Eθ(r, θ, φ) is oriented along the direction ~θ. The antennas do not necessary face each other
and can be tilted. The transmitting antenna is positioned at the origin 0, and two angles β and φ define the
position of each wire element to axis Oz and axis Ox respectively. The propagation channel is modelled by the
presence of a dielectric material with large dimensions which has been placed in the air between both antennas;
thus, diffraction does not occur at the edges. The link modelled is presented in Figure 1 with the parameters
associated with the frequency domain to highlight the presence of the several frequency-dependent impedances
involved in the input and output circuits.
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The modelling approaches described in this section concern in transmission symmetric straight dipoles
(−L, L), and in reception symmetric V-dipoles (−L, L). In transmission, as the expressions allow to dis-
tinguish the radiated components of the electric field issued from each monopole, the extension of the modelling
to a V-dipole can be easily deduced by tilting each arm. In reception, it appears more natural to model the
physical phenomena involved in each arm individually. From the analytical expressions developed, other dipole
orientations can be considered [2].

Figure 1: Geometry of the link between two V-dipoles with their parameters in the frequency domain.

2.1. Transmission Configuration

The straight dipole (−L, L) aligned with axis Oz is supposed to be excited at the feed point z = 0 by an
impulse current which has generally the shape of the Gaussian function or one of its successive derivatives. The
p-th derivative g(t) of the Gaussian function is expressed by:

g(p)(t) =
dp

dtp
(A0e

−( t
τ
)2) (1)

where τ represents the characteristic time of the pulse, and A0 its amplitude. The duration w of each signal
has been defined as the time interval centered on the pulse shape and containing 99% of the total energy of the
pulse. For example, w = 3.3τ for p = 0, w = 4.08τ for p = 1, and w = 4.5τ for p = 2. In general, τ has been set
in order to fit a number n not necessarily an integer of pulse durations in each arm length of the dipole. Thus,
we defined the reference time τa = L/c = nw, where c represents the velocity in the air.

In the case of an infinitely conductive dipole, the initial current wave Is(t − |z/c|) which propagates along
both arms undergoes a total reflection (with a coefficient -1) as it reaches both terminations z = L and z = −L,
and a partial reflection at the feed point (denoted ρ). The back and forth propagation process continues until
the traveling current undergoes a complete attenuation [1, 3]. Such a ringing effect produces narrow frequency
radiated waveforms, and usually the objective is to reduce it as much as possible. In general, the dipole radiation
is produced at the positions z = 0, z = L, and z = L. In the far-field zone, the main electric field component
Eθ(r, θ, t) in the spherical coordinates (r, θ) is expressed as follows [3]:

Eθ(r, θ, t) =
η0
4πr




∞∑
i=1

Γi
sin θ

(1−cos θ){Is(t− r/c− bi) − Is(t− r/c− (L/c)(1 − cos θ) − bi)}
+Γi

sin θ
(1+cos θ){Is(t− r/c− ci) − Is(t− r/c− (L/c)(1 − cos θ) − ci)}


 (2)

bi =

{
(L/c)(i− 1 + cos θ) i even
(L/c)(i− 1) i odd

ci =

{
(L/c)(i− 1 − cos θ) i even
(L/c)(i− 1) i odd

(3)

Γi =

{
(−1)i/2ρ(i/2−1) i even
(−ρ)(i−1)/2 i even

(4)

where η0 represents the wave impedance in the vacuum. In relation (2), we can distinguish the contribution of
both arms (0,L) and (0,−L) of the dipole to the radiated field induced by upward and downward propagating
current components respectively: as the factor sin θ/(1−cos θ) corresponds to the upper arm, the factor sin θ/(1+
cos θ) is associated with the lower arm. We notice that the total electric field radiated is built from differentiated
delayed current components that express the time derivative of the current in each arm if the two components
are separated by a delay ∆t = τa(1− cos θ) ≥ ω and ∆t = τa(1+cos θ) ≥ ω. Also, we remark that the radiation
of the lower arm is the same as the radiation of the upper arm when changing the observation angle θ to its
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complementary value π− θ. Such a modeling has been compared to a numerical one based on the FIT, and the
results agree satisfactorily.

In the case of a Wu and King (WK) loaded dipole, a distributed complex impedance along each arm length
of the dipole is expressed by [4]:

Z(z, ω) =
1

Y (z, ω)
= r(0, ω)

(
L

L− |z|

)(
1 − j

k0

L

)
(5)

where k0 is the wave number in the vacuum, and r(0, ω) = η0ψ
2π the impedance at the feed-point z = 0 of the

dipole. ψ is a function of the frequency, and η0 the impedance of the free space. For the sake of simplicity, the
parameter ψ is replaced by its mean value over the given frequency bandwith considered. The expression of the
transient radiated electric field given by Samaddar et al. extended to consider the presence of an impedance
associated with the input circuit is given by [5, 6]:

Eθ(r, θ, t) =
1

rψ sin2 θ

τa
τt




sin2 θ(VG(t∗) − 1
τt

∫∞
0
VG(t∗ − t′)e−t

0/τtdt′

− (1+cos2 θ)
τt

∫∞
0
VG(t∗ − t′)e−t

0/τtdt′

+ (1+cos θ)2

2τt

∫∞
0
VG(t1 − t′)e−t

0/τtdt′

+ (1−cos θ)2

2τt

∫∞
0
VG(t2 − t′)e−t

0/τtdt′




(6)

where: t∗ = t− r/c; t1 = t∗ − τa(1 − cosθ); t1 = t∗ − τa(1 + cosθ). Also, τt = Cgτa with Cg = 1 + 2πZG/(η0ψ).
ZG is a constant representing the mean value of the impedance associated with the input circuit in the frequency
bandwidth of the excitation signal. If ZG = 0, we have τt = τa.

2.2. Reception Configuration

A dipole antenna (−L, L) such as presented in Figure 1 is supposed to be excited at the upper arm by a
transient electric plane wavefront with an oblique incidence angle ψ relative to the direction of the antenna.
Two cases can be distinguished depending if a straight or a V-dipole is considered: in the case of a straight
dipole, as the upper arm is first excited at its top, the lower arm is first excited at the position z = 0. In the case
of a V-dipole, both upper and lower arms are first excited at their top. The analytical developments presented
in this paper concern a monopole(0,L) initially aligned with axis Oz. If the monopole is tilted with an angle
β relative to axis Oz the expressions remain valid, and the case of a monopole (0,−L) tilted with an angle −β
relative to axis Oz can be deduced from the expression of the upper monopole by adding an additional delay
τ ′D = L sinψ/c and changing the incidence angle ψ by its complementary value π − ψ. The excitation signal
Eθ(θr, t), which is supposed to be issued from a transmitting antenna of the same kind, interacts with a given
monopole (0,L) and produces at each point of the element of abscissa z′ an induced current dI ′(z, t; z′). This
current propagates from each excitation point z′ in two opposite directions [2]. A time delay τD is assigned
to each discrete source to represent the arrival time of the oblique plane wave front with incidence ψ on the
antenna:

τD = (L− z′) sinψ/c (7)

dI(z, t; z′) =

{
dI ′(z′, t− (z − z′)/c− τD) cosψ · U(z − z′)

+dI ′(z′, t− (z + z′)/c− τD) cosψ · U(z′ − z)

}
[U(z) − U(z − L)] (8)

where U is the Heaviside unit-step function. Each local current component mentioned in relation (8) writes as
follows:

dI ′(z′, t) = Y (z′)E(z′, t− τD) = 1/Z(z′)E(z′, t− (L− z′) sinψ/c) (9)

where Z(z′) represents the impedance which can vary along the antenna.
In the case of a uniform infinitely conductive antenna, we have extended previous developpement in order to

consider the total current component distributed along the antenna arms for an oblique incidence. For the sake
of simplicity the formulation concerning the upper monopole (0,L) does not include the ringing e!ect issued
from total and partial reflections at the top end and the feed point respectively:

Iupper(z, t) =
c cosψ

1 + sinψ
{ξ(t− (L− z) sinψ/c) − ξ(t− z/c− L sinψ/c)}

+
c cosψ

−1 + sinψ
{ξ(t− (z − L)/c) − ξ(t+ (z − L) sinψ/c)} (10)

And ξ(t) =
∫ t
0
E(t′)dt′. At the position z = 0, the current detected becomes:
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Iupper(0, t) = − c cosψ

1 + sinψ
ξ(t− L sinψ/c) − c cosψ

1 − sinψ
ξ(t− L/c) +

2c

cosψ
ξ(t− L sinψ/c) (11)

In the case of a WK loaded dipole, we have expressed the current generated by each local source along the
upper monopole (0,L) as follows:

dI ′(z, t; z′) = Y (z′, t) ⊗ E(z′, t− (L− z′) sinψ/c) cosψ (12)

where ⊗ denotes the time convolution product. Then, replacing the local current dI ′(z, t; z′) in relation (8),

(a) Geometry of the link.
(b) Polar diagram of the radiated energy normal-
ized for a V-dipole (2L = 20 cm).

Figure 2: (a) Geometry of the link simulated involving two V-dipoles in the far-field and a single-layer dielectric
material; (b) Polar diagram of the radiated power of a uniform V-dipole for several aperture angles.

we obtain an additionnal component I ′upper(z, t) which superimposes on the current component Iupper(z, t)
associated with the uniform monopole. It is defined as follows:

I ′upper(z, t) = I ′top(z, t) + I ′bottom(z, t) (13)

with: I ′top(z, t) =
c cosψ

1 + sinψ

{
zξ(t+ (z − L) sinψ/c)

+ 1
L

c
1+sinψ [ς(t+ (z − L) sinψ/c) − ς(t− z/c− L sinψ/c)]

}
(14)

I ′bottom(z, t) = − 1

L

c cosψ

−1 + sinψ

{
Lξ(t+ (z − L)/c) − zξ(t+ z(z − L) sinψ/c)

+ 1
L

c
−1+sinψ [ς(t+ (z − L)/c) − ς(t+ z/c− L sinψ/c)]

}
(15)

And ς(t) =
∫ t
0
ξ(t′)dt′. Then the total current component without reflection at the feed-point is given by:

IWK,upper(z, t) =
1

r(0)
(Iupper(z, t) + I ′upper(z, t)) ⊗ e−t/τa (16)

At the position z = 0, the current received by the detector is:

IWK,upper(0, t) =
1

r(0)
(Iupper(0, t) + I ′upper(0, t)) ⊗ e−t/τa (17)

Relation (16) appears as a extended version of the expression given by Samaddar et al., [5], as it allows to study
the current distribution along each arm of a dipole and not only at the position z = 0.

3. Simulation Results

As an illustration of the modelling presented above, we have considered in transmission and reception two
identical symmetric V-dipoles formed of two thin-wire elements with length L = 10 cm and characterized by an
aperture angle 2α = 120◦ (β = 30◦) as presented in Figure 2(a). The dipoles which face each other have been
fixed in each other far-field at a distance d = 1 m. The equivalent impedances at the feed-point in transmission
and reception have been estimated to 600Ω. The excitation voltage in transmission is assumed to have the
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(a) Electric field radiated in the far-field zone from
uniform and loaded V-dipoles (2L = 20 cm).

(b) Electric field radiated from a loaded V-dipole and
transmitted through a single-layer sample (e = 4 cm).

Figure 3: (a) Waveforms radiated by uniform and loaded V-dipoles; (b) Resulting waveforms radiated by a
loaded V-dipole and transmitted through a single-layer dielectric sample (e = 4 cm).

(a) (b) (c)

Figure 4: (a) 3D current distribution along the V-dipole (2α = 120◦, L=10 cm, incidence ϕ = 0◦ so Ψ = 30◦);
(b) Current distribution induced in a loaded V-dipole in the reception configuration considering the incident
wavefront (a); (c) Detected current at the position z=0.

shape of the first derivative of the Gaussian function; the reference characteristic time τ has been fixed to
41.25 ps (which corresponds to the duration ω = 0.17 ns), so that 2 pulses (n = 2) fit in each arm length L. The
propagation channel is represented here by a single-layer dispersive dielectric material with thickness e = 4 cm;
in the modelling, any multi-layer dielectric sample with a plane surface can be considered. In transmission,
we have studied the influence of the aperture angle 2α, and the pulse duration (by the means of n) on the
focalization of the electromagnetic energy radiated in the direction θ = 90◦. Some results associated with a
uniform V-dipole are presented in Figure 2(b) for three angles 2α = 60◦, 80◦, 100◦; they show that a focalization
in the direction θ = 90◦ is obtained for n = 2.9, 1.7 and 0.9 pulses in a arm length L = 10 cm (for 2α = 120◦, we
have found that n = 0.8). The polar diagram highlights that a narrower focalization is obtained for the lowest
aperture angle 2α. Moreover, the spatio-temporal waveforms radiated in the far-field zone by a uniform (with
3 reflections) and a loaded V-dipole of the same dimensions have been compared; the plots of Figure 3a which
consider the direction θ = 90◦ show that as the uniform V-dipole gives a distorted version of the excitation
signal with a ringing phenomenon, the loaded V-dipole generates an attenuated and a slightly distorted version
of the initial pulse. Then, we have studied the transmission of the signal radiated by the loaded dipole under
the incidence angle θi = 0◦ and through a single layer material considering the following dielectric properties:
(1) ε′ = 3, σ = 0.012 S· m−1, (2) ε′ = 3, σ = 0.12 S· m−1, and (3) ε′ = 5, σ = 0.012 S· m−1. The resulted
waveforms can be visualized in Figure 3(b). The corresponding ratios of the energy transmitted to the energy of
the incident signal are respectively 77.7%, 30.3%, and 68.5%. So, these results highlight the strong attenuation
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e!ect introduced by the losses produced inside the material. Afterwards, considering the signal transmitted
through the sample with the dielectric properties ε′ = 3, σ = 0.012 S· m−1 (see Figure 4(b)), we have computed
the current distribution in a loaded V-dipole (β = 30◦). The 3D plot of Figure 4(a) shows the induced current
before executing the convolution product with the term e−t/τn and mentioned in relation (16). The current at
the position z = 0 is visualized in Figure 4(c) before and after the convolution operation. We remark that such
an operation smoothes the signal.

4. Conclusion

In this paper, the modelling of a communication link involving two transmitting and receiving antennas in
the time domain has been revisited. The modelling, based on analytical expressions, allows to consider several
conductive antennas which can be represented by a simplified model using a combination of non interacting
thin-wire elements. Further developments have been made mainly in the reception configuration in order to
consider the interaction of a uniform or a loaded Wu and King dipole which are supposed to be illuminated
by an oblique plane wavefront. At present, the propagation channel has been represented by the presence of a
multi-layer dielectric dispersive material which produces multipath induced by the multiple reflections occuring
in its thickness. Statistical models of propagation channel, such as the Turin approach, associated in a given
environment can be planned. Samples of the parametric studies made have been presented in the case of a
communication link involving two transmitting and receiving V-dipoles. We have particularly analyzed the case
of a WK V-dipole as its better represents an UWB band as the ringing effect of the current has been eliminated
by a distributed absorption along each arm. The realization of a graphical interface will make easier more
parametric studies to thoroughly analyzed the link budget in a given configuration. Moreover, optimization of
the link will be addressed.
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Abstract—The vector field bifurcation approach and its numerical implementation for the rigorous mathemat-
ical simulation of nonlinear phenomena in microwave and mm-wave ferrite or composite semiconductor/ferrite
devices are developed. The bifurcation points of nonlinear Maxwell’s operator for the three-dimensional bound-
ary problems, stated and solved rigorously (i.e., considering the full Maxwell’s equations together with the
nonlinear equations of motion for magnetization in ferrites and transport carriers in semiconductors) are ana-
lyzed using numerical methods. The electromagnetic field is represented as decomposed into a series of weakly
nonlinear wave fields. The solutions of a linearized Maxwell’s operator matrix equation are determined. The
propagation constants of weakly nonlinear waves in waveguiding structures (WGS) or eigenfrequencies of weakly
nonlinear oscillations in resonator structures (RS) are found. Using the bifurcation dynamics of Maxwell’s equa-
tions the nonlinear wave interactions in the strongly nonlinear planar ferrite insert, loaded into strip-slot RS,
are analyzed (from the harmonic frequency terms at the ‘soft’ non-linear stage into the region of ‘hard’ non-
linearity). The nonlinear propagation of electromagnetic waves in the strip-slot ferrite RS are modeled. The
nonlinear wave phenomena, including the parametric excitation of oscillations and the wave instability process
are investigated taking into account constrained geometry WGS and RS.

1. Introduction

The research of bifurcations in nonlinear dynamical systems with distributed parameters, described by non-
linear differential equations in partial derivatives, involves serious mathematical difficulties. As for distributed
systems a characteristic determinant is an analogue of frequency characteristics, that’s why it is possible to
analyze distributed self-sustained oscillation systems using the linearization method combined with the charac-
teristic determinant analysis (at first it was shown in [1] for the one-dimensional case). Hitherto the bifurcation
analysis was used to investigate nonlinear dynamical systems with lumped parameters, described by nonlinear
ordinary differential equations (ODEs). When the ordinary differential equation is of second order a qualitative
analysis is possible on the two-dimensional phase surface [2]. The linearization method in combination with the
frequency-domain analysis is used for the analysis of self-sustained oscillating systems and automatic control
systems [2]. Determining the solutions of nonlinear differential equations in fixed points using numerical compu-
tation is a very complicated problem even for ODEs, because at the branching points qualitative modifications
of solutions can happen due to variation of parameters.

The behavior caused by the instability of waves and oscillations in nonlinear or parametric systems, con-
taining nonlinear magnetic or semiconductor media, is complex [3]. The physical theories of the instability of
magnetostatic or spin waves were developed using the approximate analysis of the equation of motion of the
magnetization vector in ferromagnet for one-dimensional structures only [4, 5]. The analysis of the transition re-
gion from the stable regime to the onset of labile oscillating mode caused the instability is the most complicated
problem. This analysis can only be based on the solutions of full nonlinear Maxwell’s equations, complemented
by the nonlinear equations of motion of the magnetization vector in a ferromagnet [3]. The goal of this pa-
per is to develop a new approach based on the bifurcation theory [6, 7] for accurate electromagnetic modeling
of nonlinear wave phenomena in gyromagnetic or semiconductor waves in waveguiding structures (WGS) or
resonator structures (RS) using a numerical approach for the analysis of the linearized matrix equation and
bifurcation points of the nonlinear Maxwell’s operator. It opens up new prospects of bifurcation analysis and
rigorous mathematical modeling of strongly nonlinear electrodynamical systems using the bifurcation dynamics
of Maxwell’s equations.
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2. The Numerical Method of Linearization of Nonlinear Maxwell’s Operator in Combi-
nation with the Analysis of the Characteristic Determinant

The numerical method to determine the propagation constants of weakly nonlinear waves in WGS (or eigen-
frequencies of weakly nonlinear oscillations in RS) loaded with strongly nonlinear gyromagnetic or semiconductor
boundary media consists in the following.

The three-dimensional boundary problems, stated rigorously (i.e., considering the full Maxwell’s equations
with the nonlinear equation of motion for magnetization in ferrites or the equation of transport carriers in
semiconductors, with boundary conditions following from conditions of non-asymptotic radiation) was reduced
to the boundary problem for a system of nonlinear DEs together with the system of the nonlinear algebraic
equations using the cross-sections method in [8, 9].

The system of nonlinear DEs together with the system of nonlinear algebraic equations [8, 9] is represented
in a symbolic form, as:

dyi
dz

= Fi(y1, y2, . . . , yn), Ψj(y1, y2, . . . , yn) = 0, (1)

where i = 1, 2, . . . ,m; j = m+ 1,m+ 2, . . . , n; yi = yi(z) are unknown functions of the longitudinal coordinate
z compiled on the functions atn(ωm), btn(ωm), azn(ωm), bzn(ωm), given in references [8, 9].

Let yi = 0 (i = 1, 2, . . . , n) be the solution of the system (1), satisfying the boundary conditions as given
in reference [8, 9]. Then the functions Fi and Ψj (i = 1, 2, . . . ,m; j = m + 1,m + 2, . . . , n) identically vanish,
consequently, the solution yi = 0 (i = 1, 2, . . . , n) of the system (1) is fixed (stationary) relative to the coordinate
variable z.

As the first approximation, reduce the system of nonlinear differential equations (1) to a system of linear
differential equations. For this purpose it is necessary to represent functions Fi and Ψj by their generalized
Taylor’s series in the neighborhood of fixed (stationary) points xi = 0, and to take into account the first order
partial derivatives. This procedure results a system of linear differential equations:

dyi
dz

=

n∑

K=1

∂Fi(0, 0, . . . , 0)

∂yK
· yK ,

n∑

K=1

∂Ψj(0, 0, . . . , 0)

∂yK
· yK = 0, (2)

where i = 1, 2, . . . ,m; j = m+ 1,m+ 2, . . . , n.

Let us represent the system of differential equations (2) in expanded form:





a11(z) · y1 + a12(z) · y2 + . . .+ a1n(z) · yn = y′1,
a21(z) · y1 + a22(z) · y2 + . . .+ a2n(z) · yn = y′2,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
am1(z) · y1 + am2(z) · y2 + . . .+ amn(z) · yn = y′m,
am+1,1(z) · y1 + am+1,2(z) · y2 + . . .+ am+1,n(z) · yn = 0,
am+2,1(z) · y1 + am+2,2(z) · y2 + . . .+ am+2,n(z) · yn = 0,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
an1(z) · y1 + an2(z) · y2 + . . .+ ann(z) · yn = 0,

(3)

where the coefficients aij(z) (i, j = 1, 2, . . . , n) compiled on the partial derivatives from (2). The system of
equations (3) can be represented in matrix form as:

A · y =
dy

dz
(4)

where y is the vector with components y1, y2, . . . , ym;
dy

dz
is the vector with components y′1, y

′
2, . . . , y

′
m;



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 145

A = A11 −A12 ·A−1
22 ·A21,

A11 =




a11 a12 . . . a1m

a21 a22 . . . a2m

· · · ·
am1 am2 . . . amm


 , A12 =




a1m+1 a1m+2 . . . a1n

a2m+1 a2m+2 . . . a2n

· · · ·
am,m+1 am,m+2 . . . amn


 ,

A21 =




am+1,1 am+1,2 . . . am+1,m

am+2,1 am+2,2 . . . am+2,m

· · · ·
an1 an2 . . . anm


 , A22 =




am+1,m+1 am+1,m+2 . . . am+1,n

am+2,m+1 am+2,m+2 . . . am+2,n

· · · ·
an1 an2 . . . ann


 ,

We find the partial solutions of the system of equation (4) in the form:

y = α · eλ·z , (5)

where α is the vector with components α1, α2, . . . , αm. Substituting (5) into (4), we obtain the following
eigenvalue matrix equation:

A · α = λ · α , (6)

where λ and α are correspondingly the eigenvalues and eigenvectors of matrix A. Using a numerical method
(for example, the QR-algorithm) to solve the matrix equation (6) the eigenvalues λm and eigenvectors α of A
can be determined.

The solutions (5) of the linearized Maxwell’s operator (6) are treated as weakly nonlinear waves. The
electromagnetic field in WGS is decomposed into a series of weakly nonlinear wave fields. The eigenvalues λm
of matrix A are the propagation constants of the weakly nonlinear waves in WGS (or the eigenfrequencies of
weakly nonlinear oscillations in RS). The components of the eigenvectors α of matrix A are the transverse and
longitudinal components of weakly nonlinear waves .

The computational algorithm, using the linearization of nonlinear Maxwell’s operator and the decomposition
into a series of weakly nonlinear wave fields, is more complex than those for the propagation constants and fields
of eigenwaves of WGS, filled with a linear medium. But the convergence of this algorithm and its stability for
rounding errors is better. It permits to solve the threedimensional diffraction boundary problems for WGS or
RS loaded with strongly nonlinear gyromagnetic or semiconductor insertions having sizes comparable to the
wavelength. This is important for CAD of prospective ferrite or composite semiconductor/ferrite devices at
microwave or mm-waves.

3. Numerical Simulation of the Parametric Excitation of Oscillations in Nonlinear Gy-
romagnetic Structure Using Bifurcation Points

The rigorous mathematical modeling of parametric oscillations in strip-slot RS loaded with a planar magne-
tized ferrite (Fig. 1) is based on solving the nonlinear diffraction boundary problem by the crosssections method
of [8], using the decomposition algorithm on nonlinear autonomous blocks [10].

For the computational algorithm the transverse and longitudinal components of weakly nonlinear waves
are used. It results a stable and computationally efficient algorithm for computing the instability of waves or
oscillations in WGS or RS containing strongly nonlinear gyromagnetic media.

There are two incident electromagnetic waves: the signal wave of frequency ω1 and the pumping wave of
frequency ω2 are incident on the input cross-sections S1 of RS (Fig. 1). The waves are the fundamental and
higher-order modes of strip-slot WGS, having magnitudes C+

n(α)(ω1) and/or C+
n(α)(ω2), where α is the index of

the cross-sections, n are the indices of eigenwaves of strip-slot WGS [8, 9].
The instability of parametric excitation process of oscillations in ferrite RS depending on the bifurcation

parameters is simulated using the numerical method of bifurcation points analysis, developed by us [11]. The
results of computing of the instability regions for parametric excitation of oscillations in ferrite RS by the inci-
dent pumping wave, depending on the magnitude C+

2(1)(ω2) and the normalized frequency (the signal frequency

ω1 with respect to the pumping frequency ω2) are shown in Fig. 2. The onset and the breakdown of parametric
oscillations caused the wave instability in nonlinear ferrite structure in the neighborhood of bifurcation param-
eters were simulated into the region of ‘hard’ nonlinearity taking into account constrained geometries RS, and
it is represented in Fig. 2.
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It follows from the results of the mathematical modeling that the unstable regions for parametric excitation
of oscillations in ferrite RS are near the values of the eigenfrequencies of fundamental and higher-order modes
of oscillations of the strip-slot line resonator: ω1 = mω2/2, m = 1, 2, 3, . . . The threshold magnitude C+

2(1)(ω2)

is rising steeply as m increases. The minimum threshold of C+
2(1)(ω2) is given by ω1 = ω2/2.

Figure 1: Resonator structure with nonlinear ferrite insert: 1, 2, 3, 4 – coupled strips of strip-slot WGS; 5
– strip-slot resonator; 6 – planar magnetized ferrite insert (ε = 9,H0 = 278 A/mm; M0/µ0 = 160 A/mm;
ωr = 3 ∗ 109 Hz; β = 45◦); 7 – dielectric substrate (ε = 9;µ = 1); 8 – point of field observation; f1 = 5 Hz,
f2 = 10 GHz; all sizes are in mm.

Figure 2: Instability regions for parametric excitation of oscillations in nonlinear ferrite RS, depending on

bifurcation parameters: C+
2(1)(ω2) – magnitude of incident pumping wave; ω1 – eigenfrequency of fundamental

modes of oscillations the strip-slot line resonator (length of the resonator = half-wave for signal wave at f1 =
5 GHz); ω2 – frequency of pumping wave.

4. Conclusion

Using the achievements of modern mathematics in the area of vector field bifurcation theory opens new
possibilities for computer analysis of the onset of nonlinear waves in WGS with bounded gyromagnetic media
having a strong nonlinearity. This approach has a high likelihood of success in investigating nonlinear phenom-
ena in new microwave/millimeter-wave ferrite devices [12] for frequency multiplexing/filtering, limiters, noise
rejectors, signal-noise ratio enhancers, and pulse compressing devices.
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Mobile Wireless Communication System Antennas for
260MHz-band

H. Kawakami
Antenna Giken Corp., Japan

1. Introduction

Automotive mounted antennae are often vertically orientated 1/4 wave antennae because the body of the
car can be used as an effective reflective infinite ground plane. This ground plane permits the radiation pattern
of a mounted 1/4 wave antenna to behave like that of a 1/2 wave antenna. The 1/4 wave antenna has a low
cost and is also compact in size. This compact quality is important in automobile mounted antennae because it
reduces the risk of antenna damage and also does not create difficulty when restrictions on the height of a car’s
profile are present. This paper presents a design of an antenna that is compact like a 1/4 wave antenna but can
behave as closely as possible to a 1/2 wave antenna without the presence of an effective infinite ground plane.

The 1/4 helical antenna is well known, but this paper presents the design of a helical antenna that meets
our height design requirements. Specifically, a monopole antenna with a height of under 300 mm is desired. The
standing wave ratio must be under 2.0 in the frequency band of interest. The height of the helical element must
remain at some constant so the pitch and diameter of the spiral were optimized. An improvement in gain was
obtained by using a small finite reflection plate.

r

(a) Structure. (b) Helical on finite reflector plate.

Figure 1: Mobile wireless communication system antennas for 260 MHz-Band.

2. Antenna Structure

As mentioned earlier, 1/4 wave antennae are usually used in mobile radio devices when a large ground plane
is available. The efficiency of an antenna depends on the loss due to the mismatch between the impedence of the
receiving antenna and the transmitter. The impedence of any portable receiving antenna can be quite variable
depending on how it is mounted: for example, carried by a human or affixed to a car. Also of concern is the
unpredictability of the height of the antenna above a ground plane. This creates an unstable state because of
the high frequency current flowing within the standard antenna. Our antenna has been designed to deal with
this instability and is more efficient than a standard 1/4 wavelength antenna.

Figure 1(a) shows the basic structure of our helical antenna as detailed in [1]. The figure shows a finite
reflected plate. Figure 1(b) is the simplified model of the antenna with a helical antenna above a finite reflector
plate. The center frequency was chosen to be 265 MHz. With the height H of the helical element fixed to be
220 mm, we adjust pitch P and diameter D of the spiral. Shown in Figure 2 is a 2D plot of the horizontal gain
as a function of P and D. There is a region where 2 dBi gain is realizable.
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Figure 2: Horizontal gain of mapping for helical antenna.
A: 2 dBi more than B: 1.5 2 dBi C: 1 1.5 dBi D: 0.5 1 dBi E: 0 0.5 dBi

3. Experimental Result

The antenna can be adjusted to a particular resonant frequency to create the VSWR pattern shown in
Figure (3). A good impedence match is found between 262 to 275 MHz where the VSWR is lower than 2.0
which corresponds to −9.5 dB. The vertical radiation pattern of this antenna is compared with the pattern from
a 1/2 wavelength antenna in Figure (4). The actual gain was about −1 to −2 dB but the horizontal radiation
pattern is omni directional.

Figure 3: Characteristic of VSWR. Figure 4: Vertical Radiation Pattern. (Dotted line:
1/2 wavelength, Solid line: this antenna)

4. Conclusion

The effectiveness of a finite reflector plate with a helical antenna is examined. There is an increase of gain
in the horizontal direction and a reduction in antenna size. This type of antenna is more immune to the effects
of the surrounding environment. This antenna is very practical and may be used when it is necessary to mount
antennae on cars with plastic outer bodies such as ambulances. Changes in the shape of the radiating element
and simplification of the feed line will be the future work on this project.
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Compact Surface-mount UWB Monopole Antenna for
Mobile Applications

C. Y. Wu, C. L. Tang, and A. C. Chen
Industrial Technology Research Institute, Taiwan

Abstract—In this paper, a novel surface-mount ultra-wideband (UWB) monopole antenna with a compact size
of only 12.5 × 9 × 1.5 mm3 is obtained by folding a metal-plate onto a low-profile rectangular-box foam base.
By carefully adding a matching slit on the upper side of metal-plate, the antenna can achieve good impedance
matching over a very wide bandwidth of about 7.97 GHz (3.03–11.0 GHz, defined by 2:1 VSWR). Experimental
results of a constructed prototype of the proposed antenna are presented.

1. Introduction

In the recent years, short range and high data rate wireless communication is applied in multimedia device.
UWB radio technology can meet these requests. Planar antennas have many advantages, such as low profile,
small size and easy to fabricate, which are suitable for portable devices. There are several UWB planar antenna
designs, including planar metal-plate antenna [1], half-disk antenna [2], and planar horn antenna [3], which have
been reported.

In this paper, a novel surface-mount UWB monopole antenna, which is suitable for metal stamping processing
and low fabricating cost, is presented. The proposed antenna has a compact structure, which makes it easy to
fit in any possible margin within the housing of a mobile/hand-held wireless device, thus leading to an internal
UWB antenna.

2. Antenna Design

Figure 1 shows the proposed UWB monopole antenna mounted at the front surface of a 0.8 mm thick FR4
substrate (εr = 4.4). The ground plane (length 40 mm and width 60 mm) printed on the back surface of the FR4
substrate can be considered as the system circuit board of a wireless access point. The proposed UWB antenna
is easily constructed by folding a metal plate onto a rectangular form base of compact size 12.5 × 9 × 1.5 mm3.

Figure 1: Proposed surface-mounted monopole antenna mounted on the PCB board of a wireless access point.

Figure 2: Planar structure of the unfolded metal plate (dashed lines on the metal plate are the stamping line).
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Figure 2 shows the detailed dimension of the metal plate. The size of the metal plate is 15.5 × 9 mm2 with
a matching slit of 1 × 3 mm near the antenna feed. The lowest resonant frequency and the highest resonant
frequency of proposed antenna were mainly controlled by length and width of the metal-plate. Broadband
matching technique is the key point in UWB antenna design, by carefully adding a matching slit on the upper
side of metal-plate, the antenna can achieve a good impedance matching over a very wide bandwidth. With the
matching slit, the current distribution on the surface of the radiation conductor can be altered. By carefully
tuning the width and length of the matching slit, a very wide band impedance matching (defined by 2:1 VSWR)
from 3.03 GHz to 11.0 GHz is obtained. This result is mainly due to the asymmetrically antenna structure which
will lead to asymmetrically current path and it is helpful to achieve broadband impedance matching. Thus, the
mechainism of the matching slit is similar to asymmetrically feed mentioned in [4].

The radiation energy of the proposed antenna is activated by the antenna feed via the microstrip transmission
line. To accomplish the impedance matching between the metal plate and the microstrip transmission line, there
are trapezoid-shaped metallic strip formed between the metal plate and the microstrip transmission line.

Figure 3: Measured return loss of the proposed antenna.

Figure 4: Measured radiation patterns at 3.5 and 7.0 GHz.
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3. Experimental Results

Figure 2 shows the measured return loss for the proposed antenna. From the results, it clearly indicates
that the impedance bandwidth, defined by 2:1 VSWR, is as large as 7.97 GHz. Thus, the proposed antenna can
cover the full band of DS-UWB [5].

The far-field radiation characteristic across UWB bandwidth of the proposed antenna is also studied. The
far-field radiation pattern (only co-polarization is showed) of the proposed antenna at 3.5 GHz (light color line)
and 7.0 GHz (deep color line) are shown as Figure 4. It is first observed that, in vertical cut of azimuthal
plane (or x–z plane), the radiation pattern of antenna shows an omni-directional radiation characteristic, but
apparently shift to the −x direction. It is mainly due to the ground plane effect. In the radiation pattern
of horizontal cut of y–z plane, especially at 7.0 GHz, it is also seen that there are two null in ±y direction.
According to what has been mentioned above, in brief, it is a monopole-like radiation pattern. The measured
antenna gain against frequency is presented in Figure 5. Across the impedance bandwidth in 3.0 to 10.0 GHz,
the measured antenna gain increases from about 1.7 to 3.3 dBi with increasing frequencies. Measured peak
antenna in the lower band and the higher band of DS-UWB is about 2.4 dBi and 3.2 dBi, respectively.

Figure 5: Measure peak antenna gain against frequency of the proposed antenna.

4. Conclusions

A compact surface-mount UWB chip antenna, which mainly constructed by stamping the metal plate has
been fabricated and studied. Results indicate that the constructed prototype showed a very wide-impedance
bandwidths covering the lower and higher bands of DS-UWB. Good antenna gain in the operation bands is also
obtained. In addition, the antenna has a compact structure, which makes it easy to fit in any possible margin
within the housing of a mobile/hand-held wireless device, thus leading to an internal UWB antenna. The small
size UWB antenna is also suitable for surface-mountable fabrication process. Thus it can effectively reduce the
overall manufacturing cost.
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Reliability and Availability of GPS Measures in Airport
Landing Systems

V. Barrile, M. Cacciola, and F. Cotroneo
University “Mediterranea” of Reggio Calabria, Italy

Abstract—In the last decades, the modern airports have considerably increased the traffic to manage. Con-
sequently, the requirement of technological solutions in order to control vehicles and airplanes in relevancy
areas (such as parking area, taxiways and runways) is increased. Among various considered solutions, the
more efficient ones use Global Positioning System receivers to establish location of moving objects into the
airport. Thanks to this solution, it is possible to increase both the efficiency in runway usage and the safety in
ground movements. Nevertheless navigational systems like Galileo or GLONASS cannot be considered as “high
availability systems”. For examples, positioning service can be interrupted by unintentional radiofrequency
interferences, or terrorist attacks through techniques known as “antenna jamming” and “code contamination”.
In this paper, these problems are analyzed in the context of airplane ground control, and a secure system is
suggested. Especially, technical solutions are adopted in navigational routines using Global Positioning System
receivers, in order to improve reliability and security, and above all to guarantee a narrow range of variation for
positioning for the whole necessary time.

1. Introduction

The most critical phase in a flight is surely the landing; therefore it is necessary to increase the safety of
the aerial transportations, above all civil ones, by usage of some tools which aids the pilot during the landing
phase, especially in condition of low visibility. The landing instrumentation used to assist pilots or integrated
in an automatic landing systems offers different performances (precision, reliability, low latency of calculation)
which are compatible with specific climatic conditions. Just to be able to well classify the different levels of
risk, the International Civil Aviation Organization (ICAO) defines three categories of visibility for landing civil
aircraft [1]:

1. Category I—Decision Height not lower than 200 ft and Runway Visual Range (RVR) not less than 1800 ft
with appropriate runway lighting; Decision Height (DH) is the height above the runway at which the
landing must be aborted if the runway is not in sight;

2. Category II—DH not lower than 100 ft and RVR not less than 1200 ft; the pilot must see the runway above
the DH or abort the landing,

3. Category III - This category is subdivided into:

• IIIA: DH lower than 100 ft and RVR not less than 700 ft;

• IIIB: DH lower than 50 ft and RVR not less than 150 ft;

• IIIC: Zero visibility, no DH or RVR limits.

In comparison to the traditional systems for landing assistance (i. e., Instrument Landing Systems, INS, and the
Microwave Landing Systems), Satellite Landing Systems (and particularly the Global Positioning System, GPS)
seem to answer in a more suitable way to the requisite of precision and inexpensiveness for all the categories
of employment mentioned above. Nevertheless the GPS technology has some problems related to the nature
of the used signal and to the data transmission protocol from satellites to receiver. In fact, GPS receivers are
susceptible to attacks exploiting interference techniques on the spread-spectrum signals (i. e., jamming), such as
Denial of Service (DoS) attacks; their purpose is to make unusable a determined service, i. e., GPS service, for a
particular time interval. Moreover, a hacker can modify the C/A and P codes so that the position calculated by
the receiver is not correct (spoofing attack). Therefore, it is necessary to integrate the GPS system with other
devices in order to eliminate these problems, which constitute an enormous limit for the adoption of the Global
Position System during the landing phase. In this paper, an hybrid GPS/INS navigational system is proposed
in order to avoid spoofing and jamming attacks, and to increase the precision of GPS positioning. In section 2,
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jamming attacks and our GPS/INS solution approach are described; subsequently, section 3 gives a panorama
of spoofing attacks and analyses our mixed protocol to avoid “code contamination”; finally, at section 4, some
conclusions are pointed out.

2. Jamming Attacks and Proposed Solution Approach

The GPS signal has low power and is vulnerable to interference. The dangerous means of interference go from
cheap, expendable, low-power jammers which can be widely distributed across an area of conflict, to medium
and high-power ground and air-based jammers which can deny usage of GPS over hundreds of miles. The
interruption of GPS positioning service by a jamming attack is particularly simple to be caused during landing
phase of an airplane: in fact it is sufficient to send an interference signal on a defined location and in a defined
temporal window. Since a landing assistance tool must have as principal characteristic a high availability degree
for the whole period of employment, a low cost solution to the jamming vulnerability has been integrated into
the GPS, the so called Inertial Navigation System (INS) [3].

INS is accomplished by an Inertial Measurement Unit (IMU) which integrates the output of a set of sensors in
order to compute position, velocity, and attitude. Sensors used are gyros and accelerometers. Gyros determine
angular velocity respect to inertial space, while accelerometers evaluate linear acceleration respect to an inertial
frame. Integration is a simple process; difficulties are due to various encountered coordinate frames, sensor
errors, and system noise. INS suffers of drift velocity errors constantly accumulated during time; therefore, an
INS which operates during an appreciable length of time must be updated periodically with new positioning
information. This can be accomplished by using an external navigation reference, such as GPS. An integrated
GPS/INS system has advantages in terms of output rate, reliability, and accuracy. In fact:

• it is autonomous and does not rely on any other external aids or visibility conditions, and maintains the
availability of navigation solution during GPS outages caused by interference, jamming, and so on;

• an optimal mixing of INS and GPS informations reduces the effect of GPS errors; therefore GPS accuracy
is improved by integrated solutions;

• INS provides the full navigation state without differentiation (6 degrees of freedom, 3 translational and
3 rotational); GPS signals could be used to determine accelerations by differentiation or attitude by
techniques;

• INS provides the navigation solution in real time (i.e., without latency) at rates higher than one achievable
from a GPS receiver.

The integration between the two navigation systems with complementary characteristics is possible thanks
to the use of a Kalman Filter. Kalman Filter is a recursive algorithm designed to compute corrections to a
system based on external measurements. The corrections are weighted according to the filter’s actual estimate
of the system error statistics. The derivations of the filter equations require some knowledge of linear algebra
and stochastic processes. The filter equations can be unwieldy in an algebraic point of view. Fortunately, the
operation of the filter can be understood in fairly simple terms. All that is required is an understanding of various
common statistical measures. Kalman filtering is an extremely effective and versatile procedure for combining
noisy sensor outputs to estimate the state of a system with uncertain dynamics. Kalman Filter exploits a
powerful synergism between the Global Positioning System (GPS) and Inertial Navigation System (INS). This
synergism is possible, in part, because the INS and GPS have very complementary error characteristics. Short-
term position errors of INS are relatively small, but they have an unbounded degradation on time. GPS position
errors, on the other hand, are not so good on short term, but they do not degrade with time. The Kalman
filter is able to take advantage of these characteristics in order to provide a common, integrated navigation
implementation with better performances than both GPS and INS ones. Kalman filter is able to combine a
GPS system, having position uncertainty in the order of tens of meters, with INS system, having position
uncertainty which degrades at kilometers per hour (INS); the achieved results is the so called Differential GPS
(DGPS) system having position uncertainties in the order of centimeters up to meters. A key role performed
by the Kalman filter is the statistical combination of GPS and INS information in order to track drifting
parameters of the sensors in the INS. Therefore, the INS can provide enhanced inertial navigation accuracy
during GPS signal losses; then, the improved position and velocity estimated by INS can be used to make faster
the reacquisition of GPS signal.

Our proposed system uses the DGPS, because in case of jamming the initial state of INS has to be the most
exact as possible. In Figure 1, a block model of the general system GPS/INS for landing help is illustrated.
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Figure 1: Integrated GPS/INS system for secure landing: it use modality of DGPS, GPS Master on the runway
airport and rover over aircraft. The communication link for security is a Wireless LAN.

The master station calculates corrections to the pseudoranges of code and phase and sends them to the
rover station; it applies corrections to its observations before the calculation of the position. These operations
must be performed in real time, trying to minimize the latency of the whole system. The calculation of the
corrections in master station uses the following equations:

P jm = ρjm + Ej + c(∆Tm − ∆t′) + I + T (1)

Φjm = ρjm + Ej + c(∆Tm − ∆t′) − I + T + λN j
m (2)

where P jm and Φjm are the pseudoranges of code and phase, ρjm is the master-satellite distance, Ej is ephemeris
error, ∆Tm and ∆t′ are respectively clock errors of master and satellite, I and T are ionospheric and tropospheric
delays and λN j

m is the phase ambiguity. By positions of jth satellite from the ephemeris and master station,
it is possible to calculate the master-satellite distance except than ephemeris error: ρjm + Ej . Subtracting this
quantity from P jm and Φjm, the following equations of corrections are obtained:

δP jm(ti) = P jm − ρjm − Ej = c(∆Tm − ∆t′) + I + T (3)

δΦjm(ti) = Φjm − ρjm − Ej = c(∆Tm − ∆t′) − I + T + λN j
m (4)

The master station also calculates the variation of corrections for each epoch:

δP̃ jm(ti) = (δP jm(ti) − δP jm(ti−1))/∆t (5)

δΦ̃jm(ti) = (δΦjm(ti) − δΦjm(ti−1))/∆t (6)

The main calculation is the orbit determinations, which are normally drawn by the ephemeris broadcast both
in the master and in the rover. Nevertheless, it is rather expensive, if it has to be repeated each second; while
it is possible to calculate more quickly the orbits using the ephemeris in SP3 format. In conclusion, using
DGPS with the master station on runway and a rover on airplane, and providing airplane with the typical INS
instrumentation (accelerometer, gyroscope), a GPS/INS navigation system guarantees good performances in
case of jamming attack. In fact, position and speed informations retrieved by INS are satisfactory to complete
the landing, while GPS stops the increasing of position error calculated by INS.

3. Spoofing Attacks and Proposed Solution

The spoofing attacks are more difficulties to be realized in comparison to jamming, but at the same time
they are more dangerous. In this case, in fact, the hacker replaces actual GPS data with ones compatible with
the standard GPS format, inducing the pilot to consider a wrong position of airplane. Proposed solution is
based on a verification system for the trajectory suggested by the system GPS/INS to the pilot. Particularly,
a software/hardware computation system is placed into the control-tower; it esteems the values of parameters
retrieved by GPS/INS navigation system in the following sampling instant by means of actual measures; if a
strong discrepancy is obtained, the control-tower communicates to use only INS system and to disable GPS only
for a few seconds, in order to avoid contemporaneous jamming attacks. An exhaustive description of system
control operations can only be obtained by analyzing the timing of events which interest the airplane during the
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phase of landing. In Figure 2 three operational phases are underlined, during which the modules are employed
to anti-spoofing control and the control-tower develops the respective assignments.

The transmission protocol communicates the coordinates at regular time intervals. In fact, the airplane
communicates its position in the WGS84 reference system at time ti, together with the instantaneous speed.
Subsequently, the control-tower esteems the value of airplane coordinates at time ti+1. When the new coordi-
nates will be received from the tower, a comparison will be made with the coordinates previously esteemed, in
order to discover a spoofing attack: in this case it will be communicated to the airplane to use only the INS
system. Obviously, the communication channel between control-tower and airplane must be secure; indeed, it
is possible to use a wireless link similar to 802.11 b protocol or superior both for data control’s communication
between control-tower and airplane and for DGPS data correction’s communication. Even if this technology
suffers of a particular type of vulnerability, the so called “man in middle”, this attack is a lot difficult to effect
within the times characterizing the landing phase.

Figure 2: The aircraft communicates own coordinates to the tower in order to verify the presence of a spoofing
attack.

4. Conclusions

The safety of flights is a “must” above all for civil transportation. The most dangerous phase of flight is
surely the landing phase, in which the navigation systems can be subjected to jamming or spoofing attacks.
In this paper, GPS and INS has been analysed; they have complementary characteristics. GPS provides an
estimate of position and velocity with bounded estimation error, but it suffers of problems related to signal
format and data transmission protocol. GPS uses a space-to-earth signal and the power of received signal is
−160 dBW. The low power level makes GPS highly susceptible to interference and a pilot may experience short-
term loss of GPS signal during the landing phase. On the other hand, INS is not dependent on the external
field, but it suffers of drift velocity errors constantly accumulated during time. Therefore, the integration of
these two systems is a reliable tool for helping pilots in the landing phase, above all in countries with an high
risk of terrorist attacks. In this paper, a so defined GPS/INS landing-aid system has been proposed in order to
avoid the jamming problem. Moreover, an infrastructure between control-tower and airplanes (based at least
on 802.11 b communication protocol) has been considered in order to ensure a complete reliability of our hybrid
GPS/INS system and have a secure navigational system, verifying and avoiding the presence of possible spoofing
attacks.

REFERENCES

1. Federal Aviation Administrator: Advisor Circular 120-29, Advisor Circular 120-28c.

2. Brown, A., D. Reynolds, and D. Robert, “Jammer and interference location system-design and initial test
results,” Proceedings of the ION 55th Annual Meeting, 1999.

3. Stovall, S. H., Basic Inertial Navigation, Naval Air Warfare Center Weapons Division, California, USA,
1997.

4. Grewal, M. S., L. R. Weill., and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and
Integration, Wiley, Canada, 2001.



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 157

Development of the Pulsed Direct Current Iontophoresis
and Its Clinical Application

M. Akimoto1, M. Kawahara2, M. Matsumoto2, and H. Matsubayashi2

1Kanto Gakuin University, Japan
2I. C. I. Cosmetics Japan, Japan

Abstract—The skin is a primary area of body contact with the environment and is the route by which many
chemicals enter the body. The delivery of drugs into and through the skin has been an important area of research
for many years. Iontophoresis can be defined as the process of increasing the rate of penetration of ions into
or through a tissue by the application of an external electric field across the tissue. Impedance spectroscopy
was used to investigate the electrical response of skin to different ions, applied currents and fields. The stratum
corneum shows two important electrical features. First, it tends to become polarized as an electrical field is
applied continuously. Second, its impedance changes with the frequency of the applied electrical field. To avoid
the counterproductive polarization, the current should be applied in a periodic manner, which is called pulsed
direct current. The pulsed direct current generating iontophoretic delivery system was developed. In the state
of on, charged molecules are delivered by the iontophoretic diffusion process into the skin. A non-parenteral
method for the delivery of macromolecules was developed by using a pulse direct current mode iontophoretic
technique.

1. Introduction

Medical diagnosis and in-patient drug monitoring rely upon the detection and quantitation of endogenous
and exogenous bioactive chemicals. Currently, such analysis is predominantly based upon blood sampling which
is achieved invasively via needle. The inconvenience and limitations of this procedure are well-known; patients,
on the whole, would rather not be injected, the frequency and amount of sampling is constrained, successful
intravenous access in geriatric and pediatric patients may be difficult, and there are risks to both patient
and sampler. The potential benefits of alternative, noninvasive sampling procedures for chemical exposure
assessment and continuous drug monitoring have been described. One approach involves collection, via the
skin, of molecules circulating systemically. A major difficulty, however, with this idea is the characteristically
very slow and variable passive permeation rates of chemicals across the skin. Indeed, experiments examining
the outward migration of theophylline revealed little correlation between sampled amounts and drug levels in
the body. Additionally, it was necessary to collect samples over extended periods of time, a significant potential
drawback. To circumvent these problems, the application of iontophoresis to enhance sampling efficiency has
been examined. Iontophoresis employs an electrical potential gradient to promote the penetration of ionizable
molecules across the skin [1–3]. The current uses of the technique are the treatment of dermatology and aesthetic
dermatology. In this paper, we have investigated the efficiency of a pulse waveform in the iontophoretic delivery
of insulin to achieve blood glucose control and compared the results with a simple direct current iontophoretic
delivery system.

2. Theoretical Consideration

The skin of an average adult body covers a surface area of ∼2 m2 and receives about one-third of the blood
circulating through the body. It is one of the most readily accessible organs on the human body. The skin
is divided into three layers: the epidermis, the dermis, and the subcutaneous tissue. The epidermis is the
outermost portion of the skin and is composed of stratified squamous epithelium. The epidermal thickness
varies from 50µm on the eyelids to 1.5 mm on the palms and soles. The innermost layer of the epidermis
consists of a single layer of cuboidal cells called basal cells. These cells differentiate and migrate towards the
skin surface. The outer layer of the epidermis is called the stratum corneum, which is composed of flattened and
dead cells. As they migrate to the skin surface, the cells become more stratified and finally form the cornified
layer of the stratum corneum. The skin is known to produce a large impedance to charged molecules as they
are driven through the skin by an applied electrical field. The electrical properties of the skin are known to be
dominated by the least conductive stratum corneum. Under the influence of electric current, ionic species or
charged molecules are driven across the skin, possible through the shunt pathways or intercellular spacing in the
stratum corneum, since the skin is likely to be perturbed during iontophoresis, which may remove or disrupt
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the intercellular lipids, resulting in the formation of artificial shunts. Iontophoresis facilitated skin permeation
flux of an ionic species can be described by an equation consisting of the following three components [4–5]:

J = Jp + Je + Jc (1)

where the first term on the right-hand side is the passive skin permeation flux, given by

Jp = KsDs
dC
hs

(2)

the second term is electric current driven skin permeation flux

Je =
ZiDiF

RT
Ci
dE

hs
(3)

and the last term is the convective flow driven skin permeation flux

Jc = kCsId (4)

in which Ks is coefficient for interfacial partition from donor solution to stratum corneum, Ci is donor concen-
tration of ionic species, Cs is concentration in the skin tissue, dE/hs is electric potential gradient across the
skin, dC/hs is concentration gradient across the skin, Di is diffusivity of ionic species I in the skin, Ds is diffu-
sivity across the skin, Id is current density applied, Zi is electric valence of ionic species I, k is proportionality
constant, F is Faraday constant, T is absolute temperature, and R is gas constant. This equations describes
the flux of an ion under the influence of both a concentration gradient and an electrical field.

Table 1: Some representative iontophoretic delivery systems.

Iontophoretic system Drug delivery mode
Direct current mode Continuous drug delivery under constant intensity of

direct current
Pulse current mode

(a) Depolarizing pulse Continuous drug delivery under constant application of
Iontophoresis system pulse current

(b) Periodic iontotherapeutic Programmed drug delivery under periodic applications
system of pulse current with constant intensity

Essentially, two types of iontophoresis have been investigated: the earlier one uses a simple direct current
mode, while the more recent one utilizes the pulsed direct current mode in shown Table 1. An iontophoretic drug

Figure 1: Schematic illustration of the major
components of an iontophoresis system.

delivery system is composed of four basic components includ-
ing a battery, control circuitry, electrodes, and reservoirs. The
component configuration is schematically illustrated in Figure 1.
The battery supplies the required energy to power the control
circuitry which, subsequently, controls the electric potential ap-
plied to the electrodes. Because drug delivery is roportional
to the current flowing through the body, most iontophoretic
transdermal drug delivery control circuits utilize some type of
current source to compensate for the difference in skin resis-
tance from person to person. A battery and a single resis-
tor is a simple current regulator, but regulation is effective for
only small resistance variations. Active current regulators au-
tomatically adjust their operating characteristics in response to
a broader range of resistances and therefore are preferred for
iontophoretic transdermal drug delivery applications since the
resistances from person to person or from site to site can vary
significantly. The electrodes of an iontophoretic device are in
direct electrical contact with the reservoirs, and together they
determine the electrochemical reactions that occur at the an-
ode and cathode. These reactions are particularly important to
consider when designing iontophoretic devices for the delivery of drugs over extended periods of time. A better
choice of electrode materials would be titanium or silver for the anode and chloridized silver for the cathode.
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3. Materials and Methods

Tissue samples were obtained from freshly rats skin. All tissues of exactly known time history were prepared
in the same way. A cylinder of diameter corresponding to the diameter of the electrode was excised from

Figure 2: Schematic diagram of the measuring
system.

the bulk of the test tissue. It was then inserted into a plas-
tic tube and a microtome was used to cut tissue discs of the
desired thickness equal to the distance between the electrodes.
The dielectric measurements were performed using automatic
swept-frequency network and impedance analyzer. The fre-
quency range 5 Hz to 10 MHz was covered by an HP-4192A
impedance analyzer. Open-ended co-axial probe were used to
interface the measuring equipment with the samples in all cases.
The probe is characterized by a fringing capacitance and con-
ductance which are functions of its physical dimension and can
be measured with the impedance analyzer. In addition there
are stray capacitive and inductive elements that have to be nor-
malized. Figure 2 is a schematic diagram of the experimental arrangement [6]. For each set of measurements
new samples were excised from the bulk of the tissue, which was sealed to avoid tissue drying and stored at
ambient temperature during the measurement session.

4. Results and Discussion

The condition inside the tissues when adding an electric field to the tissues becomes the index that the
complex permittivity of the tissue is important. The real component corresponding to the permittivity and
the imaginary component, known as the dielectric loss, corresponds to the dissipative loss associated with

Figure 3: A typical example of the dielectric
constants of skin as a function of frequency.

the movement of polarisable charges in phase with the electric
field. This shows that, as a dielectric dispersion is traversed
by changing the frequency of measurement, the change in con-
ductivity is directly proportional to the change in permittiv-
ity. This follows from the fact that the total energy in the
field is constant and must either be stored or dissipated by
the system with which it interacts. The dielectric properties
of skin show considerable variability over different parts of the
body. The average electrical properties of skin in the range
5 Hz–1 MHz are shown in Figure 3. An interpretation of these
properties was approached via a consideration of the inhomo-
geneous structure and composition of skin and of the way in
which this varies from the skin surface to the underlying der-
mis and subcutaneous tissues. The dielectric properties of skin
are largely determined by the stratum corneum, which has a
thickness of some 15µm and consists largely of dead cells [7–9].
As for the complex permittivity, the characteristic to become
minimal around 50 kHz was measured.

It may be noted that skin prossesses a relatively weak α
dispersion, and this relative lack of a significant dispersion in
the frequency range 1 Hz–100 kHz is plausibly ascribed to the
dead nature and low conductivity of the stratum corneum. It
was tentatively suggested that the origin of these dispersions
lay in the stratum corneum and was associated with the relax-
ation of ions surrounding the corneal cells. It is worth drawing attention to the fact that the electric impedance
of those parts of the skin at which the points and meridians of acupuncture are located is significantly less
than that of the surrounding tissue, a fact which may be presumed to be of diagnostic value and may plau-
sibly underlie the mechanism by which signals are transmitted around the body by means of the meridians
of acupuncture. Many therapeutic and diagnostic techniques rely upon the application of electrical fields or
the measurement of electrical properties. Since skin tissue often constitutes the interface between the bio-
logical and electronic parts of the system, its dielectric properties are of some interest and importance. It
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is worth drawing attention to the fact that the electric impedance of those ports of the skin at which the
points and meridians of acupuncture are located is significantly less than that of the surrounding tissue, a
fact which may be presumed to be of diagnostic value and may plausibly underlie the mechanism by which
signals are transmitted around the body by means of the meridians of acupuncture. Therefore, the complex
permittivity is the important index that the energy absorption which is consumed in the tissue can be discussed.

Figure 4: Diagrammatic illustration of the analogue
equivalent circuit of skin impedance.

Skin manifests large impedance to charged molecules
which are driven through the skin under an applied elec-
trical field. The electrical properties of the skin are dom-
inated by the stratum corneum which is considered to be
the least conductive layer of the skin. Stratum corneum
consists of multilayers of cornified cells. These electri-
cally insulated horny cells are continuously replenished
by the slow upward migration of cells from the basal cell
layer of the stratum germinativum. An analogous equiv-
alent circuit of skin impedance is shown in Figure 4. It
consists of a resistor, Rsc, and a capacitor, Csc, existing
in parallel in the stratum corneum, which is then in series
with the resistor, Rvs, in the viable skin. The magnitude
of Rsc is rather large, and can range from 10–20 kΩcm2

in animal skin to 100–5000 kΩcm2 in human skin, while
Rvs is relative small in magnitude and is in the range of 0.1–1.0 kΩcm2. The stratum corneum shows two impor-
tant electrical features: first, it is polarized by the electrical field, and second, its impedance changes with the
frequency of the applied electrical field. When an electrical field with direct current is applied in a continuous
manner to the skin, an electrochemical polarization develops rapidly in the capacitor. It often operates against
the applied electric field and greatly decreases the magnitude of effective current across the skin.

To avoid the polarization of the stratum corneum, a pulse direct current can be used [10]. The pulse mode is
a direct current voltage which periodically alternates with the “on” and “off” of the applied voltage in Figure 5.
In the state of “on”, charged molecules are forced into the skin and the stratum corneum soon becomes polarized;
while in the state of “off”, no external stimulation is present and the stratum corneum becomes depolarized.
The on/off ratio controls the proportion for polarization and depolarization process in each cycle. The current
output generators were built in-house. The pulsed-current unit was designed to provide adjustable peak voltages
from 0 to 20 V and variable frequency from 0 to 300 kHz. The wave form used in the pulsed-current unit is
also shown in Figure 5. The on/off ratio or the percent duty could be varied from 0 to 70%. This unit had
15 channels and a display that provided the average current readout for each channel. This average current
readout is the current averaged over the cycle. At a setting of 40 kHz duty, for example, the duration of each
pulse would be 25µs, but at a setting of 30% duty, the pulse would be on for 7.5µs and off for 17.5µs. In some
experiments, a pulsed-current unit with a single output channel and a fixed frequency and percent duty was
used. When an ideal on/off ratio is selected, every new cycle starts with no residue polarization left in the skin
from the previous cycle, i.e., the effect of polarization is eliminated.

The energy (E) required to overcome the penetration barrier, stratum corneum, can be expressed by:

E =

∫
[V (t)i(t)]dt =

∫
[i(t)2Rt(t)]dt (5)

where V (t) and i(t) are the voltage and current applied respectively and Rt is the impedance of the skin. As
can be seen from Eq. 5, less energy will be required to overcome the barrier when the skin impedance is reduced.
This may be achieved by applying the current with proper frequency and on/off ratio. Therefore, it is essential
to select optimum pulse mode parameters to attain the best facilitating effect of iontophoresis for a particular
drug or a dosage form.

Diabetes mellitus is a chronic systemic disease in which the body either fails to produce or fails to respond
to the glucose regulatory hormone insulin. Insulin is required in order for cells to take up glucose from the
blood, and in diabetics, a defect in insulin signaling can give rise to large fluctuations in blood glucose levels
unless proper management techniques are employed. Insulin, a protein hormone containing 51 amino acid
residues, has a molecular weight of approximately 6,000 daltons and an extremely short biological half-life of
less than 30 minutes. In healthy humans, it is secreted by beta cells in the Langerhans islet of the pancreas in
response to an increase in blood glucose level to facilitate the process of glucose utilization for either energy or
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storage. Inpatients with diabetes mellitus, however, the capacity of the pancreas to supply insulin in response
to the increase in blood glucose level is impaired. For the control of diabetes mellitus, insulin must be supplied
externally by subcutaneous injection at a dose of 10–20 units three to four times a day. Experiments were
conducted in a skin to study the feasibility of facilitating the transdermal delivery of insulin across the freshly
excised abdominal skin of rats by applying iontophoresis with a pulsed direct current. The results demonstrated
that the skin permeation rate of insulin thus applied is enhanced substantially as compared to that achieved by
passive diffusion alone. The insulin data summarized in Figure 6 were generated using the iontophoresis shown
in Figure 5. The use of iontophoresis results in the typical sigmoidal dependence of receptor concentration on
time. The time required to achieve a steady-state receptor concentration is determined by the receptor volume
and flow rate of the receptor solution. For the in vivo conditions used in the insulin study, time to achieve a
steady-state concentration was about 2 hours for all currents, as shown in Figure 6.

Figure 5: Diagrammatic illustration of the trans-
dermal periodic iontophoresis system. Diagram of
a pulse waveform profile, where A is the amplitude
of a current intensity (mA), B/C are the on/off ratio,
D is the duration (s) of a complete cycle and so 1/D
is the frequency.

Figure 6: In vivo skin permeation profiles of insulin
under the iontophoresis facilitated permeation by the
pulse current.

The cumulative amount of insulin permeating through the skin increases with time during the period of
transdermal periodic iontotherapeutic system treatment and gradually returns to the skin permeation profile by
passive diffusion after termination of the treatment. Also plotted in Figure 6 for comparison is the rate profile
of insulin permeation. Analysis of the skin permeation rate profile suggests that the pulsed direct current
iontophoresis facilitated transdermal transport of drug molecules consists of four phases: (i) the facilitated
absorption phase, in which the skin permeation of drug molecules in enhanced by iontophoresis treatment and
the skin permeation rate linearly increases with the time of treatment; (ii) the equilibrium phase, in which
the skin permeation rate has reached a plateau even though iontophoresis treatment is continuously applied;
(iii) the desorption phase, in which the skin permeation rate decrease lineally with time immediately after
the termination of iontophoresis treatment and the drug molecules already delivered into the skin tissues are
desorbed into the receptor solution; and (iv) the passive diffusion phase, in which the skin permeation rate
returns to the baseline level as defined by passive diffusion.The transdermal periodic iontotherapeutic system
facilitated skin permeation rate of insulin was observed to increase linearly with the current density of pulsed
direct current applied, but in a non-linear manner with the duration of transdermal periodic iontotherapeutic
system application time. The therapeutic response of insulin obtained in the present study indicates that, in the
presence of a facilitated transport, it may be possible to topically administer high molecular weight substances,
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including other peptides and/or proteins, for systemic therapy. The present work has demonstrated that the
iontophoresis technique may provide a convenient means for the systemic delivery of insulin without the use of a
hypodermic needle. The feasibility of optimizing the plasma concentration of the drug by either controlling the
time of application and/or regulating the magnitude of current, or alternatively, by the use of a pulse current
rather than a direct current, needs further investigation.

5. Conclusions

A non-parenteral method for the delivery of macromolecules such as insulin was developed by using a pulse
direct current mode transdermal iontophoretic technique. The intensity of current, frequency, on/off ratio and
mode of waveform were found to play an important role in the transdermal iontophoretic delivery of insulin.
More extensive investigations on various aspects of this system are necessary to obtain optimum parameters of
pulse direct current mode for transdermal iontophoretic delivery of dermatology and cosmetic science.
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Abstract—Dielectric resonators (DR) have helped achieving the miniaturization of many active and passive
microwave components, such as oscillators, filters and antennas. Nowadays they are used widely in mobile
telecommunications and optical instruments such as optical couplers and filters. To design such components,
designers must have the knowledge of predicting the shape and resonant frequency response of usable dielectric
resonators. Numerical methods such as Method Of Moment (MOM), Finite Element Method (FEM) and Finite
Difference Time Domain (FDTD), are useful tools for simulating those problems. The MOM & FEM are
usually in frequency domain and we need to inverse a large matrix to solve the problem. Fortunately, FDTD is
in time domain and by one run, we can have a large bandwidth response of our system. We have prepared a
program code for determining resonant frequencies of DRs by using Conformal Finite Difference Time Domain
(CFDTD) which is used for curved surfaces such as cylindrical and spherical shapes in Cartesian coordinate. In
this paper, first, we present the simulation of resonant frequencies of cylindrical dielectric resonator which its
results can be compared with reference results. In proceeding, computation of resonant frequency response of a
thin dielectric spherical layer that can be useful for improving the achievement of Whispering Gallery Modes,
which are produced in spherical DRs, will be considered.

1. Introduction

Dielectric resonators are used widely in mobile telecommunications and optical instruments, such as an-
tennas, filters and couplers. Knowledge of predicting the shape and resonant frequency response of usable
dielectric resonators is very important for engineers to design these telecommunication systems. Finite Dif-
ference Time Domain method is one of the numerical methods and even the most useful one for determining
resonant frequencies of DRs, because by one run, we can have a large bandwidth response of our system.

In this work, we have prepared a code program for determining resonant frequencies of DRs by FDTD
method, and for cases with curved surfaces such as cylindrical and spherical shapes we have used Conformal
FDTD to reduce the error introduced by staircasing of surfaces that are not precisely aligned with major grid
planes. To achieve such a goal, we have used the method suggested by Ref. [1] for simple structures. We have
expanded that method for Yee cells which contain three or more layers of dissimilar dielectrics. We have used
this method for simulation of thin layer dielectric curved surfaces, such as shelled spheres, that can be useful
for improving the achievement of Whispering Gallery Modes.

The analytic method for computation of resonant frequencies of any spherical layers, which is used for
verification of numerical method, is discussed in section 2. The CFDTD method applied for computation of
resonant frequencies of any shaped DRs is in section 3 and finally in section 4, results of simulating are compared
with analytic method and Ref. [4].

2. Analytical Computation of Resonant Frequencies of Multi Spherical Shells

In this section we only consider a dielectric sphere with a single coating layer. We use the Mie theory to
compute the resonant frequencies. According to Ref. [2], we introduce two vectors M and N which correspond
to TE and TM spherical modes.

M = Me + jMo (1)

N = Ne + jNo (2)

where

Momn =
mâθ
sin(θ)

Zn(βr)P
m
n (cos(θ)) cos(mϕ) − âϕZn(βr)

∂

∂θ
Pmn (cos(θ)) sin(mϕ) (3)

Memn = − mâθ
sin(θ)

Zn(βr)P
m
n (cos(θ)) sin(mϕ) − âϕZn(βr)

∂

∂θ
Pmn (cos(θ)) cos(mϕ) (4)
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In these equations, Zn indicates the spherical Bessel or Hankel functions correspond to the direction of
propagating wave. Also Pmn is Associate Legendre function. In proceeding we use substitution indicated by
Eq. (7):

Ẑn(βr) = βrZn(βr) (7)

According to Fig. 1 we can expand electromagnetic fields by two vectors M and N:

Ei =

∞∑

n=1

αn

[
M

(1)
o1n(β3, r, θ, ϕ) + jN

(1)
e1n(β3, r, θ, ϕ)

]
(8)

Hi =
j

η3

∞∑

n=1

αn

[
N

(1)
o1n(β3, r, θ, ϕ) + jM

(1)
e1n(β3, r, θ, ϕ)

]
(9)

Ei and Hi are incident plane wave electromagnetic fields. Also in these equations β is wave number, η is
characteristic impedance and coefficient αn defined as:

αn = (−j)n 2n+ 1

n(n+ 1)
(10)

Scattered and transmitted waves in each layer can be expanded as Eqs. (11) to (18):

Es3 =

∞∑

n=1

[
As3n M

(4)
o1n(β3, r, θ, ϕ) + jBs3n N

(4)
e1n(β3, r, θ, ϕ)

]
(11)

Hs3 =
j

η3

∞∑

n=1

[
As3n N

(4)
o1n(β3, r, θ, ϕ) + jBs3n M

(4)
e1n(β3, r, θ, ϕ)

]
(12)

Et2 =

∞∑

n=1

[
At2n M

(1)
o1n(β2, r, θ, ϕ) + jBt2n N

(1)
e1n(β2, r, θ, ϕ)

]
(13)

Ht2 =
j

η2

∞∑

n=1

[
At2n N

(1)
o1n(β2, r, θ, ϕ) + jBt2n M

(1)
e1n(β2, r, θ, ϕ)

]
(14)

Es2 =

∞∑

n=1

[
As2n M

(4)
o1n(β2, r, θ, ϕ) + jBs2n N

(4)
e1n(β2, r, θ, ϕ)

]
(15)

Hs2 =
j

η2

∞∑

n=1

[
As2n N

(4)
o1n(β2, r, θ, ϕ) + jBs2n M

(4)
e1n(β2, r, θ, ϕ)

]
(16)

Et1 =

∞∑

n=1

[
At1n M

(1)
o1n(β1, r, θ, ϕ) + jBt1n N

(1)
e1n(β1, r, θ, ϕ)

]
(17)

Ht1 =
j

η1

∞∑

n=1

[
At1n N

(1)
o1n(β1, r, θ, ϕ) + jBt1n M

(1)
e1n(β1, r, θ, ϕ)

]
(18)

where, in Eqs. (11) to (18), superscript (1) stands for spherical Bessel functions jn and superscript (4) for

spherical Hankel functions h
(2)
n , which we faced in M and N [2]. And also s and t superscripts in coefficients

stand for scattered and transmitted waves in each layer.
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Figure 1: A plane wave incident to the two layer spherical dielectric resonator.
Let us assume that µ1 = µ2 = µ3 = µ0 and σ1 = σ2 = σ3 = 0, by applying the boundary conditions we will

have two different matrixes for TE and TM modes, separately.



−h(2)
n (β3b) h
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0 h
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0 ĥ′
(2)
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At2n
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αnjn (β3b)

αnĵ′n (β3b)
0
0


 (19)
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√

ε3
ε2
ĥ′

(2)

n (β2b)
√

ε3
ε2
ĵ′n (β2b) 0
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√
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h
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√
ε2
ε3
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0
√

ε1
ε2
ĥ′

(2)

n (β2a)
√

ε1
ε2
ĵ′n (β2a) −ĵ′n (β1a)

0
√

ε2
ε1
h

(2)
n (β2a)

√
ε2
ε1
jn (β2a) −jn (β1a)







Bs3n
Bs2n
Bt2n
Bt1n


 =




αnĵ′n (β3b)
αnjn (β3b)

0
0


 (20)

The solution of these two complex equations will give us the resonant frequencies and quality factors of
multilayer dielectric resonators.

(a) (b)

Figure 2: (a) Mesh truncation of a spherical DR and (b) Mesh truncation of a thin layer spherical DR.

3. CFDTD Method

The CFDTD can reduce the error introduced by staircasing in Cartesian coordinate. The effective dielectric
permittivity of dielectric material in any piece of stairs can be found by following equations [1].
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εeffx =
∆x1ε1 + ∆x2ε2

∆x
(21)

εeffy =
∆y1ε1 + ∆y2ε2

∆y
(22)

εeffz =
∆z1ε1 + ∆z2ε2

∆z
(23)

where, by applying these values in split Maxwell equations, the error of staircasing will be reduced.

In the case of thin layer surface, such as a spherical shell DR, Yee cells may contain three or more dissimilar
dielectrics. In such cases, such as n different dielectric layers, we use average method.

εeffx =
∆x1ε1 + ∆x2ε2 + ∆x3ε3 + ...+ ∆xnεn

∆x
(24)

εeffy =
∆y1ε1 + ∆y2ε2 + ∆y3ε3 + ...+ ∆ynεn

∆y
(25)

εeffz =
∆z1ε1 + ∆z2ε2 + ∆z3ε3 + ...+ ∆znεn

∆z
(26)

Table 1: Comparison of resonant frequencies found by CFDTD simulation and Ref. [4], for a cylindrical DR
with εr = 38, a = 5.25 mm and h = 4.6 mm.

Mode Frequency (GHz) Relative Error

Ref. [4] CFDTD

TE01δ 4.829 4.859 %0.621

HEM11δ 6.333 6.299 %0.536

HEM12δ 6.638 6.694 %0.843

TM01δ 7.524 7.487 %0.491

HEM21δ 7.752 7.702 %0.644

(a) (b)

Figure 3: (a) Resonant frequency response of a cylindrical DR with εr = 38, a = 5.25 mm and h = 4.6 mm
found by CFDTD and (b) Plot of H field at f = 10.1507 GHz.
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4. Numerical Results

In this section the results of CFDTD simulation for cylindrical and thin layer spherical DRs are shown. For
verification, the results are compared with analytical (exact) method or with other reference data.

4.1. Cylindrical Dielectric Resonator
Let us use cylindrical DR with following electrical and geometrical parameters: εr = 38, radius a = 5.25 mm

and height h = 4.6 mm. In table 1, resonant frequencies found by CFDTD simulation and Ref. [4] are compared.
Also in Fig. 3, frequency response of the cylindrical DR and plot of H field, stimulated at f=10.1507 GHz, are
shown.

4.2. Thin Layer Spherical Dielectric Resonator
A thin layer spherical DR with εr = 90, external radius b = 2.54 cm and internal radius a = 0.99b is simulated

with CFDTD method. We have compared our results with Mie method and it is fairly good. As it is shown in
Fig. 4(b), Whispering Gallery Mode is stimulated in the thin layer spherical DR at f = 35.3214 GHz.

5. Conclusion

In this article, we have presented CFDTD simulation of dielectric resonators. A cylindrical DR has been
simulated, and a good agreement with Ref. [4] is achieved. For the next simulation, a thin layer spherical
dielectric resonator is considered and we faced with Whispering Gallery Modes which we have predicted by Mie
method.

These simulations will show us that CFDTD method can give us very good results for simulating resonant
frequencies of any shaped dielectric resonators.
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A Novel Transmission Line Model for Analyzing Bowtie
Patch Antennas

K. Moussakhani and A. Ghorbani
Amirkabir University of Technology, Iran

Abstract—A novel transmission line model is represented to model bowtie patch antennas. The purposed
model uses two slots for modeling the radiation from patch sides. Each radiation slot is presented by parallel
equivalent admittance. Also in this model mutual coupling and the effect of slots length limitation as well as
the influence of the side slots on the radiation conductance are taken into account implicitly. Admittance and
controlled source equations that used for rectangular patch antenna are modified.

1. Introduction

These days microstrip antennas are popular and getting more and more attention due to their excellent
advantages. Depending upon the applications, microstip antennas having different geometrical shapes are used.
In other hand now days researchers are interested in the design and development of compact microstip radiating
elements. It can be argued that Bowtie microstip antenna is one of such compact microstrip antennas [2]. The
Bowtie antenna dose not has a regular geometric shape and hence most of the analytical techniques such cavity
model can not be used for antenna’s parameter calculation directly. However, popular numerical techniques like
method of moment (MOM), finite element method, finite-difference time -domain (FDTD) method, etc., could
be used for analysis of such antennas but they are computationally expensive.

Figure 1: Antenna structure. Figure 2:

Figure 3: Antenna structure. Figure 4:

The transmission line method (TLM) is known to be reasonably accurate and have good efficiency especially
in numerical calculation as well as it can be applied for modeling of antennas arrays. Therefore in this paper
a novel transmission line model is presented for analysis of bowtie patch antenna of finite length, placed on a
dielectric substrate as shown in Fig. 1. Also Fig. 2 shows the radiating slots which form a useful model for
calculating the radiation filed of the antenna. These so-called equivalent slots consist of two main slots with a
uniform distribution and four side slots with sinusoidal distribution.
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In order to model regular microstrip antenna with the existing transmission-line models, shape of the antenna
represented by a line section terminated at both ends by radiation admittance. Also an improved TLM model for
rectangular microstip antenna has been introduced by Pues abd Van de Cappelle which used voltage dependent
current generators for modeling mutual coupling [1].

Our model in this paper is similar to Pues model [1] in addition we have used taper transmission line instead
normal microstrip line for modeling bowtie shaped patch as shown in Fig. 3. More over as can be seen in Fig. 3
the offset of feed location has been considered by dividing the taper line into two sections.

2. Determination of Model Parameters

Figure 4 model contains of following unknowns:

1. The line parameters (Yc).

2. The self admittance of slots (Ys).

3. The mutual admittance (Ym).

Where each term can be define and calculated as follow:

2.1. Line Parameters

Characteristic impedance could be calculated by:

Zc =
η0√
εe

h

We

where We =
W +Wc

2

2.2. Self Admittance

In order to determine Ys(= Gs+jBs), previous works for rectangular microstrip antennas have been examined
for improving the accuracy and efficiency of our model. In this respect Pues formula [1] is used for determining
the self conductance Gs.

Gs =
1

πη
{(wSi(w) +

sinw

w
+ cosw − 2)(1 − s2

24
) +

s2

12
(
1

3
+

cosw

w2
− sinw

w3
)}

And for suseptance we used Pues formula [1] as given by:

Bs = Ys tan(β∆l)
Where the open end effect can be calculated as:

∆l

h
= 0.412

εe + 0.300

εe − 0.258

We/h+ 0.262

We/h+ 0.813

2.3. Mutual Admittance

Accurate closed-form expressions have been derived for both the real and imaginary parts of mutual ad-
mittance Ym = Gm + jBm for rectangular microstrip antenna by Pues [1]. In order to determine the Mutual
admittance we used the Pues formula as follow:

Gm = KgFgGs

where

Kg ≈ 1

Fg ≈ J0(l) +
s2

24 − s2
J2(l)

and

Bm = KbFbBs

where

Fb =
bm
bs

≈ π

2

Y0(l) + s2

24−s2Y2(l)

ln( s2 ) + Ce − 3
2 + s2/12

24−s2

kb = 1 − exp (−0.21w)
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3. Results

For different flare angle of bowtie patch antenna we calculated the antenna parameters as stated above then
we compared results of return loss obtained from the purposed model with results obtained by Advanced Design
System where uses MoM.

As seen in Fig. 5 good agreement have been achieved for different flare angles. Also the error between the
two methods increase by increasing flare angle from 3% for α = 10o to 5% for α = 30o. For small flare angle
the results of purposed model have good agreements with full wave results, but as the flare angle increased the
results are not in good agreement because of radiations from side slots. As this radiations are more effective in
higher flare angle so for large flare angle this model are not valid anymore.

Figure 5: Return Loss for different flare angles.
ε = 4.4, h = 1.6 mm, L = 18.75 mm, W = 25.2 mm
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4. Conclusion

A novel transmission line model is represented for modeling the bowtie patch antennas. Admittance and
controlled source equations used in the passed for rectangular patch antennas have been modified in this model
for bowtie patch antenna. This model is just valid for a moderate range of flare angles and results are reasonably
accurate in that region and therefore this approach can be used as TLM for bowtie patch antenna for evaluating
antenna parameters.
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Applying Oblique Coordinates in the Method of Lines

S. F. Helfert
University of Hagen, Germany

Abstract—Oblique coordinates are introduced into the method of lines. For the purpose of analysis, suitable
equations are derived. The formulas are applied to compute the transmission in a waveguide device consisting
of straight waveguides connected by a tilted one. Furthermore, the band structure of a hexagonal photonic
bandgap structure was computed using these oblique coordinates.

1. Introduction

The Method of Lines (MoL) [1] has been proven as an efficient tool for modeling waveguide structures in
the microwave area and in optics. Depending on the structure under study various coordinate systems like
Cartesian or cylindrical ones have been introduced, the latter allowing to examine e. g., VCSEL-structures or
curved waveguides [2–5]. Formulas for arbitrary rectangular coordinates can be found in [6].

By introducing Floquet’s theorem into the MoL [7, 8] photonic crystal structures (PCs) with a square lattice
could examined [9, 8]. Due to the shape of these structures Cartesian coordinates were applied.

In contrast, the shape of the elementary cells in hexagonal structures is not rectangular. Motivated by
papers found in the literature (e. g., [10–12]) an algorithm was developed that uses oblique coordinates. In the
references given above algorithms for the TE-polarization (2D) were described. Here we will derive expressions
for the full 3D-vectorial case from which the two-dimensional case can be easily derived.

The formulas were used to compute the propagation characteristic in a waveguide device, where two straight
waveguides were connected with a tilted one. The results were compared with those obtained by a staircase ap-
proximation showing a very good agreement. As second application the band-structure of PCs with a hexagonal
lattice was computed.

2. Theory

In this section we are going to derive the equations that can be used for analyzing devices with oblique
coordinates. We will start with Maxwell’s equations from which we determine the equations for the full vectorial
case. Simpler formulas (i.e., for two-dimensional structures) are then derived from these expressions.

Consider the coordinate system shown in Fig. 1, which shows Cartesian coordinates and oblique ones. The
relation between oblique coordinates (u, v, y) and Cartesian ones (x, y, z) is given as:

x = u sin(θ) + v (1)

z = u cos(θ) (2)

y = y (3)

y

z

θ

u

x,v

BC

conditions

(BC)

Boundary

Fv

xF

Fz

Fu

Figure 1: Tilted waveguide structure in an oblique coordinate system, and relation between the field components.

The y-coordinate is identical in both systems. Therefore, in the following, we will examine only the remaining
ones. Next, we need the derivatives with respect to the u- and v-coordinate. By inverting the relations in (1)
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and (2) and applying the chain rule, we obtain:

∂

∂x
=

∂

∂u

∂u

∂x
+

∂

∂v

∂v

∂x
=

∂

∂v
(4)

∂

∂z
=

∂

∂u

∂u

∂z
+

∂

∂v

∂v

∂z
=

1

cos(θ)

∂

∂u
− tan(θ)

∂

∂v
(5)

At interfaces between two waveguide sections the transverse components have to be continuous. These are the
x- and the y-component in Cartesian coordinates. A closer look at Fig. 1 shows that the x-component is put
together of the u- and v-component if oblique components are used. However, also in an oblique coordinate
system we find that the x-component itself is continuous. Therefore, we will use the Cartesian components (i.e.,
x- and y-component) of the fields in oblique coordinates as well.

To derive suitable equations for these components, we start with Maxwell’s equations:

∇× ~H = jεr ~E ∇× ~E = −jµr
~̃
H (6)

where the coordinates have been normalized with the free-space wavenumber k0, (e. g., y = k0y). Furthermore,

the magnetic field was normalized with the free space wave impedance η0 = 120πΩ:
~̃
H = η0 ~H. Now, the

derivatives with respect to x and z are replaced by those with respect to u and v and the z-component of the
electric and magnetic field is substituted by the x- and y-components. This leads to the following first order
differential equation system:

1

cos(θ)

∂

∂u
~F +Q~F = ~0 with ~F =




Ex
H̃y

Ey
H̃x


 (7)

and

Q =




− tan(θ)
∂

∂v
j

(
µr +

∂

∂v

1

εr

∂

∂v

)
0 −j ∂

∂v

(
1

εr

∂

∂y

)

j

(
εr +

∂

∂y

1

µr

∂

∂y

)
− tan(θ)

∂

∂v
−j ∂

∂y

(
1

µr

∂

∂v

)
0

0 j
∂

∂y

(
1

εr

∂

∂v

)
− tan(θ)

∂

∂v
−j
(
µr +

∂

∂y

1

εr

∂

∂y

)

j
∂

∂v

(
1

µr

∂

∂y

)
0 −j

(
εr +

∂

∂v

1

µr

∂

∂v

)
− tan(θ)

∂

∂v




To solve this equation, we proceed as usual in the method of lines. We divide the structure under study in
sections where the permittivity and the permeability (the latter usually being equal to one) depend only on the
transverse coordinates (v, y). Then, the derivatives with respect to v and y are discretized with finite differences.
This results in a system of coupled ordinary differential equations:

∂

∂u
F + Q F = 0 (8)

where the operator Q had been multiplied with cos(θ): cos(θ)Q = Q. By transformation to the principle axes
we can decouple this system

Q = TΓT−1 F = T F

with the solution

F(u) = exp(−Γu) F(0) (9)
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The eigenvectors of Q give the electric and magnetic field distribution of the eigenmodes and the eigenvalues Γ
are the corresponding propagation constants. Since we are dealing with a first order differential equation system
here, the forward and the backward propagating modes are determined at the same time. Therefore, we can
divide the eigenvalues/eigenvectors according to

Γ = diag(Γf ,−Γb) with Re(Γf ,Γb) > 0 and T =

[
T Ef T Eb

T Hf T Hb

]

Now, the next steps of analyzing complex circuits with the MoL are analogous to those in Cartesian coordinates.
Therefore, we give just a short summary here. After having found the solution in the homogeneous sections,
we have to consider the continuity at the interfaces. Together with boundary conditions at the input and the
output of the device, we could e. g., derive transfer matrix formulas for the whole structure. However, these
transfer matrix expressions are potentially unstable, because of the exponentially increasing terms. Therefore,
we use scattering parameters or alternatively impedances/admittances. In both of these cases, we start at the
output of our structure. When using scattering parameters we define a reflection coefficient as the ratio between
the backward and the forward propagation modes:

Fb = r Ff

This reflection coefficient is transformed to the input of the device. We have to consider homogeneous sections
and the interfaces between these sections. In a homogeneous section with the length d, we obtain for the
transformation formula:

r(0) = exp(−Γbd) r(d) exp(−Γfd) (10)

In contrast to the analysis with Cartesian coordinates we multiply with different expressions from the left and
from the right. For transforming the reflection coefficient at interfaces we can use expressions that were given
in [13] for anisotropic material. Therefore, we do not repeat them here. After the input reflection coefficient
has been determined, we compute the fields in opposite direction — from the input towards the output. In
this way the explicit computation of the exponentially increasing terms can be avoided. The procedure with
impedances/admittances is similar.

2.1. Two-dimensional Structures

The derivatives with respect to y are zero in case of two-dimensional structures. Therefore, the polarizations
decouple like in the Cartesian case, and we obtain the following operators for the TE- and the TM-polarization:

QTM =




− tan(θ)
∂

∂v
j

(
µr +

∂

∂v

1

εr

∂

∂v

)

jεr − tan(θ)
∂

∂v


 ~F =

(
Ex
H̃y

)

QTE =




− tan(θ)
∂

∂v
−jµr

−j
(
εr +

∂

∂v

1

µr

∂

∂v

)
− tan(θ)

∂

∂v




~F =

(
Ey
H̃x

)

Instead of working with a coupled differential equation system for the electric and the magnetic field we
could also derive a “wave equation” for one field component only. In case of the TE-polarization we obtain e. g.,
the following expression for Ey:

[
∂2

∂u2 + sin(θ)

(
∂

∂v
+ µr

∂

∂v

1

µr

)
∂

∂u
+ cos2(θ)µrεr + µr

∂

∂v

1

µr

∂

∂v

]
Ey = 0 (11)

However, to solve this equation with the MoL, we have to transform it back into a first order differential equation
system. Another point should be mentioned: analytically, the wave equation (11) and the coupled equation (7)
can be transformed into each other (if we introduce the expression for QTE) and are therefore equivalent. On
the other hand, a slight difference occurs in discretized form, because of the first order derivatives with respect
to v. We will compare those two cases to see the influence on the results.
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3. Numerical Results

As first example, we examined the concatenation of a tilted waveguide with a straight input and output
waveguide. (see Fig. 2(a)). The diagonal length L was kept constant.

The transmission as function of the angle is shown in Fig. 2(b). Also shown are results that were obtained
by a step approximation of the tilted section. To obtain convergent results at least 25 steps were required for
L = 20µm with the staircase approximation. In case of L = 5µm this number dropped to 5. When using
oblique coordinates the tilted part was examined in one step independent of the length of this section.

Also the two expressions for the oblique coordinates were compared. As can be seen all curves agree
very well, the results obtained with the different formulation obained with oblique coordinates are practically
indistinguishable.
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Figure 2: a) Concatenation of two straight waveguides with a tilted one; data n1 = 3.17, n2 = 3.24, w = 0.8µm,
wavelength λ = 1.55µm, b) transmission of the fundamental mode.

Next we used oblique coordinates to determine the band structure of photonic crystals with a hexagonal
lattice. The structure is shown in Fig. 3. It was taken from [14]. The Floquet modes which must be computed
for this band structure were determined with the algorithm presented in [15].

The determined band-structure for the Γ-M band is presented in Fig. 4. Also shown are the values at the
special points Γ and M taken from that reference. A good agreement for the TM-polarization is recognizable,
the MoL-curves are slightly higher for the TE-polarization.
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ε 2

a

a

Figure 3: Elementary cell of a hexagonal photonic bandgap structure taken from [14]; data: r/a = 0.3, ε1 =
11.56, ε2 = 1.
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Figure 4: Band structure of a hexagonal lattice a) TM-polarization, b) TE-Polarization.
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Abstract—The nonlinear propagation of EMW in periodic media is of great interest due to the possibility
to accumulate energy in periodic media within the stop band and, therefore, the input intensity levels for
observation of nonlinear phenomena are quite low [1]. For resonant interactions, also it is possible to realize
matching conditions, which are not possible in uniform media. Both resonant multiwave interactions and self-
action of EMW in nonlinear periodic media have been analyzed [1, 2]. Also, a method based on a slow variation
in time was proposed, which seems more adequate than others based on coupled equations [3].

The presence of defects in periodic structure leads to narrow regions of transmission within the stop-band.
In this case, the application of coupled equations for counter propagating waves becomes doubtful, and a more
general approach is needed [3]. Also, the influence of defects on the dynamics of modulation instability of long
pulses is of a great interest. The present paper considers numerical simulations of the pointed above phenomena.
For a correct description of the nonlinear dynamics, it is necessary also to take into account the wave dissipation
and possible transverse diffraction.

The results of simulations demonstrated the essential influence of defects within the periodic structure on
the nonlinear propagation of EM pulses, even if the carrier frequency is chosen within the stop band of the
structure with a defect. This fact can be explained by a quite wide spectrum of the input pulse, and the
“tail” of such a spectrum is within the transmission region due to the defect. This situation is analogous to
the nonlinear propagation of short spin-dipole waves in the vicinity of the cut-off frequency [4]. The dynamics
of modulation instability also changes in the presence of the defect. The diffraction can affect essentially the
modulation instability dynamics.

1. Basic Equations

The case under research is the nonlinear periodic medium (OABAB. . .O), where A and B are dielectrics, and
O is the vacuum. Each layer is assumed as isotropic and the influence of temporal dispersion is neglected here.
The last consideration is valid only if the duration of the input pulse is long (> 0.1 ps). Within the structure,
the presence of a singe defect is possible (such as . . .ABABBBAB. . .). Consider almost transversely polarized
EM wave, where only a single transverse component of the electric field (for instance, Ex) is dominating. A
weak dependence on the radial coordinate is taken into account, to estimate an influence of diffraction. We
use a slow dependence of the wave amplitude A only respect to time (essentially its variation in space, due to
periodic structure of the medium), cubic non linearity and step-like dependence of the dielectric permittivity.
Different spatial harmonics (both co- and counter-propagating) are included into the wave structure within the
periodic lattice:

∂A

∂t
+
iω

2

(
1 +

∆ε

ε(z)

)
A+

i

2ωε(z)

(
∂2A

∂t2
+ ∇2

⊥A

)
+ γA = 0; ∆ε = α(z)|A|2 (1)

Here ∆ε(E) is the change on the dielectric permittivity of the periodic medium due to the cubic nonlin-
earity. The scale of longitudinal spatial dependence is arbitrary, because of step-like dependence of dielectric
permittivity. Then, the electric field is considered as:

E =
1

2
A(z, ρ, t) × exp(iωt) + c.c. (2)

In equation (1), ε = ε(z) is the dielectric permittivity of the periodic medium, ω is the carrier frequency
(ω = 2πc/λ0, with λ0 the wavelength in vacuum). Also the wave dissipation γ is included in this equation.

The boundary conditions at the interfaces between the layers are taken into account in Equation (1). Ad-
ditionally, it is necessary to consider the boundary conditions for the tangential components of electric and
magnetic fields at the input (z = 0) and at the output (z = L) of the periodic medium:
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z = 0 : A = Ainc +Arefl;
∂A

∂z
≈ ∂Ainc

∂z
+
∂Arefl
∂z

(3a)

where: Ainc(z, ρ, t) ≈ Ai0(ρ, t)×exp(−ik0z); Arefl(z, ρ, t) ≈ Ar0(ρ, t)×exp(+ik0z), Ai0, Ar0 are the amplitudes
of incident and reflected waves, respectively; k0 = ω/c is the wave number of the wave in vacuum. It is assumed
that the amplitude of the incident wave is known.

Equation (3a) can be reduced as it is shown in the following boundary conditions:

z = 0 :
∂A

∂z
− ik0A ≈ −2ik0Ai0(ρ, t) z = L :

∂A

∂z
+ ik0A ≈ 0. (3b)

Equation (1) and boundary conditions (3) are valid in the case of transversely wide pulses. Otherwise, it is
impossible to use the approximation of transversely polarized EM wave.

2. Method of Simulations

The splitting with respect to physical factors is applied. The problem of stability of simulations is very
important because the possible modulation instability is under research. The full explicit three-layer scheme
is used for nonlinearity, dissipation, and longitudinal transport fractional step. Two-layer implicit scheme is
utilized for the diffraction fractional step. In simulations, the one-dimensional representation of Equation (1)
has been used:

∂Ā

∂t̄
+
iω̄

2

(
1 +

∆ε

ε(z̄)

)
Ā+

i

2ω̄ε(z̄)

(
∂2Ā

∂z̄2
+

1

ρ̄

∂

∂ρ̄

(
ρ̄
∂Ā

∂ρ̄

))
+ γ̄Ā = 0; ∆ε = b(z̄)|Ā|2 (4)

where z̄ = z/ln, t̄ = t/tn, tn = ln/c; ρ̄ = ρ/ln.
The value of ln = 1µm has been chosen; thus, tn = 3.15×10−15 s. Below, the lines over the one-dimensioned

quantities (t, z, ρ, A) are omitted, because we use one-dimensional representation. The shape of the input pulse
is:

Ai(t, ρ) = Ai0 × exp

(
−
( t− t1

t0

)4
)
× exp

(
−
( ρ
ρ0

)4
)

(5)

3. Results of Simulations

The structures under simulation include 48 layers, their dielectric permittivities are εA = 3.5, εB = 2.0.
A-layers are nonlinear (b = −0.1), whereas B-layers are assumed as linear (b = 0). Each layer has a length of
0.25µm. A single defect is replacement of the 23rd A-layer by a B-layer. The central frequency has been chosen
in the region of the stop-band. In Fig. 1, the linear transmission coefficients are given for the cases of the

(a) (b)

Figure 1: Linear transmission coefficients. a) The general picture, b) A section only. Note that the solid lines
correspond to the case without defect and the dotted line is for with defect.

periodic structure without and with the single defect. The presence of the single defect causes a narrow region
of transparency and a shift of the limits of the stop-band. Therefore, the most interesting regions of the central
wave numbers (or frequencies) are localized near the upper limit of wave numbers (λ0 ∼ 1.80µm). Note that in
the linear case the total reflection takes place for the monochromatic input EM wave.

In Fig. 2, the nonlinear transmission coefficients of monochromatic waves are given in the structures with
and without defect. In the structure with defect the transmission coefficient gets more broken dependence, in
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comparison with the linear case. More over, in the vicinity of the narrow transmission region, the shape of
such dependence becomes chaotic-like. This fact can be explained by the accumulation of the energy of EM
oscillations at the defect of the lattice.

(a) (b) (c)

(d) (e)

Figure 2: Nonlinear transmission coefficients through the structure with the defect for the monochromatic wave:
a) with A0 = 0.01 (linear case), a) A0 = 0.1, b) A0 = 0.12, c) A0 = 0.15, d) A0 = 0.2. For a comparison, e) is
for A0 = 0.2 (the regular structure).

(a) (b) (c)

Figure 3: Propagation of the short transversely wide pulses. The carrier frequency corresponds to the wave
number λ0 = 1.80µm. Part a) is the nonlinear propagation though the regular structure (A0 = 1); b) the same
as a), but the input amplitude is 3 times smaller (A0 = 0.31); c) the same input pulse as a) (A0 = 1) but the
propagation through the structure with defect.

Two different situations can occur due to the dependence on the duration of the incident pulse. The first
one corresponds to relatively short pulses. The typical results of simulations are given in Figs. 3 and 4. Here
the intensities of transmitted pulses are presented in the figure captions; t1 = 100, t0 = 80. In the case of
the regular periodic structure, the nonlinear transparency phenomenon occurs at lower amplitudes of the input
pulse, compare Fig. 3(a) and 3(c). In the case of the structure with the defect, the amplitude of the transmitted
pulse is quite small even in nonlinear case, Fig. 3(c). The simulations of nonlinear propagation of transversely
narrower pulses have demonstrated that an influence of diffraction is not expressed for the maximum of the
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transmitted pulse but changes weakly the rear part of it.
A comparison of Figs. 3 and 4 has demonstrated that a relatively small shift of the central frequency of the

pulse changes the nonlinear dynamics essentially. Moreover, the regular periodic structures and ones with the
defect possess different frequency regions for the manifestation of the nonlinear transparency phenomenon.

(a) (b)

(c) (d)

Figure 4: Propagation of the short, transversely wide pulses. The carrier frequency corresponds to the wave
number λ0 = 1.82µm. Part a) is the nonlinear propagation though the regular structure (A0 = 1); b) the same
as a), but the input amplitude is 3 times smaller (A0 = 0.31); c) and d) are the same input pulses as a) and b)
(A0 = 1, A0 = 0.31) but the propagation is through the structure with defect.

(a) (b) (c)

Figure 5: Modulation instability with and without defects. The carrier frequency corresponds to the wave
number λ0 = 1.82µm. The maximal input amplitude is A0 = 1.00. Part a) is for the regular structure, b) is for
the structure with defect (ρ0 = 60), c) is for the structure with defect (with an influence of diffraction, ρ0 = 24).

The case of much longer incident pulses corresponds to the occurrence of modulation instability (MI). Here
the general picture is somewhat different from the previous case, see Figs. 5 and 6. The parameters of the input
pulses are t0 = 340, t1 = 400. At the output of the structure the multipeak signal occurs. Also, the role of
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diffraction is essentially expressed; compare Fig.6(d) and 6(e). In the case of MI developed, the influence of
temporal dispersion can be essential, and the used approximation cases its validity.

An interesting result of simulations is also the fact that the regular structure and one with the defect possess
different frequency regions of observing modulation instability within the stop-band.

(a) (b) (c)

(d) (e)

Figure 6: Modulation instability with and without defects. The carrier frequency corresponds to the wave
number λ0 = 1.80µm. Part a) is for the regular structure, A0 = 1.0, (transversely wide pulse, ρ0 = 60); b) is
for the structure with defect, A0 = 1.0 (ρ0 = 60); c) is for the regular structure, A0 = 1.41 (ρ0 = 60); d) is
for the structure with defect, A0 = 1.41 (ρ0 = 60); e) is for the structure with defect, A0 = 1.41 (transversely
narrow pulse, ρ0 = 24).

4. Conclusions
The results of simulations have been demonstrated an essential influence of defects within the periodic

structure on the nonlinear propagation of EM pulses, even if the carrier frequency is chosen within the stop
band of the structure with the defect. This can be explained by a quite wide spectrum of the input pulse, and
the “tail” of such a spectrum is within the transmission region due to the defect. The dynamics of modulation
instability also changes in the presence of the defect. The diffraction can affect essentially the modulation
instability dynamics.
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Abstract—The paper presents results from a series of European and national projects on remote sensing of
snow parameters. Currently, satellite borne syntethic aperture radar (SAR) data are only available at C-band
frequencies. Other frequencies such as L-band or Ku-band may be favorable in several snow applications, but
current C-band SAR may still be used and further developed to a more mature level. In particular, the advent
of wide swath SAR data have provided frequent data sets at medium spatial resolution, that can be used to
monitor snow parameters operationally.

We will present results from a snow cover area monitoring service developed for Norway and Sweden. The
service, which is based on Envisat ASAR wide swath data, produces snow cover maps on average 3-4 times per
week. The resulting time series gives a unique data set for studying the snow cover as it rapidly retreats during
the melting season, and is of high value to hydro power companies.

Snow water equivalent (SWE) is the key parameter for hydrological applications. Norut IT has developed
a technique using repeat pass interferometry to measure SWE, based on the linear relationship between the
change in SWE and the change in interferometric phase. The technique has been demonstrated, but scarceness
of usable interferometric baseline pairs have so far not allowed wide spread applicability of the technique.

A future SAR using Ku-band frequency as carrier will maybe solve the problem of retrieving SWE. Since
backscatter at Ku-band frequency is more sensitive to SWE, it is good hope that robust SAR methods can
be invented for this purpose. It will, however, be extremely important for the scientific society to validate the
retrieval algorithms against in-situ data. The authors have developed an innovative validation concept using
ground-penetrating radars at the same carrier frequencies as the space borne SARs to validate EO data in an
efficient manner. The concept has been studied at C-band frequencies on glaciers at Svalbard, and we hope to
build a similar platform for Ku-band frequencies, and will be used to validate model based retrieval algorithms.

1. Introduction

Accurate knowledge of snow properties is essential for snow hydrology. Onset of snow melt, snow covered
area, snow wetness, and snow water equivalent are variables that goes into the hydrological models to predict run-
off. These predictions are used for flood forecasting and production planning in hydro power plants. Currently
98% of the Norwegian electricity production comes from hydro power and approximately 50% of this comes
from melted snow. With the establishment of a common Nordic power trading market in the late nineties, the
power producers, power traders and the regulatory branches have developed a need for accurate prediction of
run off. This has created a market for accurately derived snow products based on satellite data. The most
important parameter is the distribution of snow water equivalent (SWE). Most of the power companies and
trading companies in Norway run their own HVB (Bergström, 1992) hydrological models and for the satellite
products to be useful the accumulated accuracy within a catchment must be 10% or better. One will also need
to know the altitude distribution of snow within the catchment. The most important period is from onset of
snow melt in the spring to the end of melt (April-June in Norways mountainous regions).

2. Current Status of Operational Snow Monitoring

Currently the only fully operational satellite based snow mapping in Norway is snow covered area (SCA)
maps based on optical data (AVHRR). To improve the quality and both the spatial and temporal resolutions
a combined method of SCA retrieval based on both SAR and optical (ASAR and MODIS) data has been
developed (Solberg et al., 2004). These methods have been incorporated into a semi-automated production line
for operational use and were tested operationally at Kongsberg Satellite Services in spring 2005. The main
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reason for using SAR data for SCA mapping is the problem of lack of cloud free optical data. Clouds can be a
very persistent problem for optical remote sensing in Norway.

For SAR data to be useful in an operational snow monitoring, the wideswath/scansar mode data has to be
used to get large and frequent enough coverage. This will give a full coverage 2-3 times per week over Scandinavia.

2.1. SCA Retrieval Technique

The retrieval of SCA from SAR is based on the difference in backscatter between a reference scene in the
same orbital track as the scene that will be classified, obtained during cold, dry snow conditions. We then
classify wet snow based on the difference in backscatter caused by the high absorptance of the wet snow pack.
A threshold of -3dB has been chosen based on comparison with field data (Nagler et al., 2000; Storvold et
al., 2005). In the right panel of Figure 1 each classified pixel is assigned a quality value ranging from 0-100
depending on distance from threshold, viewing geometry, and quality of reference image (probability that the
snow in the reference image is dry).

Combining the SAR data with temperature fields allows us to estimate quality of the retrieved data and
make an assessment of the distribution of dry snow that is not directly detectable by SAR. The temperature
fields are constructed based on more than 300 meteorological stations scattered throughout the region.

Dry snow is postulated in areas of higher elevation than the mean wet snow elevation within 20 km of
the classified pixel at the same time as the air temperature is below freezing. The dry snow classification is
assigned a quality number ranging from 0-70 depending on the elevation and air temperature. Figure 1 shows
the differential backscatter between a cold winter reference scene and the May 5th 2004 scene covering most of
the mountainous regions of South Norway (left panel), the resulting SCA map with wet and dry snow (center
panel), and the corresponding confidence values (right panel).

Figure 1: The left panel shows the differential backscatter on May 1st 2004. The center panel shows classified
snow covered area map for May 1st 2004. Black indicates bare ground, white-wet snow, light grey-dry snow, and
grey are unclassified pixels due to forest, lakes, lay-over and shadow. The right panel show the corresponding
classification confidence map. (The map resolution is 100 meter and map coordinates are given in the UTM
zone 33 grid, WGS-84 datum.)

2.2. SCA Retrieval Results 2004

The SAR wideswath scenes are georeferenced within a fraction of a pixel accurcy with Norut IT’s automated
geocoding routine (Lauknes et al., 2005). The difference between South Norway SCA classifications based on
SAR and optical data (MODIS), for the 2004 season, is shown in Table ??. Only cloud free pixels are compared
and this causes the apparent large day to day variation in total SCA shown in the table. We see from Table ??
that the total snow covered area is on average approximately 4-5% larger for the Modis retrievals than for the
SAR retrievals. The largest difference coinsided with a late May cold period with approximately 5 cm of new
dry snow.

2.3. Current Pittfalls in SAR SCA Retrievals

The main uncertainties in todays SAR based snow covered area algorithms lies in the dry snow cover estimate,
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which currently are based on air temperature and presence of wet snow from which a lower altitude boundary
for the dry snow coverage is derived. This causes occasional problems in early spring when there are no wet
snow present within the preset distance of the pixel that is to be classified, causing the algorithm to predict bare
ground. The preset distance is choosen based on the climatic scales of the region. In the late season scattered
wet snow pixels can cause false classifications of dry snow pixels during short cold spells.

The algorithm currently in use does not work in forested areas. Algorithms for estimation of snow cover
in forested areas has been demonstrated in Finland (Koskinen et al., 1999) but these cannot easily be used
in Norway due to the different climate regime (Norway has a costal climate with multiple freeze thaw cycles
throughout the winter).

Compared with SCA retrieval from optical data, the SAR derived algorithm is binary (snow/no snow) and
tend to underestimate the snowcover when pixels are partially snow covered. This is due to the high sensitivity
to strong scatters (rocks and vegetation) that is often exposed early in the melt.

Table 1: Comparison between SCA classification of South Norway based on Envisat ASAR Wideswath and
MODIS in spring 2004.

ASAR MODIS Snow Cover

Date Snow Cover [%] Date Snow Cover [%] Difference [%]

20040501 58.8 20040501 58.9 0.1

20040510 65.6 20040510 68.2 2.6

20040523 29.4 20040523 36.1 6.7

20040526 55.1 20040527 54.5 -0.6

20040528 39.2 20040527 40.0 0.8

20040529 28.5 20040530 35.7 7.2

20040531 26.1 20040531 41.8 15.7

20040601 24.9 20040601 27.0 2.1

20040601 25.9 20040602 29.0 3.1

20040604 3.0 20040603 4.3 1.3

3. Snow Water Equivalent

3.1. Repeat Pass Interferometry
Use of repeat pass interferometry can be used to detect changes in SWE between successive passes (Guner-

iusen et al., 2001). Main limitation on this method currently is the problem of unwrapping the phase change
when the change in snow water equivalent is larger than typically 1-2 wavelengths. The equation below relates
the phase change with the change in SWE (Guneriusen et al., 2001)

∆Φs ≈
1.6

cos θi
kρ∆Zs =

1.6k

cos θi
∆SWE , (1)

where SWE = ρZs. For currently available SAR data (C-band) and repeat cycles (35 days Envisat) this is not
a feasable approach, but with the launch of ALOS L-Band SAR this method is likely to become more useful.
Still there are problems with large snowfalls and with high absorption if the snow is wet. Wet snow absorption
limits the usefulness of this method in the most interesting period, which is during the snow melt.

3.2. ∆k Repeat Pass Interferometry
For a snow density of 0.3 kg/dm3, radar wavelength of 5.62 cm (Envisat), a nd an incidence angle θi = 23◦,

phase wrapping occurs at a snow depth of only 10.7 cm. Retrieval of SWE from C-band SAR can be performed
using repeat pass interferometry and delta-K processing. This method was demonstrated using ERS data (Engen
et al., 2004) and Envisat ASAR data (Larsen et al., 2005). Based on the delta-k principle known from the radar
literature (T. Hagfors, 1961), it has been proposed to handle the phase unwrapping problem by splitting the
bands of both the summer and the winter image into two subbands in the slant range dimension. This results
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in two bands with slightly different carrier frequencies. By forming interferograms for each of the subbands, we
get two interferograms with a different phase, due to the different carrier frequencies. This phase difference, the
delta-k interferometric phase, is given by

∆∆Φs =
1.6

cos θi
(k2 − k1)∆SWE =

1.6

cos θi
∆k∆SWE , (2)

where ∆k = k2 −k1is the difference in wavenumbers between the two subbands. For Envisat ASAR data with a
maximum bandwith of 15 MHz, we split the band into two subbands with a carrier frequency difference of about
6.5 MHz. This results in phase wrapping at a snowdepth of about 85 m. Thus, the phase unwrapping problem
is effectively avoided. The largest drawback of this method is the course resolution of the SWE product due to
the need for averaging to improve the signal to noise (5× 5 km for Envisat). In Figure 2 we show a comparison
between field measurements of SWE and SWE derived from Envisat.

Figure 2: Interpolated SWE field data versus ASAR SWE result. Outliers are eliminated.

3.3. Snow Volume Backscatter

Ku-band SAR instruments have the potential to overcome some of the problems that L-X-band radars have
in retrieving SWE. The main advantage of Ku-Band is the large sensitivity to dry snow. Ku-band signal has
sufficient penetration in most snow packs, at the same time as the volume scattering signal is detectable for dry
snow. Higher frequencies have shorter penetration depths, lower frequencies have less sensitivity. According to
Shi et al., [2003] Ku-band is thus the optimal sensor frequency for estimation of SWE due to the balance of
detectability vs. penetration depth. Repeat pass corrections will allow for removal of topographic and terrain
effects and polarimetric measurements will enable decoupling of the snow volume scattering and snow surface
scattering contributions.

4. Future Snow Monitoring

There are several new upcomming SAR missions (see Table 2) over the next couple of years that yield new
possibilities in snow property retrieval and have potensial in operational snow monitoring. The introduction
of polarimetric sensors as well as new frequencies opens new possibilities in particular in regard to operational
retrieval of SWE.

4.1. Users and Requirements

Snow properties are particularly important for hydropower producers, power traders and regulators. Both
for optimizing hydopower production and for avoiding flooding. For the data to be useful for this group the
quality of the products has to be good (within 10% on a basin wide scale) and the coverage frequent, in particular
in melting season (at least weekly).
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Table 2: Future and current SAR sensors for research and operational use.

Sensor Satellite f[GHz]/Polarization Resolution [m] Swath [km]

SAR Radarsat1(1995-) 5.3 VV 10, 30, 100 100-500

ASAR Envisat (2002-) 5.3 HH,VV,HV 30, 100 100-400

PALSAR ALOS (2006-) 1.2 PP 15/100 40-350

TerraSAR-X TerraSAR(2006-) 9.6 PP 1, 3, 16 5, 30, 100

SAR Radarsat2(2006-) 5.3 PP 3, 10, 25, 50, 100 20-500

C-SAR 3-Constellation 5.3 VV 50 350

Sentinel-1 GMES, ESA-EC 5.3 PP ? 25-50 ? 350-500 ?

PP - Polarimetric; Source: H. Rott, personal correspondance

5. Conclusion

Future sensors and new retrieval methods will allow for establishment of operational monitoring of SCA and
SWE, for hydrological purposes based on SAR, that will meet the user requirements on quality and coverage.
Main obstacle today is lack of operational sensors, in particular for the retrieval of SWE. Scheduled missions
within the next couple of years will change this. Wet snow remains a challenge preventing melt season estimates
of SWE.
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Buried Cylinders Geometric Parameters Measurement
by Means of GPR

B. A. Yufryakov and O. N. Linnikov
Scientific and Technical Centre of System Modeling, Russia

Abstract—Interactive technique that measures geometric parameters of buried cylinders in a homogeneous
medium with unknown velocity of signal propagation is developed. After 3D GPR data processing, the velocity
of signal propagation is estimated; radius, length and position of the cylinder are measured. Experimental data
obtained by GPR “Defectoscope” are given.

1. Introduction

In paper [1] the hyperbola-fitting technique of radius estimation for subsurface cylindrical objects is pre-
sented. For that a direct least-square method for fitting hyperbola is used. Authors of paper [1] supposed that
the propagation velocity is known or it can be estimated beforehand via finding a hyperbola resulting from
a point reflector within the radarogram. In paper [2] they solved the questions of improving the accuracy of
the interpretation of the radar returns reflected from buried cylinders by taking into account the influence of
cylinder’s orientation and electromagnetic radiation pattern of the antennas.

In [3] two-dimensional data obtained from orthogonal sounding of cylinders are analyzed. It is shown that
the generalized Hough method can be used to measure buried pipe diameters from radar measurements and the
velocity determination is best made independently from a point-like source at similar depth.

In this paper the interactive technique of 3D-data processing which allows us to estimate simultaneously
signal propagation velocity in the medium and cylindrical objects parameters (orientation, radius, length and
depth of occurrence) is proposed. Operator participation in data processing allows one to smooth reflected
signals registration errors.

The technique is based on the frontal method of GPR 3D-data interpretation [4]. This method selects from
the whole bulk of GPR data the first arrival of wave fronts from the recorded signals reflected from objects.
These selected surfaces will be referred to as frontal hodographs.

This paper is development of the work in [5].

2. Measurement Technique

The technique proposed was developed during the creation of GPR data processing software of GPR “De-
fectoscope”, designed for inspection of buildings [6]. The scan zone of this GPR is a rectangular area in the XY
plane, and Z axis is directed to the probed medium. We will call the geometrical space with coordinate system
XY Z as object space. During the results registration at any scanning point the value of reflected signal is fixed
at discrete time moments at time axis T . This data array we will call the signal space or data cube. In the
signal space by means of software tools, it is possible to select the surfaces of frontal hodographs as a function
of time delay τ from antenna system coordinates (X,Y ).

In Fig. 1, a cylinder with arbitrary orientation with respect to scanning plane is shown. Denote cylinder
radius as r. Angle of inclination with respect to scanning plane XY of cylinder axis is denoted as ϕ; its
projection to the plane XY intercepts X axis at angle θ. Let us carry out a parallel shift of axes X and Y into
an arbitrary point O belonging to the cylinder axis projection into scanning plane. In Fig. 1 such shift has been
made. Cylinder axis intersects the scanning plane at a point with coordinates (CX,CY ). The distance between
point O and cylinder axis are denoted as h0. This distance equals the length of the perpendicular drawn from
this point to the cylinder axis.

Let us consider this perpendicular as vector ~h={X0, Y0, Z0}, where (X0, Y0, Z0) are Cartesian coordinates
of the perpendicular base, they are:

X0 = −h0 sinϕ cos θ, Y0 = −h0 sinϕ sin θ, Z0 = h0 cosϕ .

Let us introduce the unit vector ~eC={l0,m0, n0} directed from the considered perpendicular base along the
cylinder axis in increasing depth. Coordinates of this vector are:

l0 = cosϕ cos θ, m0 = cosϕ sin θ, n0 = sinϕ .
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Figure 1: Geometry of data acquisition above an arbitrary located cylinder.

Then distance p(X,Y ) from arbitrary point (X,Y ) of scanning plane to cylinder axis equals:

p(X,Y ) =

∣∣∣
[
~q − ~h,~eC

]∣∣∣
|~eC |

where ~q={X, Y, 0}, – radius-vector of the point (X,Y ),
[
~q − ~h,~eC

]
−vector product of vectors ~q − ~h= {X −

X0, Y − Y0,−Z0} and
⇀
eC , modulus means the length of the vector, i.e.,

∣∣∣~h
∣∣∣ = h0.

Hence

p2(X,Y ) = [(Y − Y0)n0 +m0z0]
2 + [(X −X0)n0 + l0z0]

2 + [(X −X0)m0 − (Y − Y0)l0]
2
.

Substituting appropriate coordinates and simplifying, we obtain:

p2(X,Y ) = (X sinϕ+ h0 cos θ)2 + (Y sinϕ+ h0 sin θ)2 + cos2 ϕ(X sin θ − Y cos θ)2

Point (X,Y ) belongs to the arc of ellipse with major semiaxis a and minor semiaxis b (see Fig. 1), where

a = p(X,Y )/ sinϕ and b = p(X,Y).

This ellipse is very interesting. Coordinates of ellipse center are (CX,CY ). The minor semiaxis b equals
the distance from any point of ellipse to cylinder axis. The major semiaxis a is the cylinder axis projection into
scanning plane. Therefore it defines angle θ. Ratio b/a = sinϕ shows the angle inclination of cylinder axis to
scanning plane.

The shortest distance R(X,Y ) from arbitrary point with coordinates (X,Y ) at scanning plane to the cylinder
surface can be derived as:

R(X,Y ) =
√

(X sinϕ+ h0 cos θ)2 + (Y sinϕ+ h0 sin θ)2 + cos2 ϕ(X sin θ − Y cos θ)2 − r. (1)

Let us choose a measuring coordinate system SOU in the scanning plane which is formed by rotation of axes
OX and OY by angle θ. Then OS axis will coincide with the projection of cylinder axis into the scanning plane
and OU axis will be orthogonal to it. The third axis of the measuring coordinate system OW we will choose as
a continuation of the perpendicular from the point O to the cylinder axis.

Then coordinates X and Y are related with measuring coordinates S and U as:

X = S cos θ − U sin θ and Y = S sin θ + U cos θ. (2)
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Section of cylinder by the UW plane is a circle with radius r and center, whose distance from point O equals
h0. For monostatic system frontal hodograph or reflections from this circle for movement along OU axis one

can obtain substituting (2) into (1) with conditions S = 0 and R =
V τ

2
:

V τ

2
=
√
h2

0 + U2 − r.

Let us analyze this hyperbolic hodograph. We fix the time delay T0 of observed hyperbola vertex at point
O and delays T1 and T2 for arbitrary coordinates U1 and U2 at axis U . According to the measurement results
one can obtain equations set:

V T0

2
= h0 − r;

V T1

2
=
√
h2

0 + U2
1 − r;

V T2

2
=
√
h2

0 + U2
2 − r.

The solution is:

V =
2√

T2 − T1

√
U2

2

T2 − T0
− U2

1

T1 − T0
; (3)

h0 =
1

2
√
T2 − T1

U2
1 (T2 − T0)

2 − U2
2 (T1 − T0)√

U2
2 (T1 − T0)2(T2 − T0) − U2

1 (T2 − T0)2(T1 − T0)
; (4)

r = h0 −
V T0

2
. (5)

It should be noted that V and h0 do not depend on T0 but depend on differences (T1 − T0) and (T2 − T0).
It means that signal propagation velocity and the depth of the cylinder axis could be defined unambiguously on
hyperbola form independently the hyperbola position at time axis.

However, it is impossible to use (3)–(5) due to the coordinates registration errors and errors of the operator
carrying out this measurements. Even little errors could lead to significant deviations of calculated V and h0 from
true values. This is a typical incorrect problem, it is advisable to solve this problem by frontal hodograph τ(U)
adjustment by means of graphical tools with the best approximation of the observed data. Similar procedures
are widely used in GPR for the measurement of the signal propagation velocity on reflections from point-like
objects.

Approximating hyperbola form selection can be organized by software tools via adjustment of measurable
parameters V, h and r according to the equations:

for monostatic system

τ(U, h0, r, V ) = 2

√
U2 + h2

0 − r

V
; (6)

for bistatic system with base 2d (which is parallel to X axis):

τ(U, h0, r, V ) =
1

V
(
√
R2 + d2 + 2Rd cosψ +

√
R2 + d2 − 2Rd cosψ), (7)

where h0 =
V T0

2
+ r; R =

√
U2 + h2

0 − r ; cosψ =
U sin θ√
U2 + h2

0

.

Similar analysis of signal space SOT section shows that in this section frontal hodograph represents segment
of the cylinder high generatrix. The slope of this segment equals the value of ϕ angle. Denote time delays
at beginning and the end of the approximating segment as TH and TK respectively, and the distance between
points of measurements at OS axis as D, then ϕ can be calculated as follows:

ϕ = atctg

(
V (TK − TH)

2D

)
.

The cylinder length is L = D cosϕ.
The technique developed was realized as a software module of GPR “Defectoscope” [6]. This software

was approved experimentally by sounding three parallel cylindrical objects placed into a box filled with sand.
Cylinders radii were 2 cm, 0.5 cm and 4 cm. Fig. 2 shows the geometrical position of these cylinders for two
soundings.

Figure 3 shows data processing results obtained from these soundings. Frame 3a shows GPR data when
cylinders ware located at angle θ = 60◦ to X axis and angle of ϕ = 0◦ to the scanning plane. Frame 3b
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Figure 2: Cylindrical objects position in testing soundings.
(a—horizontal cylinders θ = 60◦ and ϕ = 0◦, b—inclined cylinders θ = 60◦ and ϕ = 30◦).

shows GPR data when θ = 60◦ and ϕ = 30◦. Every frame shows control panel of the dialog window and
four fragments. Two uppers fragments (1 and 2) show two vertical mutually perpendicular to each other time
sections of GPR data cube. Down left fragment (3) shows a horizontal projection of data cube section which is
cut in accordance with angles θ and ϕ. Fragment 4 is horizontal projection of data cube with signals exceeded
the threshold specified by the operator.

Figure 3: Measurement results of unknown parameters of medium and cylinders using GPR data. (a—horizontal
cylinders θ = 60◦ and ϕ = 0◦, b—inclined cylinders θ = 60◦ and ϕ = 30◦, 1—vertical data cube section along
S axes shown in section 3 black line, 2—vertical data cube section along U axes shown in section 3 white line,
3—section which is parallel axis of cylinder, 4—horizontal projection of data cube which show signals exceeded
the threshold specified by the operator).

Consider the sequence of measurements the result of which is shown in Figs. 3(a) and 3(b). Using reflections
from a cylinder it is necessary to fix a point of measurements above the axis of a cylinder (see intersection of
black and white lines on fragments 3 and 4). Furthermore, an interpreter chooses the direction along the axis of
cylinder using reflections in horizontal section (see black line on fragment 3) and measures an angle θ. Next, an
interpreter measures of signal propagation velocity V and radius of a cylinder r by means of fitting a hyperbolic
curve by interactive varying of these parameters (see fragment 2). In the end the interpreter fixes inclined line
by changing ϕ value to obtain parallel bounds of reflections of the cylinder high generatrix (see fragment 1).
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All data entered by the interpreter are displayed in group of operating elements “Cylinder”. Meaning of
these elements is given in the following list:

Tt—depth of top of an approximating hyperbole measured in time samples;
Width—number of the samples in the approximating hyperbole of a fragment 2;
Theta—value of a corner θ measured in degrees;
V—propagation speed for of signals measured in millimeters/nanoseconds;
h—depth of cylinder measured on a normal in centimeters;
r—estimation of radius of the cylinder in centimeters;
Phi—value of a corner ϕ measured in degrees;
Oblique plane—the tag, which passive condition is used at measurements of parameters of horizontal cylin-
ders, and an active condition—at a choice of an inclined secant of a plane in parallel an axis of the cylinder;
Measurement zone—a tag at which installation on a fragment 1 there are vertical borders of the measured
length of the cylinder;
St—position of the left border of the cylinder measured in samples of scanning zone;
End—position of the right border of the cylinder measured in samples of scanning zone.
Measured parameters such as coordinates of the measurement point, the propagation velocity and also

parameters of a cylindrical object such as radius, length and location are shown in status bar (Fig. 3). Value
PSI shows direction of vector h. It equals PSI = π/2 − ϕ.

Inaccuracy of measurements of unknown parameters depends on next factors: the time discretization, the
discrete location of antenna, the size of a object, insufficiently stretched “tails” of hyperbolic reflections restricted
by directional diagram, GPR resolution, the small amplitude of reflections and the level of suppression of useful
signals by reflections from other objects.

3. Conclusion

An interactive measurement technique developed in this paper allows the use of 3D GPR data which are
reflections from a buried cylinder to define the signal propagation velocity in a medium and parameters of a
cylindrical object such as radius, length, depth, azimuth angle and angle of inclination can be found.

Parameters which are found can be use both for direct interpretation of observed objects and for automatic
shaping of reflecting surfaces of all objects detected in the scan area using the method in [4].
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Recent Advances in Bioelectromagnetics Research on
Mobile Telephony and Health—An Introduction

S. Lang

Nokia Corporation, Finland

Abstract—It is not widely known that biological and health effects of radiofrequency (RF) energy have been
studied for about 50 years. Currently, there are about 1500 published studies related to RF health research,
covering various disciplines from biophysics to epidemiology, usually defined as bioelectromagnetics research.
All these studies can be found at WHO EMF database (http://www.who.int/peh-emf/en/). Current interna-
tional EMF safety guidelines, established by the International Commission on Nonionizing Radiation Protection
(ICNIRP) and IEEE, are based on this extensive research database.

Recent advances in multidisciplinary bioelectromagnetics research addressing mobile telephony and health
issue have significantly increased our knowledge about fundamental scientific questions in this area. Improved
dosimetry and exposure design have made it possible to conduct well-controlled biomedical experiments. Several
carefully conducted theoretical biophysical analyses have also increased our understanding about the responses
of cell macromolecules to RF energy. However, inconsistent molecular biological findings have raised questions
whether the observed changes are real and whether they have any significance on human health. In this regard,
part of the biomedical research community has forgotten a fundamental rule that an observed effect cannot
be considered established if it has not been independently replicated and confirmed by other researchers. RF
energy—cancer link has been rejected by recent carefully conducted animal studies. However, inconsistent
epidemiological findings and misinterpretation of epidemiological data continue to create confusion in mobile
telephony—cancer debate in many countries. Studies on other health endpoints than cancer have not either
been able to confirm any adverse health effects in humans, such as effects on central nervous system (CNS) at
low RF exposure levels. The weight of scientific evidence shows that RF energy does not cause adverse health
effects in humans below the internationally accepted RF exposure guidelines, such as established by ICNIRP
and IEEE.

1. Introduction

By the end of year 2005, it has been estimated that there will be about two billion mobile subscriptions,
and by the year 2010 the amount will increase up to about three billion. Huge advances have been made in the
research and development in the wireless communications technology during the past two decades. However, the
rapidly increased use of mobile phones and establishment of mobile base station networks has led to concerns
that RF energy could possibly cause some unexpected adverse health effects in humans. It has been suggested,
for example, that mobile phone use induces brain tumors or promotes brain cancer development, or have
other unknown effects on central nervous system. These concerns have led to extensive media debates and
also—sometimes—hasty sciencepolitical decisions to initiate extensive biomedical research programs in several
countries around the world.

There has been an extensive research effort to investigate the effects of RF energy on human health. The
research has been ongoing for about 50 years and has produced a large database, such as the one coordinated
by WHO EMF project. When analyzing this extensive research database, it is essential to understand what the
weight of scientific evidence tells us about biological and health effects following RF exposure instead of looking
at outcomes of single studies. The objective of this paper is to summarize the current research conclusions
related to bioelectromagnetics research on mobile telephony and health. This review will not cover all the
research findings in detail but will highlight three important questions: 1) is RF energy from mobile telephony
able to cause cancers in humans; 2) is RF energy from mobile telephony able to cause adverse effects in human
central nervous system; 3) are so-called “non-thermal” biophysical interactions possible at mobile telephony
frequencies.

2. The Radiofrequency (RF) Database

The WHO database on biological and health effects of RF energy is extensive and global. It comprises more
than 2500 scientific publications from countries around the world. About 1000 of these are reviews, engineering
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studies and non-peer-reviewed articles. As shown in Table 1, almost 1500 published papers in the database
satisfy criteria for use as a basis to assess the possible public health impacts of exposure to RF fields. Table 1
shows the number of entries in the database for each of the following types of scientific studies on RF fields:
epidemiological, human, animal, and cellular studies. In addition, there are about 300 studies are estimated to
be published in the near future including 213 ongoing studies and 90 reported-but-not-published studies.

Although all peer-reviewed studies in the RF database (Table 1) are considered relevant to the mobile phone
issue, there are also a large number of studies in this database related to mobile telephony frequencies as shown
in Table 2. In this table, the number of studies in each of the four types of scientific investigations is shown.
There are 673 studies listed in the database using mobile telephony-specific signals, and 412 of these have been
completed. All of the literature in the RF database is available to the public on the WHO website shown in
Tables 1 and 2.

Table 1: Peer-reviewed papers describing biological and health effects of RF exposure.

• All studies are listed on the WHO web site under “citation listings”: http://www.who.int/peh-
emf/research/database/en/

Research Study Type Ongoing Reported but not Published Published

Epidemiology 39 7 215

Human Studies 61 18 139

Animal Studies 54 33 717

Cellular Studies 59 32 376

Totals 213 90 1447

Table 2: Mobile telephony relevant studies in the WHO database.

• These studies are listed on theWHO web site: http://www.who.int/peh-emf/research/database/en/

Research Study Type Ongoing Reported but not Published Published

Epidemiology 34 5 64

Human Studies 57 17 82

Animal Studies 47 23 170

Cellular Studies 52 26 96

Totals 190 71 412

3. RF Energy and Cancer

Today there seems to be a some kind of overreliance on what can be expected from epidemiological studies.
This has particularly become evident when epidemiological studies related to mobile telephony and health have
been misinterpreted in massmedia. It is often falsely interpreted that correlation between two factors, such as
mobile phone use and cancer, means also that there is a cause-effect relationship. This relationship does not
appear plausible when analyzing critically scientific data, both qualified epidemiologic and laboratory animal
data.

Recent reviews of the published epidemiology studies [1–3] have not been able to establish a link between RF
exposure and cancer. Many of the epidemiological studies have had serious problems in experimental design and
exposure assessment. More reliable data will be available when a current large multi-centre case-control study
(INTERPHONE), directed by the International Agency for Research on Cancer (IARC), will be completed
during year 2006. The weight of evidence from the epidemiological studies indicates no adverse health effects
and this conclusion is strongly supported by results from long-term animal cancer studies, many of which have
well-defined RF exposure data useful for risk analysis [4]. The weight of scientific evidence of the long-term
animal cancer studies indicates no effect on survival or body weight at exposure levels less than 4 W/kg, which
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is regarded as the exposure threshold for adverse effects in animals. These results provide strong evidence that
RF exposure does not cause life shortening diseases or general toxicity at exposure levels within ICNIRP limits
which are set well below the adverse effect threshold of 4 W/kg [4].

A large amount of research has also focused on possible genotoxic effects in vitro following RF energy
exposure although it is widely accepted that RF energy quanta are not capable of causing molecular damage in
cell macromolecules, such as in DNA. Vijayalaxmi and Obe [5] have reviewed the scientific literature pertaining
to the genotoxicity of RF energy in somatic cells, with the specific endpoints of DNA strand breaks, chromosomal
aberrations, micronuclei formation, and sister chromatid exchanges. From their examination of 53 studies, the
authors conclude that the weight of evidence shows that RF EMF is not genotoxic, and that many of the studies
reporting positive results may have had experimental deficiencies. Meltz [6] has reviewed studies focusing on
cancer-related bioeffects in mammalian cell systems and concludes that the weight of evidence available indicates
that, for a variety of frequencies and modulations, low RF energy exposure levels do not cause genotoxic effects.

The bioelectromagnetics science community has also intensively debated whether RF fields are capable
of causing other specific molecular biological effects than genotoxic which could be related to cancer. Main
focus has been on the reports claiming that RF energy is able to interfere with the heat shock protein (HSP)
metabolism [7]. It has been speculated that the reported effects are due to “non-thermal mechanisms”. However,
the explanations have remained vague because of lack of plausible biophysical interaction mechanism explaining
the molecular biological effects which have not either been successfully replicated in other laboratories [8].
Cotgreave [9] concludes in his review paper that issues concerning the risks to human tissues from RF emissions
in vivo are still clouded by a number of inconsistencies and controversies in the literature with respect to HSP
response, which must be clarified by novel research. Moreover, the use of high-throughput screening techniques
(HTST) such as proteomics or transcriptomics to “identify possible molecular targets” of RF energy are still
very immature and are currently not useful for RF health risk assessment.

4. RF Energy and Central Nervous System

Intensive discussions—both scientific and non-scientific—have been ongoing about the potential effects of
mobile telephony signals on human central nervous system. It has, for example, been proposed that RF exposure
alters important physiological functions in the brain such as brain electrical activity, sleep and blood flow [10, 11].

In a review by D’Andrea et al., [12] the authors conclude: . . . “the diverse methods and experimental designs
as well as lack of replication of many seemingly important studies prevents formation of definitive conclusions
concerning hazardous nervous system health effects from RF exposure. The only firm conclusion that may be
drawn is the potential for hazardous thermal consequences of high-power RF exposure.”

It has also been proposed that mobile phones may affect the human cognitive performance [13, 14]. However,
replication studies with improved methodology [15], including better statistical design, have failed to replicate
the original findings. An important methodological point appears to be inclusion of sufficient amount of subjects
in the experiments to avoid false positive data when a large number of psychophysiological endpoints are
investigated.

It has also been speculated that children with still a developing nervous system would be more vulnerable
to RF emissions from mobile phones. This is not supported by scientific facts. From the exposure point of
view, carefully conducted theoretical dosimetry studies have shown that there is no evidence for a correlation
between energy absorption and head size [16, 17]. Other factors such as shape of the head, tissue distribution and
antenna position are more important factors affecting specific absorption rate (SAR). “Child issue” is not either
supported by biomedical evidence. Recent well-designed human experimental studies have found no significant
differences in cognitive performance as measured by reaction time and accuracy in children exposed to RF fields
typically used in mobile telephony [18, 19].

5. RF Biophysical Interaction Mechanisms

The bioelectromagnetics science community has for several years debated whether there would other RF
biophysical interaction mechanisms than thermal. Unfortunately, even fundamental research findings in this
field are often overlooked in speculative debates. A thermal mechanism depends only on the amount of energy
absorbed and thus its frequency dependence is predictable. The amount of energy absorbed will depend on
the electrical properties of the tissue and the geometrical interaction with the biological object, both of which
will cause well-established frequency variations. There is no modulation dependence for a thermal mechanism.
A non-thermal mechanism, on the other hand, would be expected to exhibit frequency dependent responses,
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modulation dependent responses or both. The current 400 mobile telephony studies cover a wide range of
frequencies and modulations and do not support the hypothesis that there is frequency dependent or modulation
dependent response. This conclusion is further magnified by several biophysical analyses and reviews showing
that other biophysical mechanisms than thermal are not plausible at mobile phone frequencies.

Foster and Repacholi [20] have concluded: “Modulation introduces a spread of frequencies into a carrier
waveform, but in nearly all cases this spread is small compared to the frequency of the carrier. Consequently, any
nonthermal (field-dependent) biological effects related to modulation must result from interaction mechanisms
that are fast enough to produce a response at radiofrequencies. Despite considerable speculation, no such
mechanisms have been established. Existense of “non-thermal interactions at radiofrequencies are not either
supported by rigorous biophysical analyses of Pickard [21] and Adair [22].

A special target for discussion has been the DNA molecule and whether RF energy would be capable of
causing vibrational modes in this macromolecule and thereby leading, for example, to molecular damage. Even
fundamental physics shows that this mechanim does not appear plausible since the RF photon quantum energy
is far too low to cause breaks in chemical bonds and/or conformational changes in macromolecules such as in
DNA and proteins. Prohofsky [23] has shown in a theoretical study that that absorption of RF energy below
several hundred GHz would not be resonantly absorbed into an intramolecular mode for macromolecules such
as DNA. The absorption would be into bulk modes of the material in which the molecule is embedded. The
thermalization of the RF energy would be primarily to this bulk material, rather than to a single molecule.

6. Conclusions

The weight of scientific evidence of the epidemiological and long-term animal cancer indicates that long-term
RF exposures do not induce tumors or promote cancer development. Studies on other health endpoints than
cancer have not either been able to establish any adverse health effects in humans, such as effects on central
nervous system (CNS) at low RF exposure levels. Theoretical biophysical studies to date and lack of replicable
biological effects strongly suggest that the only plausible interaction mechanism at mobile telephony frequencies
and emission levels is thermal. The weight of scientific evidence shows that RF energy does not cause adverse
health effects in humans below the internationally accepted RF exposure guidelines, such as established by
ICNIRP.
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Abstract—More than a dozen epidemiological studies have addressed the possible risk of cancer associated with
mobile phone use. Overall, the evidence is reassuring, as risk estimates are close to unity and confidence interval
relatively narrow. However, most studies have been based on relatively small number of long-term users. When
the analysis was restricted to long-term use of mobile phones, some indication of increased risk was found for
acoustic neurinomas. Also, effect related to use on the same side as where the tumor was diagnosed could not be
excluded. Despite the substantial volume of research some increase in risk cannot be ruled out at the moment.
Knowledge could be further advanced by improving exposure assessment rather than increasing the number
of case-control studies. Prospective cohort study is a gold standard in epidemiology and would substantially
advance our understanding of the possible health effects of radiofrequency electromagnetic fields emitted by
mobile phones.

1. Introduction

When new factors (exposures) are introduced or identified that have the potential to affect human health,
multidisciplinary evaluation of possible health impact is required. Risk assessment involves hazard identification,
exposure assessment and risk estimation. Hazard identification entails discovery of harmful potential, with its
possible target for toxicity. Exposure assessment includes describing the occurrence of the agent, pathways and
distribution in the population. Risk estimation comprises identification of mechanism of effect and evaluation
of dose-response.

In this review, we summarize the findings from epidemiological studies. In addition, weaknesses in published
studies are considered and some suggestions for improved assessment given.

2. Methods

We review the epidemiological evidence regarding cancer risk from mobile phone use. The evidence from
studies conducted at individual level is summarized by means of meta-analysis, i. e., quantitative synthesis of
results by obtaining a pooled estimate from published results. The pooled results is obtained by weighting the
individual estimates with the inverse of the variance (obtained from confidence intervals), which is a measure
of precision (amount of information). Consistency of results is evaluated by tests for heterogeneity. When
heterogeneity is present, a random effects model is used. If no heterogeneity is found, a fixed effects model is
used, assuming that all results represent the same global distribution of values. No such assumption is involved
in random effects model.

3. Results

In ecological studies, brain tumor incidence and mortality have been related to mobile phone use at popula-
tion level, without being able to assess if tumors have occurred in mobile phone users or not. Analyses regarding
four Nordic countries showed no obvious increase in benign [1] or malignant intracranial tumors [2] parallel with
increasing mobile phone coverage. However, in some subgroups including the oldest age groups and incidence
of glioblastoma increase during the late 1990’s was reported.

A total of 14 epidemiological studies on mobile phone use and cancer have been published by late 2005.
Twelve have been case-control studies and they have included a total of more than 5000 cases with intracranial
tumors. The total number of exposed cases is more than 1800 (corresponding to exposure prevalence of 1/3). In
the two cohort studies the total number of brain tumor cases is much smaller, only 160. A further limitation of
the latter has been relatively short follow-up, only one year in the US cohort and three years on average in the
Danish study. This review will therefore focus on case-control studies, which also have an additional strength
in more detailed exposure assessment.
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Overall, there is substantial evidence indicating that (ever or regular) mobile phone use is not associated
with the risk of intracranial tumors. The pooled overall OR from all studies is 1.09, 95% CI 0.86–1.38. For
all malignant tumors, consisting mainly of glioma/astrocytoma, the pooled odds ratio from nine studies is very
close to unity, with a narrow confidence interval (OR=1.02, 95% CI 0.77–1.37). Pooled odds ratio for benign
brain tumors, mainly meningiomas, from eight studies is actually below unity (OR=0.89, 95% CI 0.75–1.06).
For acoustic neurinoma (vestibular schwannoma) little indication of risk overall is found based on seven studies.

Eight studies have compared analog (NMT) and digital (GSM) network. Both showed some increase (OR
1.2–1.3), but neither was statistically significant.

Among subjects who have used a mobile phone for at least five years, a slightly elevated risk of borderline
significance is found (OR=1.11, 95% CI 0.99–1.26). This was mainly due to acoustic neurinoma (OR=1.5, 95%
CI 1.2–2.0). No clear indication of increased risk was found for malignant tumors (OR=1.1, 95% CI 0.9–1.3) or
meningioma (OR=0.9, 0.8–1.1).

Ipsilateral use (mobile phone on the same side where the tumor was diagnosed) was associated with some
indication of a slightly increased risk (OR=1.4, 95% CI 0.9–2.0)

When the groups with longest cumulative calling time were combined from different studies (using various
cut-points), an odds ratio below one was obtained (OR=0.91, 95% CI 0.74–0.60).

4. Discussion

The number of studies conducted and number of subjects included in epidemiologic studies are relatively
large. However, quality of evidence should also be considered. Most studies so far have relied on self-reported
extent of mobile phone use as principal exposure measure of exposure. However, the limitations of such approach
are evident. Whether or not a person is a regular mobile phone user can probably be reliably assessed. Yet, for
construction of quantitative exposure-effect relationship, much more detailed information is required. Validation
studies carried out indicate that the precision of self-reported use in terms of number of calls or cumulative call
duration is only adequate (correlation coefficients between reported and recorded use 0.5–0.7 for both number
and duration of calls) [3–5]. Furthermore, there is tendency to systematically overestimate amount of use
(reported call duration up to 2–3 times the recorded value). Additional uncertainty arises from the fact that
cumulative calling duration is only a proxy measure for the exposure of interest, energy absorbed in the target
tissue from the radiofrequency electromagnetic field.

Random error, if non-differential, i. e., similar among cases and controls, is likely to attenuate any effect of
exposure and therefore hinder detection of possible association. In addition to random error, systematic error
(bias) is likely to affect the results of epidemiologic studies.

No studies have been published addressing possible information bias, i. e., differential error among cases
and controls. Typically, recall bias, based on less complete reporting of exposure among controls, tends to
overestimate any effect on outcome. In brain tumors, it is possible that the disease or its treatment, or anxiety
following diagnosis may affect the recall and cognitive function of cases, diminishing accuracy of reporting. Also,
proxy respondents are used more commonly for cases with malignant tumors than controls, which is likely to
affect the quality of information.

The results of a recent study conducted in Finland [6] showed that non-participants were less likely to use
mobile phone than study participants. This applied to both cases and controls. Selection bias resulted in
apparent protective effect of mobile phone use. It may also distort the shape of dose-response.

These methodological weaknesses are inherent for retrospective exposure assessment. Epidemiological risk
assessment is unlikely to improve from simply increasing the volume of research. A cohort study where con-
current mobile phone use is assessed would likely achieve substantially improved accuracy. Another advantage
would be the possibility to risk of several health outcomes such as disease incidence and mortality (not only
cancer, but also neurological, cerebrovascular and psychiatric disease), as well as ‘soft’ end-points, including
symptoms and well-being. However, such study would require resources as recruitment of a very large number
of subjects (probably > 100, 000) is needed with follow-up for at least 10 years.

5. Conclusion

Currently, the factor limiting our knowledge of possible carcinogenic effect of mobile phone use is no longer
the volume of evidence, but quality of epidemiological studies conducted. Improved knowledge could be gained
by conducting prospective cohort studies, rather than increasing the number of case-control studies.
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NSA Calculation of Anechoic Chamber Using Method of
Moment
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Abstract—NSA characteristics of an anechoic chamber were calculated by using the MoM (Method of Moment),
and they were compared with those calculated by the FDTD method as well as the measured results in fully
anechoic chamber. Next, we calculated of an anechoic chamber with complicated shapes. We found that first
imitating a wave absorber using wire meshes with a limited electric conductivity is effective by controlling the
wire interval. The NSA characteristics calculated by the MoM are as well as those calculated by the FDTD
method. The NSA characteristics calculated by the MoM also agree with the measured results. And NSA
characteristics of an anechoic chamber with complicated shapes were able to be calculated by using the MoM.
Based on the results, it is confirmed that the MoM can be used to calculate NSA characteristics for an anechoic
chamber.

1. Introduction

An anechoic chamber is a test room specially designed for completely shielding out external disturbances
and for suppressing the echo caused by internal electromagnetic waves. The anechoic chamber for the radiated
emission measurement specified by CISPR is usually evaluated by NSA (normalized site attenuation), which is a
measure of the transmission characteristics between the standard antennas set inside the anechoic chamber. NSA
is usually analyzed by using the ray tracing method [1], but the analytical accuracy of the NSA deteriorates
in the low frequency band below several hundreds MHz because the ray tracing method approximates an
electromagnetic wave as an optical ray. However, the FDTD (finite difference time domain) method is an
analytical method that treats electromagnetic waves purely as waves. Therefore, the FDTD method can analyze
NSA characteristics in the low frequency band below several hundreds MHz. The NSA of the anechoic chamber
using the FDTD method was obtained by Holloway [2] and Takiguchi [3].

 6000mm 

4560mm 

4500mm 

4000mm 

Figure 1: Anechoic chamber of analysis schedule. Figure 2: Modeling of transmitting and receiving an-
tennas.

The purpose of this research is to construct and calculate an anechoic chamber that can measure below
30 MHz because we will measure the characteristics of a PLC (power line communication) system that operates
between 2 to 30 MHz. Therefore the ray tracing method is not suitable for this calculation. The FDTD method
is suitable, but it cannot be used to calculate the NSA of an anechoic chamber with a cross section of a non-
rectangular shape, as shown in Fig. 1. The non-rectangular shape is preferable because internal resonance of
an anechoic chamber with such a cross section is lower than one with a rectangular cross section. Another way
to calculate for the fully electromagnetic wave method is MoM (method of moment), which can calculate the
NSA of an anechoic chamber with a non-rectangular cross section.

In this paper, we report on our comparison of calculations of the NSA of an anechoic chamber using the
MoM and the FDTD method. In addition, we report on calculations of the NSA of an anechoic chamber
with complicated shapes (pentagonal anechoic chamber) using the MoM. First, the NSA calculation of the
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antenna factor of transmitting and receiving antennas is presented. Second, we describe the modeling method
of the anechoic chamber when we calculate the NSA characteristics using MoM. Third, we describe calculation
results of NSA characteristics of the anechoic chamber is provided. Fourth, the calculation results obtained by
the MoM are compared with those obtained by the FDTD method. Almost the same results were obtained.
Finally, we calculated Characteristics of pentagonal anechoic chamber and showed that NSA characteristics of
the pentagonal anechoic chamber are better than cuboid anechoic chamber.

2. Antenna Factor

Both transmitting and receiving antennas are set in the chamber to measure the NSA characteristics and
then a modeling of antenna is required in a simulation. A half-wave dipole antenna was used by Takiguchi [3] for
measuring the NSA characteristics of the anechoic chamber as transmitting and receiving antennas. Therefore,
we have to model the half-wave dipole antenna by using the MoM. The modeled antennas are shown in Fig. 2.
In Fig. 2, we modeled the transmitting antenna by putting the transmitting voltage (Vs) and the resistance
(Rs) in a gap between two elements of the antenna. In Takiguchi’s study [3], Vs was 1 V, and both Rs and Rr
were 50 Ω, and the diameter of an antenna element was 7 mm.

Next, we examined the antenna factor modeling of a half-wave dipole antenna. The antenna factor AF
represents the ratio of the electric field (abbreviated E-field) of an incident electromagnetic wave arriving at an
antenna to the voltage induced by the incident wave between the antenna elements, as shown in (1).

AF = 20 log10

(
E0

Vr

)
(1)

Where E0 is the E-field strength at the antenna, and Vr is the induced voltage of the antenna. The E-
field strength distribution near the antenna needs to be uniform when measuring the antenna factor. It is
examined how many distances between the transmitting and receiving antennas is needed when calculating the
antenna factor by using the MoM. Because the E-field strength at the receiving antenna does not depend on the
frequency, we calculated the dependence of the E-field strength on the distance between the transmitting and
receiving antennas at a frequency of 30 MHz as shown in Fig. 3. In Fig. 3, the difference in the E-field strength
is negligible beyond 400 m. Therefore, we set the distance between the transmitting and the receiving antennas
to 1 km.

A comparison of the calculation results of the antenna factor using the MoM with the antenna factor from
Takiguchi’s study is shown in Fig. 4 [3], and their antenna factors clearly agree and have sufficient accuracy.
Therefore, we used these calculated values.

Figure 3: Dependence of E-field strength on the dis-
tance between transmitting and receving antennas.

Figure 4: Calculation results of antenna factor by
using MoM.

3. Modeling of Anechoic Chamber Using MoM

3.1. Modeling of Anechoic Chamber’s Walls
The anechoic chamber had electromagnetic wave absorbers set on the walls and ceiling to suppress internal

echo within the chamber. Two kinds of anechoic chamber were used, fully anechoic and semi anechoic.
In the fully anechoic chamber, all of the walls, the ceiling, and the floor are covered by wave absorbers,

as depicted in Fig. 5 However, in the semi anechoic chamber, the walls and ceiling are covered with the wave



202 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

absorbers, but the floor is covered metal plates instead. Therefore, we had to imitate the wave absorbers
to calculate the NSA characteristics for these anechoic chambers. We used a wire mesh with limited electric
conductivity to imitate the wave absorbers for this study, as shown in Fig. 6.
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Figure 5: Construction of fully anechoic chamber.
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Figure 6: Modeling of fully anechoic chamber using
MoM.

We chose the anechoic chamber used by Takiguchi [3] as a calculation object. The dimensions of the chamber
are W = 6.24 m, L = 6.96 m and H = 5.96 m. The walls, ceiling, and floor are composed of wire meshes with
intervals of W = 0.567 m, L = 0.633 m, and H = 0.542 m, as shown in Fig. 6, and the wire meshes also
have diagonal wires. The interval of the wire meshes was a bit large comparing with the wavelength of the
electromagnetic wave sent from the transmitting antenna to the receiving one. It should be small at a higher
frequency, especially around 100 MHz, which was the highest frequency for this calculation. To make segment
length λ/10 or less, the number of segments set here is 8706 in fully anechoic chamber and 7202 in semi anechoic
chamber. The calculation model of the fully anechoic chamber is shown in Fig. 6, but in the one for the semi
anechoic chamber, the floor is modeled using a perfect ground.
3.2. Modeling of the Wave Absorber Reflection

The wave absorber imitates the wire mesh with a limited electric conductivity, which was calculated from
the wave absorber’s reflection coefficient. In this paper, we made reflecting plate and calculated reflection
wave to transmission wave using MoM and obtained the limited electric conductivity corresponding to the
amount of reflection. Figure 7 shows the calculation model of reflection. We set the distance between the
transmitting antenna and the reflecting plate to 1 km. The reflection level is controlled by changing limited
electric conductivity. The calculation method of the reflection is used space standing wave method [4]. This
method is calculated from maximum and minimum electrical field strength (Emax, Emin), as shown in (2)

|Γ̇| =
1 − ρ

1 + ρ
ρ =

Emax
Emin

(2)

Where Γ is reflection coefficient, and ρ is standing wave ratio. In (2), ρ was adjusted by changing limited
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Figure 7: Calculated model of reflection. Figure 8: Reflectivity of wave absorber.

electric conductivity, and Γ was set as well as wave absorber’s reflection by changing ρ. From here onwards,
wave absorber was imitated by wire mesh with limited electric conductivity corresponding to wave absorber’s
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reflection. In this paper, we calculated limited electric conductivity corresponding to reflection from 30 MHz to
100 MHz.
3.3. Reflectivity of the Wave Absorber

Figure 8 shows the reflectivity of the wave absorber measured by the rectangular coaxial air-line method. The
reflectivity of the wave absorber is 20 dB above 70 MHz and reaches 30 dB near 200 MHz. For this calculation (30
to 100 MHz), it is supposed that a pyramidal foamed ferrite is not effective. But we have only the characteristics
of synthesis of pyramidal foamed ferrite and ferrite tile. Therefore, we calculated using this characteristic.

4. NSA Calculation of Anechoic Chamber

4.1. Calculation Method of NSA
NSA represents the transmission characteristics between the transmitting and receiving antennas on the test

site, and it is calculated by (3) [3]

NSA = VDIRECT − VSITE − (AFT +AFR) − ∆NSA (dB) (3)

where VDIRECT is the received voltage of the measuring receiver when the connecting cables for a signal generator
and the receiver are connected directly and VSITE is the maximum receiving voltage of the measuring receiver
when the cables are connected to the transmitting and receiving antennas and when the receiving antenna is
swept between 1 and 4 m. AFT and AFR are the antenna factor of the transmitting and receiving antennas.
∆NSA is the correction value by direct coupling between the antennas, including image coupling between them
through the metal ground plane. In this calculation, we used a half-wave dipole antenna at 30 MHz because
this kind of dipole antenna was used in calculating the NSA with the FDTD method [3], and our intention is
to compare the MoM and the FDTD method. In using MoM, Vsite are measured at 5points as shown Fig. 9
and fully anechoic chamber, ∆NSA is zero [3].

Figure 9: Position of transmitting and receiving antennas.

4.2. NSA Characteristics for Fully Anechoic Chamber
Figure 10 shows the calculation results for the NSA characteristics in the fully anechoic chamber where the

MoM is used, and (a) is the vertical polarization, and (b) is the horizontal one. Curves from 1-1’ to 5-5’ are
the calculation results using MoM for antenna position as shown Fig. 10. In addition, the calculation results
using the FDTD method and the measured results obtained from Takiguchi’s study [3] are shown in Figure
10. The NSA characteristics calculated by the MoM in the frequency range from 30 to 100 MHz is similar to
the measured results. The NSA calculation results using MoM hardly depend on various antenna positions.
Especially, NSAs for 2-2’ and 3-3’ reached almost the same value as well as NSAs for 4-4’ and 5-5’. However,
the calculated NSA using the FDTD method does not agree with that using MoM. But, it is thought that the
calculation accuracy using MoM is better than that using FDTD, because the humps existing the measured
value is also appeared in NSA using MoM as shown Figure 10(a). NSA using MoM from 30 MHz to 60 MHz is
fitted to the measured value more than NSA using FDTD. As the results, it is clear that the NSA characteristics
calculated by using the MoM is more accurate than that calculated by using the FDTD method.
4.3. NSA Characteristics for Semi Anechoic Chamber

We also calculated the NSA characteristics of the semi anechoic chamber as shown in Fig. 11. In Fig. 11,
(a) shows the vertical polarization, and (b) shows the horizontal polarization. In addition, for the semi anechoic
chamber, the ∆NSA from the VCCI [5] was used. The NSA characteristics calculated by using the MoM for
the semi anechoic chamber agree with the measured results. The difference among the calculation results using
MoM for various antenna positions was not so many. The measured results of the NSA characteristics in the
semi anechoic chamber have humps, and the calculated results using the MoM also appeared though it was not
plenitude. Regardless, it is clear that the NSA characteristics calculated by using the MoM agrees with the
measured results.
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(a) Vertical polarization (b) Horizontal polarization

Figure 10: NSA characteristics of the fully anechoic chamber.

(a) Vertical polarization (b) Horizontal polarization

Figure 11: NSA characteristics of semi anechoic chamber.

4.4. Characteristics of Pentagonal Anechoic Chamber
Next, we calculated the characteristics of the pentagonal anechoic chamber, as shown in Fig. 12, using the

MoM. The base area in the pentagonal anechoic chamber is given as the same that in the rectangular anechoic
chamber as shown in Fig. 6, and heights of the both chambers are also set as the same value. The reason
is to calculate only the modification effect by changing the shape of the anechoic chamber from rectangular
to pentagonal. The modeling method of an echoic chamber is similar to that in the case of Fig. 6, and the
calculation method of antenna factor for the shortened dipole antenna is also similar to that in the case of
Fig. 7. In this paper, we estimated the fully anechoic chamber using the NSA because we could not calculate
the ∆NSA when calculating the NSA using a shortened dipole antenna.

Figure 12 shows the calculation results of the NSA characteristics in the fully anechoic chamber. In Fig. 13,
“Theory” was calculated as shown in (4).

NSA = 20 log10(D) − 20 log10(F ) + 32(dB) (4)

Where, D is the distance from transmitting to receiving antenna (m) and F is frequency (MHz). (4) is
analysis of geometrical optics in free space.

In the vertical polarization as shown in Fig. 13(a), the NSA characteristics appeared to be high in the
frequency range from 60 to 80 MHz comparing with the Theory. But the maximum difference value between
the Theory and the calculation results using MoM is 2 dB, and this value exists in a permissible value. In the
horizontal polarization, the NSA characteristics appeared to be high from 30 to 70 MHz, and become almost
the same values as the Theory from 60 to 100 MHz. But the maximum difference value between theory and
calculation using MoM is 2 dB. The NSA characteristics of both vertical and horizontal polarizations in the
pentagonal anechoic chamber are better than that in the rectangular anechoic chamber as shown in Fig. 10. As
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a result, it is confirmed that the NSA characteristics can be improved by changing to a pentagonal shape in a
fully anechoic chamber.

Figure 12: Outline of anechoic chamber.

(a) Vertical polarization (b) Horizontal polarization

Figure 13: Characteristics of fully anechoic chamber for the pentagonal anechoic chamber.

5. Conclusion

In this paper, we calculated the NSA characteristics of an anechoic chamber using the MoM and compared
them with the characteristics using the FDTD method as well as the measured results. The following items
were clear.

1 Imitating a wave absorber using wire meshes with limited electric conductivity is effective by controlling
the wire interval.

2 The NSA characteristics calculated by using the MoM are more accurate than those using the FDTD
method.

3 The NSA characteristics calculated by using the MoM agree with the measured results.

4 Calculation of NSA characteristic using MoM is available in anechoic chamber with compricated shapes.

Future tasks are improvement of calculation accuracy and NSA calculation for the semi anechoic chamber
with a pentagonal base.
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An Effective Inversion Method Based on the Padé via
Lanczos Process

R. F. Remis
Delft University of Technology, The Netherlands

Abstract—In this paper we present a nonlinear effective inversion method based on the Padé Via Lanczos
process (PVL process). The method finds so-called effective medium parameters of some inhomogeneous object
by minimizing an objective function which describes the discrepancy between the scattered field produced by an
inhomogeneous object and the scattered field produced by a homogeneous one. This minimization procedure can
be carried out by inspection, since the scattered field produced by homogeneous objects can be computed very
efficiently using the PVL process. The constant medium parameters of the homogeneous object for which the
objective function is minimum are the effective medium parameters we are looking for. A number of numerical
experiments are presented in which we illustrate the performance of the method.

1. Introduction

We consider a two-dimensional configuration that is invariant in the z-direction. The position vector in
the transverse xy-plane is denoted by x. An object, with known support S

obj, is located in vacuum and is
characterized by a conductivity σ(x) and a permittivity ε(x). The object is illuminated by E-polarized waves
which are generated by a line source of the form

Jext
z (x, ω) = f(ω)δ(x − xsrc), (1)

where f(ω) is the source signature, and the delta function on the right-hand side is the Dirac distribution
operative at x = xsrc. The source is located outside the object (xsrc /∈ S

obj), and the incident electric field
strength generated by the line source is given by

Einc
z (x, ω) = γsH

(1)
0 (k0|x − xsrc|), (2)

where H
(1)
0 is the zero-order Hankel function of the first kind, γs = iωµ0f(ω)/4, and k0 is the wave number of

vacuum.
The total electric field strength is measured at some receiver location xrec ∈ S

obj and since the incident
electric field is known, the scattered electric field strength at the receiver location is known as well. We denote
this scattered field by Esc

z . In what follows we assume that this field does not vanish at the receiver location.
The full inversion problem consists of retrieving the conductivity σ(x) and permittivity ε(x) of the object

from the measured electric field strength. In our effective inversion method, however, we follow a different
approach. We act as if the object is homogeneous and try to find position-independent medium parameters for
which the scattered field at the receiver location matches the true scattered field using a well-defined objective
function.

Let us be more precise. Introducing the contrast coefficient of the homogeneous object as

ζ(ω) = ε̃r − 1 + i
σ̃

ωε0
(3)

where ε̃ and σ̃ are position-independent, we have for the scattered field at the receiver location the integral
representation

Ẽsc
z (xrec, ω) =

ik2
0

4
ζ(ω)

∫

x′∈Sobj

H
(1)
0 (k0|xrec − x′|)Ẽz(x′, ω)dA. (4)

This so-called data equation relates the scattered field at the receiver location to the contrast coefficient and
the total electric field inside the object. This total field is unknown, but we do know that it satisfies the object
equation

Ẽz(x, ω) − ik2
0

4
ζ(ω)

∫

x′∈Sobj

H
(1)
0 (k0|x − x′|)Ẽz(x′, ω)dA = Einc

z (x, ω) with x ∈ S
obj (5)
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This object equation is an integral equation of the second kind for the total electric field strength Ẽz for a given
value of the contrast coefficient.

Discretizing the object and data equation on a uniform grid using square discretization cells with side lengths
δ is standard and we do not discuss it in this paper. We only give the final forms of the discretized data and
object equations, and refer to [1] for details on the discretization process.

After the spatial discretization procedure we obtain the discretized data equation

usc(ζ) = γrζr
Tu, (6)

where γr = i(k0δ)
2/4, r is a receiver vector, and u is a vector containing the expansion coefficients of the total

electric field inside the object. Furthermore, the discretized object equation for the homogeneous object is given
by

(I − ζG)u = uinc (7)

where I is the identity matrix, and matrix G is a square and symmetric (but not a Hermitean) matrix with
(scaled) Green’s function values as its entries. Since matrix G results from a discretization of a convolution
operator on a uniform grid, we can compute its action on a vector very efficiently using the Fast Fourier
Transform (FFT). Finally, the vector uinc is a vector consisting of incident electric field strength values. This
vector can be written in the form uinc = γss where s is such that s = r if the source and receiver locations
coincide. Using the latter form for the incident field vector in the discretized object equation, solving this
equation for the total field u, and substituting the result in the discretized data equation, we arrive at

usc(ζ) = γζrT (I − ζG)−1s, (8)

with γ = γrγs. If we compute the scattered field usc equation (8) directly, we have to solve a forward problem
for each new value of ζ. Such a procedure can be computationally intensive and it turns out that it can be
avoided using the Padé Via Lanczos (PVL) process. We briefly describe this process in the next section.

2. The Padé via Lanczos Process

We first define our domain of interest. Let ε̃r;max and σ̃max be a priori given upper bounds for the constant
medium parameters. Then our domain of interest is defined as

T = {ζ ∈ C; 0 ≤ Re(ζ) ≤ ε̃r;max − 1, 0 ≤ Im(ζ) ≤ σ̃max/(ωε0)},

since we require that ε̃r ≥ 1 and σ̃ ≥ 0. We now compute [k − 1/k]-Padé approximations for the scattered
field usc around an expansion point ζ0 ∈ T by performing k iterations of the two-sided Lanczos algorithm
(see [2]). Matrix factorization is required for any nonzero expansion point and computing such a factorization is
expensive (although it has to be computed only once). However, no such factorization is needed if we take ζ0 = 0
as an expansion point. Only matrix-vector products with matrix G are required in this case and, as we have
mentioned above, such products can be computed efficiently using FFT. We therefore construct [k− 1/k]-Padé
approximations for the scattered field usc around the expansion point ζ0 = 0 by performing k iterations of the
two-sided Lanczos algorithm using the source and receiver vectors s and r as starting vectors. We denote the
resulting Padé approximation by usc

k . The crux of the matter is that to evaluate this approximation for each
ζ ∈ T, we need to solve a k-by-k tridiagonal system and k is typically much smaller than the order of the original
discretized object equation. Assuming now that k is such that essentially

usc
k (ζ) = usc(ζ) for all ζ ∈ T,

we can conclude that we have an efficient way of evaluating the scattered field for all ζ-values of interest.

3. The Effective Medium Parameters

The effective medium parameters follow from minimizing an objective function defined over the domain of
interest. More precisely, the effective medium parameters are defined as those parameters for which the objective
function

F1(ζ) =
|Esc
z − usc

k |2
|Esc
z |2 (9)
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Figure 1: Two-dimensional test configuration.

attains a minimum in our domain of interest T. If multiple frequency data Esc
z (ω1), E

sc
z (ω2), · · · , Esc

z (ωN ) is
available, we look for those medium parameters for which the multiple frequency objective function

FN (ζ) =
N∑

n=1

ωn
|Esc
z (ωn) − usc

k (ωn)|2
|Esc
z (ωn)|2

(10)

is minimum. In the above equation, the weights ωn satisfy
∑N
n=1 ωn = 1. Notice that in the multiple frequency

case we have to apply the PVL process for each frequency separately. Moreover, for multiple frequencies the
domain of interest on which all the PVL approximations match the true scattered field due to a homogeneous
object is taken to be the domain T which corresponds to the lowest frequency of operation. Minimizing the
objective functions can be carried out by inspection since we have a very efficient way of computing the scattered
fields usc

k (ωn). Finally, we mention that we cannot guarantee that the effective medium parameters are unique.
The objective function may have multiple minima on the domain of interest and each minimum gives a set
of effective medium parameters for the object. However, usually we can overcome the nonuniqueness of the
effective medium parameters by including more a priori information, or by performing additional experiments
at different frequencies while keeping the source/receiver unit fixed.

4. Numerical Results

We illustrate our effective inversion approach using the two-dimensional configuration shown in Figure 1. A
square block with side lengths ` is located in a vacuum domain. The block has an inner and an outer part and
each part has its own constant medium parameters. Specifically, the outer part has a conductivity σ1 and a
relative permittivity εr;1, the inner part a conductivity σ2 and a relative permittivity εr;2. Obviously, the block
is homogeneous if σ1=σ2 and εr;1 = εr;2. Finally, the source/receiver unit is located a distance `/2 above the
object and the source and the receiver are located 2 cm apart.

In our first example, we operate at a frequency of 36 MHz, and take ` = λ36, where λ36 is the free-space
wavelength corresponding to the operating frequency of 36 MHz. The block is homogeneous with σ1 = σ2 =
7.5 mS/m and εr;1 = εr;2 = 5. For the maximum conductivity and maximum relative permittivity we take
σ̃max = 10 mS/m and ε̃r;max = 6, respectively. The domain of interest is discrerized on a 50-by-50 grid (leading
to 2500 forward problems solved by PVL in less than a second on a notebook with a 1.6 GHz Pentium M
processor) and the objective function F1 on this domain of interest is shown in Figure 2 (left). We observe that
the true conductivity and permittivity of the object are recovered. However, a number of additional minima
are present near the ε̃r-axis. To remove these minima we add two more frequency measurements, namely, one
at a frequency of f = 30 MHz and one at f = 42 MHz. The objective function F3 for these two frequencies and
the frequency of 36 MHz is shown in Figure 2 (right), where we have taken ωn = 1/3 for n = 1, 2, 3. Clearly,
the multiple minima have disappeared and a single minimum remains. In addition to using multiple frequency
data, we could also change the source and receiver locations. This latter option is not considered in this paper,
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however.
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Figure 2: Base 10 logarithm of F1 (left) and base 10 logarithm of F3 (right) on the domain of interest.
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Figure 3: Base 10 logarithm of F3 for the λ36/4-block (left) and the λ36-block (right).

We now apply our effective inversion method to inhomogeneous blocks. Two blocks of different sizes will be
considered. The first block has a side length ` = λ36/4 and the second one a side length of ` = λ36. The outer
part of the two blocks has a conductivity σ1 = 3.0 mS/m and a relative permittivity εr;1 = 3, while the medium
parameters of the inner part are σ2 = 5.0 mS/m and εr;2 = 5. For both blocks the area of the inner part is
50% of the total area of the block. Using the same three frequencies as in the previous examples, we obtain
the objective functions as shown in Figure 3. The minimum for the λ36/4-block is located at an acceptable
location in the domain of interest, but for the large block the effective medium parameters are smaller than the
smallest medium parameters of the block. This result is unexpected. We therefore carried out an additional
number of experiments and all these experiments indicate that for inhomogeneous objects it all depends on the
size of the object and the sizes of the perturbations with respect to a constant contrast function. This latter
function may be large, but the perturbations cannot be “too large”. Finding a condition that tells us for which
contrast perturbations the proposed method gives reliable results is a topic we are presently investigating. In
addition, we want to know how this condition changes if the data is perturbed (by noise, for example) given the
magnitude of the data perturbations.
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QN Inversion of Large-scale MT Data
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Abstract—A limited memory quasi-Newton (QN) method with simple bounds is applied to a 1-D magnetotel-
luric (MT) problem. The method is used to invert a realistic synthetic MT impedance dataset, calculated for
a layered earth model. An adjoint method is employed to calculate the gradients and to speed up the inverse
problem solution. In addition, it is shown that regularization stabilizes the QN inversion result. We demonstrate
that only a few correction pairs are enough to produce reasonable results. Comparison with inversion based on
known L-BFGS-B optimization algorithm shows similar convergence rates. The study presented is a first step
towards the solution of large-scale electromagnetic problems with a full 3-D conductivity structure of the Earth.

1. Introduction

Quasi-Newton (QN) methods have become a very popular tool for the numerical solution of electromagnetic
(EM) inverse problems (see [8, 7]). The reasoning behind it is that the method requires calculation of gradients
only, while at the same time avoiding calculations of second-derivative terms. However, even with the gradients
only, the QN methods may require excessively large computational time if the gradients are calculated straight-
forwardly. An effective way to calculate the gradients is delivered by an adjoint method (see [11, 4]). Also, for
large-scale inverse problems the limited memory QN methods have to be applied, since their requirements for
storage are not so excessive as for other QN methods. In this paper, as a first step to solving the 3-D EM case,
we have applied a limited memory QN method for constrained optimization to solve 1-D magnetotelluric (MT)
problems. This optimization method is an extension of previous work [9]. As distinct from this earlier work we
implement the Wolfe conditions to terminate the line search procedure, as was recommended in [3]. First we
present a simple review of the limited memory QN method for inversion of 1-D MT data. Then, we demonstrate
the efficiency of our inversion on a synthetic, but realistic numerical example, along with a comparison with
inversion based on the L-BFGS-B optimization method introduced by [3]. The results presented are encouraging
and suggest that the method has the potential to handle the more geophysically realistic 3-D inverse problem.

2. 1-D MT Inversion

In the frame of the magnetotelluric method both the electric and magnetic fields are recorded. These fields
are then processed to calculate the observed impedance dataset. This dataset is finally inverted to derive a
distribution of electrical conductivity in the earth.

Thus, for 1-D MT inversion a layered earth model is considered and conductivities of the layers are sought.
This problem is usually solved by minimization of the following objective function

ϕ(m, λ) = ϕd(m) + λϕs(m) −→
m

min, (1)

where ϕd(m) = 1
2

M∑
j=1

αj |Zj − dj |2 is the data misfit. Here m = (m1, ...,mN )T is the vector consisting of the

electrical conductivities of the layers; superscript T means transpose; N is the number of the layers; Zj(m)
and dj are the complex-valued modeled and observed impedances at the j-th period (j = 1, ...,M) respectively;

αj = 2
M ε−2

j |dj |−2
are the positive weights; εj is the relative error of the impedance Zj(m) and λ is a Lagrange

multiplier. Our choice of λ is a simple variant of an algorithm presented in [6]. As prescribed by the regularization
theory (see [12]), the function (1) has a regularized part (a stabilizer) ϕs(m). This stabilizer can be chosen
by many ways, and moreover, the correct choice of ϕs(m) is crucial for a reliable inversion. However, this
aspect of the problem is out of the scope of this paper. We consider the following stabilizer (see [5]) ϕs(m) =
N∑
i=2

(
mi

m0
i

− mi−1

m0
i−1

)2

, where m0 = (m0
1, ...,m

0
N )T is an initial guess model. It is of importance that, as the
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conductivities mi (i = 1, . . . , N) must be non-negative and realistic, the optimization problem (1) is subject to
bounds

li ≤ mi ≤ ui, (2)

where li and ui are the lower and upper bounds, respectively and li ≥ 0 (i = 1, . . . , N).
A limited memory quasi-Newton method. We notice that the problem posed in (1)– (2) is a typically

constrained optimization problem with simple bounds. To solve this problem Newton-type iterative methods
are commonly applied. However, most of these methods are not applicable to large-scale optimization problems
because the storage and computational requirements become excessive. To overcome this, a limited memory
quasi-Newton method has been developing (see [10] for a good introduction). Let us now describe our imple-
mentation of such a technique.

At each iteration step k the search direction, vector p(k), is calculated as p(k) = −G(k)g(k), where the
symmetric matrix G(k) is an approximation to the inverse Hessian matrix and g(k) is the gradient g =
( ∂ϕ
∂m1

, . . . , ∂ϕ
∂mN

)T calculated at m = m(k). An explicit expression for the matrix G(k) is given in [10, p. 225,

formula (9.5)]. It is important that the matrix G(k) is stored implicitly using ncp correction pairs {s(n),y(n)}
(n = k − ncp, . . . , k − 1) previously computed as s(n) = m(n+1) − m(n), y(n) = g(n+1) − g(n). The main idea
behind this approach is to use information from only the most recent iterations and the information from earlier
iterations is discarded in the interests of saving storage. In [10, p. 225] it is advocated that ncp between 3 and
20 may produce satisfactory results.
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Figure 1: Comparison of LMQNB inversions for 2, 5 and 20 correction pairs.

The next iterate m(k+1) is then found as m(k+1) = m(k) +α(k)p(k), where the step length α(k) is computed
by an inexact line search procedure. This procedure finds a step length that delivers an adequate decrease in the
objective function ϕ along the search direction p(k). Let us demonstrate how in our implementation we provide
the positive definiteness of the matrix G(k), required to guarantee the descent direction p(k). When the vectors
s(k−1) and y(k−1) satisfy the curvature condition s(k−1)Ty(k−1) > 0, it can be shown that the matrix G(k) is
positive definite. This condition is guaranteed to hold if we use the Wolfe conditions (see [10]) to terminate the
line search. But the Wolfe conditions may not be reached inside the feasible region defined within the bounds
set by equation (2). In this case, we modify s(k−1) as prescribed in [9, p. 1513] to guarantee that matrix G(k)

is positive definite.
Alternative ways to deal with such boundary constrained QN optimization can be found in [3].
Speeding up the solution. As presented above, at each iteration step k the inverse problem solution

requires calculating the gradient g(k). However for large-scale problems (when N is large) a straightforward
calculation may be prohibitive in terms of computational time. One can significantly speed up the calculation
by using an adjoint method (see [11, 4]). We have applied such a method to the 1-D MT case. The derivatives

are numerically calculated as ∂ϕd

∂σi
= −Re

(
M∑
j=1

αjΓij
(
Zj − dj

)
Z2
j

)
, where i = 1, . . . , N , the sign Re means

the real part of its complex argument and all the coefficients Γij are found by solving a single adjoint forward
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problem. Thus, our calculation of the gradient requires the solution of a single forward and adjoint problem.
This approach may be extended with some effort to the 3-D case. It is also noteworthy that for the 1-D MT
case the gradient can also be calculated using the chain-rule (see [5]).

We have therefore implemented the limited memory QN method with simple bounds (hereinafter, referred
as LMQNB), which is described above. It should be noted here that our implementation differs from that of
[9], in that the LMQNB uses the Wolfe conditions to terminate the line search.

3. Model Examples

Let us study on a synthetic 1-D MT example the convergence rate of the LMQNB inversion for a various
number ncp of correction pairs. A 7-layered earth model (see Fig. 3) was compiled from the models (see [1])
derived from a seafloor MT and a global GDS long-period dataset collected in the North Pacific Ocean. To
complicate the inversion process we subdivided the three upper layers in this model (to depth of 394 km) into
197 equally thick sublayers (N = 197). For this 201-layered model we inverted the impedance dj = Zj(m)
calculated at M = 30 periods from 10 s to 10800 s.
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Figure 2: Comparison of inversions based on the LMQNB (1) and L-BFGS-B (2) optimisations with ncp = 5
and λ = 320.
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Figure 3: The conductivity models obtained from inversion based on the LMQNB optimization with ncp = 5
for λ = 0 and λ = 320. The true model is shown by the solid line and the initial guess by the dashed line.

In addition, we added 0.5% random noise to the impedance data. The relative error εj (see αj on page 1)
of the impedance was taken as 0.01. A 10 ohm-m uniform half-space was used as an initial guess m = m0. The
convergence rate curves are shown in Fig. 1 as a function of the total number (nfg) of function ϕ and gradient
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g evaluations for λ = 320. It is surprising that so small a number of pairs (ncp = 5) can be chosen sufficiently
to get a relatively reasonable result.

Let us again consider the 201-layered model and the dataset, described in the previous example. In our
next example (see Fig. 2) we present a comparison of two solutions of a 1-D MT inverse problem. The first
solution is based on the optimization method offered in this paper and the second one exploits the L-BFGS-B
optimization code from [3]. The comparison is presented for ncp = 5 correction pairs and for λ = 0 and λ = 320.
Both solutions converge in a similar way and also produce similar models. The inversion results are presented
in Fig. 3.

4. Conclusion

This paper described a limited memory QN method applied to solve a 1-D MT inverse problem. The method
is also valid for large-scale problems, and may be equally applied for 1-D, 2-D, or 3-D MT cases. In the numerical
examples presented we have demonstrated that a few correction pairs are enough to obtain reasonable inversion
results. To speed-up the inversion the adjoint method has been applied to calculate the gradients. The non-
trivial problem of such a calculation of gradients in the 3-D MT case is presented in a companion paper [2].
Another finding of our numerical experiments is that the LMQNB solution converges similarly to the solution
based on the L-BFGS-B method introduced in [3].
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2.5D Algorithm for Tomographic Imaging of the Deep
Electromagnetic Geophysical Measurement
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Abstract—We present a 2.5D inversion algorithm for the interpretation of electromagnetic data collected in
a cross-well configuration. Some inversion results from simulated data as well as from field measurements are
presented in order to show the efficiency and the robustness of the algorithm.

1. Introduction

Electromagnetic methods are essential tools for the appraisal of a reservoir because of their sensitivity to
the resistivity (conductivity) which is a function of the fluid saturation. One of the traditional electromagnetic
techniques for well logging is the induction single-well measurement. This technique is employed both as a
wireline technology and as a measurement while drilling to estimate near well-bore resistivity. This induction
logging measurement has a sensitivity of up to a few meters from the well and is a function of the separation
between the transmitter and receiver and frequency of operation.

To reach deeper into the reservoir, a cross-well electromagnetic induction technology was developed, see Wilt
et al., [6] and Spies and Habashy [4]. The system operates very similar to the single-well logging tool however
with transmitter and receiver deployed in separate wells. During a cross-well survey the receivers are lowered
into one well, initially to the bottom of the survey-depth interval. Then the transmitter is lowered into the
second well and is moved to log the entire survey-depth interval. During logging the transmitter broadcasts
electromagnetic signals at a number of pre-prescribed frequencies while at the receiver well these signals are
recorded. After the transmitter run is completed the receiver array is moved to the next depth station in the
survey interval and the process is then repeated until the entire depth interval has been covered. After the
data set has been collected, an inversion process is applied to convert the electromagnetic signals to a resistivity
distribution map of the region between the wells. Furthermore, since most of the survey involves only two wells,
one can usually assume in the inversion that the geometry is 2D (the resistivity distribution is invariant along
the direction perpendicular to the plane containing the wells).

This inverse process is one of the most challenging parts of the effort to make this cross-well technology
work since it requires one to solve a full nonlinear inverse scattering problem, which is usually ill-conditioned
and non-unique. Moreover, when the number of the model parameters to be inverted is large, the inversion can
be very time-consuming.

In order to carry out the inversion within a reasonable time, we employ a finite-difference code as a for-
ward simulator. In this forward code the configuration is numerically discretized using a small number of cells
determined by the optimal grid technique, see Ingerman et al. [3]. The resulting linear system of equations
representing the discretized forward problem has to be solved in each inversion step. To solve this system, we
use a LU decomposition method that allows us to obtain the solution for all transmitters simultaneously. Fur-
thermore, in order to be able to use the optimal grid without sacrificing accuracy we use an anisotropic material
averaging formula. All these features help in reducing the computational time for constructing sensitivity kernel
and for calculating the data misfit.

For the inversion method, we employ a constrained Gauss-Newton minimization scheme (see Habashy and
Abubakar [2]) where the inverted model parameters are forced to lie within their physical bounds by using a
nonlinear transformation procedure. We further enforce a reduction in the cost function after each iteration by
employing a line search method. To improve on the conditioning of the inversion problem, we use two different
regularizers. The first is a traditional L2-norm regularizer, which allows a smooth solution. The second is
the so-called weighted L2-norm regularizer, which can provide a sharp reconstructed image, see van den Berg
and Abubakar in [5]. The trade-off parameter which provides the relative weighting between the data and the
regularization part of the cost function is determined automatically to enhance the robustness of the method.
We will present results from simulated data as well as from field measurements to demonstrate the capabilities
of the developed algorithm.
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2. Methodology

We consider a general discrete nonlinear inverse problem described by the operator equation

d
obs

= S (m), (1)

where d
obs

= [dobs
1 dobs

2 . . . dobs
J ]T is the vector of measured data and S = [S1 S2 . . . SJ ]T is the vector of data

computed for the model parameters m = [m(xq, zr), q = 1, 2, . . . , Q; r = 1, 2, . . . , R], where xq and zr denote
the center of the 2D discretization cell. We use a lexicographical ordering of the unknowns to map the 2D array
indices to 1D column indices (q, r) → R× (q− 1) + r. The superscript T denotes the transpose of a vector. We
assume that there are J number of data points in the experiment and that the configuration can be described
by I = Q × R model parameters. In this cross-well electromagnetic problem the data are the component of
the magnetic field which is parallel to the borehole axis. The unknown model parameter m(r) = σ(r)/σ0 is
the normalized conductivity where σ0 is a constant conductivity. In the implementation σ0 is chosen to be the
average of the initial model used in the inversion.

We pose the inversion as the minimization problem. Hence at the nth iteration we reconstruct mn that
minimizes

Φn(m) = φd(m) + λnφ
m
n (m), (2)

where φd is a measure of data misfit:

φd(m) =

∑J
j=1

∣∣Wj,j [d
obs
j − Sj(m)]

∣∣2
∑J
j=1

∣∣Wj,j dobs
j

∣∣2 , (3)

in which | · | denotes the absolute value and W is a diagonal matrix whose elements are the estimates of the
standard deviations of the noise. The symbol λ denotes the regularization parameter and φm is a measure of
the variation in the geometrical configuration:

φmn (m) =

∫

D

dr b2n(r)

{∣∣∇[m(r) −mref(r)]
∣∣2 + δ2n

}
, (4)

where ∇ = [∂x ∂z]
T denotes spatial differentiation with respect to r = [x z]T , and the weight b2n(r) is given by

b2n(r) =
1∫

D

dr
∣∣∇[mn(r) −mref(r)]

∣∣2 + δ2n

(5)

for the L2-norm regularizer and

b2n(r) =
1

V

1
∣∣∇[mn(r) −mref(r)]

∣∣2 + δ2n
(6)

for the weighted L2-norm regularizer introduced in van den Berg and Abubakar [5]. The symbol V =

∫

D

dr

denotes the volume of the computational domain and mref is the known reference model. Note that for the
L2-norm regularizer the weight b2n(r) is independent of the spatial position r. The δ2n is a constant which
is chosen to be equal to: δ2n = φd(mn)/(∆x∆z), where ∆x and ∆z are the widths of the discretization cell.
The regularization parameter λ is determined automatically using the technique described in Habashy and
Abubakar [2].

To solve (2) we employ a Gauss-Newton minimization approach. At the nth iteration we obtain a set of linear
equations for the search vector pn that identifies the minimum of the approximated quadratic cost function,
namely,

Hn · Pn = −gn, (7)

where

Hn = J
T

n · W
T
· W · J

T

n + λnL(mn), (8)

gn = J
T

n · W
T
·
[
d

obs − S(mn)
]
− λnL(mn) · mn, (9)
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in which
L(mn) · mn = ∇ · [b2n(r)∇mn

(r)]. (10)

In (8) and (9), Jn = J(mn) is the J × I Jacobian matrix and is given by the following expression:

Jj,i;n = η
∂Sj(mn)

∂mi;n
, η =

1
∑J
k=1 |Wk,k dobs

k |2
. (11)

This Jacobian matrix is calculated using an adjoint formulation, which only needs an extra forward problem
solution at each Gauss-Newton search step. In this extra forward problem solution the roles of the transmitters
and receivers are interchanged. However since we are using a 2.5D forward code with a LU decomposition
solver, we need only one forward call to calculate both the data misfit and to generate the Jacobian matrix.
Note that the use of the direct solver is possible, since we reduced the number of grids outside the inter-well
region by employing the optimal grid technique in Ingerman et al. [3]. Furthermore, in order to be able to use
the optimal grids without scarifying accuracy we use an anisotropic homogenization technique.

Since the size of the Hessian matrix Hn is large, we solve the linear system of equations (7) using a linear
iterative method. To that end we first rewrite equation (7) as follows:

K · pn = f , (12)

where K = Hn and f = −gn. Since K is a self adjoint matrix, we employ a Conjugate Gradient Least Square
(CGLS) scheme to solve this linear system of equations. This CGLS scheme starts with the initial values:

r(0) = f −K · p(0)
n , ERR(0) =

||r(0)||
||f||

, (13)

where p(0)
n = pn−1. Next, we compute successively for N = 1, 2, . . . ,

A(N) = < r(N−1), K · r(N−1) >,

u(N) = r(N−1), N = 1,

= r(N−1) +
A(N)

A(N−1)
u(N−1), N > 1,

B(N) = ||K · u(N)||2,

p(N)
n = p(N−1)

n +
A(N)

B(N)
u(N),

r(N) = f −K · p(N)
n , ERR(N) =

||r(N)||
||f||

, (14)

where ||u|| =
√
< u,u > denotes the L2-norm of a vector. This CGLS iteration process stops if the relative error

ERR(N) reaches a prescribed value, or when the total number of iterations N exceeds a prescribed maximum.
After the search vector pn = p(N)

n has been obtained, the unknown model parameters are updated as follows:

mn+1 = mn + νnpn, (15)

where νn is a scalar constant parameter to be determined by a line search algorithm. In the implementation
we always try first the full step, i.e., νn = 1, and check if it reduced the value of the cost function Φn. If not,
we backtrack along the Gauss-Newton step until we have an acceptable step. Since the Gauss-Newton step is
a descent direction for Φn, we are guaranteed to find an acceptable step. In this procedure νn is selected such
that:

Φn(mn + νnpn) ≤ Φn(mn) + ανnδΦn+1, (16)

where 0 < α < 1 is a fractional number, which is set to be quite small, i.e., α to 10−4, so that hardly more than
a decrease in cost function value is required (see Dennis and Schnabel [1]). The parameter δΦn+1 is the rate of
decrease of φ(m) at mn along the direction pn and is given by:

δΦn+1 =
∂

∂ν
Φn(mn + νpn)

∣∣∣∣
ν=0

= gTn · pn. (17)
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If, at the (n+1)th iteration, ν
(m)
n is the current step-length that does not satisfy the condition (16), we compute

the next backtracking step-length, ν
(m+1)
n , by searching for the minimum of the cost function assuming a

quadratic approximation in ν. Hence ν
(m+1)
k for m = 0, 1, 2, . . . is given by:

ν(m+1)
n =

−0.5
[
ν

(m)
k

]2
δΦ(n+1)

Φn(mn + ν
(m)
n pn) − Φn(mn) − ν

(m)
n δΦn+1

. (18)

In general, it is not desirable to decrease ν
(m+1)
n too much since this may excessively slow down the iterative

process. To prevent this slow down, we set ν
(m+1)
n = 0.1ν

(m)
n if ν

(m+1)
n < 0.1ν

(m)
n (but with νn not to decrease

below 0.1, i.e., νmin = 0.1 to guard against a too small value of ν) and then proceed with the Gauss-Newton
step.

To impose a priori information of maximum and minimum bounds on the unknown parameters, we con-
strained them using a nonlinear transformation of the form:

mi =
mmax
i +mmin

i

2
+
mmax
i −mmin

i

2
sin(ci), (19)

where mmax
i and mmin

i are upper and lower bounds on the physical model parameter mi. It is clear that
mi → mmin

i , as sin(ci) → −1 and mi → mmax
i , as sin(ci) → +1. This nonlinear transformation will force

the reconstruction of the model parameters to lie always within their prescribed bounds. Formally by using
this nonlinear transformation we should be updating the auxiliary unknown parameters ci instead of the model
parameters mi. However by using the relation pi = qi dmi/dci where qi is the Gauss-Newton search step with
respect to ci, we obtain the following relationships between the two successive iterates mi,n+1 and mi,n of mi:

mi,n+1 =
mmax
i +mmin

i

2
+ αn sin

(
νnpi,n
αn

)
+

(
mi,n − mmax

i +mmin
i

2

)
cos

(
νnpi,n
αn

)
, (20)

where αn =
√

(mmax
i −mi,n)(mi,n −mmin

i ).
The iteration process will be terminated if one of the following conditions occurs: (1) The misfit φd(mn) is

within a prescribed tolerance factor; (2) The difference between the misfit at two successive iterates n is within
a prescribed tolerance factor; (3) the difference between the model parameters m at two successive iterates n is
within a prescribed tolerance factor; (4) The total number of iterations exceeds a prescribed maximum.

3. Numerical Example

As a test example we employ a model shown in Fig. 1(a). This model was originally used to study a
CO2 injection operation and is employed here as it includes smoothly varying dipping stratigraphy as well as
sharp boundaries and deviated wells. The background model shown in Fig. 1(b) is obtained using single-well
logs interpolated between the two wells. The hypothesized CO2 injection region is shown in red in Fig. 1(a).
The change between the true model and the background model is shown in Fig. 1(c) given in percentage
difference (%). The data are collected using 41 transmitters and 41 receivers. The locations of the transmitters
and receivers are denoted by ‘T’ and ‘R’ in Fig. 1. Thus we have 1681 complex-valued data points. After
generating the synthetic data, we corrupted the data with random white noise that corresponds to 2% of the
maximum amplitude of all data points. The inversion domain is from x = −30 m to x = 350 m and z = 950 m
to z = 1250 m and is discretized into cells of dimensions 5 m by 5 m, hence the total number of unknown model
parameters is 4636.

First we run our inversion algorithm using the L2-norm regularizer given in (4) and (5). As the initial
estimate we use the background model given in Fig. 1(b). Using this regularization term, the scheme took 15
iterations to converge. Figs. 1(d) and 1(e) show the percentage difference between the inverted resistivity and
the background resistivity. The image obtained using the L2-norm regularizer is shown in Fig. 1(d). The image
obtained in this case has the appearance of a spatially smoothed version of the model changes in Fig. 1(c). Next
we rerun our inversion code, however now we use the weighted L2-norm regularization term given in (4) and
(6). The inversion results after 19 iterations are shown in Fig. 1(e). By using the weighted L2-norm regularizer
we obtain a significant improvement in the reconstruction of the geometry and the amplitude of the change due
to the CO2 injection. Finally we note that one iteration of the scheme takes only 180 seconds on a PC with a
Pentium IV 3.04 GHz processor.
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Figure 1: The resistivity distribution of the true model (a), of the initial model (b), the changes between (a)
and (b) given in percentage (c), the inverted resistivity plotted as the change with respect to the model in (b)
obtained using a L2-norm regularizer (d) and a weighted L2-norm regularizer (e).
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Abstract—The limited-memory quasi-Newton optimization method with simple bounds has been applied to
develop a novel fully three-dimensional (3-D) magnetotelluric (MT) inversion technique. This nonlinear inversion
is based on iterative minimization of a classical Tikhonov-type regularized penalty functional. But instead of
the usual model space of log resistivities, the approach iterates in a model space with simple bounds imposed
on the conductivities of the 3-D target. The method requires storage that is proportional to ncp×N , where the
N is the number of conductivities to be recovered and ncp is the number of the correction pairs (practically,
only a few). This is much less than requirements imposed by other Newton type methods (that usually require
storage proportional to N×M , or N×N , where M is the number of data to be inverted). Using an adjoint
method to calculate the gradients of the misfit drastically accelerates the inversion. The inversion also involves
all four entries of the MT impedance matrix. The integral equation forward modelling code x3d by Avdeev et al.
([1, 2]) is employed as an engine for this inversion. Convergence, performance and accuracy of the inversion are
demonstrated on a 3D MT synthetic, but realistic, example.

1. Introduction

Limited memory quasi-Newton (QN) methods are becoming a popular tool for the numerical solution of
three-dimensional (3-D) electromagnetic (EM) large-scale inverse problems ([11, 7]). The reason is that the
methods require calculation of gradients of the misfit only, while at the same time avoiding calculations of
second-derivative terms. They also require storing merely several pairs of so-called correction vectors that
dramatically diminish the storage requirements. A more complete review on this subject may be found in [4].

In this paper we apply a limited memory QN optimization method with simple bounds (hereinafter, referred
to as LMQNB) to solve the 3–D magnetotelluric (MT) inverse problem. In section 2 we briefly describe the
setting of the inverse problem, as well as some key features of our implementation, referring the reader to the
paper [3] for details.

In section 3, we develop the theory and basic equations for the calculation of gradients of the misfit. We
demonstrate that the calculation of gradients at a given period is equivalent to only two forward modellings and
does not depend on the number of conductivities to be recovered. The mathematical details of the approach
are not presented here except the key formula (3), which is central to the method.

In section 4 we demonstrate how our inversion practically works on a synthetic, but realistic numerical
example. This example includes a tilted conductive dyke in a uniform half-space (see [17]). The results presented
are encouraging and suggest that the inversion may be successfully applied to solving realistic 3-D inverse
problems with real MT data.

2. 3-D MT Inversion

Let us first consider a 3-D earth conductivity model discretized by N cells, such that σ(r) =
N∑
k=1

σkχk(r),

where χk(r) =

{
1, r ∈ Vk
0, r /∈ Vk

, Vk is the volume occupied by k-th cell and r = (x, y, z). In the frame of MT

inversion conductivities σk (k = 1, . . . , N) of the cells are sought. This is a typical optimization problem, such
that ϕ(σ, λ) →

σ,λ
min, with a penalty function ϕ given as

ϕ(σ, λ) = ϕd(σ) + λϕs(σ), (1)

where ϕd = 1
2

NS∑
j=1

NT∑
i=1

αjitr[A
T

jiAji] is the data misfit. Here σ = (σ1, . . . , σN )T is the vector consisting of the

electrical conductivities of the cells; hereinafter superscript T means transpose and the upper bar stands for
the complex conjugate; N is the number of the cells; NS is the number of MT sites, rj = (xj , yj , z = 0), where
j = 1, . . . , NS ; NT is the number of the frequencies ωi, where i = 1, . . . , NT ; the 2×2 matrices Aji are defined as

Aji = Zji−Dji, where Zji =

(
Zxx Zxy
Zyx Zyy

)

ji

and Dji =

(
Dxx Dxy

Dyx Dyy

)

ji

are matrices of the complex-valued
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predicted Z(rj , ωi) and observed D(rj , ωi) impedances, respectively; αji = 2
NSNT

ε−2
ji

(
tr[D

T

jiDji]
)−1

are the

positive weights, where εji is the relative error of the observed impedance Dji; and λ is a Lagrange multiplier.
The sign tr [·] introduced above means the trace of its matrix argument, which is defined as tr [B] = Bxx+Byy,

for any B =

(
Bxx Bxy
Byx Byy

)
. As prescribed by the Tikhonov regularization theory [15] the penalty function

ϕ of (1) has a regularized part (a stabilizer) ϕs(σ). This stabilizer can be chosen in different ways. However,
this aspect of the problem is out of the scope of this paper. It is of importance that, as the conductivities
σk (k = 1, . . . , N) must be non-negative and realistic, the optimization problem (1) is subject to the bounds

l ≤ σ ≤ u, (2)

where l = (l1, . . . , lN )T and u = (u1, . . . , uN )T are respectively the lower and upper bounds and lk ≥ 0 (k =
1, . . . , N).

Optimization method. We notice that problem (1)-(2) is a typically optimization problem with simple
bounds (see [12]). To solve this problem we apply the limited memory quasi-Newton method with simple bounds.
Our implementation of this method is described in a companion paper [3], which demonstrates the application
of the method to the 1-D problem. At each iteration step l, we find the search direction p(l) as p(l) = −G(l)g(l),
where g(l) = ( ∂ϕ∂σ1

, . . . , ∂ϕ
∂σN

)T is the gradient vector and G(l) is an approximation to the inverse Hessian matrix,
that is updated at every iteration using the limited memory BFGS formula (see [12], formula (9.5), p.225). The
next iterate σ(l+1) is then found as σ(l+1) = σ(l) +α(l)p(l), where the step length α(l) is computed by an inexact
line search. What is crucial in this approach it is that it requires 1) relatively small storage proportional to
ncp ×N , where ncp is the number of the correction pairs, and 2) only the calculation of gradients rather than
the time-consuming sensitivities and/or the Hessian matrices.

Calculation of gradients. To derive derivatives ∂ϕd

∂σk
we apply an adjoint method. This method uses

the EM field reciprocity and has been applied previously to calculate the sensitivities ([16, 9]) and for forward
modelling and inversion ([6, 13, 11, 5]). Let us now describe our implementation of such a technique.

It can be proven with some effort that

∂ϕd
∂σk

= Re





NT∑

i=1

∫

Vk

tr
[
uTi Ei

]
dV



 , (3)

where tr[uTi Ei] = u
(1)
x E

(1)
x +u

(1)
y E

(1)
y +u

(1)
z E

(1)
z +u

(2)
x E

(2)
x +u

(2)
y E

(2)
y +u

(2)
z E

(2)
z , the sign Re means the real part

of its argument and the superscript 1 or 2 denotes polarization of the source Ji. By definition, 3×2 matrices

Ei(r) =

(
E

(1)
x

E
(2)
x

E
(1)
y

E
(2)
y

E
(1)
z

E
(2)
z

)T

i

and ui(r) =

(
u

(1)
x

u
(2)
x

u
(1)
y

u
(2)
y

u
(1)
z

u
(2)
z

)T

i

satisfy the following equations

∇×∇× Ei −
√
−1ωiµσ(r)Ei =

√
−1ωiµJi, (4)

∇×∇× ui −
√
−1ωiµσ(r)ui =

√
−1ωiµ

(
jexti + ∇× hexti

)
, (5)

where jexti =
NS∑
j=1

αjip
TAji(H

−1
ji )T δ(r−rj), h

ext
i = − 1√

−1ωiµ

NS∑
j=1

αjip
TZTjiAji(H

−1
ji )T δ(r−rj), µ is the magnetic

permeability, δ is the Dirac’s delta-function and i = 1, . . . , NT . Here p =

(
1 0 0
0 1 0

)
is the projection

matrix, 2×2 matrices Aji, Zji are previously explained and the 2×2 Hji =

(
H

(1)
x H

(1)
y

H
(2)
x H

(2)
y

)

ji

is composed of

the magnetic fields calculated at the j-th MT site and at the i-th frequency. The key formula (3) practically
means that computational loads for calculating gradient ( ∂ϕ∂σ1

, . . . , ∂ϕ
∂σN

)T are equivalent to those for the solution
of 2 × NT forward problems using Eq. (4) to find Ei and of 2 × NT adjoint problems using Eq. (5) to find ui
for all i = 1, . . . , NT . Straightforward calculation of the gradient would require solution of 2 × NT × (N + 1)
forward problems.

The approach described is quite general. It is not limited to magnetotellurics only, but can be applied to a
variety of EM problems.
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3. Model example

Let us demonstrate on a numerical example how MT inversion allows conductivity to be recovered. In Fig. 1
we present a model including a tilted 3 ohm-m dyke embedded into a 100 ohm-m half-space. The dyke is located
at depth 200 to 700 m and it consists of 5 shifted adjacent blocks of 200×800×100 m3 size each. Our modeling
domain comprises of Nx ×Ny ×Nz=16×24×8 rectangular prisms of 100×100×100 m3 size that cover the dyke
and the some part of the surroundings. Notice that the volume lies at depths of 100–900 m.

The inversion domain coincides with the modeling domain. This means that N = 3072 conductivities σk
(k = 1, . . . , N) of the prisms need to be recovered. The x3d forward modeling code described in ([1, 2]) was used
as an engine for inversion to solve the forward and adjoint problems given in Eq. (4) and (5). It also was used
to calculate 2×2 matrices Dji of “observed” impedances at NT = 4 frequencies of 1000, 100, 10 and 1 Hz. The
impedances were computed at NS = 168 sites rj (j = 1, . . . , NS) coinciding with the nodes of a homogeneous
nx × ny=12×14 grid, where 100 m is the distance between adjacent nodes.

In addition, the number of the correction pairs ncp was chosen as 6, and the relative error εji of the impedance
was taken as 0.05. A 100 ohm-m uniform half-space was used as an initial guess. In Fig. 1 we also present the
convergence of the inversion along with a set of 3-D models recovered at various iterations. It should be
mentioned, however, that during inversion we did not use the stabilizer ϕs at all; the Lagrange multiplier λ was
assigned a zero value. Instead, we assigned the lower conductivity limits of Eq. (2) as lk = 0.005 (k = 1, . . . , N).
In other words, resistivities ρk = 1/σk of the cells were constrained from above by a value of 200 ohm-m.
This turned out to play a similar role to that of regularization. It should be noted also that without putting

Figure 1: Convergence of the inversion for a 3-D model of a 3 ohm-m dyke in a uniform 100 ohm-m half-space.
The left-upper panel presents the misfit and cpu time vs the iteration number. Other panels present images
of the initial guess, the true model, as well as the models obtained at various stages of inversion. Number of
iterations is given in upper-left corner of each panel.

constraints on lk the iteration method without a stabilizer (i.e., when λ = 0) stagnates, when the misfit ϕd
drops to a value of 1.3 and it fails to produce a good conductivity image (not presented here).
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4. Conclusion

In this paper we have developed a novel approach to 3-D MT inversion. The most essential part of our
derivation is that we developed and implemented the adjoint method to derive explicit expressions for the
calculation of the gradients of the misfit. Our development is quite general and is not limited to magnetotellurics
alone. It can be applied to a variety of EM problems, such as marine controlled-source EM etc. With a synthetic
MT example, we have obtained the first promising results of convergence of our solution. The method still needs
further development to become a user-end product of universal value to the EM community.

Further work will be concentrated on adapting various types of regularization techniques, and introducing the
static shift into the penalty function (1). It is also planned to apply our inversion scheme to an experimental
data set. However, previous examples from other 3-D MT inversion software developers (see [8, 10, 14, 17])
indicate that successful verification of the inversion technique even on a single practical dataset is a complex
task and may take some time.
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Contrast Source Inversion of 3D Electromagnetic Data

P. M. van den Berg
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A. Abubakar and T. M. Habashy
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Abstract—This paper discusses the full vector three-dimensional inverse electromagnetic scattering prob-
lem. We consider the determination of the location and the electromagnetic composition of an inhomogeneous
bounded object in a homogeneous embedding from measurements of the scattered electromagnetic wavefield,
when the object is illuminated by a known single frequency wavefield. To solve this large-scale nonlinear inver-
sion problem, we apply the so-called multiplicative regularized contrast source method.

1. Introduction
In this MR-CSI method we reconstruct the complex permittivity contrast and the so-called contrast sources

(the product of the contrast and the fields) by minimizing a cost functional in which the residual errors in the
field equations occur. This minimization is carried out in an alternating way. In each iterative step we update
the contrast and the contrast sources each using one conjugate gradient step so that the total computational
complexity of the method is equal to the complexity of solving only two forward problems. By operating in
this manner solving a full three-dimensional vector nonlinear inverse scattering problem is feasible. Further this
method is equipped with total variation type regularization. This regularization is included as a multiplicative
constraint, so that the regularization parameter needed in the minimization process is determined automatically.
The multiplicative type of regularization handles noisy as well as limited data in a robust way without the usually
necessary a priori information. We illustrate the performance by presenting some inversion results from 3D
electromagnetic experimental data. Further, we discuss an inversion method to invert not only the complex
electric contrast but also the magnetic contrast of a three-dimensional object. The contrast source inversion
is extended by introducing both the electric contrast sources and the magnetic contrast sources. Further, an
extended cost functional is introduced in which the residual errors in both the electric and magnetic field
equations occur. Additionally, the multiplicative regularization is extended such that the spatial variations of
both the electric and magnetic contrast are minimized. Since in [1] we tested the algorithm for a heterogeneous
object that has intermingled electric and magnetic contrast, we will present a numerical example with disjoint
electric and magnetic contrast.

2. Inversion Algorithm
The Multiplicative Regularized Born Inversion (MRCSI) consists of an algorithm to construct sequences

wj = {wj,n} and χ = {χn} which iteratively reduce the value of the cost functional,

Fn = [FS + FD,n]F
R
n =

[∑
j ‖usct

j −GSwj‖2
S∑

j ‖usct
j ‖2

S

+

∑
j ‖χuinc

j − wj +GDwj‖2
D∑

j ‖χn−1uinc
j ‖2

D

]
1

V

∫

D

|∇χ|2 + δ2n
|∇χn−1|2 + δ2n

dv

where
[GSwj ](x̄) =

∫
D

g(x̄, x̄′)wj(x̄′)dv(x̄′), x̄ ∈ S, and [GDwj ](x̄) =
∫
D

g(x̄, x̄′)wj(x̄′)dv(x̄′), x̄ ∈ D. The subscripts D

and S indicate that the observation point x̄ lies either in D, a bounded domain containing the scattering object,
or S, a domain disjoint from D on which the scattered field usct

j , j = 1, . . ., J , is measured for each known

incident field uinc
j . The symbol V denotes the volume of the domain D. Further, ‖ • ‖S and ‖ • ‖D denote the

norms on L2(S) and L2(D). Further, g denotes the Green function of the background medium, while χ denotes
the contrast with the background medium. For the steering parameter δ2n we choose progressively decreasing
values in such a way that, for given contrast sources, the cost functional Fn as a function of the contrast χ,
remains convex during all iterations. We relate this parameter directly to the decreasing object error FD;n−1.
The structure of the cost functional is such that it will minimize the regularization factor FRn with a large
weighting parameter in the beginning of the optimization process, because the value of FS + FD;n−1 is still
large, and that it will gradually minimize more and more the error in the data and object equations when the
value of FRn has reached a nearly constant value equal to one. If noise is present in the data, the data error term
FS will remain at a large value during the optimization and therefore, the weight of the regularization factor will
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be more significant. Hence, the hindering character of noise will, at all times, be suppressed in the reconstruction
process, but at the cost of decreased resolution. This minimization is carried out in two alternate steps. For
given contrast, χn−1, the contrast sources are updated via conjugate gradient directions of the cost functional,
while for given contrast sources, wj,n, the contrast is updated via a preconditioned conjugate gradient direction
of the cost functional.

3. Integral Operators for Electric Contrast
Firstly we consider the 3D electromagnetic inversion problem, where the scattering object only has electric

contrast χE with respect to its embedding. Then we deal with electric contrast sources

w̄Ej (x̄) = χE(x̄)Ē(x̄), where χE(x̄) =
σ′(x̄)

σ′
b

− 1,

with complex conductivity, σ′(x̄) = σ(x̄)− iωε(x̄), for the inhomogeneous object, and the complex conductivity,
σ′
b = σb − iωεb, for the homogeneous embedding. The scalar Green function is given by

g(x̄, x̄′) =
exp(ikb|x̄− x̄′|

4π|x̄− x̄′| , kb =
√

(iωµbσ′
b).

In this 3D case the field function uinc
j to be replaced by the incident electric field vector Ēinc

j and the scattered

field data usct
j has to be replaced by either the measured scattered electric field vector Ēsct

j for an electric dipole

receiver or the measured scattered magnetic field vector H̄sct
j for a magnetic dipole receiver. The governing

integral operators become

GSwj :=

{
[k2
b + ∇∇•]ĀEj for an electric dipole receiver,

σ′
b∇× ĀEj for a magnetic dipole receiver,

and
GDwj := [k2

b + ∇∇•]ĀEj , where ĀEj (x̄) =

∫

D

g(x̄, x̄′)w̄Ej (x̄′)dv(x̄′).

We will illustrate the performance of this type of inversion scheme by presenting some inversion results from
3D electromagnetic experimental data.

4. Integral Operators for Electric and Magnetic Contrast
Secondly, we consider the 3D electromagnetic inversion problem. where the scattering object has both

electric contrast χE and magnetic contrast χH with respect to its embedding. In addition the electric contrast
sources, we also deal with the magnetic contrast sources

w̄Hj (x̄) = χH(x̄)H̄(x̄), where χH(x̄) =
µ(x̄)

µb
− 1,

with permeability, µ(x̄), for the inhomogeneous object, and permeability, µb, for the homogeneous embedding.
In this 3D case the cost functional has to be extended to the following form

Fn = [FES (w̄Ej , w̄
H
j ) + FED,n(w̄

E
j , w̄

H
j , χ

E)]
1

V

∫

D

|∇χE |2 + (δEn )2

|∇χEn−1|2 + (δEn )2
dv

+[FHS (w̄Ej , w̄
H
j ) + FHD,n(w̄

E
j , w̄

H
j , χ

H)]
1

V

∫

D

|∇χH |2 + (δHn )2

|∇χHn−1|2 + (δHn )2
dv

where

FES (w̄Ej , w̄
H
j ) =

∑
j ‖Ēsct

j −GES (w̄Ej , w̄
H
j )‖2

S∑
j ‖Ēsct

j ‖2
S

for an electric dipole receiver,

FHS (w̄Ej , w̄
H
j ) =

∑
j ‖H̄sct

j −GHS (w̄Ej , w̄
H
j )‖2

S∑
j ‖H̄sct

j ‖2
S

for a magnetic dipole receiver,

and

FED,n(w̄
E
j , w̄

H
j , χ

E) =

∑
j ‖χEĒinc

j − w̄Ej +GED(w̄Ej , w̄
H
j )‖2

D∑
j ‖χEn−1Ē

inc
j ‖2

D

,

FHD,n(w̄
E
j , w̄

H
j , χ

H) =

∑
j ‖χHH̄ inc

j − w̄Hj +GHD(w̄Ej , w̄
H
j )‖2

D∑
j ‖χHn−1H̄

inc
j ‖2

D

,
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The governing integral operators become

GES (w̄Ej , w̄
H
j ) = [k2

b + ∇∇•]ĀE + iωµb∇× ĀH , GHS (w̄Ej , w̄
H
j ) = σ′

b∇× ĀE + [k2
b + ∇∇•]ĀH ,

for observation points in the data domain S,
and

GED(w̄Ej , w̄
H
j ) = [k2

b + ∇∇•]ĀE + iωµb∇× ĀH , GHD(w̄Ej , w̄
H
j ) = σ′

b∇× ĀE + [k2
b + ∇∇•]ĀH ,

for observation points in the data domain D,
where

ĀE(x̄) =

∫

D

g(x̄, x̄′)w̄Ej (x̄′)dv(x̄′) and ĀH(x̄) =

∫

D

g(x̄, x̄′)w̄Hj (x̄′)dv(x̄′)

The minimization of the extended cost functional is carried out iteratively in three alternate steps:
• For given electric contrast χEn−1 and magnetic contrast χHn−1, the contrast source vector {w̄Ej , w̄Hj } is

updated via conjugate gradient directions of the cost functional.
• For given electric contrast sources w̄Ej,n and magnetic contrast sources w̄Hj,n, the electric contrast χE is

updated via preconditioned conjugate directions.
• For given electric contrast sources w̄Ej,n and magnetic contrast sources w̄Hj,n, the magnetic contrast χH is

updated via preconditioned conjugate directions.

Figure 1: 3D scattering object in a 3λ× 3λ× 3λ vacuum domain with disjoint electric and magnetic contrast.

Figure 2: Exact (left) and reconstructed (right) of the real part of the electric contrast, at 30 different horizontal
planes.
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Figure 3: Exact (left) and reconstructed (right) of the imaginary part of the electric contrast, at 30 different
horizontal planes.

Figure 4: Exact (left) and reconstructed (right) magnetic contrast, at 30 different horizontal planes.

As numerical example we have simulated electromagnetic field data from an object in a vacuum domain with
size of 3λ× 3λ× 3λ. One part of the object is “E”-shaped and has only electric contrast given by the complex
contrast function χE = 1 + 1i, while the other part is “M”-shaped and has only magnetic contrast given by
the real contrast function χH = 1 (see Figure 1). We use vertical magnetic dipoles both as transmitters and
as receivers. In an area above the domain under investigation, 30 transmitters have been located, viz., at the
vertical position x3 = −0.1λ In an area below the domain under investigation, 30 receivers have been located,
viz., at the vertical position x3 = 3.1λ. Hence, we have only 900 complex-valued data points. The square domain
D under investigation is subdivided into 30× 30× 30. This means that we have 27000 unknown complex-valued
electric contrast points plus 27000 unknown real-valued magnetic contrast points. The reconstruction results are
given in Figures 2–4. Although the number of unknowns is much larger than the number of known data points,
we observe a very good reconstruction in the horizontal plane through the middle of the “E”-shaped object (see
Figure 3) and the middle of the “M”-shaped object (see Figure 4), while the reconstruction deteriorates towards
the top and bottom part the objects.

We conclude that the present extended form of the MR-CSI method enables the full nonlinear 3D inversion
of large scale electromagnetic data.
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Statistical Distribution of Field Scattered by
1-Dimensional Random Slightly Rough Surfaces

R. Dusséaux and R. de Oliveira
Université de Versailles Saint-Quentin en Yvelines, France

Abstract—We consider a perfectly conducting plane with a local cylindrical perturbation illuminated by a
monochromatic plane wave. The perturbation is represented by a random function assuming values with a
Gaussian probability density. For each realization of the stochastic process, the spatial average value over
the width of the modulated zone is zero. The mean value of the random function is also zero. Without any
deformation, the total field is the sum of the incident field and the reflected field. For a locally deformed plane,
we consider — in addition to the incident and reflected plane waves — a scattered field. Outside the modulated
zone, the scattered field can be represented by a superposition of a continuous spectrum of outgoing plane
waves. The method of stationary phase leads to the asymptotic field, the dependence angular of which is given
by the scattering amplitudes of the propagating plane waves. Using the first-order small perturbation method,
we show that the real part and the imaginary part of scattering amplitudes are uncorrelated Gaussian stochastic
variables with zero mean values and unequal variances. Consequently, the probability density for the amplitude
is given by the Hoyt distribution and the phase is not uniformly distributed between 0 and 2π.

1. Introduction

The problem of electromagnetic wave scattering from random surfaces continues to attract research interest
because of its broad applications. The three classical analytical methods commonly used in random rough-
surface scattering are the small-perturbation method, the Kirchhoff method and the small slope approximation
[1–5]. The electromagnetic analysis of rough surfaces with parameters close to the incident wavelength requires
a rigorous formalism. Numerous method based on Monte Carlo simulations are available for 1D and 2D random
rough surfaces [6, 7]. Most of research works focus on the determination of coherent and incoherent intensities.
There is not such a voluminous literature on the statistical distribution of scattered field [3]. In this paper,
we derive the statistical distribution in the far field zone from the first-order small perturbation method in the
particular case of perfectly conducting 1D random rough surface illuminated by an E// polarized monochromatic
plane wave.

2. The Random Surfaces under Consideration

The geometry of the problem is depicted in Fig. 1. The rough surface is represented in Cartesian coordinates
by the equation y = a0(x) and consists of a small cylindrical random perturbation with length L and zero mean

Figure 1: The slightly rough surface.

(< a0(x) >= 0) in a perfectly conducting plane y = 0. Each realisation can be described by the following
equation

a0(x) = a(x) −m if |x| ≤ L

2
a0(x) = 0 outside (1)

where

m =
1

L

∫ +L/2

−L/2
a(x)dx (2)
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a(x) is a random function assuming values distributed normally with zero mean and variance σ2
a. Here it’s

important to distinguish the spatial average m from the statistical mean < a(x) >. Insofar < a(x) >= 0, we
have < m >= 0. The random process is assumed stationary with a Gaussian statistical correlation function

Raa(x) = σ2
a exp

(
− x2

l2c

)
(3)

where lc is the correlation length.

3. The Scattering Amplitudes in the Far Field Zone

The surface is illuminated under incidence θi by an z-polarized monochromatic plane wave Ei
−→u z of wave-

length λ. The Oz-electric component of field is

Ei(x, y) = exp(−jαix+ jβiy) (4)

where
αi = k sin θi ; βi = k cos θi ; k = 2π/λ (5)

The time-dependence factor exp(jωt) where ω is the angular frequency is assumed and suppressed throughout.
The total electric field above the rough surface is the sum of the incident field Ei, the field reflected Er by the
plane without deformation (an infinite perfect mirror) and the scattered field Ed.

Et(x, y) = Ei(x, y) + Er(x, y) + Ed(x, y) (6)

where
Er(x, y) = − exp(−jαix− jβiy) (7)

Above the highest point on the surface, the scattered field can be represented by a superposition of a continuous
spectrum of outgoing plane waves, the so-called Rayleigh integral [5].

Ed(x, y) =
1

2π

+∞∫

−∞

Ĉ(α) exp
(
− jβ(α)y

)
exp(−jαx)dα (8)

with
β =

√
k2 − α2, Imβ < 0 (9)

In the far-field zone, the Rayleigh integral is reduced to the only contribution of the propagating waves (α ≤ k).
The method of stationary phase leads to the asymptotic field [8]

Ed(r, θ) ≈
√

k

2πr
Ĉ(k sin θ) cos θ exp(−jkr) exp

(
j
π

4

)
(10)

The angular dependence in the far field zone is given by the function Ĉ(α) cos θ and becomes identified with
the propagating wave amplitudes of the continuous spectrum (8) with α = k sin θ [9, 10]. Let us recall that the
normalized bistatic scattering coefficient σ(θ) is defined by the power scattered per unit angle dθ normalized
with respect to the flux of incident power through the modulated region

σ(θ) =
1

Pi

dPd
dθ

=
|Ĉ(k sin θ)|2 cos2 θ

λL cos θi
(11)

For a random process, the scattered field is a random function of position (r, θ) but the scattering amplitude
Ĉ(α) is a random function of the observation angle θ only [10]. The scattering amplitude can be written as the
sum of an average amplitude < Ĉ(α) > which gives the coherent far-field from (11) and a fluctuating amplitude
which leads to the incoherent far-field. The first order small perturbation method applied to the Rayleigh
integral (8) and the Dirichlet boundary condition gives an approximation of the scattering amplitudes [1, 2]

Ĉ(α) = −2jβi

+L/2∫

−L/2

a0(x) exp
(

+ j(α− αi)x
)
dx (12)
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Making a change of variable γ = α−αi, real part Ĉr(α) and imaginary part Ĉi(α) of scattering amplitudes can
be expressed as

Ĉr(γ) = +2βi

+L/2∫

−L/2

a(x) sin(γ x)dx (13)

Ĉi(γ) = −2βi

( +L/2∫

−L/2

a(x) cos(γ x)dx−mL sin c(γ L/2)

)
(14)

where sin c(x) = sinx/x. It can be noticed that the scattering amplitude is zero in the specular direction γ = 0.
Ĉr and Ĉi are obtained from mathematical linear operations applied to the Gaussian random function a(x).
Consequently, Ĉr and Ĉi are also quantities distributed with Gaussian probability densities.

4. The Statistical Distribution of Scattering Amplitudes

4.1. The Incoherent Intensity
From (13) and (14), we derive < Ĉ(γ) >= 0. Consequently, the coherent density is zero. Moreover, after

some extensive mathematical manipulations, we deduce the variances

r =< Ĉ2
r > = 4β2

i

+L∫

0

(L− x)
[
cos γx− sin c

(
γ(L− x)

)]
Raa(x)dx (15)

s =< Ĉ2
i > = 4β2

i

+L∫

0

(L− x)
[
cos γx+ sin c

(
γ(L− x)

)]
Raa(x)dx− 4β2

i sin c(γ L/2)

[
sin c(γ L/2)

+L∫

0

xRaa(x)dx+ 2

+L∫

0

(L/2 − x) sin c
(
γ(L/2 − x)

)
Raa(x)dx

]
(16)

where the statistical correlation function Raa(x) is given by (3).
The variances depend on the width L of the modulated zone. But, outside the specular reflection zone, if L

goes to infinity, the variances of the real and imaginary parts become identified. Using (11), (15) and (16), we
obtain the incoherent intensity If (θ) =< σ(θ) >

If (θ) =
<
∣∣Ĉ(k sin θ − k sin θi)

∣∣2 > cos2 θ

λL cos θi
with <

∣∣Ĉ(γ)
∣∣2 >=< Ĉ2

r > + < Ĉ2
i > (17)

We note that the incoherent intensity is not proportional to the surface power spectrum.

4.2. Probability Densities of the Amplitude and Phase
Random quantities A = Ĉr(α) and B = Ĉi(α) are distributed normally with zero mean values and unequal

variances r and s. Moreover, we show that they are uncorrelated. Consequently, they are independent and we
can write:

pAB(a, b) = pA(a)pB(b) =
1

2π
√
rs

exp

(
− a2

2r
− b2

2s

)
(18)

where pAB(a, b) is the two-dimensional normal distribution of Ĉr(α) and Ĉi(α). Transforming to polar coordi-
nates,

A = M cosψ ; B = M sinψ (19)

we obtain the required distributions for the modulus M and the phase ψ:

pM (m) =

2π∫

0

pMψ(m,ϕ)mdϕ =
m√
rs

exp

(
− m2

4r
− m2

4s

)
(20)

pψ(ϕ) =

+∞∫

0

pMψ(m,ϕ)mdm =
1

2π

√
rs

s cos2 ϕ+ r sin2 ϕ
(21)
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These formulas show that pM (m) is the Hoyt distribution [3] and that the phase is not uniformly distributed
between 0 and 2π. Nevertheless, outside the specular reflection zone and if L goes to infinity, pM (m) is reduced
to the Rayleigh distribution and the phase is uniformly distributed.

5. Results

Figure 2 gives the incoherent intensity for a Gaussian random profile having a modulation length L = 24λ,
a rms height h = 3λ/100 and a correlation length lc = 2λ. We can note the zero value of If (θ) in the specular
direction (θ = θi = 30◦). Outside the specular zone, the comparison with results obtained by the C method [10]
is good. The dashed curve and the solid curve show the values obtained by (15) and by the C method.

Figure 2: Incoherent intensity for a Gaussian random profile.

Figure 3: Amplitude and phase distributions.

Figure 3 show the values of the Hoyst distribution and the phase distribution (given by (20) and (21),
respectively) for an observation angle θ = 10◦. The comparison with the normalized histogram obtained by a
Monte-Carlo simulation with 10000 surface realizations is good.
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6. Conclusion

We have derived the statistical distribution in the far field zone from the first-order small perturbation
method in the particular case of perfectly conducting 1D random rough surfaces illuminated by an E// polarized
monochromatic plane wave. We have shown that the real part and the imaginary part of scattering amplitudes
are uncorrelated Gaussian stochastic variables with zero mean values and unequal variances. The probability
density for the amplitude is given by the Hoyt distribution and the phase is not uniformly distributed between
0 and 2π. Comparisons with statistical observation over 10000 surfaces confirm the result. This approach
can be extended to dielectric random rough surfaces illuminated by a polarized plane wave E// or H//. The
generalization of these results to slightly rough surface with an arbitrary statistical height distribution with an
arbitrary correlation function is in progress.
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Dispersion Characteristics of Coplanar Waveguides at
Subterahertz Frequencies

J. Zhang and T. Y. Hsiang
University of Rochester, USA

Abstract—We present experimental and simulated studies of the dispersion characteristics of coplanar waveg-
uides (CPWs) at subterahertz frequencies. Two types of CPWs were studied, those with wide ground planes
and those with narrow ground planes. In both cases, simulations closely followed the experimental results, thus
giving us a basis for implementing the simulations in circuit-design models for a wide range of such waveguides.

1. Introduction
Coplanar waveguide (CPW) structures are commonly used in high-speed circuits and interconnect. Although

the wave-propagation characteristics of CPWs have been well studied [1–11], only recently has this work been
extended to the terahertz range for different geometries [6–9] and compared with experimental results [10, 11].
While our previous work focused on the attenuation characteristics [10, 11], in this paper we report results on
the dispersion characteristics to complete the study. Our work is based on comparing experimental data with
simulations that make use of full-wave analysis, allowing for direct verification of the validity of the latter. The
effects of ground-plane width and lateral line dimensions have also been analyzed.

2. Background
CPWs are a family of transmission lines consisting of a center conductor strip and two ground conductor

planes with variable widths. All three conductors are placed on the same side of a dielectric substrate, as shown
in Figure 1.

 

(a) CPW with wide ground planes.

 

(b) CPW with narrow ground planes.

Figure 1: Cross-section of CPWs being investigated.

Two classes of CPWs were studied. The first contains ground planes at least 10 times wider than

 

Figure 2: Effective permittivity of a CPW with wide
ground planes. See Section 3 for geometry and electri-
cal parameters.

the center conductor or the conductor spacing and
closely approximates an ideal CPW structure with
infinitely wide ground planes. It should be pointed
out that, for this class of transmission lines, closed-
form analysis is in principle possible with the use
of conformal mapping [12]. The second class uses
ground planes with the same width as that of the
center conductor, representing a practical geometry
used in integrated circuits. For the latter category,
theoretical studies are restricted to numerical sim-
ulations.

When an electromagnetic wave propagates on a
CPW, the electric fields above conductors experi-
ence the permittivity of the air, while those below
conductors experience the permittivity of the sub-
strate. The effective permittivity thus takes on a
value between that of the air and substrate. When
the frequency of propagating wave increases, the
effective permittivity approaches that of the sub-
strate, as the density of electric field lines below the
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conductors gets higher. The difference in the effective permittivity at different frequencies results in a modal
dispersion that can be described with a frequency-dependent propagation constant:

β = 2πf · 109 ·
√
εeff

c
(1)

where f is the frequency, c is the speed of light in free space, and εeff is the frequency-dependent effective
permittivity. An example of εeff is demonstrated in Figure 2 [1].

Figure 2 shows that, with increasing frequency, the effective permittivity increases and a steep step is located
at the position where the lowest-order surface-wave mode starts to interact with the CPW mode. For CPWs with
infinitely wide ground planes, the TM0 mode enters first and, at higher frequencies, this mode and higher-order
modes contribute to the increase of εeff . For the case of narrow ground planes, the lowest-order surface-wave
mode that can be supported is TE0 mode [6]. Since the entry frequency of TM0 mode is lower than that of TE0

mode, CPW with wide ground planes supports more surface-wave modes and therefore suffers higher dispersion
than CPW with narrow ground planes in the 100’s GHz range.

3. Experiment and Simulation
In our work, the CPWs were fabricated on 500-µm-thick semi-insulating GaAs substrates. Gold was evapo-

rated on the substrate and formed the transmission line patterns using a “lift-off” process [13]. The thickness of
gold conductor was measured as t = 290 nm. Each set of CPW had a center conductor and conductor spacing
with a width of S = W = 50 or 10µm. The ground plane was chosen as G = 500µm for CPW with wide ground
planes or as the lateral line dimension for CPW with narrow ground planes. With a testing method utilizing
the non-uniform illumination of photoconductive switches together with electro-optic sampling, the broadband
description of CPW characteristics has been obtained [11, 13]. The signal propagating along the CPW was
measured in the time domain and then converted to the frequency domain by Fourier transform [13].

For comparison with the experiments, we used the software package Sonnet Suites to simulate the trans-
mission lines. The simulation makes use of a modified method of moments based on Maxwell’s equations to
perform a three dimensional full-wave analysis of predominantly planar structures [14] and returns the values
of the scattering matrices. The geometry and electrical parameters used for simulation are the same as those in
the experiments. The simulated scattering matrices are then converted to propagation constant and, in turn,
to the effective permittivity by (1).

4. Results and Discussion

Figure 3: Simulated and experimental effective permittivity of CPWs with a 50-µm center conductor.
εeff,sim−wg and εeff,exp−wg refer to simulated and experimental effective permittivity of the wide-ground
CPW, respectively. εeff,sim−ng and εeff,exp−ng refer to simulated and experimental effective permittivity of
the narrow-ground CPW, respectively.

Figure 3 shows the subterahertz effective permittivity of CPWs with a 50-µm center conductor as a function
of the frequency. We present the simulated and experimental effective permittivity of CPWs with both wide and
narrow ground planes for comparison. There is a good agreement except for the several peaks on the simulated
curves. These peaks are remnants of the poles in the Green’s function used in the Sonnet Suites and correspond
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to the sequential entry of the surface-wave modes. Although the poles are removed one by one in the final
results, some oscillations remain and are an unavoidable artifact.

Figure 4: Simulated and experimental effective permittivity of CPWs with a 10-µm center conductor.
εeff,sim−wg and εeff,exp−wg refer to simulated and experimental effective permittivity of the wide-ground
CPW, respectively. εeff,sim−ng and εeff,exp−ng refer to simulated and experimental effective permittivity of
the narrow-ground CPW, respectively.

Figure 5: Simulated and experimental effective permittivity of CPWs with narrow ground planes. The lateral
line dimensions are 50µm and 10µm, respectively. εeff,sim−50 and εeff,exp−50 refer to simulated and experimen-
tal effective permittivity of the CPW with a 50-µm center conductor, respectively. εeff,sim−10 and εeff,exp−10

refer to simulated and experimental effective permittivity of the CPW with a 10-µm center conductor, respec-
tively.

An important observation of Figure 3 is that one clearly sees that the CPW with narrower ground planes
returns a lower effective permittivity and reduced dispersion in both the experimental and simulated data. The
reduced ground-plane width gives rise to a reduction in coupling between the CPW mode and surface-wave
modes, which consequently decreases dispersion along the CPW.

We also investigated dispersion characteristics of CPWs with narrower lines. Figure 4 shows the subterahertz
effective permittivity of CPWs with a 10-µm center conductor. Again, it can be seen that CPW with narrow
ground planes encounters lower effective permittivity than CPW with wide ground planes. Dispersion is slightly
improved in CPW with narrow ground planes.

To examine the effect of lateral line dimension, we combine the narrow-ground CPW data into Figure 5. It
is clearly seen that the effective permittivity of CPW with a 10-µm center conductor is lower than that of CPW
with a 50-µm center conductor and the overall dispersion is much less.
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5. Conclusion

In summary, we present experimental and simulated dispersion characteristics of CPWs with wide and narrow
ground planes. The simulation results agree well with the experimental data up to subterahertz frequencies. It
is shown that CPW with narrow ground planes suffers lower dispersion than CPW with wide ground planes.
Furthermore, dispersion can be reduced by reducing the lateral line dimension of the CPW. Combining our
previous studies on the attenuation characteristics [10, 11] and the current work on dispersion, we conclude that
in the frequency range where radiation effects dominate (100’s GHz for the lines considered in this report), the
narrow-ground CPWs perform better in both aspects.
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A Multi Conductor Transmission Line Model for the
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Speed Drive Motors
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Abstract—The use of switching devices, such as IGBTs, characterised by high switching frequencies and very
low switching times in new generation pulse width modulation (PWM) inverters has increased the efficiency
and performances of Adjustable Speed Drives (ASDs) for industrial and traction applications. However, such
systems may be affected by disadvantages like over voltages at the motor terminals, when long cables are used
between the drive, and the generation of rotor shaft voltage, due to the capacitive couplings in the motor
(between the windings and the rotor and between the rotor and the stator). The shaft voltage may cause the
breakdown of the lubricating film in the bearings. The resulting impulsive currents, by damaging the bearing
elements shorten the component life, which in turn seriously affects the ASD reliability. For this reason, it is of
great importance to develop numerical models able to predict the shaft voltage so as to estimate the currents
flowing through the bearings. Several works, based on either concentrated or distributed circuit models, have
been proposed for the evaluation of the shaft voltage magnitudes for several motors sizes. However, the results
obtained by such approaches suffer from approximations and simplifications in the considered circuit model.
Therefore, in the present paper, a numerical model able to accurately predict the shaft voltage in high power
induction motor for traction applications fed by a PWM inverter is presented. The windings of the motor
are modelled by a multi conductor transmission line (MTL), whereas the cables between the source and the
motor are described by a single transmission line. The effect of wave propagation and reflection and of the
frequency-dependent distributed losses is considered by using a time-domain equivalent circuit to represent the
MTL. A semi-analytical method, based on the perturbation theory of the spectrum of symmetric matrices, is
adopted. The parameters of the MTL are obtained either analytically or numerically by using a commercial
software (Maxwellr by Ansoft). The effects of the rise time of the input voltage together with the length of
the cables are considered.

1. Introduction

A drive system composed of a traditional induction motor matched to a pulse-width modulated (PWM)
inverter can overcome the limitations of induction motors operating directly on line voltage, consisting essentially
in a nearly constant, unadjustable output speed and in a small starting torque, drawing a large starting current.
By feeding the motor with a variable ac voltage and a variable ac frequency, thus obtaining an adjustable-speed
drive (ASD), most requirements of modern drives can be satisfied. More recently, such systems have reached a
great diffusion, which can be mostly associated to the rapid development of new switching devices, such as the
insulated gate bipolar transistor (IGBT), which have led to increased efficiency, performance and controllability
in medium voltage, medium power induction motor applications, such as traction, cranes for port operation,
etc.

Unfortunately, the output voltage from the inverter is not purely sinusoidal and, in particular, steep front
pulses can be generated in correspondence to the commutations of the switching devices. Slew rates (dV/dt)
of about 2500 V/µs can be produced, resulting in overvoltages at the motor terminals and in critical stresses of
the motor electrical insulation which can lead to a sensible reduction of the life-time of the machine [1].

Furthermore, it should be considered that such pulses can excite the capacitive coupling between the stator
and the rotor, resulting in shaft voltages, even 20 times larger than those observed when feeding the motor with
a pure sinusoidal waveform. The shaft voltages may cause the breakdown of the lubricating film in the bearings.
The resulting impulsive currents, by damaging the bearing elements can shorten the component life, which in
turn seriously affects the ASD reliability.
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For design purposes, it seems, therefore, of great importance to provide the electrical engineers with a model
able to predict the voltage distribution in the motor windings and evaluate the electrical stresses on the rotor
shafts as a function of many geometrical and electrical parameters, such as the stator insulation dimension, the
length of feeding cable, shape of the applied voltage, insulating material permittivity etc.

The model developed by Melfi et al., [2] is based on a representation of the motor winding as a lumped
network; in order to preserve its physically distributed nature, the parasitic coupling between the stator and
the rotor has been modelled over a range of frequencies. Also Lipo et al., [3] have used an equivalent lumped
parameter π-network to describe the parasitic coupling phenomenon. They remark that the parasitic coupling
circuits are the same as transmission line circuits, but a distributed parameter circuit is not suitable for a
simplified analysis of the bearing currents.

The present paper is dedicated to the illustration of a machine model based on the representation of the motor
winding as a connection of multiconductor transmission lines. The model is able to predict the voltages across
the rotor shaft, taking into account the main phenomena occurring along the lines, such as the propagation and
the reflection, together with the time dispersion introduced by the losses, eventually dependent on the frequency.
The solution technique is accurately described in many papers [4]; it consists of a semi-analytical method based
on the perturbation theory of the spectrum of symmetric matrices. The MTL lines are described by their
characteristic R, L, C, and G per unit length matrices, that is, in the Laplace domain by the longitudinal
impedance Z(s) = R + sL and transverse admittance Y(s) = G + sC.

The authors explicitly remark that the paper is dedicated to the illustration of the model and its potentiality
but, at present, not to the estimation of the shaft voltages in the motor operating conditions. In fact, as discussed
in the following sections, the results of the simulations have been obtained by feeding the machine not with a
typical three-phase inverter output voltage, but providing a single-phase ramp voltage with variable slew rate.
It is the author’s opinion that the findings are still extremely significant since they can describe the effects of
slew rate (dV/dt) of the input voltage together with the length of the feeding cable adopted. Simulations in
real operating conditions, together with experimental verifications will be the subject of future works.

In the following, section 2 is dedicated to an illustration of the basic model, together with a brief description
of the solution technique; in section 3 the results of the numerical simulations are illustrated; the last section
contains remarks, comments and proposals for the future activity.

2. The Model

A schematic representation of the model is reported in Fig. 1. An ideal ramp voltage generator is connected
through a feeder cable to the motor. The stator winding is represented by a form wound stator coil, composed
of conductors of rectangular cross section; it faces the rotor iron laminations; the rotor is connected to a pair of
bearings represented in the picture by their equivalent capacitance Cb1 and Cb2.

The system can be studied (Fig. 2) as single transmission line, representing the cable, connected to four
multiconductor transmission lines in series placed in the slot and overhang regions of the machine. Further details
can be found in [5] by Lupò et al., The MTL are composed of n conductors; the n-th conductor represents the
rotor iron.

Figure 1: Schematic representation a motor phase. Figure 2: MTL model of the machine.

The multiconductor line can be studied in the time-domain by means of a 2n-ports representation (Fig. 3)
described by Eqs. (1) and (2) [4]:
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i0(t) =

∫ t+

0−

Yc(t− τ)v0(τ)dτ + j0(t)

id(t) =

∫ t+

0−

Yc(t− τ)vd(τ)dτ + jd(t)

(1)





j0(t) =

∫ t+

0−

P(t− τ)[−2id(τ) + jd(τ)]dτ

jd(t) =

∫ t+

0−

P(t− τ)[−2i0(τ) + j0(τ)]dτ

(2)

The impulse responses Yc(t) and P(t) are defined as:





Yc(t) = L−1[Yc(s)] = L−1

[√
Z−1(s)Y−1(s)Y(s)

]

P(t) = L−1[P(s)] = L−1
[
exp

[
−d
√

Y(s)Z(s)
]] (3)

where Yc(s) is the characteristic admittance and P(s) is the propagation function.

Yc(t) and P(t) can be found as a sum of their principal part, i. e., the parts containing terms as Dirac
pulses, and a remainder evaluated by performing a numerical inverse transform. The solution can be achieved
by means of a recursive approach since at time instant t the state variables j0(t) and jd(t) are known because
they depend on the values assumed at time instant (t− T ) by themselves and by the currents, where T is the
propagation time delay.

Figure 3: 2n-ports representation of a MTL.

Figure 4: Bearings’ voltages Vb1(t) and Vb2(t).



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 239

3. Results of Numerical Simulation

The numerical simulations have been carried out on a traction motor characterised by 9 conductors per
slot. The applied voltage has a maximum value Emax= 750 V and a variable slew rate chosen in the interval
(0.5÷2.0 kV/µs); the length Lc of the feeder cable varies between 5 m and 15 m. The equivalent capacitances Cb1

and Cb2 are chosen equal to 5 nF. Prior to the numerical simulation the p.u. length matrices, C and L have been
evaluated with the software packing Maxwellr by solving, respectively, an electrostatic and a magnetostatic
problem.

Figure 5: Peak value of Vb1 vs dV/dt and Lc. Figure 6: Peak value of Vb2 vs dV/dt and Lc.

Figure 7: Peak value of Vb1 and Vb2 vs. dV/dt. Figure 8: Peak value of Vb1 and Vb2 vs. Lc.

As an example of the results obtained, in Fig. 4 the time evolutions of the voltage Vb1(t) and Vb2(t) across
the two bearings are reported when dV/dt = 1 kV/µs and Lc = 10 m. Voltage Vb2(t) is slightly delayed with
respect to Vb1(t), due to a propagation delay of about 40 ns.

Since the main parameter influencing the breakdown phenomena in the lubricating film in the bearings is
the maximum amplitude V m of the voltage, in Figs. 5 and 6 the peak values of Vb1 and Vb2 are reported as a
function of the slew rate and the cable length.

In particular, it is evident that critical situations can be reached with long cables and high slew rates: the
peak voltages can be almost 5 times higher with Lc = 15m−dv/dt = 2.0 kV/µs if compared with Lc = 5m and
dv/dt = 0.5 kV/µs. Furthermore, the peak voltages can be different for the two bearings and, as a consequence,
the breakdown phenomena can occur only in one bearing.

Such a difference is amplified when the bearings’ capacitances are not equal, for instance when bearings of
different type are installed (bearings produced by diverse manufacturers, standard or insulated bearings, new or
aged bearings, etc.). In fact, when introducing in the simulations two values for such capacitances (Cb1=4 nF;
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Cb2=5 nF), the difference in the peak values of Vb1 and Vb2 is strongly evident, as shown in Figs. 7 and 8.
In particular, the dissimilarity between peaks of Vb1 and Vb2 grows with the slew rate and the length of the
feeding cable.

4. Conclusions

The present paper describes an equivalent MTL model able to predict the shaft voltages in high power
induction motor for traction applications fed by a PWM inverter. By feeding the motor with an ideal ramp
voltage generator, it is possible to derive significant information on the voltages across the motor bearings; their
peak values strongly depend on the slew rate of the applied voltage and on the length of the connecting cable.
The effect of different bearings’ capacitances has also been evidenced. Further work is in progress in order to
introduce a typical three-phase inverter output voltage and to clarify the effect of other parameters like the
amplitude of the applied voltage, the electrical characteristics of the cables, the geometrical parameters of the
machine.
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Frequency-selective Power Transducers “Hexagonal
Ferrite Resonator—Semiconductor Element”

M. Y. Koledintseva
University of Missouri-Rolla, USA

Abstract—The transducers studied herein allow for frequency-selective measurement of mm-wave power pa-
rameters. Frequency selectivity is assured by a monocrystalline hexagonal ferrite resonator (HFR). The HFR
is in direct contact with a semiconductor element (SE)—an unpackaged Hall-element, or a chip transistor (or
diode). Power absorbed by the HFR at the ferromagnetic resonance converts to heat, and the heat flux pen-
etrates through the current-carrying SE. A number of thermo/electro/magnetic phenomena accompany the
Hall-effect in a semiconductor and cause a voltage in addition to the Hall-effect voltage. The conversion co-
efficient of a transducer is analyzed using the power balance equation. Some experimental results using the
designed power transducers in the 8-mm waveband are presented.

1. Introduction

Many applications require an adequate information about mm-wave (30–300GHz) spectra of signals, e.g.,
spectral power density, peak power of pulse signals, integral power in the given frequency band, width and central
frequency of spectrum [1, 2]. Equipment for measuring power parameters of electromagnetic signals contains
a primary measuring transducer and a secondary processing/display unit. A primary transducer in this case
converts the energy associated with electromagnetic oscillations into a different form of energy (e.g., thermal,
mechanical, etc.), or into voltage which is convenient to register and quantify. Most of microwave and mm-wave
power meters and detectors are not frequency-selective. Their application for “fine” spectra measurements needs
additional high-Q filters and cumbersome calibration of the receiving path. Heterodyne-type spectrum analyzers
and measuring receivers typically have numerous parasitic channels of reception, which is an especially difficult
problem for the analysis of mm-wave spectra of signals of middle and higher intensity levels (more than 1 mW
of continuous power).

The transducers proposed herein allow for frequency-selective measuring of mm-wave power parameters.
Frequency selectivity is assured by incorporating a monocrystalline hexagonal ferrite resonator (HFR) with a
narrow ferromagnetic resonance (FMR) line. An advantage of an HFR is its high intrinsic field of magnetic
crystallographic anisotropy, so it does not need massive bias magnetic systems for achieving FMR [2]. In the
transducer, the HFR is in direct contact with a semiconductor element (SE). The SE may be an unpackaged
Hall-element (HE) slab, or chip transistor (or diode). The mm-wave power absorbed by the HFR at the
FMR converts to heat, and the heat flux from the HFR penetrates through the body of the current-carrying
SE. Since this structure is in the bias magnetic field, there are a number of thermoelectric, thermomagnetic,
galvanomagnetic, and thermoelectromagnetic phenomena, along with the Hall-effect in the SE. In fact, there
are over 560 different known effects accompanying the Hall-effect [3]. These phenomena cause a voltage in
addition to that of the Hall-effect. This happens only when the frequency of the mm-wave signal falls into the
ferromagnetic resonance curve of the HFR, thereby assuring frequency selectivity of power conversion.

2. Mathematical Model for the Conversion Coefficient of the Transducer

The conversion coefficient of a frequency-selective power transducer is defined as a ratio of the amplitude of
the converted signal to the power of the input microwave signal at the given frequency [1],

Kp = ∆V/P (f0). (1)

If the thermal coefficient of voltage in a semiconductor element

KT = ∆V/∆T (2)

is known, then the conversion coefficient of a transducer operating on the basis of thermal effects is

Kp = KT∆Tstat/P (f0), (3)

where ∆Tstat is the stationary temperature increase in the system “HFR-semiconductor element”.
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Consider the case when a microwave oscillation of power P(f0) acts on the HFR continuously, and the HFR
absorbs this power due to the FMR. Inside the HFR there is a constant source of heat, and the surface temper-
ature of the HFR remains constant. Suppose that heat radiation is absent. Let us also neglect semiconductor
heating when current flows in it, and further assume there is no difference in the temperature of the contacts
(no thermal electromotive force). The result of the semiconductor heating is the variation in the charge carrier
mobility, which leads to the variation of the thermal coefficient KT . Then the equation for thermal balance can
be written in terms of power,

Pabs = PFS + PSM + PFA + PSA, (4)
where Pabs = αP (f0) is the mm-wave power absorbed by the ferrite at the FMR (α is the absorption coefficient);
PFS is the heat power transferred by the ferrite to the semiconductor element (conduction heat exchange); PSM
is the heat power transferred from the semiconductor element to the metal contacts (conduction heat exchange);
PFA is the heat power transferred by the HFR surface to air (convection heat exchange); and PSA is the heat
power given to air by the semiconductor (convection heat exchange).

The Cauchy problem describing the transient thermal regime in the system “HFR-SE” with a heat source
inside the ferrite is analogous to that considered in [4] for a YIG bolometer,

CΣ
dT

dt
+ ΨTΣT = Pabs; T (0+) = Tr, (5)

where CΣ [J/K] is the total heat capacity of all the elements of the thermal system, and ΨTΣ [W/K] is the
total heattransfer factor of all the system. The initial condition is the room temperature Tr. The solution of
the Eq. (5) is an exponential function

T (t) = Tr + ∆Tstat(1 − e−t/τΣ), (6)

where ∆Tstat = Pabs/ΨTΣ is the increase of the stationary temperature, and τΣ = CΣ/ΨTΣ is the response time
of the system.

The absorption coefficient α depends on the HFR rate of coupling with the transmission line where it is
placed. This coupling is described by the coupling coefficient ηc [5], and in turn, it depends on the geometry
of the transmission line or waveguide, operating mode structure, the point where the HFR is situated, and the
physical parameters of the HFR (its resonance line width ∆H, saturation magnetization MS , anisotropy field
HA, and orientation of the HFR crystallographic axis in respect with the bias magnetic field H0), as well as
on the detuning |fres − f0| of the FMR frequency from the mm-wave signal carrier frequency. The absorption
coefficient can be obtained through solving the self-matched field problem and electromagnetic power balance
equation, as described in [1, 5]. From this analysis, the absorption coefficient relates to the coupling coefficient
as

α = 2|ηc|/|1 + ηc|. (7)
For a transmission line or waveguide operating with only a single mode having transverse microwave magnetic
field components hx,y, and with the bias magnetic field for the HFR directed along z-direction, the coupling
coefficient can be calculated as

ηc = j
ωµ0Vf
2N1

(χext11h
2
x + χext22h

2
y), (8)

where χext11,22 are the complex diagonal components of the external magnetic susceptibility tensor for an ellipsoidal
(general case) HFR [1, 5] for any arbitrary orientation of the HFR crystallographic axis with respect to the bias
magnetic field. In (8), Vf is the volume of the HFR, and N1 is the norm of the corresponding transmission line
or waveguide mode, as calculated in [5].

3. Calculations and Experimental Data

The calculations were performed for a uniaxial monocrystalline HFR resonator made of M-type Ba ferrite
doped with Ti and Zn ions. It was placed in a metal waveguide with a cross-section of 7.2 mm× 3.4 mm, in the
point with the right circular polarization of the mm-wave magnetic field. The HFR in this case was a spheroid
with the axes 0.585 mm×0.557 mm. Its magnetic parameters were the following: the field of crystallographic
magnetic anisotropy was HA = 11.3 kOe, saturation magnetization was 4πMS = 3.5 kG, and the unloaded
resonance line width was ∆H=31.1 Oe. The density of the hexagonal ferrite was ρf =4900 kg/m3; the specific
heat was cf = 1100 J/(kg.K); and thermal conductivity was λf = 4.1 W/(m.K). The measured input average
power of the mm-wave continuous signal at the frequency f0 =39.5 GHz was P (f0)=60 mW; the HFR absorbed
5 dB at the FMR (Pmeasabs =41.1 mW).

The Hall-element (HE) X511 (Russia) measured 1.5 mm×2.0 mm×0.1 mm. It was made of a monocrystalline
InSb, the density was ρs=5770 kg/m3, the specific heat was taken as cs=700 J/(kg.K); the thermal conductivity
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was λs = 18 W/(m.K); and the thermal coefficient of voltage KT was 1.5 mV/K (according to the technical
passport for the X511). An active region of contact with the HFR was assumed to be 0.01 mm2. Heat transfer
coefficients for natural convection (room temperature Tr=20◦C and normal atmosphere pressure of 760 mm of
mercury) for both HFR and SE are about 30 W/(m2·K).

The total heat transfer factor was calculated as ΨTΣ =Ψconv+Ψcond=1.2 ·10−3 W/K. The total heat capacity
is CΣ =Cf +Cs = 0.9 ·10−3 J/K. The calculated response time of the system is τ calcΣ =750 ms, and the calculated
stationary temperature increase in the system is ∆T calcstat =25◦C. The transition time for the temperature increase
is tstat=4.6 · τΣ =3.45 s. The calculated voltage at the SE is ∆V calc=37.5 mV, and the conversion coefficient is
Kcalc
p =0.625 V/W. The measured data are ∆Tmeasstat =21◦C and τmeasΣ ≈1 s.

4. Design and Experimental Data of the Frequency-selective Thermal Transducers

4.1. HFR-two Hall-elements
The structure of the frequency-selective electronically tunable power transducer is shown in Fig. 1. It

contains two identical Hall elements: one is inside the waveguide, having direct contact with the HFR, and the
second is on the outer side of the waveguide. Both transducers are exposed to the same uniform bias magnetic
field. The Hall elements are connected so that it is possible to obtain a differential signal at the comparator.
When there is no FMR absorption, the signals of the Hall elements are the same and correspond to the pure
Hall-effect voltage in the given magnetic bias field. When the HFR is at the FMR, it heats up because of the
resonance absorption, and there is an additional voltage that is induced on the contacts of the internal Hall
element. Its value is proportional (with the coefficient KP ) to the average power of the mm-wave signal at the
resonance frequency of the HFR, through the equation ∆VH = KpPav(fres).
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Figure 1: Schematic of the transducer based on the HFR and two Hall-elements.

When experimental structures based on the HFR and semiconductor elements were exposed to nanosecond
pulses with pulse repetition frequency of 1 kHz, an off-duty factor of 2, and an average power of 10–100 mW,
the mechanism of interaction was mainly inertial, of a thermal nature. Low-inertial effects, such as the mag-
netoresistive effect, the microwave Hall-effect in semiconductor, direct electromagnetic field detection by the
SE, and magnetic detection by the SE due to variation in the magnetic flux from the HFR are negligibly small
at average power levels of a few dozen mW. This inertial mechanism of interaction between the HFR and the
mm-wave field is determined by heating of the HFR at the FMR power absorption and the corresponding heat
flux acting on the Hall element.

Suppose that the total voltage induced in the semiconductor plate carrying a current I placed in a transverse
magnetic field H0z consists of a Hall-effect voltage VH and a number of additional terms, corresponding to the
most important effects accompanying the Hall-effect [3]:

V = VH + Vneq + Vmr + Vtemf + VE + VNE + VPNE + VRL + VPRL· (9)

In (9), Vneq is the non-equipotentiality voltage, Vmr is the magnetoresistive voltage, Vtemf is the thermoelec-
tromotive force voltage, VE is the Ettingshausen galvanomagnetic voltage, VNE is the Nernst- Ettingshausen
thermomagnetic voltage, VPNE is the Peltier-Nernst-Ettingshausen thermomagnetic electrothermal/ thermogal-
vanomagnetic voltage, VRL is the Righi-Leduc thermomagnetic voltage, and VPRL is the Peltier-Righi- Leduc
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electrothermal/thermogalvanomagnetic voltage. In the proposed design, the contribution of VH and Vmr is com-
pensated by the second Hall-element. The voltages Vneqv and Vtemf are independent of the bias magnetic field,
and can be taken into account and compensated. It is impossible to separate the remaining five contributions.
However, the Nernst-Ettingshausen effect might be dominant. It is a thermomagnetic effect, and appears as a
transverse voltage with respect to the current I flowing in the semiconductor slab, assuming the latter is in the
magnetic field and is affected by the heat flux.

In the experiment, two Hall elements were used. The first one was an X511 characterized by Rin = 2.0 Ohms,
Rout = 1.6 Ohms, Ioper = 100 mA, and having a thermal sensitivity of 1.05 V/(A·T). The second was X211. The
characteristics of the X211 differ only in the output resistance ( Rout = 1.9 Ohms) and the thermal sensitivity
1.38 V/(A·T). The slope with respect to the magnetic field is S=∆V/∆H=10−2 mV/Oe for both Hall-elements.
The minimum measured magnetic field for both Hall elements was 0.1 Oe. Identical operation of both Hall-
elements was assured by proper choosing of their operation currents.

In the transducer, the first Hall-element was placed in the rectangular waveguide with cross-section 7.2mm×
3.4mm, in the point of the circular polarization of the mm-wave magnetic field. The off-resonance loss factor in
the section was 1.1 dB, and the standing wave ratio in this section was SWR=1.2. The HFR was the same as
discussed above. The FMR absorption was 5 dB. Fig. 2 shows the resonance dependence of the differential signal
∆V as a function of the applied bias magnetic field Hz0 for a continuous mm-wave signal at f0 = 40.7 GHz. The
minimum stable measured signal was about 10µW. The conversion coefficient was Kmeas

P = 0.6 V/W, which is
close to the calculated value (Kcalc

P = 0.625 V/W). The discrepancy can be explained by the mm-wave loss in the
section of the waveguide. The 50% alcohol solution of the glue BF-2 (Russia) was used to fix the HFR on the
unpackaged HE, and the resonance absorption in a high-Q ferrite resonator could have decreased by about 1 dB
due to the glue. The simplifying assumptions in the model, such as neglecting the heat loss on metal contacts,
might also adversely influence the accuracy of computations. Also, the reference input data for the parameters
of a transmission line, ferrite resonator, and InSb HE might have some tolerance. Furthermore, instrument error
in the mm-wave measurements might yield another 1 dB of uncertainty.

4.2. HFR—Unpackaged Chip Diode or a Transistor
The Hall-element contacting with the HFR was replaced by a chip transistor (CT) used as a diode. The

voltage thermal sensitivity of the CT (2TC398A-1 manufactured in Russia) was 3.0 mV/K, which is higher than

Figure 2: Resonance dependence of the converted
voltage (HFR-2 Hall elements).

Figure 3: Linear volt-watt characteristics for trans-
ducers.

the voltage thermal sensitivity of the HE. The HFR anisotropy field was HA = 10.6 kOe, and the FMR line
width was ∆H = 30 Oe. The HFR absorbed 3 dB of power at the FMR (f0 = 40.7 GHz, P (f0) = 60 mW).
The conversion coefficient is 1.2 V/W, which is two times greater than that of the transducer “HFR-2 Hall
elements”. The minimum measured signal was about 1µW. The shortcoming of the transducer is the presence
of a “pedestal” at the level of 1 mV due to the off-resonance heating of the semiconductor element directly
from the mm-wave signal power. However, this “pedestal” can be removed by a calibration in the off-resonance
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regime. A further improvement of the transducer can be realized by using a more thermosensitive semiconductor
element. Linear volt-watt characteristics of the transducers with two Hall-elements and the chip transistor are
shown in Fig. 3.

5. Conclusion

The transducers based on a high-Q hexagonal ferrite resonator in direct contact with a thermosensitive
semiconductor element allow for frequency-selective measurement of mm-wave power parameters over a wide
frequency range. The physical mechanisms of power conversion are analyzed, and it is shown that the conversion
coefficient of a transducer can be calculated using the equation of power balance. To increase the sensitivity
and conversion coefficients of a transducer based on the approach, it is necessary to use an HE with a higher
thermal coefficient of voltage, assure the best possible heat contact between the HFR and the semiconductor
element (increase the surface of their contact, for example, using a disk HRF), and employ a microvoltmeter
with higher sensitivity to register smaller converted signals.

REFERENCES

1. Kitaytsev, A. A. and M. Y. Koledintseva, “Physical and technical bases of using ferromagnetic resonance in
hexagonal ferrites for electromagnetic compatibility problems,” IEEE Trans. Electromag. Compat., Vol. 41,
No. 1, 15–21, Feb. 1999.

2. Koledintseva, M. Y., A. A. Kitaitsev, V. A. Konkin, and V. F. Radchenko, “Spectrum visualization and
measurement of power parameters of microwave wide-band noise,” IEEE Trans. Instrum. Measur., Vol. 53,
No. 4, 1119–1124, Aug. 2004.

3. Kuchis, E. V., “Methods for investigation of the Hall-effect,” Sov. Radio, Moscow, Russian, 1974.

4. Bogdanov, G. B., “Theory of inertial nonlinear phenomena in ferrites at microwaves,” Physical and Physico-
Chemical Properties of Ferrites, 297–309, Minsk, Russian, 1966.

5. Koledintseva, M. Y. and A. A. Kitaitsev, “Modulation of millimeter waves by acoustically controlled hexag-
onal ferrite resonator,” IEEE Trans. Magn., Vol. 41, 2368–2376, Aug. 2005.



246 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

Wave Propagation in Grounded Dielectric Slabs with
Double Negative Metamaterials

W. Shu and J. M. Song
Iowa State University, USA

Abstract—In this paper, the wave propagation in a grounded dielectric slab with double negative (DNG)
metamaterials is studied. Dramatically different evanescent surface modes (electromagnetic fields exponentially
decay both in air and inside the slab) are observed. They are highly dependent on medium parameters. An
infinite number of complex surface modes are found to be existing which have proper field distribution in the air
region. The investigations on the Poynting vectors show that they do not carry away energy in both transverse
and longitudinal directions.

1. Introduction

The guided dielectric slab with a DNG medium has been studied by several groups. Various novel properties
are observed: [1] and [2] found that there are special regions for TM (transverse magnetic) modes where
two different propagation constants exist. [3] theoretically considered the properties of a planar two-layered
waveguide, whose one layer is a double positive (DPS) medium and the other is a DNG medium. Super
slowwaves with extremely short wavelengthes were found whose fields exponentially decay from the interface
of the two slabs inside both layers. These guided modes, termed as evanescent surface modes, were also found
by [4] and [5], respectively. P. Baccarelli and his colleague suggested the concept of surface wave suppression
that ensures the absence of both ordinary and evanescent surface modes. This is very attractive in view of
taking DNG medium as a potential substrate candidate to reduce edge diffraction effects and enhance radiation
efficiency for microstrip antennas [6].

However, so far as the authors are aware no study on the complex modes and Poynting vectors has been
reported. This makes the mode spectra of DNG media unpleasantly incomplete. In this paper, the authors
focus on the properties of the evanescent surface modes and the complex modes, both of which belong to the
proper mode spectra of the grounded dielectric slab with a DNG medium. It is found that the evanescent
surface modes are highly dependent on the medium parameters and an infinite number of complex modes exists
which have exponentially decaying fields in the air region. They are termed complex surface modes. The study
on the Poynting vectors shows that they have zero power flows in both transverse and longitudinal directions.

2. Eigen Equations and Graphical Solutions

The structural setup of interest here is a grounded dielectric slab of thickness d (see Figure 1). Region one is
a DNG medium and region two is air. It is well known that to ensure a positive stored energy in the dielectric
layer, passive DNG media must be dispersive [7]. However, for simplicity we assume that they are isotropic,
losseless, and non-dispersive. This assumption is found to be acceptable since a small dispersion of ε and µ can
satisfy the constraints.

y

x
z

r11   µε r

r22    µε r

d
PEC

0y =

y d=

Figure 1: Geometry structure of a grounded dielectric slab with DNG medium (εr1 < 0, µr1 < 0).
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Figure 2: Graphical solutions for TE and TM modes. Solid lines in the first and fourth quadrants represent
(1) or (2); solid lines in the second quadrant represent (4) or (5); dashed line in the first and fourth quadrants
represents (3); dashed line in the second and third quadrants represents (6). The medium parameters are:
εr1 = −2.5, µr1 = −0.5, εr2 = 1, µr2 = 1.

Using the well-known transverse resonance method [8], the eigen equations for ordinary (γy1 = jky1) real
modes are:

µr2
µr1

(ky1d) cot(ky1d) = −αy2d for TE (1)

εr2
εr1

(ky1d) tan(ky1d) = αy2d for TM (2)

(ky1d)
2 + (αy2d)

2 = (k0d)
2(εr1µr1 − εr2µr2) (3)

The eigen equations for evanescent (γy1 = αy1) real modes are:

µr2
µr1

(αy1d) coth(αy1d) = −αy2d for TE (4)

εr2
εr1

(αy1d) tanh(αy1d) = −αy2d for TM (5)

(αy2d)
2 − (αy1d)

2 = (k0d)
2(εr1µr1 − εr2µr2) (6)

where k2
0 = ω2µ0ε0. γy1, γy2 are the y-direction wave constants of the two layers. Their relationship to the

longitudinal wave constant (z-direction) γ is written as:

γ2
yi = −k2

0εriµri − γ2 (i = 1, 2) (7)

Graphical representations of the above equations are shown in Figure 2. The mode index notation here
follows [9]. Notice that in the first and second quadrants, αy2 is positive and the fields exponentially decay in
the air region (proper); in the third and fourth quadrants, αy2 is negative and the fields exponentially increase
in the air region (improper). The x-axis is divided into two segments. The right half is for ky1d and the fields in
the dielectric layer are sine/cosine standing waves (ordinary), while the left half is for αy1d and the fields in the
dielectric layer are exponentially distributed (evanescent). Therefore, the intersection in the second quadrant
represents the proper evanescent surface mode, which does not exist for a DPS medium.

Another important difference for a DNG medium that can be read from Figure 2 is that the ordinary surface
mode solutions are no longer monotonic. It is clear from the subfigure in the left corner of Figure 2(a) that there
are two intersections as the radius of the dashed circle decreases, which corresponds to a decrease of frequency.
Once the circle has only one tangential point with the solid line, further decreasing frequency will cause this
mode to be cutoff. The same thing happens to TM modes in Figure 2(b) in a more obvious way. These two
possible modes have two different power flow distributions. One has more power flowing in the air region than
in the dielectric region, making the total power flow in the same direction as the phase velocity. The other is
in the opposite way and displays a backward property. More details on the Poynting vectors are addressed in
Section 4.
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Figure 3: Two possible dispersion curves for TE proper surface modes (solid lines) and TE improper leaky
modes (dotted lines). The dashed line, representing

√
εr1µr1, is the watershed for evanescent surface mode and

ordinary surface modes.

3. Evanescent Surface Mode

As stated in Section 2, the proper evanescent surface mode does exist with a DNG medium. It is the
intersection in the second quadrant. The normalized effective dielectric constant εeff = (β/k0)

2 for evanescent
surface mode is larger than both εr1µr1 and εr2µr2. Therefore the transverse propagation constant in the
dielectric layer γy1 =

√
−k2

0εr1µr1 − γ2 = k0
√
εeff − εr1µr1 is a pure real number. The electromagnetic fields

are no longer sine/cosine standing waves, but have the form of Ae−αy1y +Beαy1y.
It is found, however, that the dispersion curves for evanescent surface modes are very complicated, and they

are highly dependent on the medium parameters. Figure 3 shows two dispersion diagrams for TE1 mode with
different medium parameters. The dispersion curves represent the intersection points of the dashed line and
the first solid branch in Figure 2(a), including the part in the second quadrant. The solid line in Figure 3 is
for proper modes, while the dotted line is for improper mode, which is the set of intersections in the fourth
quadrant in Figure 2(a). The dashed lines in both figures depict the value of

√
εr1µr1. They are the watersheds

by which one can tell the evanescent surface mode from ordinary ones.
In Figure 3(a), the evanescent surface mode has low cutoff frequency. As the frequency increases, the ordinary

surface mode becomes an evanescent surface mode and its effective dielectric constant, εeff , keeps increasing.
In Figure 3(b), however, the situation is reversed. The evanescent surface mode has a high cutoff frequency
above which it becomes the ordinary surface mode. At the low frequency range, the evanescent surface mode
has an extremely large εeff , which decreases rapidly as the frequency increases. One can refer to the subfigures
of Figure 3 to check the validations. The reason for such dramatically different dispersion curves is that with
DNG metamaterials, one can not only make ε and µ simultaneously negative but also let their absolute values
be less than one [5]. From (1) and Figure 2(a), it is easy to see that the crossing point of the first solid branch
TE1 with the x-axis is fixed at (π/2, 0), while the crossing point with the y-axis noted as ‘A’ in Figure 2(a)
is (0, |µr2/µr1|). With a conventional DPS medium, µr1 is always equal to unity, or slightly greater or smaller
than unity as in the case of paramagnetic or diamagnetic materials. With metamaterials, however, µr1 is not
confined near unity any more and the intercept with the y-axis may change a lot. This change affects the
possible intersections of the first solid line and the dashed line in Figure 2(a) and finally results in dramatically
different dispersion curves.

4. Complex Surface Modes and Poynting Vectors

It is well known that the complete proper mode spectra for a DPS dielectric slab include discrete surface
modes and continuous radiation modes, both of which are real modes [8]. With a DNG medium, however, it
is proved by the authors that the complex roots of the eigen equations are exclusively on the top Riemann
sheet [10]. These solutions, termed complex surface waves, form another set of proper modes since they have
exponentially decaying fields in the air region and satisfy the boundary conditions at infinity. Unlike real surface
modes, complex surface modes have high cutoff frequencies below which they exist.
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Figure 4: Dispersion diagrams for all modes. Solid line is for normalized β of the proper modes. Dashed line
is for normalized α of the proper modes. Dotted line is for normalized β of the improper modes. The medium
parameters are: εr1 = −2.5, µr1 = −2.5, εr2 = 1, µr2 = 1.

Figure 4 shows the dispersion diagrams for both TE and TM modes, including evanescent, ordinary, and
complex surface modes. Also included are improper leaky modes drawn as dotted lines. When the frequency is
much lower than the first cutoff frequency of the real modes, all complex modes exist with very high normalized
α and β. As the frequency increases, β/k0 tends to decrease rapidly within a very narrow frequency range; after
that it increases slowly till its cutoff frequency. Notice it is not monotonic and the value of β/k0 can be less
than unity, which is a notable difference compared with evanescent and ordinary surface modes. The curve of
α/k0, however, monotonically decreases very fast as the frequency increases. At the cutoff point, α reaches zero
and β becomes the starting point of the real mode. The real surface mode bifurcates into two branches from
this point. One branch has an increasing β/k0 as the frequency goes high, while the other has a decreasing
β/k0, which will reach unity shortly. This property is expected from Figure 2. Further increasing frequency
makes β/k0 of the second branch begin to rise. However, it is no longer a proper mode.

It is found that the complex surface modes have zero power flows [10]. To derive the Poynting vector for
complex modes, γy1, γy2, and γ are assumed to be:

γy1 = a+ jb

γy2 = u+ jv

γ = α+ jβ (8)

The Poynting vector is written as

STE
z =

1

2
ExH

∗
y =

|A|2
2

{
STE
z1 , for 0 < y < d
STE
z2 , for y ≥ d

(9)

where A is the electric field intensity and STE
z1 and STE

z2 are as follows:

STE
z1 (y, z) =

β + jα

2ωµr1
e−2αz[cosh(2ay) − cos(2by)] (10)

STE
z2 (y, z) =

β + jα

2ωµr2
e−2u(y−d)−2αz[cosh(2ad) − cos(2bd)] (11)

Figure 5 shows the dispersion diagram and the integral results of Poynting vector for the TE3 mode. In
Figure 5(a), only the complex mode exists (branch ‘A’) when the frequency is lower than the cutoff frequency of
the real surface mode. The zero power flow in z-direction in Figure 5(b) shows that the complex surface mode
does not carry away any energy. As the frequency increases, the real surface mode begins. The top branch
(branch ‘B’) of the real mode carries a negative power flow and shows backward properties. When a waveguide
operates in this mode, its fields are largely confined inside the dielectric layer. The bottom branch (branch ‘C’)
of the real mode carries a positive power flow and its fields extend far away in the air region. Further increasing
frequency causes the fields in the air region to decay more slowly, and eventually reach infinity. At that point,
the radiation boundary conditions are violated and the mode becomes improper.
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Figure 5: Dispersion diagram and the power flow in z-direction for TE modes. ‘A’ is for complex surface mode;
‘B’ is for top branch of the real surface mode; ‘C’ is for bottom branch of the real surface mode. The medium
parameters are: εr1 = −2.5, µr1 = −2.5, εr2 = 1, µr2 = 1.

5. Conclusion

In this paper, an investigation on the mode properties of a grounded dielectric slab with a DNG medium has
been dealt with. The graphical method is used to find the possible real roots. Dramatically different dispersion
curves of evanescent surface modes are observed, showing that they are very sensitive to the material parameters.
It is found that there is an infinite number of complex surface modes with a DNG medium and they do not
carry away energy. Although the considered medium here is idealized and currently cannot be realized, the
results of this paper still unveil some exotic properties as well as potential applications of the metamaterials.
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Detection of Groundwater by Ground Penetrating Radar

S. I. Elkhetali
Academy of Graduate Studies, Libya

Abstract—The application of ground probing radar (GPR) to detection of groundwater from relatively deep
aquifers in a desert environment is addressed and processing techniques to improve the detectability of a weak
signal in noise and interference are reported. The study is based on simulated images from structures that have
the potential of storing groundwater one of which is the buried valley structure.

To increase the signal to noise ratio to achieve a reasonable probability of detection and false alarm, various
processing schemes are possible, typically employing analogue, binary (double threshold) and digital processing.
Different system architectures are compared to improve detectability. Automatic detection and classification by
artificial neural networks is tried to classify geologic subterranean features for aiding and speeding the process
and to overcome lack of experts on the field.

1. Introduction

Figure 1 shows how losses increase with depth. Losses include attenuation, spreading losses and loss due
reflection coefficient from the buried interface. The bottom layer is considered to be saturated soil giving a
reflection coefficient of 0.25. Losses that depend on external influences and not on system parameters are
lumped together and called external losses, they are expressed as follows.

Loss =
λ2σ|ρ| 2 e− 4 αR

(4π )3R4
(1)

where λ is the wavelength, σ is the scattering cross section, ρ is the reflection coefficient and R is the interface
depth. For a planar interface the scattering cross section is given as σ = πλ R

4 , which is the first Fresnel zone [1].
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Figure 1: A monogram showing how losses increase as functions of depth and attenuation.

2. System comparison

Different detection techniques are compared. The processors that are compared are digital, binary and step
frequency.
2.1. Digital Pulsed System

This is a pulsed radar having a digital processor assuming the use of swept gain amplifier which compensates
for attenuation due to the range of each scatterer.

The system gain before digitisation is chosen so that interference and noise would not exceed the input
range of the ADC full scale ratio (FSR) for an acceptable time duration (implying a large probability that the
interference is within the FSR). Assuming that the input to the ADC is Rayleigh distributed. If the FSR to be
equal to 10 σ implies saturation for only 1% of the time. The amplification factor satisfying the 1% saturation
criterion is 48 dB (for a FSR=10 V) and 23 dB (for a FSR of 0.54 V).
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The noise level without amplification is -64 dBm and the interference power is -34 dBm and if the bandwidth
is increased to 20 MHz (a pulse duration of 0.05µs) the noise will be -61 dBm and interference will be -31 dBm.
It is seen that interference is the dominant factor and therefore the time required to increase the output signal
to noise ratio for the digital processing would be equivalent to that of an analogue system. Therefore, an 8 bit
ADC would probably be adequate.

Table 1: Quantisation noise and amplified input noise and interference.

FSR, V Quantisation noise for an ADC with applied amplified amplified
the number of bits in dBm gain dB noise dBm interference dBm

8 bits 10 bits 12 bits
10 -9 -21 -33 48 -16 13.2
0.54 -34.3 -46 -58 23 -41 -12.3

2.2. Pulsed Radar System with Binary Integration

The binary integrator has a threshold device that generates 1’s or 0’s depending on whether the input to the
device has exceeded a certain threshold voltage or not. After detection noise alone has a Rayleigh probability
density function and the sum of the signal and noise has a Rician probability density function.

The next summing device taking the input from the threshold device will count the number of 1’s obtained
from a collecting a set of pulses. If the total exceeds a certain number (k out of m) which is a type of (digital)
threshold, a target is declared. The input to the threshold device has a signal to noise ratio defined as the ratio
of signal voltage to standard deviation of the noise and is given the symbol a, [1].

The signal to noise ratio of the quantised video is defined as ρ = ps−pn√
pn(1−pn)

, where pn is the probability

of obtaining a quantised pulse (binary 1) due to noise alone and ps is the probability of obtaining a quantised
pulse when the signal is present. The signal to noise ratio of integrated video is SNRout =

√
mρ where m

is the number of integrated pulses. For an input signal to noise ratio of - 37 dB (his is when assuming the
radar has a transmitted power of 10 w and a pulse duration of 0.05µs) ρ = 8×10−5 for input SNR = −37 dB,

m =
(
SNR0

ρ

)2

, making the number of pulses that are needed for integration to be about 4×109. The output

SNR being 7 dB. The time to collect data is about 22 hours for a prf of 50 kHz.

The choice of the second threshold k out of m is

k = SNRout
√
mpn(1 − pn) + mpn +

1

2
(2)

Therefore, k is 8 × 108 and so if the number of 1’s exceeds 8 × 108 then a target is declared.

2.3. A Step Frequency Processor.

The radar system transmits a sinusoid and measures the magnitude and the phase angle of the received
signal. It does this for a group of sinusoids forming the spectral components of the time domain signal that we
want to synthesise and then an IDFT is performed to obtain the reflected signal in the time domain. This must
be the point of comparing data obtained by the step frequency and the pulsed radar systems. At the input to
the display device the value of signal to noise ratio must 7 dB to have the same probabilities of detection and
false alarm as that of the pulsed system. The step frequency (SF) radar can be operated with an instantaneous
narrow bandwidth making the input noise and interference to remain low and therefore quantisation noise may
become dominant.
2.3.1. A radio Frequency Digitising System

Figure 4 presents a step frequency system digitising the signal at radio frequency.

A step frequency radar system with a system noise factor of 10 is considered, a transmitted power of 1 W, a
bandwidth of the preselector filter of 1 kHz, a pulse duration of 1 ms and a burst repetition frequency of 1 kHz.
The number of frequency spectral samples is 40 (20 MHz effective bandwidth with a frequency step of 0.5 MHz).
The signal to noise ratio at point A is the thermal noise is kTFB = −134 dBm and the atmospheric noise (being
30 dB above thermal) is -104 dBm. Interference power is -75 dB (not allowing for low interference bands) and
if low interference bands are utilised, it would be about -115 dBm (the power spectral density of interference in
these bands is about -145 dBm/Hz).
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The number of bursts that has to be collected and integrated is determined by the need to bring the signal
to noise ratio at point C to that is required at point D. Considering an ADC having 8 bits and an FSR of 10 V,
the signal to noise ratio at point C would be -71 dB. The number of bursts that are needed for integration is
about 6.4 × 106. The integration is coherent and so it is assumed to have an improvement that is ∝ N . If
the FSR is made 0.54 V with an 8 bit ADC and no gain is applied, the number of bursts that are needed for
integration are 2 × 104 and the total time to collect all the data is about 13 minutes.

The signal to noise, interference and quantisation ratio at point B is SNIQR = Pr ·G
(Na+I)·G + Nq

.

where Na is atmospheric noise power, I is interference power, Nq is quantisation noise power and G is gain.
For FSR = 10 V, the gain that may be applied before clutter saturates the ADC is about 7 dB. The signal

to total noise ratio (total including noise interference and quantisation noise) is -63 dB, the number of pulses to
be integrated is about 9×105. If the ADC has 10 bits, the time would be about 40 minutes and for a 12 bit ADC
the time would be about 3 minutes. It seems that quantisation noise is higher than input noise and interference
in the case of a SF radar.
2.3.2. A Proposed System

The radar system presented in Figure 4 digitises at the radio frequency which is possible at HF but if the
radar operates at higher frequencies it may be difficult. There are many designs to make the ADC’s work
at lower frequencies by implementing a mixer to down convert the frequency either to DC or to other IF’s
higher than zero, all of which suffer from the inherent drawbacks of the analog components. A proposed system
avoiding these problems and does not require the ADC’s to work at excessively high frequencies is given in
Figure 5. The system is composed of four ADC’s working in an interleaved manner. The timing of sampling
between the samplers is T/4, T is the period of the received signal.

Figure 2: A pulsed digital processor.
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Figure 4: A step frequency processor with RF digitisation.
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Figure 5: Schematic diagram of the proposed radar system.

2.3.3. Measurement of Amplitude and Phase Angle of a Sinusoid
The magnitude and phase of the received signal is gives by the following equations.

Magnitude =

√
I2 + Q2

2
and the Angle = tan−1

(−Q
I

)
(3)

Figure 6 show a simulated traces and an image as obtained by the radar.

(a) (b)

Figure 6: a) Signals after averaging repeated samples. (m is the number of averaged samples) and b) The radar
image of a buried channel.

3. Artificial Neural Networks

Samples of the simulated images that were fed to the ANN’s for classification are shown in Figure 7. The
size of the images is 80 by 50 pixels. The structures are those of, mostly, a buried valley having different cross
section shapes one of which is having a saturated zone. Another image is of a buried dome structure.

(a) (b) (c)

Figure 7: Samples of some images of the geological features that are used for the ANN’s.
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A backpropagation artificial network is used fro image classification. Results provided are for the conditions
of number of neurons in the middle layer being 10, sum square error is 0.1 and the SNR is 10 dB. It is found
that the ANN classifier gives very high success rate.

4. Summary and Discussion

It is seen that binary integration takes longer time than analogue but it has a small word length making it
simpler to implement and being low cost. Because of its simplicity, it may be possible to operate the binary
integration scheme at higher prf’s, allowing the time of data collection to be reduced. The Step frequency radar
may operate with powers that are lower than those needed for a pulsed radar and takes shorter time to acquire
the data. For SF radar, the averaging of many samples of the signal increases the SNR coherently. ANN’s are
useful in classifying the subterranean images.
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Abstract—In this paper, the ground bounce (GB) removal methods based on Blind Source Separation (BSS)
for land mine detection using ground penetrating radar (GPR) are investigated. These methods include an
Independent Component Analysis (ICA) based method and Blind Instantaneous Signal Separation (BISS) based
method. First, a modified ICA based method is presented. In this method, a fully automatic eigenimage
based Independent Components (ICs) selection strategy combined with a non-homogeneous detector (NHD) is
introduced. A BISS based method is also proposed for the GB removal. This method can be applied in various
environments as ICA, but it has much fewer number of extracted components than ICA’s, but has much fewer
number of components to extract, therefore less computation load is required. Experimental results show that
the proposed methods exhibit good performance.

1. Introduction

Downward looking GPR has been considered a viable technology for land mine detection [1]. For GPR with
the antenna positioned very close to the ground surface, the reflections from the ground surface, i. e., the GB,
are very strong and can much dominate the weak returns from shallowly buried plastic mines. Hence, one of
the key challenges of using GPRs for landmine detection is to remove the GB as completely as possible without
altering the landmine return.

The literature suggests a number of clutter (whose dominant contributor is GB ) reduction methods, such as
parametric system identification [2, 3], wavelet packet decomposition [4], subspace techniques [5, 6], and simple
mean subtraction [7]. However, many of these fail to detect shallowly buried landmines, mostly because of the
statistical nature of the clutter, e.g., the ground surface is not perfectly flat nor even relatively smooth. The
other problem is that many of the methods use reference signals to estimate the signature of a landmine. These
reference signals are used to remove signals based on how they relate to the reference. This will lead to improper
target signal cancellation when the reference signals are selected inadequately. For subspace techniques, the
GPR signals are decomposed into clutter and landmine signals by selecting principal components (PCs) and
independent components (ICs) reasonably. These methods can be more robust and lead to the best results
for GB removal. But automatic selection strategy for PCs and ICs is the key problem, and reduction for
computational load is an attractive work.

In this paper, we present an NHD-based modified ICA algorithm with automatic selection strategy for PCs
and ICs. To reduce the computational load, we also apply NHD to BISS to determine the number of components
to be extracted.

2. Data Description

Consider a stepped frequency GPR system moving in the along-track direction. Let xp(ωn) denote the
data collected at the pth scan for the nth stepped frequency, bp(ωn) denote ground bounce in xp(ωn), where
xp = [xp(ω1)xp(ω2) · · ·xp(ωN )]T is called A-scan data vector (for impulse GPR radar, this is the data vector
expressed in the frequency domain), bp = [bp(ω1)bp(ω2) · · · bp(ωN )]T represents the ground bounce vector, and
X = [x1x2 · · ·xp] represents the B-scan data matrix. As the mutual coupling of antennas can be removed by
prior measurement or estimation, the received data vector at the pth scan can be simplified as

xp = rp + bp + ep (1)

where rp denotes reflected signal form target, and ep denotes un-modeled noise. We also set up a sliding window
for modified GLR-based HND [8], which is composed of a guard area of length N1 and local area of length N2

in the along-track direction[8, 9].
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3. Modified ICA Based Method

3.1. Temporal ICA
The temporal ICA is one of the subspace techniques to remove GPR GB. The received signal is considered as

the linear mixture of the independent components (ICs) [5, 6], and the GB is removed by reconstructing received
signal with ICs corresponding to landmine target and target-like objects. ICA algorithm is processed in two steps.

The first step is the pre-processing, which includes data centralization (xm,j = xj − (1/P )
P∑
i=1

xi, j = 1 ∼ P )

and whitening. The whitening is realized by PCA (Xm = [xm,1 · · ·xm,P ], X1 = XT
m, Y = Ũ

T
X1), where

y = [y1y2 · · · yL1
]T is constructed by L1 selected PCs, and U is the projection matrix for X1 projected in a

subspace spanned by eigenvectors of L1 selected PCs. Then, we consider Y as the input of ICA defined as

Y = AS = [a1a2 · · · aL1
][s1s2 · · · sL1

]T =

L1∑

i=1

ais
T
j (2)

X1 = ŨY = ŨAS = WS = [w1w2 · · ·wL]S =

L1∑

i=1

siw
T
i (3)

where W is called matrix of eigenimages, and S is the ICs. After selecting K target and target-like ICs
so,i = sj(i = l ∼ K, j = l ∼ L1) and correspondent eigenimages wo,i = wj(i = l ∼ K), the GB removal out-

put is X̂I =
K∑
i=1

so,iw
T
o,i. The key problem for ICA is how to select PCs for PCA and ICs for signal reconstruction.

3.2. PCs and ICs Selection Strategy
The PCs and ICs reflect the time-domain information and the eigenimages can be considered as the spatial

steering vectors correspondent to them. The result of the NHD describes the buried position of the targets
and target-like objects. So we can select PCs and ICs automatically according to the consistency between the
eigenimage and the output of the modified GLR-based HND [8].

4. BISS Based Method

4.1. BISS
The ICA will be very computational demanding if the number of source signals is large [10–12]. After

PCA, L1 � P , but L1 � M (the number of targets and target-like objects). Obviously, ICA extracts much
more signal the sources than that need by signal reconstructing. Fortunately, BISS overcomes somewhat this
difficulty. The spirit of the BISS is to recover only a small subset of sources from a large number of sensor
signals. For GB removal, if the number of targets and target-like objects is prior known, source signals not more
than M are needed to be extracted.

Like the ICA, the first step of BISS is pre-processing. Then, the small subset of targets signals St is extracted
from Y as St = HY (4)
where H is the separating matrix, and the GB removal output is

X̂BISS = WtSt = ŨHTSt (5)

The presented BISS algorithm is gradient-based algorithm that optimizes three different criteria: Maximum
Likelihood (ML), Minimum Entropy (ME) and Cumulants based index. The algorithm based ML can be explic-
itly computed only when the sources densities are known. It needs to approximate the activation function for
ME, although it is not necessary to know the source densities. The most robust approach is the cumulant-based
algorithm, since it can be realized without approximations and not dependent on the density of sources [11].

4.2. Determination of M and Cumulant Order
There are two important parameters to be conformed for cumulant-based algorithm [13]: the number of

extracted signals M and the order of the cumulant. Since the location of target, target-like object, and the
homogeneity of GB can be detected by modified GLR based NHD, the value of M can be prior determined, and
the order of cumulant should be chosen according to the statistical nature of GPR data.

5. Experiment Result

The GPR data is obtaied from Vrije Universiteit Brussel (VUB) [14]. The experiment was performed in
wet clay mixed with small rocks. An area of x = 50 cm by y = 196 cm was scanned with a scanning step of
1 cm in each direction. There were irregularities with a maximum of 10 cm between the highest and the lowest
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point. The antenna head was placed at 5 cm above the highest point, and the scan was done horizontally. In
the following examples, the target is a plastic anti-personal mine (PMA-1·PMA-3), big stone and curving U
shape copper strip, the distribution of buried object is shown in Figure 1.

Figure 1: Distribution of buried objects.

Figure 2 shows the output of the modified GLR base NHD. Using this result, the number and position of
the targets (and target-like objects) can be determined.

Figure 2: Output of normalized GLR.

Figure 3: Comparison of ground bounce removal performances. (a) raw data, (b) ICA, (c) NHD based ICA,
(d)BISS based 3rd order cumluant, (e) BISS based 4th order cumluant, (f) BISS based 3rd and 4th order
cumluant, (g) BISS based 3rd, 4th, 5th, and 6th order cumluant.
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The performance of the improved ICA and BISS based method are showed in the Figure 3. Figure 3(a)
is the original received data of the GPR. It can be seen that the targets are obscured by the ground bounce.
Figure 3(b) and Figure 3(c) show the results of ICA and NHD based ICA, respectively. Figure 3(d)∼(g) shows
the results of BISS based cumluants with different orders. It can be seen that there are almost no difference
among these four results, so the third order cumluant is enough.

5. Conclusion

In this paper, we present NHD-based ICs selection method. ICA can be realized automatically with this
selection strategy. We also apply the BISS in the GB removal combined with NHD to determine the number of
extracted signal sources. The experimental results show that these two methods have excellent performance in
GB removal, and the BISS based method reduces the computational load greatly.
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A High-order Finite Element Method for Electrical
Impedance Tomography

S. Pursiainen and H. Hakula
Helsinki University of Technology, Finland

Abstract—Electrical impedance tomography (EIT) is a non-invasive imaging technique where a conductivity
distribution in a domain is reconstructed from boundary voltage measurements. The voltage data are generated
by injecting currents into the domain. This is an ill-conditioned non-linear inverse problem. Small measurement
or forward modeling errors can lead to unbounded fluctuations in the reconstructions. A forward model describes
the dependence of the noiseless voltage data on the conductivity distribution. The present work focuses on
applying the high-order finite element method (p-FEM) for forward modeling. In the traditional version of the
finite element method (h-FEM), the polynomial degree of the element shape functions is relatively low and
the discretization error is reduced by increasing the number of elements. In the p-version, in contrast, the
polynomial degree is increased and the mesh size is kept constant. In many applications of the finite element
method the performance of the p-version is better than that of the h-version. In this work, it is proposed that
the p-version provides more efficient tool for EIT forward modeling. Numerical results are presented.

1. Introduction

The electrical impedance tomography (EIT) problem is to reconstruct an unknown conductivity distribution
σ in an object Ω from a set of noisy voltage measurements performed on the boundary ∂Ω This problem was first
introduced in 1980 by Calderón [1]. At the present, EIT has numerous applications. These include detection of
tumors from breast tissue [5], measuring brain function [8], imaging of fluid flows in process pipelines [10], and
non-destructive testing of materials [13]. For a review on EIT, see Cheney et al., [2].

In the present version of electrical impedance tomography, a current pattern I = (I1, I2, . . . , IL) is injected
into a two dimensional domain Ω through a set of contact electrodes e1, e2, . . . , eL placed on the boundary ∂Ω.
The injected currents induce a potential field u in the domain and a electrode voltages U = (U1, U2, . . . , UL).
The measurement data are gathered by injecting a set of linearly independent current patterns and measuring
the corresponding electrode voltages. The conductivity distribution in Ω is to be reconstructed from these
voltage measurements. This is a non-linear ill-conditioned inverse problem: small errors in the measurements
or in the forward modeling can produce large errors in the reconstructions.

The focus of this paper is in efficient forward modeling. A forward model describes the dependence of the
noiseless voltage data on the conductivity distribution. The complete electrode model by Somersalo et al., [9]
and its simulations through the traditional finite element method (h-FEM) and the high-order finite element
method (p-FEM) are considered. According to the complete electrode model, the potential distribution in the
domain and the voltages on the electrodes can be determined by solving an elliptic boundary value problem.
Finite element simulation of this forward model has been described by Vauhkonen [12]. In the h-version of FEM,
the polynomial order p of the element shape functions is relatively low and the discretization error is reduced
by decreasing the element size h. In the p-version, in contrast, the polynomial order is increased and the mesh
size is kept constant. Processes where either the mesh is refined or the polynomial degree is increased are called
h− and p-extensions, respectively. Both extension processes increase the dimension of the finite element space
which is denoted by N . Combinations of h− and p-extensions are called hp-extensions (hp-FEM). Descriptions
of h−, p− and hp-versions of FEM are given e. g., in a book by Szabo and Babuska [11].

This work presents numerical results on performances of h− and p-extensions in finite element simulation
of the complete electrode model. The motivation for this study is that the solution of the complete electrode
model equations can be very smooth in the interior part of Ω and that in finite element computations, it is
typical that p-extensions are very efficient in problems with smooth solutions. For example, when the Poisson
equation ∆u = f in a two-dimensional domain Ω with zero boundary conditions on ∂Ω has a smooth solution
and uniform mesh refinement is used, the finite element solution uh satisfies the inequality ‖u−uh‖H1(Ω) ≤ Chp,
where h is the mesh size, p is the polynomial degree, C is some constant, and H1(Ω) denotes the corresponding
Sobolev space norm. Since in two dimensions the dimension of the finite element space N grows at the rate
O(p2/h2), one can deduce from the inequality, that as a function of N the error ‖u− uh‖H1(Ω) cannot converge
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slower in p-extensions than in h-extensions. For detailed description on h−, p− and hp-convergence, see Gui
and Babuska [4].

2. Finite Element Simulation of the Complete Electrode Model

In the complete electrode model, the effective contact impedance between the electrode el and the boundary
is characterized by the number z` > 0. The electrode voltages U induced by the current pattern I can be found
by solving the elliptic boundary value problem described by the equation

∇ · (σ∇u) = 0 (1)

in the domain Ω, by the boundary conditions

σ
∂u

∂n

∣∣∣
∂Ω\∪e`

= 0,

∫

e`

σ
∂u

∂n
dS = I` and

(
u+ z`σ

∂u

∂n

)∣∣∣
e`

= U`, ` = 1, 2, . . . , L, (2)

on ∂Ω and by Kirchoff’s current and voltage laws
∑L
`=1 I` = 0 and

∑L
`=1 U` = 0. According to Somersalo et al.,

[9], with certain assumptions made on the domain and on the conductivity distribution, there exists a unique
pair u ∈ H1(Ω) and U ∈ R

L that satisfies the weak formulation of this problem. The finite element solution of
these equations is the pair

uFE =
N∑

i=1

αiϕi and UFE =
L−1∑

i=1

βi(e1 − ei+1), (3)

where ϕ1, ϕ2, . . . , ϕN are the shape functions of the finite element space and e1, e2, . . . , eL are the standard basis
vectors of R

L. The coefficients α1, α2, . . . , αN and β1, β2, . . . , βN can be found by solving the linear system of
equations Ax = b. The entries of the vectors x and b are given by xi = αi and bi = 0 if i ≤ N , otherwise
xi = βi−N and bi = (e1 − ei+1−N )T I. The system matrix entries are given by

Ai,j =





∫
Ω
σ∇ϕi · ∇ϕj dxdy +

∑L
`=1

1
z`

∫
e`
ϕiϕj ds, if 1 ≤ N and j ≤ N,

− 1
z1

∫
e1
ϕi ds+ 1

zj+1−N

∫
ej+1−N

ϕi ds, if i ≤ N and j > N,

1
z1

∫
e1
ds+

δi,j

zj+1−N

∫
ej+1−N

ds, if i > N and j > N.

(4)

where δi,j is the Kronecker delta.

3. Hierarchic Shape Functions for p-extensions

In the standard p-version of the finite element method, the shape functions used in p-extensions are hierarchic.
In this context, the term hierarchic means that the set of shape functions of polynomial order p is in the set of
shape functions of order p+ 1, and the number of shape functions which do not vanish at the vertices and the
sides of the elements is minimal. Hierarchic shape functions are constructed by using Legendre polynomials

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, n = 0, 1, . . . . (5)

Due to the orthogonality properties of these polynomials, hierarchic shape functions are well-suited for computer
implementation and have very favorable properties from the point of view of numerical stability [11].

In the one-dimensional case, the standard element is the interval [−1, 1]. For this element, the one-
dimensional hierarchic shape functions of polynomial order p are defined as

N1(ξ) =
1 − ξ

2
, N2(ξ) =

1 + ξ

2
, Nn(ξ) = φn−1(ξ), n = 3, 4, . . . , p+ 1, (6)

where φn is defined as φn(ξ) =
√
n− 1/2

∫ ξ
−1
Pn−1(ξ) dt. These are organized to two categories. The first one is

formed by the polynomials N1 and N2, that are called the nodal shape functions, the external shape functions,
or the vertex modes. The higher order polynomials N3, N4, . . . , Np+1 form the second category. These vanish
at the endpoints of the interval [−1, 1] and they are called the bubble functions, the internal shape functions,
or the internal modes.
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The two-dimensional quadrilateral standard element is the square [−1, 1] × [−1, 1]. The corresponding two-
dimensional hierarchical shape functions of polynomial order p are products of one-dimensional shape functions.

Nn,m(ξ, η) =
1

4
(1 + (−1)nξ)(1 + (−1)mη), n = 1, 2, m = 1, 2,

N (0)
n,m(ξ, η) = φn(ξ)φm(η), n = 2, 3, . . . , p, m = 2, 3, . . . , p,

N (1)
n (ξ, η) =

1

2
(1 − η)φn(ξ), n = 2, 3, . . . , p,

N (2)
n (ξ, η) =

1

2
(1 − ξ)φn(η), n = 2, 3, . . . , p. (7)

These are organized to three categories: vertex modes Nn,m, internal modes N
(0)
n,m, and side modes N

(1)
n , N

(2)
n .

In this work, only quadrilateral elements are used. Construction of hierarchical shape functions for triangular
elements has been described e. g., in [11].

Figure 1: The square shaped domain, the locations of the 16 electrodes, and the coarsest mesh (h0 = 1/9) used
in the computations.

4. Numerical Experiments

Numerical experiments were performed concerning performances of h- and p-extensions in FEM simulation
of the complete electrode model. In these computations, the domain Ω was the unit square [0, 1] × [0, 1] and
the conductivity distribution σ in Ω was identically one. Sixteen electrodes with equal contact impedances
z1 = z2 = . . . = z` = 1 were placed evenly on the boundary (Fig. 1). All the contact impedances were assumed
to be equal to one. The generated voltage data constisted of L−1 electrode voltage vectors U (1), U (2), . . . , U (L−1)

induced by pair drive [7] current patterns I(1), I(2), . . . , I(L−1) such that I
(k)
k = 1 and I

(k)
k+1 = −1 and all other

entries are zero. In each of these current patterns, the two current injecting electrodes were located next to
each other. The finite element method was used both in data generation and simulation. Each finite element
mesh used in these computations consisted of equal-sized square shaped elements as illustrated in Fig. 1. In
data simulation, bilinear and hierarchic shape functions were used in h- and p-extensions, respectively. One h-
extension process and three p-extension processes were executed (Table 1). In these processes, elements of sizes
h = h0, 2

−1h0, . . . , 2
−7h0 with h0 = 1/9 and polynomial orders p = 1, 2, . . . , 8 were employed. The growth of

the dimension of the finite element space is reported in Table 1. In data generation, the size and the polynomial
order of the elements were h = 2−3h0 and p = 8. A vector containing all the generated data is denoted by
UEX and a vector containing the simulated electrode voltages is denoted by UFE . Accuracy of the simulation
is measured in `2-norm by the relative error

RE = ||UEX − UFE ||2/||UEX ||2. (8)

5. Results and Discussion

Figure 2 illustrates the convergence of the relative error (8) in the h- and p-extension processes. The relative
error is plotted against the dimension of the finite element space on log10-log10 scale. The results show that
p-convergence rate is faster than the rate of h-convergence.
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Table 1: The executed h- and p-extension processes: h- and p-values and finite element space dimensions. In
data generation, the size and the polynomial order of the elements were h = 2−3h0 and p = 8 (down right
corner).

index type h-values p-values finite element space dimensions

(a) h h0, 2
−1h0, . . . , 2

−7h0 1 100 361 784 1369 2116 3025 4096 5329

(b) p h0 1, 2, . . . , 8 100 280 460 721 1063 1486 1990 2575

(c) p 2−1h0 1, 2, . . . , 8 361 1045 1729 2737 4069 5725 7705 10009

(d) p 2−3h0 1, 2, . . . , 7 1369 4033 6697 10657 15913 22465 30313 —

Figure 2: The relative error (8) in the executed h− and p-extension processes (a), (b), (c) and (d) plotted against
the dimension of the finite element space on log10-log10 scale. The straight line represents the h-extension process
(a). The three curved lines from left to right represent the p-extension processes (b), (c) and (d) respectively.
The dashed lines show the h-convergence rate in the cases where p = 2, 3, 4, 5, 6 or 7.

In finite element computations, p-extensions are often motivated by the fact that the solution is smooth
whereas h-extensions are favorable in the case of non-smooth solutions [11]. According to Evans [3], the interior
potential distribution u ∈ H1(Ω) determined by the complete electrode model is smooth provided that the
conductivity distribution is smooth. However, it is important to point out that the potential distribution is not
smooth in the vicinity of the boundary, since according to the boundary conditions (2) the normal derivative
∂u/∂n is discontinuous on ∂Ω. Consequently, it is possible that near the boundary the performance of h-
extensions can be better than that of p-extensions. It is also important to note that electrical impedance
tomography involves a variety of applications, e. g., detection of tumors, where the conductivity is a non-smooth
or a discontinuous function. A local discontinuity in the conductivity distribution, e. g., a tumor, causes local
non-smoothness of the interior potential distribution in the vicinity of the discontinuity [3]. This means that the
structure of the conductivity can affect the performance of h- and p-extensions in different parts of the domain.
In future work it would be interesting to explore performances of different hp-extension processes with different
conductivity distributions. For example, whether a priori information about the conductivity distribution can
be used when designing hp-extensions could be an issue in electrical impedance tomography.

From the computational point of view, one important difference in h- and p-extensions is that in p-extensions
a lot more computational effort is spent on numerical integration when constructing the system matrix (4) due
to the high polynomial order of the shape functions. Electrical impedance tomography involves reconstruction
methods, e. g., Markov chain Monte Carlo sampling [6], where efficient forward modeling in terms of compu-
tation time is essential, because the forward model equations have to be solved numerous times during the
reconstruction process. Another interesting future consideration would be whether there are computationally
tractable ways to obtain system matrices needed in EIT reconstruction, e. g., whether a priori knowledge about
the conductivity distribution can be used when constructing a system matrix.
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6. Conclusion

In this work, the p-version of the finite element method was applied to simulation of the complete electrode
model. The motivation for this study was that the solution of the complete electrode model equations can
be smooth in the interior domain and that it is typical that the p-version is very efficient in problems with
smooth solutions. It was shown numerically by using the unit square that the performance of the p-version is
better than that of the h-version when uniform mesh refinement is used. Since the solution of the complete
electrode model equations is non-smooth in the vicinity of the boundary, an important topic for the future
work is to explore the performance of the hp-version of FEM. From the computational point of view, one
characteristic difference in h- and p-versions of FEM is that in p-version a lot more computational effort is
spent on construction of a system matrix. Another important future consideration is to find computationally
tractable ways to obtain system matrices needed in EIT reconstruction. It is also an important issue whether a
priori knowledge about the conductivity distribution can be used when designing a p-FEM implementation to
be used in EIT reconstruction.
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Arbitrary Lagrangian Eulerian Electromechanics in 3D

R. Rieben, B. Wallin, and D. White
Lawrence Livermore National Laboratory, USA

Abstract—We present results from an effort to couple the equations of electromagnetic diffusion with the
equations of arbitrary Lagrangian-Eulerian (ALE) hydrodynamics. The electromagnetic diffusion equations
are discretized using a novel mixed finite element method coupled with a generalized Crank-Nicholson time
differencing scheme. At each discrete time step, electromagnetic force and heat terms are calculated and
coupled to the hydrodynamic equations in an operator split approach. We present preliminary results from a
fully coupled electromechanical simulation as well as results concerning advection techniques for electromagnetic
quantities.

1. Introduction

We are interested in the simulation of electromechanical devices and magnetohydrodynamic events in three
dimensions. Our primary goal is a numerical method that solves, in a self-consistent manner, the equations of
electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechan-
ics (elastic-plastic deformation, and contact with friction). In this paper, we focus on the numerical discretization
of electromagnetic diffusion in an arbitrary Lagrangian-Eulerian (ALE) fashion for the purposes of computing
~J× ~B forces for mechanical (or hydrodynamic) calculations and ~J · ~E Joule heating terms for thermal calculations.

The equations of electromagnetic diffusion can be derived from the full wave Maxwell equations by making the
good conductor approximation (i.e., ignoring displacement current), which is standard practice in magnetohydro-
dynamic (MHD) formulations. For conducting materials moving with a velocity ~v with respect to a fixed Eulerian
(or laboratory) frame, we can derive the so called dynamo equation (also known as the hydromagnetic equation)
in terms of magnetic flux density

∂ ~B

∂t
= −~∇× (

1

σ
~∇× 1

µ
~B) + ~∇× (~v × ~B) (1)

In the Eulerian description the velocity ~v is a function of time t and position ~x. In the Lagrangian (or
material) description (which we will designate with a “prime” symbol), the flow is described by following the
position ~x(~x′, t) of the material point that started at position ~x′ at t = 0. In functional form, we have

~x′ = ~x′(~x, t); ~x = ~x(~x′, t)

To convert between the two representations, we define the Jacobian matrix as

Ji,j =
∂x′j
∂xi

(2)

As shown in [1], the following quantities are invariant with respect to the Lagrangian-Eulerian representations

Lagrangian Eulerian
~E′ · d~x′ = ( ~E + ~v × ~B) · d~x
~B′ · d~a′ = ~B · d~a (3)

It is well known that differential arc length and surface area elements transform according to

d~x′ = JT d~x (4)

d~a′ = |J |J−1d~a (5)

As a consequence, the electric field intensities and magnetic flux densities must transform inversely to maintain
the invariance property of (3)
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~E′ = J−1( ~E + ~v × ~B) (6)

~B′ =
1

|J |J
T ~B (7)

The dynamo equation in the Lagrangian frame is therefore

d ~B′

dt
= −~∇′ × (

1

σ
~∇′ × 1

µ
~B′) (8)

In a typical ALE hydrodynamic calculation, an operator split method is employed where all calculations are
performed on a Lagrangian mesh (i.e., a mesh that moves with the materials). When the Lagrange motion of
the mesh causes significant mesh distortion, that distortion is corrected with an equipotential relaxation of the
mesh, followed by a 2nd order monotonic remap of mesh quantities. This remap is equivalent to an advection
of material through the mesh. In our proposed ALE formulation of MHD, we will employ an operator-split
method with three distinct steps:

• Electromagnetic Diffusion–Solve the dynamo equation in the Lagrangian frame at one discrete time step
for fixed materials.

• Lagrangian Motion–Move mesh nodes according to ~J ′ × ~B′ forces assuming a d ~B′

dt = 0 “frozen flux”
condition.

• Eulerian Advection–Only required if mesh is relaxed, advect (or transport) magnetic (vector potential)
flux quantities to new mesh.

Note that the second step (effectively “dragging” the electromagnetic quantities along with the mesh during
Lagrangian motion) will only work if our discretization of the electromagnetic quantities satisfies the invariance
relation of (3) (see also [2]). In the Eulerian advection step of the calculation, the computed electromagnetic
degrees of freedom must be “remapped” or “advected” in a way which preserves a discrete divergence-free
property of the magnetic flux density with minimal magnetic energy loss.

2. Numerical Formulation

The divergence-free (or solenoidal) nature of the magnetic flux density, ~∇′ · ~B′ = 0, implies that ~B′ = ~∇′× ~A′

where ~A′ is a magnetic vector potential. This in turn implies that the electric field in the Lagrangian frame is
given by ~E′ = −~∇′φ′ − ∂

∂t
~A′, where φ′ is an electric scalar potential. Using the gauge condition ~∇′ · σ ~A′ = 0,

we can reformulate the dynamo equation (8) in terms of potentials as

~∇′ · σ~∇′φ′ = 0 (9)

σ
d ~A′

dt
= −~∇′ × 1

µ
~∇′ × ~A′ − σ~∇′φ′ (10)

Note that this formulation has an additional elliptic PDE (9) to solve for the scalar potential. A key advantage
of this formulation is that voltage, which is often the only known quantity for electromechanical engineering
applications, appears explicitly in the equations as an essential boundary condition for the elliptic solution of
(9). To compute force and heat terms, we define the secondary variables in terms of the potentials as

~B′ = ~∇′ × ~A′ (11)

~J ′ = σ ~E′ = −~∇′φ′ − d

dt
~A′ (12)

Finally, there are divergence constraints on both the primary and secondary fields, namely

~∇′ · σ ~A′ = 0 (13)

~∇′ · ~B′ = 0 (14)
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To discretize the potential formulation in the Lagrangian frame, we apply the mixed finite element methods
(FEM) of [3] which are based on the properties of differential forms and have been shown to preserve discrete

divergence-free properties and to maintain accuracy in secondary variables (e.g., ~J and ~B) even when computed
from potentials. Most importantly, the discrete vector fields transform identically to (6) and (7), thereby
preserving the invariance property of (3).

In our proposed ALE formulation the scalar potential will be discretized on mesh nodes (i.e., a discrete 0-
form field), the vector potential will be discretized on mesh edges (i.e., a discrete 1-form field) and the secondary

variables ~B and ~J will be discretized on mesh faces (i.e., discrete 2-form fields) as follows

φ′ ≈
n∑

i=1

viW
0
i (15)

~A′ ≈
n∑

i=1

ai ~W
1
i (16)

~B′ ≈
n∑

i=1

bi ~W
2
i (17)

~J ′ ≈
n∑

i=1

ji ~W
2
i (18)

where W l denotes a discrete l-form basis function. In [3], various mass, stiffness, derivative and discrete Hodge
matrices are defined. Given these matrices, the fully discrete form of the potential diffusion equation is given
in [3] by applying a Generalized Crank-Nicholson method to obtain

S0vn+α = f0n+α (19)

(M1(σ) + α∆tS1(µ−1))an+1 = (M1(σ) − (1 − α)∆t S1(µ−1))an − ∆tD01vn+α (20)

where α ∈ [0.1] is weighting parameter which determines the type of integration such that

α =





0 Explicit, 1st Order Accurate Forward Euler
1/2 Implicit, 2nd Order Accurate Crank Nicholson
1 Implicit, 1st Order Accurate Backward Euler

Once the values for the primary potentials have been solved for, the discrete secondary fields can be computed
as

en+α = −K01vn+α − 1/∆t(an+1 − an) (21)

bn+1 = K12an+1 (22)

M2(σ−1)jn+α = H12en+α (23)

These terms are used to compute ~J ′ × ~B′ forces which will accelerate the mesh nodes during the Lagrangian
motion step. The discrete divergence constraints are given by

(D01(σ))Ta = 0 (24)

(D01(σ))Te = 0 (25)

K23b = 0 (26)

and as shown in [3], these constraints are implicitly satisfied for all time, assuming the initial conditions and
the source terms are divergence free.

To demonstrate a fully coupled Lagrangian calculation, we consider a numerical experiment in which a 5 KV
capacitor bank is discharged into a can shaped aluminum structure (see Fig. 1). The voltage through the can
(effectively an inductive and resistive load) is computed via a simple SPICE model. The resulting voltage vs.
time profile is then used as an essential boundary condition for the discrete scalar potential solve of (19) which
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drives the problem. An essential boundary condition of the form n̂× ~A′ = 0 is applied to the front side of the
mesh while the remainder of the surface is subject to the natural boundary condition n̂ × 1

µ
~∇′ × A′ = 0. A

peak current of roughly 0.8 MA is generated in the can, creating a ~J ′× ~B′ force which causes the can to initially
compresses (or implode). However, the force is not strong enough to cause the aluminum can to yield, and so
the can effectively rings over time in an elastic response as shown in Figs. 1 and 2.

Figure 1: Snapshot of the fully coupled electrome-
chanical simulation. In this image the aluminum
can is elastically expanding after initially being com-
pressed. The displacement has been exaggerated by
a factor of 300 for visual clarity.

Figure 2: Measured pressure response in the alu-
minum can due to an electromagnetic force.

3. Constrained Transport Methods on Unstructured Grids

During the optional Eulerian advection phase of our operator split method, the computed electromagnetic
values must be remapped (or advected). Remapping refers to the process of updating the representation of the
field given a new grid. We consider only new grids which are “nearby” in the sense that only small perturbations
of the grid are allowed (i.e., the mesh nodes should not travel farther than one mesh element in any one time
step). This is known as the continuous remap approximation (CRA).

We propose to use the so called constrained transport method originally developed by [4] and later expanded

by [5]. Suppose we have calculated the magnetic flux density ~B′ in a Lagrangian time step via (22), we then

have a local element representation of ~B′

~Bold ≈
n∑

i=1

boldi
~W 2,old
i (27)

The degrees of freedom (DOF) boldi in this expansion carry the units of magnetic flux. For the special case of
lowest order (p = 1) basis functions (i.e., six DOF per element), this implies that we know the magnetic flux
through every face in the Lagrangian mesh (or the “old” mesh). Now in a standard ALE step, the old mesh is
relaxed under the CRA to a new mesh. Therefore, our goal is to compute new values of the magnetic flux bnewi

which will allow us to represent the magnetic flux density on the new mesh. For the special case of lowest order
(p = 1) basis functions, the discrete divergence free property is simply a statement that the 6 fluxes in the face
sum to zero. The goal of constrained transport is to preserve this property on the new mesh.

For unstructured hexahedral grids, we can update the magnetic flux (or “vector potential flux” ~A · d~x) by
effectively solving Faraday’s law for a moving conductor (equivalent to magnetic transport under the “frozen-
flux” condition)

Φnew ≈ Φold −
∮

C

(~u× ~B) · d~l (28)

where ~u is the mesh displacement. Our goal now is to apply (28) in an algorithmic fashion to update the
fluxes on the faces of a new mesh. A schematic representation of this process is shown in Fig. 3. It is clear from
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the depiction of Fig. 3 that we can approximate the flux through a new face given the flux through the old face
and a “measurement” of the time rate of change of flux (an effective voltage) along the closed circuit path C
depicted in green. For a given face in the new mesh, the algorithm of (28) can be used to update the edge flux
contributions

Figure 3: Schematic diagram depicting the relationship between magnetic flux through “old” and “new” mesh
faces and the most accurate location for “measuring” the update EMF.

~A · dx for each edge in the face (thereby updating the vector potential) or the total magnetic flux ~B · d~a
through the face. By construction, the new flux values will sum to zero, provided the old fluxes do so as well.
In order for this algorithm to work, ~B must be evaluated at the displacement vector midpoints for the discrete
path integral; however, this is problematic for faced based representations of ~B, since they are by construction,
discontinuous along element edges. To overcome this, a “smooth” ~B field must be patch recovered using a
continuous vector nodal approximation.

4. Conclusions

We have presented and discussed an operator split approach for solving the coupled equations of elec-
tromechanics and magnetohydrodynamics using the novel mixed finite element methods of [3] to discretize the
equations of electromagnetic diffusion. We have presented preliminary results for a fully coupled Lagrangian
calculation and have discussed methods for advecting magnetic flux for ALE calculations.
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Hybrid Numerical Simulation of Micro Electro
Mechanical Systems

M. Greiff, U. B. Bala, and W. Mathis
University of Hanover, Germany

Abstract—In this paper a hybrid numerical approach for the simulation of micro electro mechanical systems
(MEMS) is presented. A simulation model that takes into account the mechanical and the electrical effects
is developed. The model is applied to an electrostatic force microscope (EFM) and simulation results are
presented.

1. Introduction

Although micro electro mechanical systems (MEMS) already exist for many applications, their calculation
is still difficult since in order to obtain accurate results, ofter times multi scale aspects have to be included.
Furthermore the coupled mechanical and electrical behavior has to be taken into account. In our work this is
achieved by dividing the model into a mechanical and an electrical part. The interaction between them is shown
in Fig. 1 and can conveniently be realized by using a staggered simulation approach. The electric forces are
calculated by the electrical part and passed to the mechanical part which uses them as input for the calculation
of the mechanical deflection. In order to apply this approach to a two dimensional model of an electrostatic
force microscope (EFM) (Fig. 2) both parts have to be defined. Therefore the components and the principle
of an EFM will be explained in the following. An EFM is used to scan surfaces holding an electric potential
or a charge distribution [1–3]. During the scanning process the tip at the end of the cantilever is run over the
sample. The forces acting on the cantilever and the tip are determined by the electrostatic field and calculated
by the electrostatic part of the model. The mechanical behavior of the cantilever is modelled using a beam
model while for the region near the tip the finite element method (FEM) is used. A more detailed description
of the electrical part will be given in the following.

Figure 1: Mechanical and electrical part.

2. Formulation of the Problem

The energy-related functional in the electrostatic calculation domain Ω (Fig. 2) can be written as

W =

∫

Ω

(∇u)2dΩ u ∈ H1
D(Ω) : {u ∈ H1|u|ΓD

= u0} (1)

where u(a1, a2, . . . , am, x, y) is an approximation of the potential u(x, y). It is well known that the solution of

∂W

∂ai
= 2

∫

Ω

∇u∂∇u
∂ai

dΩ = 0 (2)

yields an approximative solution for the Laplace equation in Ω. In order to solve (2) numerically we shall take a
closer look at the requirements in the different parts of the calculation domain Ω. Since most of the interaction
between probe and sample happens at the bottom of the tip, accurate calculation results are important in this
region. Therefore a numerical method which is able to deal with the high field values near the tip is required.
For this reason the method of fundamental solutions (MFS) is applied in region ΩM (Fig. 3). At a larger distance
from the tip (region ΩF ) lower field values are expected, but possible nonlinearities and charge distributions
in the sample require a versatile numerical method such as the finite element method (FEM). Because of the
large difference in size of tip and cantilever length, FEM cannot conveniently be applied in the whole rest of the
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Figure 2: Electrostatic force microscope and calcu-
lation domain.

Figure 3: Divided calculation domain.

calculation domain. Therefore the boundary element method (BEM) that only requires a mesh on the boundary
is used in region ΩB .

The solutions in the circular region ΩM of radius R can be expanded into

u(ρ, φ) = V0 +

m∑

i=1

ci

( ρ
R

) iπ
β

sin(
iπφ

β
), (ρ, φ) ∈ ΩM (3)

where V0 is the electric potential and β is the outer opening angle of the tip [4]. For the choice of R and the
position and the number of coupling points, the overlapping area of ΩM and ΩF must be small. Furthermore it
must be considered that (3) is a good approximation of the potential only near the tip.

In region ΩF linear FEM

u(x, y) =

n∑

j=1

ujψj(x, y), (x, y) ∈ ΩF (4)

is applied [5]. The solutions of both regions [6] are coupled by

uc = V0 +

m∑

i=1

ci sin(
iπφc
β

). (5)

Replacing the coupling node potentials in (4) by (5) and using the resulting potential functions in (2) leads
to (

M BT

B F

)(
c
uF

)
=

(
bM
bF

)
(6)

where M is the matrix resulting from the MFS that is defined by

Mij = 2
∑

k∈nc

∑

m∈nc

sin

(
iπ

β
φk

)
sin

(
jπ

β
φm

)∫

ΩF

∇(ψk)∇(ψm)dΩ +

{
iπ, i = j
0, otherwise,

(7)

Fij = 2

∫

ΩF

∇ψi∇ψjdΩ (8)

is the FEM stiffness matrix,

Bij = 2
∑

k∈nc

sin

(
jπ

β

)∫

ΩF

∇ψi∇ψkdΩ (9)

is the FEM-MFS coupling matrix,

bMi = −2V0

∑

k∈nc

∑

m∈nc

sin

(
iπ

β

)∫

ΩF

∇ψk∇ψmdΩ (10)

is the MFS right hand side and

bFi = −2V0

∑

k∈nc

∫

ΩF

∇ψi∇ψkdΩF − 2
∑

j∈nD

φj

∫

ΩF

∇ψi∇ψjdΩ (11)

is the right hand side resulting from the variation of the FEM potentials. Here nc stands for the coupling nodes
and nD are the Dirichlet boundary conditions. The matrix F can be written as
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F =

(
FNN FTCN
FCN FCC

)
(12)

where FNN includes only the interaction between the nodes inside the FEM domain, FCC stands for the
interaction inside the coupling interface while the interaction of coupling interface and FEM domain is described
by FCN .

On the FEM-BEM transmission interface ΓT = ΓB ∩ ΓF : uB = uF and ∂uB

∂n + ∂uF

∂n = 0. Using the Gauss
theorem on ΩFM = ΩF ∪ ΩM one obtains [5]

∫

ΓF

∂uFM
∂n

v dΓ =

∫

ΩF M

div(∇uFM · v) dΩ =

∫

ΩF M

∆uFM · v dΩ +

∫

ΩF M

∇uFM · ∇v dΩ (13)

i. e., for all v ∈ H1
D,0(ΩFM ) := {v ∈ H1(ΩFM ) : v|ΓD∩ΓF

= 0}

a(uFM , v) :=

∫

ΩF M

∇uFM · ∇v dΩ =

∫

ΩF M

f · v dΩ +

∫

ΓF

∂uFM
∂n

v dΓ =: (f, v)ΩF M
+ 〈∂uFM

∂n
, v〉ΓF

(14)

where uFM includes uF and c. The representation formula of the Laplace equation for the solution of uB inside
ΩB

uB(x) =

∫

ΓB

{ ∂

∂n(y)
G(x, y)uB(y) −G(x, y)

∂uB
∂n(y)

}dΓ, x ∈ ΩB (15)

with the fundamental solution of the Laplacian given by

G(x, y) = − 1

2π
log |x− y|. (16)

If one computes the Cauchy data [7] uB and ∂uB/∂n of uB(x), one will get two boundary integral equations
on ∂ΩB ,

V
∂uB
∂n

= (I +K)uB (17)

WuB = (I −K ′)
∂uB
∂n

(18)

where the boundary integral operators are defined as

V ψ(x) := 2

∫

ΓB

G(x, y)ψ(y)dΓy, Kψ(x) := 2

∫

ΓB

∂

∂ny
G(x, y)ψ(y)dΓy, x ∈ ΓB (19)

K ′ψ(x) := 2
∂

∂nx

∫

ΓB

G(x, y)ψ(y)dΓy, Wψ(x) := −2
∂

∂nx

∫

ΓB

∂

∂ny
G(x, y)ψ(y)dΓy, x ∈ ΓB (20)

where the single layer potential V and the hypersingular operator W are symmetric and the double layer
potential K has the dual K ′ [8].

Using (18) one can eliminate ∂uB/∂n with (17). This leads to

WuB = (I −K ′)
∂uB
∂n

= 2
∂uB
∂n

− (I +K ′)
∂uB
∂n

= 2
∂uB
∂n

− (I +K ′)V −1(I +K)uB (21)

with the Poincaré-Steklov-Operator S applied to uB

SuB := (W + (I +K ′)V −1(I +K))uB = 2
∂uB
∂n

(22)

which can be used for symmetric coupling. In variational form for all
w ∈ H̃1/2 := {w ∈ H1/2(ΓB) : w|ΓD∩ΓB

= 0} holds

〈SuB , w〉ΓB
= 2〈∂uB

∂n
,w〉ΓB

. (23)

With (14) and (23) one can obtain the variational formulation

2a(uFM , v) + 〈SuB , v〉ΓT
= 2(f, v)ΩF M

+ 2〈t0, v〉ΓN∩ΓF
(24)

〈SuB , w〉ΓB∩ΓN
= 2〈t0, w〉 (25)
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for all (w, v) ∈ H̃1/2 × H1
D,0(ΩF ) with f being the charge distribution inside ΩF and t0 are the Neumann

boundary conditions.
The Poincaré-Steklov-Operator S cannot discretize directly because the inverse single layer potential V

cannot be descritized in the usual way. For this reason without Poincaré-Steklov-Operator the problem can
be rewritten as saddle point formulation. The saddle point formulation of the problem for all (w, v, ψ) ∈
H̃1/2 ×H1

D,0(ΩFM ) × H̃−1/2(ΓB)

2a(uFM , v) + 〈WuB , v〉ΓT
+ 〈(I +K ′)ϕ, v〉ΓT

= 2(f, v)ΩF M
+ 2〈t0, v〉ΓN∩ΓF

(26)

〈WuB , w〉ΓB∩ΓN
+ 〈(I +K ′)ϕ,w〉ΓB∩ΓN

= 2〈t0, w〉ΓB∩ΓN
(27)

〈(I +K)uB , ψ〉ΓB
− 〈V ϕ, ψ〉ΓB

= 0 (28)

If the bases are introduced as span{v1, . . . . . . , vF } = XF , span{w1, . . . . . . , wF } = XB and span{ψ1, . . . . . . , ψF } =
YB , the basis functions of XF and XB are supposed to be ordered such that

span{v1, . . . . . . , vF } = XF ∩H1
D,0(ΩF )

span{w1, . . . . . . , wB} = XB ∩H1/2(ΓB).

If the coefficients of uFM and uB are denoted by u and the coefficients of ϕ are denoted by ϕ again then
this system is equivalent to the original differential equation that can be used for descritization. This system
corresponds to a matrix formulation which can be written as




M BT 0 0 0
B FNN FNC 0 0
0 FCN FCC +WCC WCN (KT + I)C
0 0 WNC WNN (KT + I)N
0 0 (K + I)C (K + I)N −V







um
uF
uT
uB
ϕ




=




bm
bF
bΓ
bB
bϕ




(29)

where the subscript C means contribution from the coupling nodes and N means contribution from the noncou-
pling nodes. Finally the blocks W , V , K + I, and KT + I provide the coupling between the two ansatz spaces
XF and XB . Here um are the MFS coefficients, uF and uB are the nodal potentials inside the FE domain and
on the boundary of the BE domain respectively, uT are the nodal potentials on the FE-BE coupling interface
and ϕ are the normal components of the electric field distribution on the boundary of the BE domain. The
vector b includes the corresponding boundary conditions. As the matrix in (29) is not positive definite, a specific
algorithm such as the MINRES algorithm is required for the solution.

Figure 4: ALE mesh deformation.

Since the scanning process of an EFM is dynamic, the FEM mesh in ΩF has to be changed during the
calculation which is achieved by using the arbitrary Lagrangian Eulerian method (ALE) [9]. The mesh is
modeled as a massless elastic which is deformed by the changing position of the cantilever and the sample (Fig.
4).

The result of a typical simulation can be seen in Fig. 6 and Fig. 7. As expected a high value of the electric
field occurs at the tip. Since the coupling condition of MFS and FEM only includes the potential values (5),
the electric field is not continuous on the interface. This indicates that FEM simulation results near the tip can
be improved by using the coupled FEM-MFS approach presented here. A smoother transition of the electric
field can be obtained by using a combination of FEM and MFS ansatz functions in region ΩM . Fig. 5 shows
the simulated potential between tip and sample obtained by using FEM and the hybrid simulation approach
(R = 1, 2).
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Figure 5: Comparison FEM/Hybrid Simulation.

Figure 6: Simulated electrostatic potential. Figure 7: Simulated electrostatic field.

3. Conclusion
A hybrid numerical approach for the simulation of micro electro mechanical systems (MEMS) has been

presented and applied to an electrostatic force microscope. In order to fulfill the special requirements in the
different simulation regions an approach that combines FEM BEM and MFS was used to calculate the electro-
static field. ALE was applied to fit the FEM mesh to the changing boundaries. The results show the expected
field distribution.
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EM Field Induced in Inhomogeneous Dielectric Spheres
by External Sources

G. C. Kokkorakis, J. G. Fikioris, and G. Fikioris
National Technical University of Athens, Greece

Abstract—The electromagnetic field induced in the interior of inhomogeneous dielectric bodies by external
sources can be evaluated by solving the well-known electric field integrodifferential equation (EFIDE). For
spheres with constant magnetic permeability µ, but variable dielectric constant ε(r, θ, ϕ) a direct, mainly ana-
lytical solution can be used even in case when the inhomogeneity in ε renders separation of variables inapplicable.
This approach constitutes a generalization of the hybrid (analytical-numerical) scalar method developed by the
authors in two recent papers, for the corresponding acoustic (scalar) field induced in spheres with variable
density and/or compressibility. This extension, by no means trivial, owing to the vector and integrodifferential
nature of the equation, is based on field-vector expansions using the set of three harmonic surface vectors, or-
thogonal and complete over the surface of the sphere, for their angular (θ, ϕ) dependence, and Dini’s expansions
of a general type for their radial functions. The use of the latter has been shown to be superior to other possible
sets of orthogonal expansions and as far as its convergence is concerned it may further be improved by properly
choosing a crucial parameter in their eigenvalue equation. The restriction to the spherical shape is imposed
here to allow use of the well-known expansion of Green’s dyadic in spherical eigenvectors of the vector wave
equation.

1. Introduction

The motivation for solving volume integral equations in the case of penetrable (dielectric) spheres with vary-
ing dielectric constant ε(~r) (the magnetic permeability is considered constant throughout) have been discussed
thoroughly in a previous paper by the authors [1], dealing with the corresponding scalar problem. The mathe-
matical difficulties of various approaches have been treated in this paper [1], particularly in connection with the
advantages of the direct hybrid method proposed here and in [1, 2] by the authors. A first generalization of the
approach in acoustics concerned spheres with inhomogeneous density ρ(~r) [2] and herein a further generalization
to the vector EM case is developed. In more specific terms we are concerned with the well-known electric field
integrodifferential equation (EFIDE)

~E(~r) = ~Ei(~r) +
1

4π
(k2

0 + ∇∇•)
∫∫∫

V

(
ε(~r′)

ε0
− 1) ~E(~r′)

e−ik0R

R
dV ′ (1)

via which the EM field ~E(~r), induced in the interior of an inhomogeneous dielectric body of volume V with
varying dielectric constant ε(~r) (ε0 is its free space value, while the magnetic permeability µ0 is considered

constant throughout), is evaluated [3–5]. In (1) ~Ei(~r) is the imposed incident field, R = |~r − ~r′|, k0 = ω
√
µ0ε0 =

2π/λ, while exp(iωt) is the assumed time dependence. The induced interior field in V is of primary importance
to questions of radiation hazards, to the setting of reliable safety field strength limits in media like living tissue,
human heads exposed to nearby EM sources, etc. Following the evaluation of the induced interior field the
exterior, scattered one may also be obtained by direct integration.

If V is restricted to be a sphere of radius “a”, even when the inhomogeneity ε(~r) precludes separation of
variables, a virtually analytical method can be used to solve (1) based on the possibility of expanding the free
space Green’s function G(R) = e−ik0R/4πR into an infinite series of spherical eigenfunctions of the Helmholtz
equation [1, 2]. This well-known expansion, shown here in the following equation (2) for the corresponding
Green’s dyadic, is available only in spherical coordinates and combined with Dini-type expansions for the radial
functions of the field vectors, provides a basis for a virtually analytical approach. The expansion of Green’s
dyadic in spherical coordinates is given on page 1875 of [8] in terms of the even/odd spherical eigenvectors of
the vector Helmholtz equation. Here we use a more convenient form in terms of the complex form of these
vectors as in [9]

¯̄G(~r, ~r) = ¯̄I
e−ik0|~r−~r

′|

|~r − ~r′| = − ik0

4π

∞∑

n=1

2n+ 1

n(n+ 1)

n∑

m=−n

(n−m)!

(n+m)!
[ ~M (1)

mn(k0, r<, θ, ϕ) ~̂M
(4)

mn(k0, r>, θ
′, ϕ′)

+ ~N (1)
mn(k0, r<, θ, ϕ) ~̂N

(4)

mn(k0, r>, θ
′, ϕ′) + n(n+ 1)~L(1)

mn(k0, r<, θ, ϕ)~̂L
(4)

mn(k0, r, θ
′, ϕ′)] (2)
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This form can easily be shown to be equivalent to that of [8, 9], where the definitions of the various symbols
used here can be found.

2. Solution of the EFIDE

To solve the EFIDE we expand the unknown electric field in vector wave functions in the interval [0, a] in a
manner analogous to that of Chew for unbounded media [9, p.397]. The calculation is facilitated by taking into

account Gauss’s law ∇ · ~D = 0, which leads us to write

ε(~r)

ε0
~E(~r) =

∞∑

n=1

n∑

m=−n

∞∑

l=1

[
Amn` ~Mmn`(

γMmn`
a

,~r) +Bmn` ~Nmn`(
γNmn`
a

,~r)

]
(3)

excluding the vector ~L from the expansion. Similarly we expand the incident field. Here, we have restricted the
spectrum of the values of k in the definitions of the vectors ~Mmn(k, ~r)etc, to discrete sets of values γMmn`, γ

N
mn`,

` = 1, 2, ..., which have been chosen so as to construct a full orthogonal set of vectors ~M and ~N , respectively,
over the volume of the sphere 0 ≤ r ≤ a, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. Moreover, all vectors ~Mmn` and ~Nmn` in

those orthogonal relations are vectors of the first kind, i. e., ~Mmn` = ~M
(1)
mn`, with the upperscript (1) deleted

throughout. We can then make use of results like

I( ~Mmn`, ~̂Mµvp) =

a∫

0

π∫

0

2π∫

0

~Mmn`(
γMmn`
a

,~r) · ~̂Mµvp(
γMµvp
a

,~r)r2 sin θdrdθrd = 4π
n(n+ 1)

2n+ 1

(n+m)!

(n−m)!

δmµδnv
a3jn(γ

M
mn`)jn(γ

M
mnp)

(γMmn`)
2 − (γMmnp)

2

[
γMmn`j

′
n(γ

M
mn`)

jn(γMmn`)
− γMmnpj

′
n(γ

M
mnp)

jn(γMmnp)

]
, l 6= p (4)

and similar ones for the
−→
N and

−→
L vectors. Analogous relations for the scalar case were found in [1, 2]. We can

now establish full orthogonality of the set over the volume of the sphere by selecting γMmn` as the roots of the
“M-eigenvalue equation”

γMmn`j
′
n(γ

M
mn`)

jn(γMmn`)
≡ tMmn(` = 1, 2, . . .) (5)

in which tMnm may be any chosen constant. Orthogonality of the N-set over the volume of the sphere is, also,
established if we choose γNmn` as the roots of the “N-eigenvalue equation”

[γNmn`jn(γ
N
mn`)]

′

(γNmn`)
2jn(γNmn`)

≡ tNnm(` = 1, 2, . . .) (6)

Finally for the L-set the corresponding γLmn` are chosen as the roots of the “L-eigenvalue equation”

j′n(γ
L
mn`)

γLmn`jn(γ
L
mn`)

≡ tLnm(l = 1, 2, . . .) (7)

Last, but not least, we must establish the orthogonality between the ~Lµνp and ~Nmn` sets, which is not assured
from their angular part (θ,ϕ) only. However, over the volume of the sphere we have

I( ~Nmn`, ~̂Lµvp) =

∫

V

dV ′ ~Nmn`(k
N
` , ~r) · ~̂Lµvp(kLp , ~r)

= 4π
n(n+ 1)

2n+ 1

(n+m)!

(n−m)!
δmµδnv

a3

γNmn`γ
L
mnp

jn(γ
N
mn`)jn(γ

L
mnp) (8)

and orthogonality is assured if we choose the roots of jn(γ
L
mnp) = 0 for the ~L vectors.

We write also

~E(~r) =
∞∑

n=1

n∑

m=−n

∞∑

l=1

[
Γmn` ~Mmn`(

γMmn`
a

,~r) + ∆mnl
~Nmn`(

γNmn`
a

,~r) + Zmn`~Lmn`(
γLmn`
a

,~r)

]
(9)

The calculation is carried out with the help of the following intermediate results

I( ~M · ¯̄Ig) =

∫

V

dV ′ ~Mmn`(k,~r
′) · ¯̄Ig(~r, ~r′) =

1

k2 − k2
0

{ ~Mmn`(k,~r) − ik0a
2[−kj′n(ka)hn(k0a)

+k0h
′
n(k0a)jn(ka)] ~Mmn(k0, ~r)} (10)
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I( ~N · ¯̄Ig) =

∫

V

dV ′ ~Nmn`(k,~r
′) · ¯̄Ig(~r, ~r′) =

1

k2 − k2
0

{ ~Nmn`(k,~r) − ik0a
2[kjn(ka)

1

k0a
[xhn(x)]

′
x=k0a

−k0hn(k0a)
1

ka
[xjn(x)]

′
x=ka]

~Nmn(k0, ~r)}−ik0a
2n(n+1)

jn(ka)hn(k0a)

akk0

~Lmn(k0, ~r) (11)

I(~L · ¯̄Ig) =

∫

V

dV ′~Lmn`(k,~r
′) · ¯̄Ig(~r, ~r′) =

1

k2 − k2
0

{~Lmn`(k,~r) − ik0a
2[kjn(ka)h

′
n(k0a)

−k0hn(k0a)j
′
n(ka)]~Lmn(k0, ~r)} − ik0a

2 jn(ka)hn(k0a)

akk0

~Nmn(k0, ~r) (12)

In all the above equations k =
γX

mnl

a , with X = M or N or L respectively.
After lengthy manipulations we get the system of equations

Γmn` = AincmnT
M
n` (k0) + k2

0

Amn` − Γmn`(
γM

mn`

a

)2

− k2
0

−ik3
0a

2TMn` (k0)
∑

p

[
−γM

mnp

a j′n(γ
M
mnp)hn(k0a) + k0h

′
n(k0a)jn(γ

M
mnp)

]

(
γM

mnp

a

)2

− k2
0

(Amnp − Γmnp) (13)

∆mn` = BincmnT
N
n`(k0) + k2

0

Bmn` − ∆mn`(
γN

mn`

a

)2

− k2
0

− ik3
0a

2TNn`(k0) ·

∑

p

[
γN

mnp

a jn(γ
N
mnp)

1
k0a

[xhn(x)]
′

x=k0a
−k0hn(k0a)

1
γN

mnp
[xjn(x)]

′

x=ka

]

(
γN

mnp

a

)2

− k2
0

(Bmnp − ∆mnp) (14)

where TMn` (k0) and TNn`(k0) are obviously the expansions coefficients of ~Mmn(k0, ~r), ~Nmn(k0, ~r) over the orthog-

onal sets ~Mmn` and ~Nmn`, ` = 1, 2, ..., respectively.
The next step is to eliminate one of the two groups of unknowns {A, B} or {Γ, ∆, Z}. Since Z are not present

in the final expressions it is better to eliminate Γ, ∆, so we write

~E =
1
ε(~r)
ε0

∑

m,n,`

[
Amn` ~Mmn` +Bmn` ~Nmn`

]
=
∑

m,n,`

[
Γmn` ~Mmn` + ∆mn`

~Nmn` + Zmn`~Lmn`

]
(15)

We have thus constructed the necessary equations which, via the orthogonality relations, lead to a matrix
equation for the unknowns A, B.

3. Numberical Results and Discussion

Numerical results were obtained for both radial and r-,θ- dependence of the inhomogeneities. For the simpler
r-case we selected the well known case of Eaton lens, ε(r) = (r/a)2 [11, 12]. We have then reproduced exactly
the same results known from the literature.

We next present results for the more complicated r−, θ− case. Here we have worked without optimizing the
tmn values (a complicated problem) and without comparison to existing results, that are lacking in this more
general case. However, a confirmation of the correctness of our procedure stems from the reproduction of our
results with other random choices for tmn.

For convenience, that is to obtain as many intermediate results as possible in analytic form and reduce the
numerical burden, we have chosen the following function

ε(~r) =
ε0

1 + 0.3
(
r
a

)2
cos θ

(16)
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Here, working with k0a = 2.0958 and using as incident field a plane wave x̂eikz [10], we present final results for

the total interior field |~Etot(r, θ, ϕ = 0)/E0|(E0 is the amplitude of ~Einc) for a few particular values of θ, which
is treated as a parameter in the Figure. Our results correspond to ϕ = 0. It turned out that we should take
n = 5 terms for the M-component and n = 10 terms for the N-component. In all cases we used `T = 12 terms
and this proved to be sufficient.

The maximum value of the total interior field appears at r/a = 0.95 and θ = 77◦.
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Figure 1: |E| for ε(~r) = ε0

(
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(
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cos θ

)−1

, k0a = 2.0958 for various θ, incident field x̂eikz.
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Advanced Design of Phased Array Beam-forming
Networks

R. A. Speciale
Research & Development Inc, USA

Abstract—Recent fundamental results [1] in the theory of linear, multi-port networks enable cost-effective,
higher-reliability designs for electronically-steered phased arrays. The referenced paper documents and proves
that, by including a properly designed beam-forming network, it becomes possible to feed an array and steer its
beam, using a much reduced number of expensive and critical phase- and amplitude-controlled sources, while at
the same time completely eliminating the adverse effects of element coupling. Those new results are based on
a generalization of the classical concepts of scalar image impedance, and of scalar image-transfer function for
two-port networks, to the new concepts of multidimensional image-impedance matrix, and of multidimensional
image-transfer function matrix for linear multi-port networks.

1. The Price of Performance

Electronically-steered phased arrays provide unsurpassed agility and high angular resolution in beam-pointing,
and the capability of adaptive, multifunction performance. Such highly desirable features are however only at-
tained at the price of high cost, extreme complexity, and limited reliability. Indeed, electronically-steered
phased arrays are almost always designed as active-aperture system, that include a large number of semi-
conductor devices and beamsteering control-elements, embedded in the physical array structure, and closely
connected with all the array radiating elements. The phased arrays used in radar systems use transmit/receive
modules (T/R), essentially tiny radar, each nested behind a radiating element, in a half-wavelength square
section of the total array aperture. Because of the well-known low power-efficiency of semiconductors, a large
heat-flux is developed locally, thus generating a complex cooling problem. Finally, notwithstanding technology
advances the semiconductor devices and beam-steering control-elements still are the most expensive components
of electronically-steered phased array, and cost-effective designs would only be attained by reducing their total
number. Those cost and reliability advantages are however only attainable if the structure of the beam-forming
network used establishes a pattern of synergistic connectivity, where each controlled source simultaneously feeds
all the array elements, and each array element is simultaneously fed by all the sources (Figures 1 and 2).

Figure 1: A clustered phased array providing syner-
gistic connectivity.

Figure 2: The aperture field is a superposition of
components.

2. Non-symmetric Beam-forming Network

Such cost and complexity reductions could only be feasible by including a non-symmetric, multiport beam-
forming network between the reduced number of active devices, and the much larger number of array radiating
elements. Such beam-forming network would necessarily be non-symmetric, because of including an n-port
interface on the side of the active devices, and an N -port interface on the side of the array radiating elements,
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with n < N (Figures 3 and 4). The use of a reduced number of beam-steering control-elements appears possible,
by considering that current active apertures have the capability of creating a very large number of completely
superfluous aperture distributions, that do not generate any practical radiation pattern. Also, the angular
resolution of beam-steering could be without penalty reduced, by steering the beam in increments being only a
fraction of the –3 dB beam-width.

Figure 3: Unconditional, bilateral image-impedance
match: forward-wave, n-phase excitation, with arbi-
trary wave amplitudes and phases.

Figure 4: Unconditional, bilateral image-impedance
match: backward-wave, N -phase excitation, with ar-
bitrary wave amplitudes and phases.

3. Recent Theoretical Results

The referenced, recent fundamental results [1] in the theory of multi-port networks have been attained by
introducing a generalization of the classical concept of scalar image-impedance of two-port networks, to that
of image-impedance matrices for multiport networks. Similarly, the classical concept of scalar image-transfer
function of two-port networks, has been generalized to that of image-transfer function matrices for multiport
networks. These generalizations have made possible the design of non-symmetric beam-forming networks, that
are simultaneously impedance-matched to the external environment at both interfaces, while having prescribed
two-way transfer functions between two interfaces with different number of ports (n < N ).

4. Image Impedance Matrices

The first fundamental new result expresses the n×n image-impedance matrix Z I1 for the n-port interface-1,
and the N ×N image-impedance matrix Z I2 for the N -port interface-2, as functions of the four different-size
blocks Z i of the (n + N ) × (n + N ) impedance matrix of a non-symmetric, multi-port network:

ZI1 = (In − Z2 · Z−1
4 · Z3 · Z−1

1 )1/2 · Z1 = (In − Pn)
1/2 · Z1 (1)

ZI2 = (IN − Z3 · Z−1
1 · Z2 · Z−1

4 )1/2 · Z4 = (IN − PN )1/2 · Z4 (2)

where the n × n matrix product Pn, and the N ×N matrix product PN are given by:

Pn = Mn ·MN = Z2 · Z−1
4 · Z3 · Z−1

1 = MPn · ΛPn ·M−1
Pn (3)

PN = MN ·Mn = Z3 · Z−1
1 · Z2 · Z−1

4 = MPN · ΛPN ·M−1
PN (4)

The partial matrix-products M n and MN in the expressions Eqs. (3) and (4) are defined as:

Mn = Z2 · Z−1
4 (5)

MN = Z3 · Z−1
1 (6)

and the matrix products Pn, and PN are mutually related by the expression:

PN · (MN ·MPn) = MN · (Mn ·MN ) ·MPn = MN · Pn ·MPn = (MN ·MPn) · ΛPn (7)
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By connecting external load-networks with internal impedance matrices ZL1 = Z I1 and ZL2 = Z I2 to
the two interfaces, the two image-impedance matrices will transform to each other through the non-symmetric
network:

ZI1 = Z1 − Z2 · (Z4 + ZI2)
−1 · Z3 (8)

ZI2 = Z4 − Z3 · (Z1 + ZI1)
−1 · Z2 (9)

5. The Block-traceless Scattering Matrix

Because of the bilateral impedance match so attained, the (n + N ) × (n + N ) scattering matrix S of the
nonsymmetric network becomes block-traceless, with only the two rectangular blocks S2 and S3 being non-zero:

S =

∣∣∣∣
0 S2

S3 0

∣∣∣∣ (10)

S2 = Z2 · Z−1
4 ·

[
IN + (IN − Z3 · Z−1

1 · Z2 · Z−1
4 )1/2

]−1

(11)

S3 = Z3 · Z−1
1 ·

[
In + (In − Z2 · Z−1

4 · Z3 · Z−1
1 )1/2

]−1

(12)

6. Modal and Spectral Analysis

Two other fundamental new results express the modal matrix M S , and the spectral matrix ΛS of the
autonormalized (normalized to the matrices Z I1 and Z I2), block-traceless (n +N )× (n +N ) scattering matrix
S as:

MS =

∣∣∣∣
M1 M2

M3 M4

∣∣∣∣ (13)

ΛS =

∣∣∣∣
Λ1 0
0 Λ4

∣∣∣∣ (14)

The modal matrix M S has two square diagonal blocks M 1 of size n × n , and M 4 of size N ×N , and two
rectangular blocks M 2 of size n × N , and M 3 of size N × n , while the blocks Λ1 and Λ2 are n × n , and
N ×N :

M1 = MPn (15)

M2 = −P−1/2
n · Z2 · Z−1

4 ·MPN (16)

M3 = Z3 · Z−1
1 ·MPn · Λ−1/2

Pn (17)

M4 = MPN (18)

Λ1 = Λ
1/2
Pn ·

[
In + (In − ΛPn)

1/2
]−1

= Diag(e−γn) (19)

Λ4 = −Λ
1/2
PN ·

[
IN + (IN − ΛPN )1/2

]−1

= Diag(e−γN ) (20)

Most remarkably, the block Λ4 includes N − n identically-zero eigenvalues, that correspond to the N − n
identically-zero eigenvalues of the spectral matrix ΛPN of the matrix PN , while the remaining n eigenvalues
are equal to those in block Λ1, save for a sign change. The 2n non-zero eigenvalues in the spectral matrix ΛS ,
and the corresponding eigenvectors, identify the two sets of n forward, and n backward, natural transmission
modes of any given non-symmetric beam-forming network, while the N − n eigenvectors, that correspond to
the zero-eigenvalues in block Λ4, span the null-space of the n × N block S2, and identify the natural cut-off
modes of the network. These are the N − n voltage-wave aj vectors of the N -port interface-2, for which the
received bi = S2 · aj vectors of the n-port interface-1 are all identically zero.

7. The Required Impedance Matrix

The final referenced fundamental result expresses the two square blocks Z 1 of size n ×n , Z 4 of size N ×N ,
and the two rectangular blocks Z 2 of size n × N , and Z 3 of size N × n , as functions of the two required
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imageimpedance matrices Z I1 and Z I2, and of the two required rectangular image-transfer function matrices
S2 and S3:

Z1 = (In − S2 · S3)
−1 · (In + S2 · S3) · ZI1 (21)

Z2 = 2(In − S2 · S3)
−1 · S2 · ZI2 (22)

Z3 = 2(IN − S3 · S2)
−1 · S3 · ZI1 (23)

Z4 = (IN − S3 · S2)
−1 · (IN + S3 · S2) · ZI2 (24)
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Slotline Leaky Wave Antenna with a Stacked Substrate

J. Macháč, J. Hruška, and J. Zehentner
Czech Technical University, Czech Republic

Abstract—This paper presents a new version of a leaky wave antenna based on a conductor-backed slotline
with a stacked substrate. The antenna radiates due to the first order space leaky wave excited on a slotline
with a wide slot. The antenna radiates into the one main beam above the substrate. The main lobe of the
radiation pattern is relatively wide and there is also intensive radiation in the backward direction and below the
substrate. Shaping the background metal layer produces a reflector, which reduces the parasitic radiation by
7 dB. When this background layer is larger than the substrate the radiation below the substrate is additionally
reduced by 3 dB. The reflector moreover reduces the width of the main beam.

1. Introduction

All kinds of open planar transmission lines are predisposed to excite leaky waves. There are two kinds of
leaky waves. Surface leaky waves radiate power into the substrate. These waves are in most cases undesirable
as they increase losses, cause distortion of the transmitted signal and cross-talk to other parts of the circuit.
Space leaky waves radiate power into a space and mostly also into the substrate. These waves can be utilized
in leaky wave antennas.

Leaky wave antennas have been known for nearly 50 years [1]. The first microstrip line leaky wave antenna
was described in [2] and its behaviour was analyzed in detail in [3]. The first slotline leaky wave antenna was
reported in [4]. We have investigated space leaky waves on a slotline (SL) [5] and on a conductor backed slotline
(CBSL) [6]. Based on these studies we have designed, fabricated, and measured several leaky wave antennas, as,
e. g., the slotline leaky wave antenna in [7]. The drawback of this antenna is radiation into two main beams, one
above and one below the substrate. For this reason we turned to the CBSL. Various designed and fabricated
antennas utilizing this line [8, 9] radiate only into the one main beam. This beam is rather wide with a high
level of the side lobes (SLL). The antenna substrate has to be thick enough for effective radiation. From the
fabrication point of view it is more convenient to use a stacked substrate. One slab is a thin commercially
available substrate, while the second slab, known as the spacer, is filled with air [10].

This paper presents a slotline leaky wave antenna with a stacked substrate and conductor backing. The
antenna radiates the space leaky wave of the first order. The CBSL with a wide slot and substrate consisting of
two layers was analyzed by the APTL Program [11] based on the spectral domain method. The CST Microwave
Studio performed optimization of an antenna feeder. The shape of the radiation pattern of the antenna has
been improved by the background conductor formed into a simple reflector. This makes the main radiation lobe
narrower, and considerably reduces the level of the side lobes.

2. Antenna Structure

The cross-section of the CBSL with a stacked substrate is shown in Fig. 1. The upper layer is substrate

Figure 1: Cross-section of
the CBSL with a stacked
substrate.

GIL1000 1.52 mm in thickness with permittivity εr2 = 3.05, loss factor tgδ = 0.004
and metallization thickness t = 0.03 mm. The bottom layer is air, so εr1 = 1.
Assuming that the slot is wide enough, this transmission line can support propaga-
tion of a space leaky wave of the first order with odd symmetry of the transversal
component of the electric field parallel to the substrate. The dispersion character-
istics of this wave calculated by the APTL Program [11] are plotted in Fig. 2. The
phase constant β and the attenuation constant α are normalized to the propagation
constant in free space k0. The upper dielectric layer, in Fig. 1, has the parameters
stated above, the slot width is 30 mm and three different heights of the air layer h2=10, 15, and 20 mm were
used. The simulation in Microwave Studio showed that for h2 lower than 10 mm unwanted modes excite be-
tween the parallel plates, and the radiation efficiency is low. For values of h2 higher than 20 mm the parasitic
radiation into the space below the backed metallization increases. The value h2 = 20 mm was therefore chosen
as a compromise between these two limits. The dispersion characteristic of the leaky mode on the CBSL with
h2 = 20 mm, Fig. 2, shows that this mode can be effectively excited from 4 to 10 GHz, as its phase constant is



284 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

lower than k0 and the attenuation constant has a reasonably low value. The phase constant slowly increases
with frequency. The direction of the main lobe radiation pattern, determined by the phase constant, depends
therefore slightly on the frequency.

The final antenna setup is shown in Fig. 3. The antenna is fed from a coaxial cable via a CPW terminated
by a patch to transform the incident energy effectively into a space leaky wave of the first order. CBSL open end
termination in the form of a wedge was used. The feeder geometry was optimized in the CST Microwave Studio
for minimum return losses in the widest possible frequency band when the space leaky wave is effectively excited.
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Figure 2: Normalized dispersion characteristic of the
CBSL with a stacked substrate defined in the text.

 

 

Figure 3: The fabricated antenna with the feeder
shown in detail.
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Figure 4: S11 of the fabricated antenna.

The resulting frequency dependence of S11 measured and cal-
culated by the CST Microwave Studio is plotted in Fig. 4. The
antenna is matched from 5 GHz up to 7 GHz, when |S11| < −10 dB.
The measured and calculated antenna radiation patterns at 6 and
7 GHz are plotted in Fig. 5 and are in good accord. Angle Θ is
read according to Fig. 6. The radiation patterns measured at ad-
ditional frequencies are plotted in Fig. 6. This antenna has only a
small difference between the level of the main lobe and side lobes
(side lobe level—SLL), see Fig. 8, and relatively intensive radiation
under the substrate. The level of the lobes directed under the sub-
strate is about -13 dB comparing to the main lobe. The main lobe
slightly tilts in the forward direction and the full width at half power
(FWHP) of the main lobe decreases with frequency, as follows from
Fig. 8.
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Figure 5: Radiation patterns of the antenna from Fig. 3 at 6 and 7 GHz.
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Figure 6: Orientation of angles.
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Figure 7: Radiation pattern of the antenna from
Fig. 3 measured at 5.75, 6, 6.5, 7, and 7.25 GHz.
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Figure 8: Measured side lobe level, full width at half
power, and the angle of maximum radiation of the
antenna from Fig. 3.

3. Antenna with a Reflector

The radiation pattern of the CBSL antenna with a stacked substrate has one rather wide main lobe. The
antenna also radiates backward and below the backed metallization, Figs. 5, 7 and 8. Its radiation pattern can
be shaped effectively by adding the background metal reflector [10], Fig. 9. The layout of the feeder and of the
slotwidth was left without any change. This antenna was simulated by CST Microwave Studio with the aim
to reduce the side lobes with a reasonably small reflector. Finally the reflector position is 20 mm behind the
substrate edge and exceeds the substrate height by 20 mm. This reflector scarcely influences the antenna input
impedance. Fig. 10 compares the measured and calculated radiation patterns of the antenna with the reflector
at 7 GHz. The radiation patterns measured at three different frequencies are plotted in Fig. 11. Comparing the
radiation patterns in Fig. 11 and Fig. 7, we see that the antenna with the reflector has a narrower main beam
and the level of both the side lobes and of the lobes directed under the substrate are reduced by 7 dB.

Making the size of the background metal layer larger than the antenna substrate further reduces the radiation
below the substrate. In this way we get the antenna shown in Fig. 12. The reflector has the same geometry as
in Fig. 9, the bottom conductor is enlarged by 30 mm on the side and front walls of the substrate.

 
Figure 9: The Microwave Studio model of the an-
tenna with a reflector.
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Figure 10: Radiation pattern of the antenna from
Fig. 9 at 7 GHz.
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Figure 11: Radiation pattern of the antenna from
Fig. 9 measured at 6.5, 7 and 7.25 GHz.

 
Figure 12: The Microwave Studio model of the an-
tenna with a reflector and the background metal
layer larger than the substrate by 30 mm.

The measured and calculated radiation patterns of this antenna are plotted in Fig. 13 at the frequency
6.75 GHz. The two lines fit each other well. The radiation patterns of this antenna measured at several
frequencies are plotted in Fig. 14. It follows from Figs. 13 and 14 that the radiation below the substrate is
reduced by 3 dB comparing to the antenna from Fig. 9 and by 10 dB comparing to the original antenna without
the reflector in Fig. 3. The SLL is reduced from 6.5 to 6.75 GHz to -17 dB. The FWHP of the main beam varies
around 20 deg when the frequency changes, which is considerably lower than the FWHP of the antenna from
Fig. 3. The direction of the main lobe is saved. The SLL, FWHP, and the angle of maximum radiation of the
antenna from Fig. 12 are plotted in Fig. 15. The plot in Fig. 15 in comparison with the plot in Fig. 8 shows the
improvement of the radiation pattern when the reflector is applied.
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Figure 13: Radiation pattern of the antenna from
Fig. 12 at 6.75 GHz.
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Figure 14: Radiation pattern of the antenna from
Fig. 12 measured at 6, 6.25, 6.5, 6.75 and 7 GHz.
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Figure 15: Measured side lobe level, full width at half power, and the angle of maximum radiation of the antenna
from Fig. 12.
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4. Conclusion

This paper presents a leaky wave antenna based on a conducto-backed slotline with a stacked substrate.
This substrate consists of a thin dielectric layer and a thick air spacer. The antenna radiates a first order space
leaky wave with odd symmetry only into one main beam above the substrate. This beam is tilted in the forward
direction when the frequency increases. The antenna layout was optimized using the CST Microwave Studio.
The antenna effectively radiates from 5 to 7 GHz. Its radiation pattern has a single main beam and the side
lobes are at a level not worse than -10 dB below the maximum radiation. The radiation below the substrate is
not worse than -14 dB below the maximum of the main lobe.

The additional reflector effectively shaped the radiation pattern. Two versions of the antenna with the
reflector were designed with the aid of the CST Microwave Studio and then fabricated and measured. The
antenna feeder and the slot layout were the same as the antenna without the reflector had. The antenna with
the reflector and the ground conductor of the same size as the substrate reduces the level of the side lobes to
-17 dB, and the radiation below the substrate to -20 dB. The antenna with the background conductor larger
than the substrate has a level of radiation below the substrate lower by an additional 3 dB, i. e., -23 dB. The
width of the main lobe is around 20 deg, which is narrower than for the antenna without the reflector. The
direction of this lobe is the same for the antenna both with and without the reflector.
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Light Scattering on 2D Nanostructured Resonant
Gratings

N. V. Ilyin, I. G. Kondratiev, N. V. Sapogova, and A. I. Smirnov
Institute of Applied Physics, Russia

Abstract—This paper studies nanostructured gratings made up by silver nanoparticles embedded in the dielec-
tric, which are capable of maintaining quasi-static modes. The special emphasis is devoted to following specified
types of gratings: row of periodical cylinders and square grating of spheres. The problem of a diffraction of a
plane electromagnetic wave on such structures has been solved within the dipolar-interaction approximation.
The frequency dependences of the refraction and absorption coefficients on the grating parameters have been
obtained, analyzed and compared.

1. Introduction
Recently, a significant success has been achieved in the areas related to creation of metamaterials based

on resonance metal elements, specifically, films with embedded metal nanoparticles [1–3] that are capable of
sustaining high-Q-factor quasi-static modes. At the resonance frequency, the scattering cross-section of such
particles exceeds their geometric sizes significantly, which yields a number of new collective optical properties
when they join up in nanostructures. The most preferable, in terms of practical applications (both from the
standpoint of their chemical stability and resonance characteristics), are the nanoparticles of silver and gold.
The coherent effects of light scattering on plane gratings formed by cylindrical and spherical nanometer silver
objects have been analyzed.

2. Diffraction on a Periodical Structures
This work studies the diffraction of a plane P-polarized wave with the form:

Hy = Hoexp(−iωt− ikocosϕz − ikosinϕx)

Ex = −Eocosϕexp(−iωt− ikocosϕz − ikosinϕx) (1)

Ez = −Eosinϕexp(−iωt− ikocosϕz − ikosinϕx)

that falls from the vacuum onto a plane grating formed by silver nanostructures (see Figure 1). Two simplest
and at the same time, evidently, basic configurations of the grating are considered: the first (unidimensional) is
a periodic row of cylinders with their axes lying in the plane z = 0 and oriented along the y-axis (see Figure 1a),
and the second (two-dimensional) is a periodic (both along x and y) square grating of spheres with their centres
in the plane z = 0 (see Figure 1b).

(a) (b)

Figure 1: Configurations of considering gratings.

Let us assume, for the sake of simplicity, that the dielectric permittivity of the substrate, which the grating
is mounted on, is close to unity, such that the environment is actually vacuum everywhere. Let the radii of the
cylinders and the spheres are small as compared with the length of the incident wave λ (a << λ). Then the field
scattered by these structural elements is the field of a linear dipole with its dipole momentum (per length unit)
Pcyl = αcylED for the cylinder, and the field of a point dipole with its dipole momentum Psph = αsphED for
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Figure 2: Polarizability coefficients of considering elements as a function of relative frequency shift δω = ω−ωres

ωres

(λres = 325nm for cylinders, λres = 352nm for spheres).

the sphere, where ED is the effective field. When radiation losses are neglected, the polarizability coefficients
look as follows (see Figure 2):

αcyl =
ε(ω) − 1

ε(ω) + 1
a2 αsph =

ε(ω) − 1

ε(ω) + 2
a3 (2)

Here ε(ω)− is the dielectric permittivity of the object. For silver, which is interest for us, it is described, in the
range λ ∼ 300 − 500nm, with good accuracy as [4]:

ε(ω) = ε∞ − ω2
p

ω(ω − iγ)
(3)

where ε∞ = 4.7, ωp = 1.38 · 1016s−1, γ = 2.7 · 1013s−1.
The effective field is the sum of the incident field and the fields of all other dipoles at the location of some

segregated dipole in its absence. We propose that the following procedure should be used to find that field,
which is somewhat different from the traditional procedure and, in our opinion, seems to be convenient. Taking
into account that a polarized medium can be described by means of polarization currents J = ∂P

∂t = −iωP, let
us pass over from dipoles to currents. The density of such currents is represented as:

Jcyl(x) = −iωαcyl(ω)EcylD δ(z)

+∞∑

n=−∞
δ(x− nd)

Jsph(x, y) = −iωαsph(ω)EsphD δ(z)
+∞∑

n=−∞

+∞∑

m=−∞
δ(x− nd)δ(y −md) (4)

where δ(·) is the Dirac δ function.
Then, from the shown system of discrete currents, using the Poisson formula [5] we pass over to continuous

surface dummy currents of spatial harmonics:

Jcyl(x) = −iωαcyl(ω)EcylD
δ(z)

d

+∞∑

n=−∞
exp(i

2π

d
nx)

Jsph(x, y) = −iωαsph(ω)EsphD
δ(z)

d2

+∞∑

n=−∞

+∞∑

m=−∞
exp(i

2π

d
nx)exp(i

2π

d
my) (5)

Finding the field of the individual spatial harmonic is elementary for the tangential component of the current,
and somewhat more difficult for the normal one. Note that the normal component of the electric field is actually
equivalent to the tangential of the magnetic current. The effective field is further obtained by subtracting the
field of the segregated dipole situated, e. g., at the origin of coordinates. Representing the latter as an integral
over the same harmonics, we obtain finally the following self-consistent expressions:
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EcylD (0) = Eo(x = z = 0) +
+∞∑

n=−∞
Ẽ(κx =

2π

d
n) − d

2π

∫ +∞

−∞
dκxẼ(κx)

EsphD (0, 0) = Eo(x = z = 0) +

+∞∑

n=−∞

+∞∑

m=−∞
Ẽ(κx =

2π

d
n,κy =

2π

d
m) − d2

4π2

∫ +∞

−∞

∫ +∞

−∞
dκxdκyẼ(κx,κy) (6)

from which the effective field is extracted as a function of the incident field. It should be noted that the second
and third term in formula (6) have singularities at zero, which are mutually compensated. This should be taken
into account when performing numerical calculations.

Granted that the effective field is known, it is possible to solve the set diffraction problem.

3. Results and Discussion
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Figure 3: Reflection (firm line) and absorpion (dash line) power coefficients of considered gratings as a function

of relative frequency shift δω = ω−ωres

ωres
for various periods d of gratings (a/d = 0.2—blue line, a/d = 0.1 —green

line, a/d = 0.05—red line). The normal incidence case (ϕ = 0).
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Figure 4: Reflection power coefficients of considered gratings as a function of relative frequency shift δω = ω−ωres

ωres

for various incidence angles (ϕ = 0◦—red line, ϕ = 30◦—green line, ϕ = 50◦—blue line, ϕ = 70◦—black line).
Relation a/d = 0.2 is fixed.
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Figure 5: Absorption power coefficients of considered gratings as a function of relative frequency shift δω =
ω−ωres

ωres
for various incidence angles (ϕ = 0◦—red line, ϕ = 30◦—green line, ϕ = 50◦—blue line, ϕ = 70◦—black

line). Relation a/d = 0.2 is fixed.

Further the results of the numerical calculations based on the formulas (6) are presented and discussed.
Reflection and absorpion power coefficients as a function of relative frequency shift δω = ω−ωres

ωres
for various

grating parameters are shown in Figures 3, 4, 5. All results are given for the fixed parameter kresa = ωres

c a =
0.08. Thus, the radius of cylinders a is equal 4.1nm and the radius of spheres a is equal 4.5nm. The left-hand
parts of figures respond a case of the grating from cylinders, and right parts—to a case of the grating from
spheres. Comparison allows to present common features and distinctivenesses.

Figure 3 convincingly shows effect of coherent interaction of separate elements at their converging. The peak
value of reflection coefficients for the grating from spheres is noticeably less than for the grating from cylinders.
It is stipulated by essential difference in filling factors (fcyl/fsph = 4a/3d). Different shift of frequencies, at
which the maxima of reflection coefficient for considered gratings is attained, is determined, apparently, various
interactions of linear dipoles and point dipoles.

In case of oblique incidence (see Figure 4) with increase of an incidence angle, one more peak occurs and
gradually grows. It is stipulated by coherent interaction dipoles oriented along the z-axis.

4. Conclusion

A two-dimensional problem of plane electromagnetic wave diffraction on a gratings consisting of resonance
elements is solved in dipole-interaction approximation. A novel method of obtaining effective field expression is
proposed. Reflection and absorption coefficients are found for various compositions of gratings parameters.
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Modified Equivalent Circuit Model of Microwave Filter
with LTCC Technique
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Abstract—Because microwave products in the consumer electronics market are continuous developing, device
and component manufacturers have to seek new advanced integration, packaging and interconnection technolo-
gies, as size, cost and performance are critical factors for the success of a microwave product.

One of the most promising integration technologies is the multilayer low temperature co-fired ceramic tech-
nology (LTCC). In this technology, passive components, such as inductors, capacitors and filters, are integrated
into multilayer LTCC substrate. The purpose of this paper is to address the special method that should be con-
sidered for designing LTCC microwave filter. It is given how to get equivalent circuit about multilayer ceramic
microwave filter that is striplines configuration or LC configuration, especially, modified equivalent circuit model
is proposed, where the relation between the lumped parameters and physical dimension of LTCC microwave
filter is discussed. The capacitance and inductance matrix of LTCC microwave filter is obtained using the fast
multipole method. Finally, two microwave filters are designed by the novel design method of field-circuit and
HFSS. The novel design method of field-circuit is more efficient, therefore, the designing time can be shortened.

1. Introduction
Low-temperature-cofired ceramics (LTCC) for microwave applications represent a key position in the de-

velopment of future electronic products in a high frequency application for IC packaging radar, antennas and
wireless technologies. The integration of passive components in LTCC is, therefore, particularly interesting
in multilayers technology. Integration of passive devices in wireless application corresponds to the trend of
mobilization and miniaturization with high electrical performance using conductive electrode materials such as
gold, silver and copper. Several kinds of multilayer microwave devices have been developed, and some design
methods and fabrication procedures reported [1–4]. Hence, they can be easily incorporated in the design of a
variety of RF components such as passive components, voltage controlled oscillators (VCOs), power amplifiers
(PAs), and mixers.

Among various passive components, people usually pay the most attention to the filter. Now a lumped-
element RF filter can be implemented in a stacked structure. Engineers usually use HFSS, which is a software
employed by Ansoft used for high frequency E/M simulation, to design these passive components. One side,
HFSS is an advanced simulation software, which can accurately calculate the E/M fields with every engaged
point in the component. So its result is convictive. On the other side, HFSS is not very effectively because
of long time waste depending on the capability of your computer and the simulation precision you want. This
paper introduces the designing of fast multipole method for the passive filter. It is shown more effective than
the HFSS by experiment proof-testing.

2. Getting Capacitance and Inductance Matrix Using the Fast Multipole Method (FMM)

Figure 1: Multi-condutor system in medium between two grounds.

Figure 1 shows there areM conductors between two grounds. ∵ Qn =
M∑
m=1

Cn,mVm, whereQn is the quantity
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of charge of conductor n and Vm is the electric potential of conductorm. Cn,m represents the capacitance between
conductor n and conductor m when the electric potential of conductor m is Vm and the electric potential of
conductor n is 0.

Provided that Sn, ρn(r
′) are, respectively, the superficial area and surface charge density of conductor n,

quantities of electric charge Qn of conductor n can be given as:

Qn =

∫

Sn

ρn(r
′)dS (1)

For every point on the conductor surface, the electric potential of the point can be drived by considering the
image charges, we have

Ψ(r) =
1

4πεrε0

[
M∑

n=1

∫

Sn

ρn(r
′)

|r − r′|dS +
∞∑

i=1

M∑

n=1

∫

Si
n

ρ′n,i(r
′)

|r − r′n,i|
dS

]
; r ∈ Sm,m = 1, 2, . . . . . . ,M (2)

where ρ′n,i(r
′) represents the i-th mirror of ρ′n(r

′), Sin represents the superficies of ρ′n(r
′).

Using moments method we can devide the superficies of the conductor to N pieces, provided that the charge
on every piece is uniform:

Ψl(rl) =
1

4πεrε0

[
N∑

k=1

∫

Tk

ρl(r
′)

|rl − r′|dS +

∞∑

i=1

N∑

k=1

∫

T i
k

ρ′l,i(r
′)

|rl − r′l,i|
dS

]
; r ∈ Tk, k = 1, 2, . . . . . . , N (3)

The capacitance matrix can be formed by the above sets of equations:

[C]n,m =




C1,1 C1,2 ... ... C1,M−1 C1,M

C2,1 C2,2 ... ... C2,M−1 C2,M

... ... ... ... ... ...

... ... ... ... ... ...
CM−1,1 CM−1,2 ... ... CM−1,M−1 CM−1,M

CM,1 CM,2 ... ... CM,M−1 CM,M




(4)

Figure 2: The structure of stripline configuration filter with LTCC.

Figure 3: Traditional equivalent circuit. Figure 4: Modified equivalent circuit.

The inductance matrix can be expressed as:

[L]n,m = ε0µ0 [C0]
−1
n,m (5)

With the equations based on the multipolar method we can get the capacitance matrix and the inductance
matrix. we have proved that the method is convincing.
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3. Modified Equivalent Circuit of BPF (Bandpass Filter)

3.1. Analysis of the Striplines Configuration Filter [5–7]
The schematic configuration for the striplines filter to be implemented is shown in Figure 2. It is consisted

by three layers: T layer, M layer, and B layer. It is shown that this is a two LC resonance filter, and the
configuration of two LC resonance is uniform. In the experimental filter, inductance L of resonance is presented
by self-in-inductance LM of conductor M . resonate capacitance M is presented by self-in-capacitance CM of
conductor M and coupling capacitance CT between conductor M and conductor T and coupling capacitance
CB between conductor M and conductor B. Coupling C12 between resonance cells are consisted by the total
of each coupling capacitance.

We give the modified equivalent circuit about the striplines configuration filter, as shown in Figure 2. The
schematic illustration of the modified equivalent circuit is shown as Figure 4:

In traditional equivalent circuit, there is no one-to-one relationship between the striplines configuration and
equivalent circuit numerical value in detail. But in modifided equivalent circuit, there is one-to-one relationship
between the striplines configuration and equivalent circuit numerical value in detail.

3.2. Simulation Results
The scatterring parameter S11, S21 can be expressed as follows:

IL = 10 log
Pin
PL

= 10 log
1

|S21|2
= −10 log |S21|2 (dB) (6)

where S11 = Γin, ρ = 1+|S11|
1−|S11| , Γin = Zin−Z0

Zin+Z0

Every no-loss component can be expressed as:

|S21|2 = 1 − |S11|2 (7)

Through the above parameters we can get Insert Loss (IL), Bandpass (B) and VSWR. The input impedance
can be obtained in following equations:

Zin = ((ZL//ZCT2//ZLM2//ZCM2//ZCB2) + ZC12)//ZCT1//ZLM1//ZCM1//ZCB1 (8)

The characteristic parameter of the component can be expressed in curves through following equations:

S11 = 20 log

∣∣∣∣
Zin − ZG
Zin − ZG

∣∣∣∣ (dB) (9)

S21 = 10 log(1 − |S11|2) = 10 log(1 −
∣∣∣∣
Zin − ZG
Zin − ZG

∣∣∣∣
2

)(dB) (10)

Now we provide a multiplayer ceramic microwave filter with the size of 2.0 mm×1.25 mm×0.95 mm3 to certify
the correctness of the method comparing HFSS simulation with the dielectric constant 27:

Figure 5: The structure of models.

The following graphs demonstrate the results respectively:
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Table 1: The models physical size is stated follow(unit: mm)

model d1 d2 d3 d4 T L T W M L M W B L B W

0 0.045 0.26 0.28 0.5 1 0.15 1 0.35 1 0.25

1 0.05 0.26 0.28 0.5 1 0.15 1 0.35 1 0.25

2 0.04 0.26 0.28 0.5 1 0.15 1 0.35 1 0.25

3 0.045 0.26 0.28 0.6 1 0.15 1 0.35 1 0.25

4 0.045 0.26 0.28 0.7 1 0.15 1 0.35 1 0.25

5 0.045 0.26 0.28 0.6 1 0.15 0.8 0.3 1 0.25

6 0.045 0.26 0.28 0.6 1 0.15 0.8 0.5 1 0.25

7 0.048 0.49 0.55 0.8 2.3 0.4 2.3 0.6 2.3 0.2

8 0.048 0.49 0.55 0.65 2 0.2 2 0.4 2 0.3

9 0.048 0.49 0.55 0.65 1 0.15 3 0.3 1 0.25

Note: d1=d,d2=d t,d3=d b,d4=d centers

Figure 6: Result using the modified equivalent circuit(left) and with HFSS(right).

Analyzing the two graphs above, several differences can be found including inset loss, stop band attenuation,
band width, reflection in the input port.

4. Conclusion

The simulation results prove that modified equivalent circuit model where the relationship between the
concentrate parameters and physical dimension of LTCC microwave filter is corrected. The novel design method
of field-circuit has high efficiency, therefore, the designing time can be shortened.
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Abstract—An analytical model for a shielding structure containing both bulk composite layers and planar
metafilms (MFs) made of perfect electric conductors is presented, allowing for synthesis of shielding structures
using the genetic algorithm (GA) optimization. MFs can be of two different types: patch or aperture. The
frequency response, specifically, transmission (T ) and reflection (Γ ) coefficients in a plane-wave formulation, of
any MF is calculated based on polarizabilities determined by the particular pattern geometry. T and Γ of a
patch-type MF are derived using the generalized sheet transition conditions (GSTC) and the Babinet’s duality
principle is used for aperture-type MF to map the results from the complementary problem. T and Γ for a single-
layered MF are represented in a unified matrix form for any angle of incidence. T -matrix approach is used for
getting T and Γ for a multilayered structure. Any MF buried in a host dielectric can be decomposed into three
types of basic elements: a host composite slab, interface between media, and an MF inside the homogeneous
host medium. Each basic element is described by a corresponding T -matrix, and the total T -matrix of the stack
is the sequential product of the each individual T -matrix. T and Γ of the stack can be easily derived from the
total T -matrix. If there are two or more MFs, the distance between them justifies the condition of neglecting
higher-order evanescent mode interactions. Then the GA is applied to engineer a structure with the desired
frequency response. It helps to choose the best geometry of MF patterns, thickness of layers, and appropriate
constitutive parameters of each composite layer.

1. Introduction

For many practical applications, it is desirable to develop shielding structures having specified frequency
characteristics. Application of a robust and quickly converging genetic algorithm (GA) facilitates the engineering
of composite materials, saving time and resources before manufacturing and testing real materials [1]. A shielding
structure may consist of a single composite dielectric or a multilayered stack of composite dielectrics with given
electromagnetic properties. However, composite dielectric layers alone may be insufficient for achieving the
acceptable shielding effectiveness (SE) in a given frequency range. The presence of metafilms (MFs) buried
in composite layers may increase SE in the frequency band of interest, or assure desirable frequency-selective
effects.

In this work, a model of a shielding structure containing both bulk composite layers and MFs made of PEC
has been developed analytically, and the approach is considered below. For simplicity, we only consider MFs
constructed by square arrays (with the same periodicity along two orthogonal axes in the plane) buried inside
a homogeneous host material.

2. Mathematical Model

2.1. Using T-matrix Approach to Analyze T and Γ of the Multilayered Structures
The T -matrix used in this model is similar to that defined in [2]. A wave-transmission system is modeled as

a two-port network. The forward and backward waves at the input and output ports are related as
[
a1

b1

]
=

[
t11 t12
t21 t22

]
·
[
b2
a2

]
, (1)

where a1 and a2 are the incoming wave and b1 and b2 are outgoing waves.
The total T -matrix of N cascaded 2-port networks T1, T2, . . ., TN is the sequential product of the corre-

sponding T -matrices,

Ttot =

[
ttot11 ttot12

ttot21 ttot22

]
= T1T2 . . . TN . (2)
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Then T and Γ of the multilayered MF can be found as [2]:

T = ttot21 = b2/a1

∣∣
a2=0 and Γ = ttot11 = b1/a1

∣∣
a2=0

. (3)

Any MF buried in a host medium can be decomposed into 3 basic elements: (a) a host medium slab; (b) a
medium interface, and (c) an MF inside the homogeneous host medium, as shown in Fig. 1. T-matrices will be
obtained below for all these three cases. Then T and Γ of the stack can be easily obtained from (2) and (3).

Figure 1: Decomposition of multilayered MF.

2.2. Formulation for a Composite Layer
The Maxwell Garnett (MG) effective medium formulation can serve as a basis for engineering composite

microwave materials [1],

εeff = εb +

1
3

n∑
i=1

fi(εi − εb)
3∑
j=1

εb

εb+Nij(εi−εb)

1 − 1
3

n∑
i=1

fi(εi − εb)
3∑
j=1

Nij

εb+Nij(εi−εb)

, (4)

where εb(jω) = ε∞b + χb(jω) and εi(jω) = ε∞i + χi(jω) are the relative permittivity of a base dielectric and
of the i-th type of inclusions, respectively; ε∞b,i are the high-frequency permittivities for the base material and
inclusions of the i-th type, respectively; and χb,j(jω) are the corresponding dielectric susceptibility functions.
fi is the volume fraction occupied by the inclusions of the i-th type; Nij are the depolarization factors of
the i-th type of inclusions, and the index j = 1, 2, 3 corresponds to x, y, and z Cartesian coordinates. The
effective permittivity of a mixture might have complex-shaped frequency dependence. As shown in [1], it can
be approximated by a series of Debye-like terms with real relaxation constants τk and complex (in general case)
coefficients Ak. The coefficients Ak can be found using the genetic algorithm (GA) optimization technique [3],

εeff (jω) = ε∞eff + χeff (jω) = ε∞eff +
N∑

k=1

Ak
1 + jωτk

· (5)

The T -matrix of the homogenized composite slab with a thickness of l is as in [4]:

TS =

[
ejkl cos θ 0

0 e−jkl cos θ

]
, (6)

where k = ω
√
εeffµ is the wave number of the effective composite medium, and θ is the angle of incidence.

2.3. T-matrix for an Interface of Two Media
Let two media have permittivites ε1, ε2 and permeabilities µ1, µ2, respectively. The T -matrix [4] is

TI =
1

τT1

[
1 ρT1

ρT1 1

]
, (7)

where

τT1 =
ηT2 − ηT1

ηT2 + ηT1
, ρT1 =

2ηT2

ηT2 + ηT1
, ηT1,2 =

{ √
µ1,2/ε1,2/ cos θ forTE plane wave;√
µ1,2/ε1,2 · cos θ forTM plane wave.

(8)
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2.4. Plane Wave Formulas for Single-layered MFs
2.4.1. Extended GSTC for MFs

For an MF buried inside a homogeneous host medium with permittivity εeff and permeability µ, suppose
the microscopic polarizability tensor α of the pattern is

α =

[
αee αem
αme αmm

]
. (9)

Extending the GSTC [5] for the case when there is cross-coupling between electric and magnetic polarizations of
individual scatterers of MFs, the following boundary conditions for any metafilm in (xy) plane can be derived:

ẑ × ~H
∣∣∣0

+

z=0− = jω
[
αEE,t αEM,t

]
·
[
~E
~H

]

av

− ẑ ×∇t

(
[
αME,z αMM,z

]
·
[
~E
~H

]

av

)
;

~E
∣∣∣0

+

z=0− × ẑ = −jωµ
[
αME,t αMM,t

]
·
[
~E
~H

]

av

− 1

εeff
∇t

(
[
αEE,z αEM,z

]
·
[
~E
~H

]

av

)
× ẑ, (10)

where the tensors are sub-components of the macroscopic polarizability, determined by the microscopic polariz-
ability α and periodicity of the metafilm pattern. Assuming that the pattern periods are equal, Dx = Dy = D,

α
mac

=

[
αEE αEM
αME αMM

]
=
[
D2I + α ·G

]−1

· α. (11)

The matrix G = Diag

[
− 1

4Rεeff
− 1

4Rεeff

1

2Rεeff
− 1

4R
− 1

4R

1

2R

]
, where R ≈ 0.6956D, according to

[5].

2.4.2. T and Γ for Single-layered Patch-type MFs at the Oblique Plane Wave Incidence
Consider the TE or TM plane waves as in Fig. 2.

Figure 2: TE and TM polarized plane waves.

Using the GSTC and the approach in [6], let us introduce the forward and backward vectors C +
TE(TM) and

C −
TE(TM) as

C ±
TE = [0 1 0 ∓ cos θ/η 0 sin θ/η]T ; C ±

TM = [cos θ 0 ∓ sin θ 0 ± 1/η 0]T , (12)

where η =
√
εeff/µ.

The following linear system can be derived for solving TTE(TM) and ΓTE(TM):

[
A1,TE(TM) A2,TE(TM)

1 −1

]
·
[
TTE(TM)

ΓTE(TM)

]
=

[
A3,TE(TM)

1

]
, (13)
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A1,TE =
(
[UTE(TM)] − [VTE ] · αmac

)
· C+

TE ; A1,TM =
(
[UTM ] + [VTM ] · αmac

)
· C+

TE ;

A2,TE = −
(
[UTE ] + [VTE ] · αmac

)
· C−

TE ; A2,TM =
(
−[UTM ] + [VTM ] · αmac

)
· C−

TM ;

A3,TE =
(
[UTE ] + [VTE ] · αmac

)
· C+

TE ; A3,TM =
(
[UTM ] − [VTM ] · αmac

)
· C+

TE ; (14)

where the elements Ai,TE(TM) are

[UTE ] = [0 0 0 1 0 0]; [VTE ] = [0 jk/(2εeff ) 0 0 0 jk sin θ/2];

[UTM ] = [0 0 0 0 1 0]; [VTM ] = [jω/2 0 0 0 0 0]. (15)

2.4.3. T and Γ for Single Layered Aperture-type MFs
It is found that T and Γ cannot be calculated by directly applying the corresponding polarizabilities to the

GSTC. However, this obstacle can be bypassed by solving the corresponding patch-type complementary problem,
and then, using Babinet’s duality principle [7, 8], mapping the results into T and Γ of the aperture-type MFs
[9]. The relations between T and Γ for two complementary arrays at oblique incidence are

TTE = −Γ̃TM and ΓTE = −T̃TM . (16)

In (16), the tilde refers to the complementary structure.
T-matrix of a metafilm buried in a homogeneous host material is

TMT E(T M)
=

1

TTE(TM)

[
1 −ΓTE(TM)

ΓTE(TM) T 2
TE(TM) − Γ 2

TE(TM)

]
(17)

2.5. Requirement for Distance d between Neighboring MFs
The distance d between two neighboring MFs must be large enough for the evanescent modes to sufficiently

decay and not interfere with the propagating mode. Given the ratio δ of the amplitude of the most intense
high-order mode to the amplitude of the main propagating mode, the following inequality must fulfill:

∣∣∣ejd(k−
√
k2−(2π/D)2)

∣∣∣ < δ. (18)

Numerous simulations have shown that the ratio δ <10% is sufficient for neglecting the higher-order modes.

3. Genetic Algorithm for Synthesis of MF-Composite Shielding

Before the synthesis process, a designer should have some initial information based on a particular application
of the shielding under design. The requirements for the desired frequency response of the shielding structure
should be known, and an appropriate number of composite layers and the total maximum thickness of the
structure, as well as the reasonable ranges of electromagnetic parameters of layers for the initial search pool
should be specified.

The synthesis algorithm determines thickness and frequency dependence of the effective parameters of each
layer. The GA yields a “recipe” of physical parameters (appropriate base material, aspect ratio, concentration,
and conductivity of inclusions) for composite layers. The designer chooses the best solution (parameters charac-
terizing the frequency dependence for composites, pattern geometry for MFs, and the order of layer disposition)
for approximating the desired frequency response. This latter selection is based on a range of practically avail-
able ingredients with realistic parameters. Thus, the codes developed for the design of shielding structures with
the desired frequency characteristic combine the Maxwell Garnett effective medium mixing rule, the described
above analytical formulation, and the GA optimization procedure.

4. Computation Results

Consider the three-layer structure with two MFs as in Fig. 3(a). The parameters are the following: the
slab thickness is d1 + d2 + d3 = 5 mm, the cell period is D1 = D2 = 2 mm, the radius of the apertures in the
left metafilm is r1 = 0.6 mm, and the radius of the discs (or apertures) in the right metafilm is r2 = 0.6 mm.
The host dielectric is a composite containing carbon particles in a Teflon base εb = 2.2 (dispersion and loss are
neglected). Carbon particles having conductivity of σ = 1000 S/m are shaped as cylinders with the aspect ratio
a=length/diam = 50. Their volume fraction in the composite is 8%, while percolation threshold is higher than
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9%. The best parameters of the composite from a shielding effectiveness point of view, and at the same time,
practically available composite material components were chosen using the GA. The frequency characteristic of
the composite dielectric with ε1(f) and µ1 = µ0 shown in Fig. 3(b) was modeled using (4) and approximated
by one Debye term in (5). Fig. 3(c) shows the calculated transmission coefficient for the structure at different
distances d1,2,3. The best shielding effectiveness of the structure in the frequency range of interest is obtained
with the thicknesses d1 = 1 mm; d2 = 3 mm; d3 = 1 mm determined by the GA with two aperture MFs.
Analytical and numerical simulation (using HFSS software) confirm this.

(a) (b) (c)

Figure 3: Multilayered structure with two different MFs buried in the composite dielectric layer.

5. Conclusions

The shielding structures containing MFs and composite dielectrics can be engineered based on the presented
analytical formulas for T and Γ and using an optimization GA. T and Γ are directly related to geometries
of MF patterns, constitutive parameters, concentrations, and geometries of composite material phases. This
approach provides a straightforward synthesis process for desirable frequency responses.

The effective parameters of the composites are modeled by Maxwell Garnett mixing formalism. The ana-
lytical formulas for T and Γ of multilayered MF structures are obtained using (1) the generalized GSTC, (2)
the Babinet’s duality principle for complementary structures—aperture-type and patch-type MFs, and (3) the
T -matrix cascading.

The analytical approach in this paper has an advantage over the full-wave numerical methods, since it saves
computational resources for the synthesis process, and reduces the design cost prior to manufacturing.
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Statistical and Adaptive Signal Processing for UXO
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Abstract—Until recently, detection algorithms could not reliably distinguish between buried UXO and clutter,
leading to many false alarms. Over the last several years modern geophysical techniques have been developed
that merge more sophisticated sensors, underlying physical models, statistical signal processing algorithms, and
adaptive training techniques. These new approaches have dramatically reduced false alarm rates, although for
the most part they have been applied to data collected at sites with relatively benign topology and anomaly
densities. On more challenging sites, performance of even these more modern discrimination approaches is still
quite poor. As a result, efforts are underway to develop a new generation of UXO sensors that will produce
data streams of multi-axis vector or gradiometric measurements, for which optimal processing has not yet been
carefully considered or developed. We describe a research program to address this processing gap, employing
a synergistic use of advanced phenomenologicalmodeling and signal-processing algorithms. The key foci of the
program are (1) development of new physics-based signal processing approaches applicable to the problem in
which vector data is available from such sensors; and (2) development of the theory of optimal experiments to
guide the optimal design and deployment of the new sensor modalities. Here, we present initial results using
simulated data obtained with our phenomenological models that indicate that optimal processing of features
extracted from multi-axis EMI data can provide substantial improvements in discrimination performance over
processing of features extracted from single-axis data.

1. Introduction

Until recently, detection algorithms have not reliably distinguished between buried UXO and clutter, leading
to many false alarms. Over the last several years modern geophysical techniques have been developed that
merge more sophisticated sensors, underlying physical models, statistical signal processing algorithms, and
adaptive training techniques. These new approaches have significantly reduced false alarm rates, although for
the most part they have been applied to data collected at sites with relatively benign topology and anomaly
densities [1–5]. Most recently, blind source separation techniques have been applied to data collected on highly
cluttered sites with commensurate reductions in the false alarm rates [6]. However, UXO clearance activities
are ongoing or are planned at a wide variety of sites, and many of these activities involve complex terrain,
vegetation and difficult geology, in addition to complex ordnance and clutter distributions. Moreover, most
existing processing algorithms have been developed based on data associated with traditional sensors, such
as CS-vapor magnetometers and coil-based electromagnetic induction sensors. Although these sensors are
quite sensitive, they provide only limited information at any given survey point, as they do not illuminate
the object under scrutiny along all three major axes. These limitations necessitate the use of highdensity
spatial maps of anomalies, sometimes requiring multiple surveys, in order to collect data that support target
localization and identification. Several investigators have noted that survey techniques that provide multi-angle
illumination, while slower, improve discrimination performance [7, 8]. Others have shown theoretically or in
limited field studies that sensors capable of multi-axis transmission provide data that result in improved object
discrimination, as the parameters associated with the subsurface object are estimated more precisely [9].

In our previous efforts, we have successfully applied statistically-based signal processing algorithms using
spatially-collected scalar EMI and magnetometer data for UXO discrimination. In one approach, probability
density functions are developed that describe the statistical behavior of the data, x, obtained from a given sensor
suite under the target and non-target hypotheses, denoted H1 and H0, respectively. Given these probability
density functions, f(x|H1) and f(x|H0), and a vector of sensor data, x, the optimal decision statistic, or
likelihood ratio test (LRT), is utilized to make a decision regarding the appropriate hypothesis, this represented
as Λ(x) = f(x|H1)/f(x|H0). For EMI and/or magnetometer data, the vector x typically contains the parameters
estimated from the data using a phenomenological model. (We discuss automatic feature selection algorithms
below.) Features are estimated using a constrained search methodology. We have demonstrated that the
multiple-local-minima problem associated with this search is largely mitigated using multi-axis sensor data,
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thus resulting in better parameter estimates and better discrimination performance [9, 10]. The probability
density functions associated with the data under each hypothesis are estimated from training data.

Both the LRT and other approaches have been applied to several data sets, with outstanding results [2, 10].
Performance on several data sets indicated that these approaches performed very well when relevant training
data were available. In particular, in one demonstration, these algorithms were scored in a blind test. Our
goal in this current effort is to develop robust statistical signal processing techniques for data obtained from
multi-axis sensors. Such processing has not previously been developed. We are considering simulated modeled
on data from sensors already in development (e. g., Zonge nanoTEM system, the LBL/Morrison time-domain
sensor, the USGS TMGS system, the QM MTG system, and the Oak Ridge SQUID-based system).

 
Figure 1: Standard deviation as a function noise variance for four different system configurations as noted in
the legend. Ez indicates an excitation coil whose axis is perpendicular to the ground (z dimension), Rx, Ry,
Rz denote receive coils in the x, y, and z dimension, and Rxyz denotes three receive coils, one in each of the
dimensions.

2. Results
Typical electromagnetic induction (EMI) systems used for UXO detection had discrimination have two co-

located coils—one used for transmitting the electromagnetic field, one used for receiving the field induced in the
subsurface object. Historically, these coils have been located so that the axis of the coil is perpendicular to the
ground. As noted above, recent studies have suggested that adding additional transmitter and/or receiver coils in
different orientations can improve sensitivity and discrimination performance. The goal of this preliminary study
was to assess the level of performance gain using simulated data, but realistic field scenarios and uncertainties.

It has been established that UXO can be adequately modeled using a dipole model [2, 4, 5, 8–10]. The
imaginary resonant frequencies of the EMI resonant modes are a function of target material parameters. Thus,
these features can be used after the data is inverted using the model for signal processing and classification.
Imagine a cylinder coordinate system with the target’s symmetry axis as z, the frequency-dependent moment
can be expressed as

M(w) = ẑẑ[mz(0) +
∑

k

wmzk

w − jwzk
] + (x̂x̂+ ŷŷ)[mp(0) +

∑

i

wmpi

w − jwpi
]

The six target moment parameters are mz(0), mp(0), mzk, mpi, wzk, and wpi, where mz(0) and mp(0) account
for the dipole moments contributed by ferrous targets. Parameters wzk and wpi are resonant frequencies, which
are determined by the target geometry and material properties. Generally the first term in the sum, which is the
principle dipole moment along each coordinate axis, is all that is needed to provide an accurate representation
of the measured data from UXO and clutter.
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Figure 2: ROC curves plotting probability of detection versus probability of false alarm for the case where
measurement noise is included, but it is assumed that measurement position is known perfectly. Single axis and
multi-axis results are shown.

 
Figure 3: ROC curves plotting probability of detection versus probability of false alarm for the case where
measurement noise is included and fixed, but it is assumed that measurement position is uncertain. Single axis
and multi-axis results are shown.

In our initial simulations, we consider a system with one transmitter at a fixed orientation and three receiver
coils along three perpendicular axes: x, y, and z. We consider a simulated target whose resonant frequencies
along horizontal and perpendicular directions are 463 Hz and 168 Hz. These parameters were estimated from
81 mm projectile field data. The target is located 0.5 meters from the sensor. To minimize the effect of the target
orientation on conclusions based on this simulation, we use a uniform distribution for the target orientation.
Using the dipole model, we calculate the electromagnetic field measured from the target when the receiver coil is
located in the three different orientations and add Gaussian noise, as is normally observed from the instrument,
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to the simulated field. Using our standard inversion algorithms [2, 9, 10], we obtain the estimated moments, the
position and the orientation of the buried target from the simulated noisy field.

One mechanism by which to compare the performance of various system configurations is to consider the
mean and standard deviations of the estimated moments/resonant frequencies as a function of the level of the
Gaussian noise. Fig. 1 shows the standard deviation data for the simulated 81 mm target. Clearly, the three-axis
receive coil provides better performance with increasing noise variance than any of the single axis systems.

In order to further quantify performance gain, the simulated 81 mm projectile was classified against a sim-
ulated clutter field where the clutter moments were distributed uniformly. A Bayesian classifier was used to
discriminate the UXO object from the clutter using the estimated moments. Testing and training of the classifier
were performed separately. Fig. 2 illustrates the classification performance achieved from three single axis and
one multi-axis system. Some performance gain is obtained for the three axis system. Fig. 3 illustrates similar
results, however in this case we simulated uncertainty in the position of the measurements. In this more realistic
case, substantially more performance gain is observed in the case of the multi-axis system.

3. Conclusions
The results presented here indicate that a multi-axis system may potentially provide performance gain for

discriminating UXO from clutter. We considered a case of discriminating an 81 mm projectile from a uniform
field of clutter in the presence of additive Gaussian sensor noise. When no location uncertainty was included in
the problem formulation, performance gains were small for the multi-axis sensor. However, when uncertainty
in the exact location of the sensor was incorporated into the simulations, performance gain was enhanced
substantially when the multiaxis sensor was utilized. This performance gain is a direct result of more accurate
inversions possible with the multi-axis system.
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New GL Method and Its Advantages for Resolving
Historical Difficulties

G. Xie, F. Xie, and J. Li
GL Geophysical Laboratory, USA

Abstract—In this paper, we propose two types of new electromagnetic (EM) integral equation systems and
their dual integral equation systems. Based on the EM integral equation systems, we propose the new GL EM
modeling and inversion algorithms. Abstracts of our GL EM method based on the magnetic differential integral
equation and the electrical integral differential equation have been published in PIERS 2005 in Hangzhuo. We
used finite step iterations to exactly solve these integral equation systems or the EM and seismic differential
integral equations in finite sub domains. The Global EM wave field is improved successively by the Local
scattering EM wave field in the sub domains. In the FEM and FD method, the large matrix equation, inaccurate
and complex absorption condition on artificial boundary, the cylindrical and spherical coordinate singularities,
and ill posed in inversion are historical difficulties. The Born approximation is only used for low contrast
material. The GL method is completely different from FEM, FD, and Born approximation. Our GL modeling
and inversion resolved these historical difficulties. Only 3 × 3 or 6 × 6 small matrices need to be solved in
the GL method; There is no artificial boundary for infinite domain in the GL method; In the GL method,
the cylindrical and spherical coordinate singularities are resolved; Our GL method combines the analytic and
asymptotic method and numerical method perfectly. It is more accurate than FEM and FD method and
Born likes approximation. The GL method is available for all frequencies and high contrast materials. The GL
solution has O(h2) convergent rate. If the Gaussian integrals are used, the GL field has O(h4) super convergence.
The GL method is a high perform parallel algorithm with intrinsic self parallelization properties. The FEM
and FD scheme of high order PDE are complicated. Fortunately, the GL method has very simple scheme
or no scheme or half scheme such that it has half mesh and no mesh. The FEM and FD scheme only used
Riemann integral. In the GL method, we can use both of Riemann and Lebesgue integral that induces a meshless
method. We have developed software for 3D/2.5D EM, seismic, acoustic, flow dynamic, and QEM modeling and
inversion. Our GL modeling and inversion are useful for geophysical and Earthquake exploration, environment
engineering, nondestructive testing, steel and metal casting, weather radar, medical, Earth magnetic, antenna,
and heating conductive imaging, space sciences and lunar and sun and stars EM and light exploration. The GL
QEM modeling and inversion can be useful for studying micro optical physical and biophysical properties in
nanometer materials and biophysics materials. The GL and AGILD method resolved the singularity difficulties
at the poles in Navier-Stocks flow atmosphere simulation and Earth and Space EM field. We find GL numerical
quanta for very high frequency EM field by GL simulation.

1. Introduction

The existing EM theory and analytical and numerical methods are published in many books and jour-
nals. However, there are historical difficulties in EM and other field modeling and inversion. The large matrix
equation, inaccurate and complex absorption conditions on artificial boundary, the cylindrical and spherical
coordinate singularities, and ill posed in the modeling and inversion are historical difficulties. The Born ap-
proximation can be only used for low contrast material. In this paper, we propose a new GL method “Global
and Local field modeling and inversion” for resolving these historical difficulties. Our GL method is completely
different from the FEM, FD, Born approximation methods.

We consider the EM, seismic, acoustic, quantum, flow and other field equations on finite inhomogeneous
domain that is imbedded into an infinite domain. The analytical incident field and Green field in the background
domain are called an initial global field. The inhomogeneous domain is divided into mesh or meshless sub
domains. The global field is changing by local scattering field successively in each sub domain. The GL method
processes will be finished when the Global field is passing through the all Local sub domains with inhomogeneous
material. First in the world, the abstracts of our GL method have been published in Piers 2005 in Hangzhuo.
[1, 4–9], and in the GL Geophysical Laboratorys reports [2–3].

The new GL method has the following advantages: (1) There is no large matrix to solve, only 3 × 3 or
6 × 6 small matrices need to be solved; (2) There is no artificial boundary for infinite domain; (3) The GL
method combines the analytic and asymptotic method and numerical method consistently. It is more accurate
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than FEM and FD method and Born likes approximation; (4) The GL modeling solution has O(h2) convergent
rate. In particular, if the Gaussian integrals are used, the GL solution has O(h4) super convergence; (5) The
cylindrical and spherical coordinate singularities are resolved; (6) It is available for all frequencies and high
contrast materials; (7) the GL method has very simple or no scheme, it has half mesh or no mesh; (8) In the
GL method, we can use both Riemann and Lebesgue integrals that induce meshless methods; (9) GL method
can couple consistently with AGILD, FEM, and FD method; (10) The GL method is an intrinsic self parallel
algorithm in parallel T3E and PC cluster.

The plan of this paper is as follows: The introduction is presented in the section 1. In the section 2,
we propose the EM integral equation systems. We propose the 3D/2D GL EM modeling based on the EM
integral equation system in the section 3. In section 4, we propose the 3D/2D GL EM modeling based on the
EM differential integral equation and electric and magnetic field integral equations. We propose the GL EM
inversion in the section 5. In section 6, we prove the fundamental theorems of the GL method. We describe
advantages of the GL method in the section 7. The GL software, applications and conclusions are described in
the section 8.

2. New Electromagnetic Integral Equation Systems
In this section, we propose the new EM integral equation systems as follows:

[
E(r)
H(r)

]
=

[
Eb(r)
Hb(r)

]
+

∫

Ω

[
EJb (r′, r) HJ

b (r′, r)
EMb (r′, r) HM

b (r′, r)

]
[D]

[
E(r′)
H(r′)

]
dr′, (1)

[
E(r)
H(r)

]
=

[
Eb(r)
Hb(r)

]
+

∫

Ω

[
EJ(r′, r) HJ(r′, r)
EM (r′, r) HM (r′, r)

]
[D]

[
Eb(r

′)
Hb(r

′)

]
dr′, (2)

where [D] is the EM material parameter variation matrix, for the isotropy materials, [D] is 6×6 diagonal matrix
with variance materials (σ+ iωε)− (σb+ iωεb) and iω(µ−µb), for anisotropy materials the [D] will be 6× 6 full
matrix. E(r) is the electric field, H(r) is the magnetic field, Eb(r) is incident electric field in the background
medium, Hb(r) is incident magnetic field in the background medium, EMb (r′, r), . . . ,HM

b (r′, r) are electric or
magnetic background field Green tensors exciting by the electric or magnetic dipole source respectively, The
integral equations (1) and (2) are the dual system of each other.

3. The 3D/2D New GL EM Modeling Based on the Electromagnetic Integral Equation
System

We propose the GL EM modeling based on the EM integral equation system in this section.

(3.1) The domain Ω is divided into a set of n mesh or meshless sub domains {Ωk}, Ω =
⋃{Ωk}.

(3.2) In each Ωk, we solve the EM Green tensor integral equation system based on the equations (1) and (2).
By dual curl operation, the equation systems are reduced into a 6 × 6 matrix equations. By solving the
6 × 6 equations, we obtain Green tensor field EJk and HM

k .

(3.3) We improve the Global EM field [Ek(r),Hk(r)] by the Local scattering field
[
E(r)
H(r)

]

k

=

[
E(r)
H(r)

]

k−1

+

∫

Ωk

[
EJk (r′, r) HJ

k (r′, r)
EMk (r′, r) HM

k (r′, r)

]
[D]

[
E(r′)
H(r′)

]

k−1

dr′, (3)

k = 1, 2, . . . n, successively. The [En(r),Hn(r)] is the GL solution of the EM integral equations (1) and
(2).

4. The 3D/2D GL EM Modeling Based on the EM Differential Integral Equation

4.1. The GL EM Modeling Based on the Magnetic Differential Integral Equation
Since 1995, we have proposed the magnetic field differential integral equation (MDI) in the frequency and

time domain [10-13]. In this section, we propose the dual magnetic field differential integral equation of our
MDI [10-13],

H(r) = Hb(r) +

∫

Ω

(σ + iωε) − (σb + iωεb)

σ + iωε
EM (r′, r) · ∇ ×Hb(r

′)dr′. (4)

Based on the equation (4), the GL magnetic field modeling is as follows:

(4.1) The step (4.1) is the same as (3.1).
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(4.2) In each Ωk, k = 1, 2, . . . n, we solve the magnetic field differential integral equation to find EMk (r′, r)
successively. By the dual curl operation, only 3 × 3 matrix equations need to be solved.

(4.3) We improve the Global EM field Hk(r) by the Local scattering field

Hk(r) = Hk−1(r) +

∫

Ωk

(σ + iωε) − (σb + iωεb)

σ + iωε
EMk (r′, r) · ∇ ×Hk−1(r

′)dr′, (5)

k = 1, 2, . . . n, successively. Hn(r) is the GL magnetic field solution of (4).

4.2. GL EM Modeling Based on the Electric Differential Integral Equation
We propose the GL electric field modeling based on the dual electric field differential integral equation of

our EDI in 1995[10-13],
E(r) = Eb(r) +

∫

Ω

µ− µb
µ

HJ(r′, r) · ∇ × Eb(r
′)dr′. (6)

4.3. GL EM Modeling Based on the Electric and Magnetic Integral Equation
We propose the GL method based on the electric integral equation and the magnetic integral equation. Since

the electric and magnetic integral equations have divergent Green kernel, a special approach for resolving the
divergent singularity is developed.

4.4. GL Modeling for Quantum Field and QEM Field
We propose the GL Schordinger modeling for two hydrogen atoms and interaction between QEM field and

atoms that is useful for QEM field in nanometer materials. We find GL numerical quanta for very high frequency
EM field by GLQEM simulation.

5. The New GL EM Inversion

The formal logic system and experiments are base of the sciences. Most equations are forward equations.
Maxwell equation and elastic equation are forward equation and are not for inversion. The EM integral equation
systems (1) and (2) and equations (4) and (6) can be used for both forward and inversion. They are well posed
for forward and ill posed for inversion. From essential formal logic in physics, these equations are well posed for
forward and ill posed for inversion. How to build a well posed inverse equation is the main project of scientific
inversion. Our new idea of the inverse formal logic and inverse experiment in physics motivates us to propose
the GL inversion that is a new explicit inversion.

5.1. The GL EM Inversion GLEMI1 for Determining σ, ε, and µ

The following EM integral equation is for increments of EM parameters δσ, δε, δµ,
[
δE(r)
δH(r)

]

k

=

∫

Ωk

[
EJk (r′, r) HJ

k (r′, r)
EMk (r′, r) HM

k (r′, r)

]
[δD]k

[
E(r′)
H(r′)

]

k−1

dr′. (7)

5.2. The GL EM Inversion GLEMI2 for Determining σ, ε

The following magnetic field differential integral equation is for increments of parameters δσ, δε,

δHk(r) = −
∫

Ωk

(δσ + iωδε)

(σ + iωε)2
EMk (r′, r) · ∇ ×Hk−1(r

′)dr′. (8)

5.3. The GL EM Inversion GLEMI3 for Determining µ

The following electric field differential integral equation is for increment of EM parameter δµ,

δEk(r) = −
∫

Ωk

δµ

µ2
HM
k (r′, r) · ∇ × Ek−1(r

′)dr′. (9)

The suitable strong and weaker regularizing should be added to (7), (8), and (9) to control inversion being stable
and reasonable resolution. In our GL EM inversion, only smaller matrices need to be solved. The resolution is
dependent on the data configuration, quality and the regularizing parameter.

6. The Fundamental Theorems of the GL Method

Theorem 1. The GL EM field [En(r), Hn(r)] from (3.1)–(3.3) is convergent to exact EM field that satisfies
the EM integral equation systems (1) and (2). The GL EM field [En(r), Hn(r)] is convergent to exact EM field
that satisfies the MAXWELL EM equation in 3D or 2D.
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Theorem 2. The GL Magnetic field, Hn(r) from (4.1)–(4.3) is convergent to the exact magnetic field, H(r)
that satisfies the magnetic field differential integral equation (4). The GL EM field, Hn(r) is convergent to the
exact magnetic field H(r) that satisfies the exact MAXWELL EM equation.

Theorem 3. By Riemann division, the GL EM field [En(r), Hn(r)] from (3.1–3.3) and the GL magnetic field
Hn(r) from (4.1–4.3) have O(h2) convergent if the trapezoid and mid point integrals are used. In particular,
if the Gaussian integrals are used, the GL EM field has O(h4) super convergent rate. Proof: The theorem 1–3
have proved in [2].

7. Advantages of the GL Method

We have summarized the advantages of the GL method in the introduction. By reviewing the GL modeling
and inversion in section 3, 4, and 5, we present several advantages as follows. We consider EM modeling in infinite
domain that involves the finite inhomogeneous boundary domain. When we use FEM or implicit FD method
to solve the problem, we need the radiation or absorption boundary condition on the artificial boundary with
large enough domain. Solving the large matrix is difficult. The radiation and absorption boundary condition
is complicated and inconvenience. In the EM inversion, the FEM and FD EM modeling is used in iterations.
The absorption boundary errors will propagate into the internal domain, the noise is enhancing to damage the
inversion. In the section 2, we propose the EM integral equation systems (1) and (2) that are equivalent to
the 3D and 2.5D Maxwell EM equation in infinite domain with finite inhomogeneous domain for isotropic and
anisotropic materials. Our GL EM modeling does not need any artificial boundary for solving the EM integral
equation and the magnetic differential integral equation. Our GL EM modeling only needs to solve 3 × 3 or
6 × 6 small matrices, it does not need to solve any large matrix. There are 1/ρ2 singularity in the cylindrical
coordinate and 1/r2, 1/ sin2φ singularities in the spherical coordinate system for Maxwell equation. These
coordinate singularities are historic difficulties in FEM and FD method. In the EM integral equations (1–3)
and electric and magnetic differential integral equations (4–6) for the cylindrical and spherical coordinate, the
coordinate singularities are resolved. There is no coordinate singularity in the GL method. The GL modeling
combines analytical and numerical methods consistent together and has super convergence. The GL method
resolve many historical difficulties in traditional FEM, FD, and Bron approximation methods.
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Figure 1: GL and ML Electric wave with freq. 1.6e6 Hz
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Figure 2: GL and ML Electric wave with freq. 1.6e8 Hz

We have created the GL method Since 2002. We have developed the seismic, EM, acoustic, flow, and
Quantum field GL modeling and inversion algorithms and software. Many simulations show that the GL
seismic and EM wave field has no any boundary error reflection. We have made several GL seismic and EM
wave propagation movies that show the wave excited by internal sources is out going propagation perfectly
without any error reflection on the boundary. Because the page limitation, we only use one dimension wave
propagation to compare GL method and FEM method in the frequency domain. The absorption boundary
condition is used for FEM. The numerical results show that GL wave is very accurate to match the multiple
layer analytic wave for the high frequency 1.6× 106 (Figure 1) and frequency 1.6× 108 (Figure 2). The Figures
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3 and 4 show that the FEM is fail to approximate the exact wave in the high Frequency. Our GL method and
AGILD method have used in the EM stirring magnetic field simulation and obtained very accurate EM field.
The GL, ML, and FEM total and scattering electric wave are shown in Figure 5 and figure 6 respectively. They
show that the GL electric wave is very accurate to match to multiple layer wave, but FEM wave is not. Many
2.5D and 3D GL EM and seismic Wave show that GL modeling is accurate, fast and stable. The GL inversion
is reasonable high resolution.
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Figure 3: GL, ML and FEM Electric wave with freq.
1.6e6 Hz
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Figure 4: GL, ML and FEM Electric wave with
freq. 1.6e8 Hz
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Figure 5: GL, ML and FEM Electric wave E(0,t) in time
domain
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Figure 6: GL and ML Scat. Electric Swave SE(0,t) on
time

8. GL Software and Applications and Conclusions

We develope many 3D and 2.5D GL EM, seismic, acoustic, flow, QEM modeling software and some GL
EM and seismic inversion software. These GL EM softwares are useful for geophysical EM and seismic explo-
ration; Earthquake EM and seismic exploration; Forest EM and seismic exploration; Environment; EM field in
nanometer materials and superconductivity [6]; nondestructive testing imaging [5]; Airborne EM exploration;
The stress and displacement analysis in dam, rock, underground structure; the EM Stirring and flow for caster
[7]; GPR, radar, and weather imaging; Naiver Stocks weather simulation, etc.. Many applications show that
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the GL modeling is very fast, low cost and accurate. The GL inversion is stable and high resolution. The
GL EM field is fast convergent to exact EM field for high frequency and contrast, while FEM method fails to
simulate wave field in the high frequency. The GL method is breakthrough novel method and resolve historical
difficulties. GL Geophysical Laboratory and authors have reserved all copyright and patents of 3D/2.5D/2D
GL EM, seismic, flow, acoustic QEM modeling and inversion algorithms and have reserved all copyright and
patents of the GL software.
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MATLAB SIMULINK Based DQ Modeling and
Dynamic Characteristics of Three Phase Self Excited

Induction Generator

A. Kishore, R. C. Prasad, and B. M. Karan
Birla Institute of Technology, India

Abstract—In this paper, DQ-modeling approach for Transient State analysis in the time domain of the three-
phase self-excited induction generator (SEIG) with squirrel cage rotor is presented along with its operating
performance evaluations. The three-phase SEIG is driven by a variable-speed prime mover (VSPM) such as
a wind turbine for the clean alternative renewable energy in rural areas. Here the prime mover speed has
been taken both as fixed and variable and results have been analyzed. The basic Dynamic characteristics of
the VSPM are considered in the three-phase SEIG approximate electrical equivalent circuit and the operating
performances of the three-phase SEIG coupled by a VSPM in the Transient state analysis are evaluated and
discussed on the conditions related to transient occurs in the system and speed changes of the prime mover.

The whole proposed system has been developed and designed using MATLAB / SIMULINK.

1. Introduction

A wind electrical generation system is the most cost competitive of all the environmentally clean and safe
renewable energy sources in the world. It is well known that the three phase self excited induction machine can
be made to work as a self-excited induction generator [3, 4], provided capacitance should have sufficient charge
to provide necessary initial magnetizing current[5, 6]. In an externally driven three phase induction motor, if a
three phase capacitor bank is connected across it’s stator terminals, an EMF is induced in the machine windings
due to the self excitation provided by the capacitors. The magnetizing requirement of the machine is supplied
by the capacitors. For self excitation to occur, the following two conditions must be satisfied:

1 The rotor should have sufficient residual magnetism.

2 The three capacitor bank should be of sufficient value.

If an appropriate capacitor bank is connected across the terminals of an externally driven Induction machine and
if the rotor has sufficient residual magnetism an EMF is induced in the machine windings due to the excitation
provided by the capacitor. The EMF if sufficient would circulate leading currents in the capacitors. The flux
produced due to these currents would assist the residual magnetism. This would increase the machine flux and
larger EMF will be induced. This in turn increases the currents and the flux. The induced voltage and the
current will continue to rise until the VAR supplied by the capacitor is balanced by the VAR demanded by the
machine, a condition which is essentially decided by the saturation of the magnetic circuit. This process is thus
cumulative and the induced voltage keeps on rising until saturation is reached. To start with transient analysis
the dynamic modeling of induction motor has been used which further converted into induction generator
[8, 11]. Magnetizing inductance is the main factor for voltage buildup and stabilization of generated voltage for
unloaded and loaded conditions. The dynamic Model of Self Excited Induction Generator is helpful to analyze
all characteristic especially dynamic characteristics. To develop dynamic model of SEIG we first develop the
dynamic model of three phase induction motor in which the three phase to two phase conversion has been
done using Park’s transformation, then all the equations have been developed. The traditional tests used to
determine the parameters for the equivalent circuit model are open circuit and short circuit test. In this paper
the DQ model shown in Fig. 1 has been used to obtain the dynamic characteristics and further a flux oriented
controller is proposed to improve the dynamic characteristics.

2. Modeling of Self Excited Induction Generator

The equation shown is used for developing the dynamic model of SEIG

[VG] = [RG][iG] + [LG]p[iG] + wrG[GG][iG] (1)

Where p represents the derivative w. r. t. time, [VG] and [iG] represents 4 × 1 column matrices of voltage and
which is given as [VG] = [Vsd Vsq Vrd Vrq]

T and [IG] = [isd isq ird irq]
T [R], [L] and [G] represents 4×4
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Figure 1: DQ model of three phase induction gener-
ator.

Figure 2: Magnetizing inductance Vs magnetizing
current.

matrices of resistance, generator inductance and conductance as given. Further Lm the magnetizing inductance,
which can be obtained from the magnetizing curve of the machine shown in Fig. 2,

[L] =




Lsd Ldq Lmd Ldq
Ldq Lsq Ldq Lmd
Lmd Ldq Lrd Ldq
Ldq Lmq Ldq Lrq


 [G] =




0 0 0 0
0 0 0 0
0 Lm 0 Lr

−Lm 0 −Lr 0


 [L] =




Ls 0 Lm 0
0 Ls 0 Lm
Lm 0 Lr 0
0 Lm 0 Lr




The Relation between Lm and im is given as

Lm = |Ψm|/|im| (2)

Where |Ψm| and im are the magnetizing flux linkage and magnetizing current. The equation defining Lm Vs
|im| used in the model is

|im| = 1.447 ∗ L6
m − 8.534 ∗ L5

m + 18.174 ∗ L4
m − 17.443 ∗ L3

m + 7.322 ∗ L2
m − 1.329 ∗ Lm + 0.6979 (3)

Ldq used in matrix L represent the cross saturation coupling between all axes in space quadrature and is
due to saturation. Ldq = Lm + imd/imq ∗ Ldq, Lmq = Lm + imq/imq ∗ Ldq. It follows that above equations
representing Ldq, Lmd, and Lmq that under linear magnetic conditions, Ldq = 0 and Lmd = Lmq = Lm, as
expected. The two axes values of the total stator and rotor inductances are Lsd = Ls1 +Lmd, Lsq = Ls1 +Lmq
and Lrd = Lr1 + Lmd, Lrq = Lr1 + Lmq.

The above equations Ls1 and Lr1 are the leakage inductances of the stator and rotor, respectively. Because of
saturation, Lsd ? Lsq, but it follows from previous arguments that under linear magnetic conditions Lsd = Lsq.
Hence Lr = Lr1 + Lm
The electromagnetic torque developed by the generator is given by

Te = (3/4) ∗ P ∗ Lm ∗ (isq ird − isd irq) (4)

Thus it sees that Eq. (1) consists of four first order equations. An induction motor is hence represented
by these four first order differential equations. Because of the non-linear nature of the magnetic circuit, the
magnitude of magnetizing current, Im is calculated as

Im = [(isd + ird)
2 + (isq + irq)

2]1/2 (5)

Capacitor side equations are
p[vsG] = (1/C)[iC ] (6)

further
[iC ] = [isG] + [iL] (7)

Where [vsG], [isG], [iL] Column matrices representing direct and quadrature axis component of capacitor current
generator stator current and load current respectively.
Load Side Equations

[vsG] = LL p [iL] +RL[iL] (8)

Thus it is seen that complete transient model of the SEIG in d-q axis quasi stationary reference frame consists
of equations from (1) to (8).
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3. Modeling of Self Excited Induction Generator Using MATLAB SIMULINK

MATAB SIMULINK is powerful software tool for modeling and simulation and accepted globally. The
equations from (1) to (8) have been implemented in MATLAB SIMULINK using different blocks. In this paper
the step by step modeling of SEIG using SIMULINK has been described.

Figure 3: Stator and rotor dq currents. Figure 4: Electromagnetic torque generated.

Figure 5: Load voltages. Figure 6: SEIG parameters.

Figure 7: Simulink model of proposed system.

Equation (1) shown has four first order differential equations, for which the solutions gives the four currents
(stator d-q axis currents and rotor d-q axis currents). Further these currents are the function of constants
viz. Stator and rotor Inductances and Resistances, speed, Excitation Capacitance, load resistances. And
also variables like Magnetizing Inductance, Magnetizing currents, Electromagnetic torque generated, has been
evaluated using (3) to (5). The constraints of non linear magnetizing inductance have been taken into accounts,
the curve between Non linear magnetizing inductance vs magnetizing currents is shown in Fig. 2. The equation
of this non linear graph has been obtained by curve fitting and hence sixth order nonlinear polynomial equation
which is showing the relation between magnetizing inductance vs Magnetizing current. This equation has been
implemented using function block in SIMULINK block sets. In Fig. 3, the SIMULINK model of stator and rotor
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dq currents has been shown, Similarly Fig. 4, shows the electromagnetic torque generated. The load block in
which the stator voltage determined has been shown in Fig. 5. To put the various parameters the masking of
overall blocks has been done. The values and the masked blocks have been shown in Fig. 6.

4. Modeling Using MATLAB SIMULINK

The equation above described has been implemented in MATLAB / SIMULINK block sets. The equations
from 1 to 7 have been implemented in subsystem “Self Excited Induction Generator” whose outputs are Torque,
currents, rotor angle (theta), magnetizing current. Similarly the other blocks are Inverter, load, and a subsystem
to find three phase voltages.

5. Results and Discussions

The Model has been simulated using MATLAB/SIMULINK shown in Fig. 7. The analysis has been done
taking various constraints mainly-(i) assuming constant speed and no controller (Fig. 8), (ii) assuming variable
speed without controller (Fig. 9), (iii) Constant speed which going to constant at 0.1 sec with controller (Fig. 10).
And finally (iv) variable speed with controller (Fig. 11).

Figure 8: Electromagnetic torque, three phase volt-
age, current at constant wind speed.

Figure 9: Electromagnetic torques, three phase volt-
age, current at variable wind speed without con-
troller.

Figure 10: Electromagnetic torque, three phase volt-
age, current at constant wind speed with controller.

Figure 11: Electromagnetic torque, three phase volt-
age, current at variable wind speed with controller.

In first case the electromagnetic torque generated has been reached to steady state 0.2 second. Initially
transients occur at 0.05 sec when currents goes to 10 ampere provided constant voltage. Note that load is
constant all the time and for sake of simplicity resistive load has been considered. In second case the variable
wind speed has been considered. To implement the variable speed in SIMULINK a repeating sequence block
has been used. It has been observed that the electromagnetic torque developed has been a vibrations in steady
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state. The currents in this case have some ripple in the waveform. In the third case the controller has been
implemented and response has been observed. A ramp signal has been taken which further becomes constant at
0.05 sec, as constant speed starting from zero. As a result a transient has been occurring at 0.05 sec which then
comes to steady state at 0.1 sec. And finally the wind speed has been taken as variable speed with controller
has been implemented which result no transients has been occur at output currents but some ripples have been
still remaining in currents waveform as shown in Fig. 9.

6. Conclusions

Self Excited Induction generator has been found suitable applicability for isolate applications. The estimation
of non linear magnetizing inductance is the main factor of converting the Induction motor as self excitation
induction generator. To develop the system as wider applicability the controller has been designed to improve
the dynamic characteristics of the system. It has been shown that the transients have been removed when
controller has been implemented.

7. Specifications of the Machine

10 h.p (7.5 kW ), 3-phase, 4 poles, 50 Hz, 415 volts, 3.8 A Delta connection,
Base Voltage / Rated Voltage = 415 V
Base Current / Rated Current = 2.2 A
Rs = 1.0 ohm
Rr = 0.77 ohm
Xls = Xlr = 1.0 ohm
J = 0.1384 kg-m2
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Estimation of Higher Order Correlation between
Electromagnetic and Sound Waves Leaked from VDT

Environment Based on Fuzzy Probability and the
Prediction of Probability Distribution

A. Ikuta, M. Ohta, and H. Ogawa
Prefectural University of Hiroshima, Japan

Abstract—In this paper, a signal processing method considering not only linear correlation but also the higher
order nonlinear correlation information is proposed on the basis of fuzzy observation data, in order to find the
mutual relationship between sound and electromagnetic waves leaked from electronic information equipment.
More specifically, by applying the well-known fuzzy probability to an expression on the multi-dimensional prob-
ability distribution in an orthogonal expansion series form reflecting systematically various types of correlation
information, a method to estimate precisely the correlation information between the variables from the condi-
tional moment statistics of fuzzy variables is proposed. The effectiveness of the proposed theory is experimentally
confirmed by applying it to the observation data leaked from VDT in the actual work environment.

1. Introduction

Some studies on the mutual relationship between sound and electromagnetic waves leaked from electronic
equipment in the actual working environment have become important recently because of the increased use of
various information and communication systems like the personal computer and portable radio transmitters
[1, 2], especially concerning their individual and/or compound effects on a living body. Sound and electromag-
netic waves, especially, are often measured in a frequency domain under the standardized measuring situation
in a reverberation room, anechoic room and radiofrequency anechoic chamber. Though these standard methods
in a frequency domain are useful for the purpose of analyzing the mechanism of individual phenomena, they
seem to be inadequate for evaluating total effects on the compound or the mutual relationship between sound
and electromagnetic waves in complicated circumstances, such as the actual working environment. In order to
evaluate universally the mutual correlation characteristics and its total image in the actual complex working
environment, it is necessary to introduce some signal processing methods, especially in a time domain.

On the other hand, the actual observed data often contain fuzziness due to confidence limitations in sensing
devices, permissible errors in the experimental data, and quantizing errors in digital observations. Therefore,
in order to evaluate precisely the objective sound and electromagnetic environments, it is desirable to estimate
the mutual relationship between sound and electromagnetic waves based on the fuzzy observations.

In this study, a signal processing method considering not only linear correlation but also the higher order
nonlinear correlation information is proposed on the basis of fuzzy observation data, in order to find the mutual
relationship between sound and electromagnetic waves leaked from electronic information equipment. More
specifically, a conditional probability expression for fuzzy variables is first derived by applying the fuzzy proba-
bility [3] to a multi-dimensional joint probability function in a series type expression reflecting information on
various correlation relationships between the variables. Next, by use of the derived probability expression, a
method for estimating precisely the correlation information from various conditional moment statistics based
on the observed fuzzy data is theoretically proposed. On the basis of the estimated correlation information, the
probability distribution for a specific variable (e. g., electromagnetic wave) based on the observed fuzzy data of
the other variable (e. g., sound) can be predicted. Finally by applying the proposed methodology to the mea-
surement fuzzy data in an actual working environment, the effectiveness of theory is confirmed experimentally.

2. Prediction of Specific Probability Distribution from Arbitrary Fuzzy Fluctuation
Factor

The observed data in the actual sound and electromagnetic environments often contain fuzziness due to
several factors such as limitations in the measuring instruments, permissible error tolerances in the measurement,
and quantization errors in digitizing the observed data.



318 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

In order to evaluate quantitatively the complicated relationship between sound and electromagnetic waves
leaked from an identical electronic information equipment, let two kinds of variables (i. e., sound and electro-
magnetic waves) be x and y, and the observed data based on fuzzy observations be X and Y respectively. There
exist the mutual relationships between x and y, and also between X and Y . Therefore, by finding the relations
between x and X, and also between y and Y , based on the fuzzy probability [3], it is possible to predict the true
value y (or x) from the observed fuzzy data X (or Y ). For example, for the prediction of the pdf (probability
density function) Ps(y) of y from X, averaging the conditional pdf P (y|X) on the basis of the observed fuzzy
data X, Ps(y) can be obtained as: Ps(y) =< P (y|X) >X . The conditional pdf P (y|X) can be expressed under
the employment of the well-known Bayes’ theorem:

P (y|X) =
P (X, y)

P (X)
. (1)

The joint probability distribution P (X, y) is expanded into an orthonormal polynomial series on the basis of
the fundamental probability distribution P0(X) and P0(y), which can be artificially chosen as the probability
function describing approximately the dominant parts of the actual fluctuation pattern, as follows:

P (X, y) = P0(X)P0(y)

∞∑

m=0

∞∑

n=0

Amnψm(X)φn(y),

Amn = < ψm(X)φn(y) > . (2)

The information on the various types of linear and nonlinear correlations between X and y is reflected in each
expansion coefficient AMN . When X is a fuzzy number expressing an approximated value, it can be treated as
a discrete variable with a certain level difference. Therefore, as the fundamental probability function P0(X),
the generalized binomial distribution with a level difference interval hX can be chosen:

P0(X) =
(NX−MX

hX
)!

(X−MX

hX
)!(NX−X

hX
)!
p

X−MX
hX

X (1 − pX)
NX−X

hX ,

pX =
µX −MX

NX −MX
, µX =< X >, (3)

where MX and NX are the maximum and minimum values of X. Furthermore, as the fundamental pdf P0(y)
of y, the standard Gaussian distribution is adopted:

P0(y) =
1√
2πσ2

y

exp{− (y − µ)2

2σ2
y

},

µy = < y >, σ2
y =< (y − µy)

2 > . (4)

The orthonormal polynomials ψm(X) and φn(y) with the weighting functions P0(X) and P0(y) can be deter-
mined as [4]

ψm(X) = {(NX −MX

hX
)(m)m!}− 1

2 (
1 − pX
pX

)
m
2

1

hmX

·
m∑

j=0

m!

(m− j)!j!
(−1)m−j(

pX
1 − pX

)m−j(NX −X)(m−j)(X −MX)(j),

(X(n) = X(X − hX) · · · (X − (n− 1)hX), X(0) = 1), (5)

φn(y) =
1√
n!
Hn(

y − µy
σy

); Hermite polynomial (6)

Thus, the predicted pdf Ps(y) can be expressed in an expansion series form:

Ps(y) = P0(y)

∞∑

n=0

<

∑∞
m=0Amnψm(X)∑∞
n=0Am0ψm(X)

>X φn(y). (7)
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3. Estimation of Correlation Information Based on Fuzzy Observation Data

The expansion coefficient Amn in (2) has to be estimated on the basis of the fuzzy observation data X and
Y , when the true value y is unknown. Let the joint probability distribution of X and Y be P (X,Y ), and the
joint pdf of x and y be P (x, y). By applying fuzzy probability [3] to P (X, y), P (X,Y ) can be expressed as:

P (X,Y ) =
1

K

∫
µY (y)P (X, y)dy, (8)

(K : a constant satisfying the normalized condition :
∑

X

∑

Y

P (X,Y ) = 1).

The fuzziness of Y can be characterized by the membership function µY (y)(= exp{−α(y−Y )2}, α; a parameter).
Substituting (2) in (8), the following relationship is derived.

P (X,Y ) =
1

K
P0(X)

∞∑

m=0

∞∑

n=0

Amnanψm(X),

an =

∫
exp{−α(y − Y )2}P0(y)ψn(y)dy. (9)

The conditional Nth order moment of the fuzzy variable X is given from (9) as

< XN |Y > =
∑

X

XNP (X|Y ) =
∑

X

XNP (X,Y )/P (Y )

=
∑

X

XNP0(X)
∞∑

m=0

∞∑

n=0

Amnanψm(X)/
∞∑

n=0

A0nan. (10)

After expanding XN in an orthogonal series expression, by considering the orthonormal relationship of ψm(X).
(10) is expressed explicitly as

< XN |Y >=
∞∑

m=0

∞∑

n=0

dNmAmnan/
∞∑

n=0

A0nan,

(XN =
N∑

m=0

dNmψm(X), dNm; appropriate constant). (11)

The right side of the above equation can be evaluated numerically from the fuzzy observation data. Accord-
ingly, by regarding the expansion coefficients Amn as unknown parameters, a set of simultaneous equations in
the same form as in (11) can be obtained by selecting a set of N and/or Y values equal to the number of
unknown parameters. By solving the simultaneous equations, the expansion coefficients Amn can be estimated.
Furthermore, using these estimates, the pdf Ps(y) can be predicted from (7).

4. Mutual Relationship between Sound and Electric Field from a VDT in Actual Working
Environment

By adopting a personal computer in the actual working environment as specific information equipment, the
proposed method is applied to investigate the mutual relationship between sound and electromagnetic waves
leaked from a VDT under the situation of playing a computer game. In order to eliminate the effects of sound
from outside, a personal computer is located in an anechoic room (cf. Fig. 1). The RMS value (V/m) of
the electric field radiated from the VDT and the sound intensity level (dB) emitted from a speaker of the
personal computer are simultaneously measured. The data of electric field strength and sound intensity level
are measured by use of a electromagnetic field survey mater and a sound level meter respectively. The slowly
changing nonstationary 600 data for each variable are sampled with a sampling interval of 1 [s]. Two kinds of
fuzzy data with the quantized level widths of 0.1 [v/m] for electric field strength and 5.0 [dB] for sound intensity
level are obtained. Based on the 400 data points, the expansion coefficients Amn are first estimated by use of
(11). Next, the 200 sampled data within the different time interval which are nonstationally different from data
used for the estimation of the expansion coefficients are adopted for predicting the probability distributions of
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(i) the electric field based on sound and (ii) the sound based on electric field. Membership functions of the sound
level and electric field are shown in Figs. 2 and 3. The parameter α is decided so as to express the distribution
of data as precisely as possible.

Figure 1: A schematic drawing of the experiment.

Figure 2: Membership function of sound level. Figure 3: Membership function of electric field.

Figure 4: Prediction of the cumulative distribution
for the electric field strength based on the fuzzy ob-
servation of sound.

Figure 5: Prediction of the cumulative distribution
for the sound level based on the fuzzy observation of
electric field.

The experimental results for the prediction of electric field strength and sound level are shown in Figs. 4
and 5 respectively in a form of cumulative distribution. From these figures, it can be found that the theoret-
ically predicted curves show good agreements with experimental sample points by considering the expansion
coefficients with several higher orders.
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For comparison, the generalized regression analysis method [4] previously reported is applied to fuzzy ob-
servation data as a trial. After paying our attention to the probability distribution without considering any
membership function, the probability distribution Y can be predicted on the basis of fuzzy observation daya
X. The predicted results for electric field strength and sound level are shown in Figs. 6 and 7 respectively.
The theoretical curves show large prediction error to the true values as compared with the prediction results in
Figs. 4 and 5. These results clearly show the effectiveness of the proposed method for application to the fuzzy
observation data.

Figure 6: Prediction of the cumulative distribution
for the electric field strength by use of the extended
regression analysis method.

Figure 7: Prediction of the cumulative distribution
for the sound level by use of the extended regression
analysis method.

5. Conclusion

In this paper, a signal processing method has been proposed in order to grasp minutely and universally the
mutual relationship between sound and electromagnetic waves leaked from electronic information equipment.
More specifically, based on the fuzzy observation data on the sound and electromagnetic waves, a method
to estimate not only the linear correlation of lower order but also the nonlinear correlation information of
higher order between both variables has been derived by introducing the fuzzy probability. The validity and
effectiveness of the proposed method have been confirmed experimentally by applying it to the observation data
radiated from a personal computer in an actual working environment playing a computer game.
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A Single Phase Single Stage AC/DC Converter with
High Input Power Factor and Tight Output Voltage
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Abstract—A single stage single switch AC/DC converter is an integration of input current shaper and a
DC/DC cell with a shared controller and one active switch. The converter is applicable for digital input power
supply with high input power factor and tight output voltage regulation. The focus of the topology is to reduce
the DC bus voltage at light load without compromising with input power factor and voltage regulation. The
concept behind this topology is direct power transfer scheme. Using special configuration of DC/DC cell does
reduction of DC bus voltage and DC/DC cell works on the principle of series charging and parallel discharging.
The power output of this converter can go up to 200 W.

1. Introduction

An ac to dc converter is an integral part of any power supply unit used in the all electronic equipments.
Also, it is used as an interface between utility and most of the power electronic equipments. These electronic
equipments form a major part of load on the utility. Generally, to convert line frequency ac to dc, a line
frequency diode bridge rectifier is used. To reduce the ripple in the dc output voltage, a large filter capacitor
is used at the rectifier output. But due to this large capacitor, the current drawn by this converter is peaky in
nature. This input current is rich in low order harmonics. Also, as power electronics equipments are increasingly
being used in power conversion, they inject low order harmonics into the utility. Due to the presence of these
harmonics, the total harmonic distortion is high and the input power factor is poor. Due to problems associated
with low power factor and harmonics, utilities will enforce harmonic standards and guidelines which will limit
the amount of current distortion allowed into the utility and thus the simple diode rectifiers may not in use. So,
there is a need to achieve rectification at close to unity power factor and low input current distortion. Initially,
power factor correction schemes have been implemented mainly for heavy industrial loads like induction motors,
induction heating furnaces etc., which forms a major part of lagging power factor load. However, the trend
is changing as electronic equipments are increasingly being used in everyday life nowadays. Hence, PFC is
becoming an important aspect even for low power application electronic equipments.

The objective of the paper has been in the direction of better understanding of direct power transfer scheme,
closed loop simulation and analysis of proposed AC/DC converter. Emphasis of the paper has been the design of
100 W AC/DC converter with high input power factor and tight output voltage regulation without compromising
with high DC bus voltage at light loading condition.

2. Power Factor Correction Techniques

In recent years, single-phase switch-mode AC/DC power converters have been increasingly used in the
industrial, commercial, residential, aerospace, and military environment due to advantages of high efficiency,
smaller size and weight. However, the proliferation of the power converters draw pulsating input current from
the utility line, this not only reduce the input power factor of the converters but also injects a significant amount
of harmonic current into the utility line [1]. To improve the power quality, various PFC schemes have been
proposed. There are harmonic norms such as IEC 1000-3-2 introduced for improving power quality. By the
introduction of harmonic norms now power supply manufacturers have to follow these norms strictly for the
remedy of signal interference problem [2].

The various methods of power factor correction can be classified as:

(1) Passive power factor correction techniques

(2) Active power factor correction techniques
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In passive power factor correction techniques, an LC filter is inserted between the AC mains line and the
input port of the diode rectifier of AC/DC converter as shown in Figure 1. This technique is simple and rugged
but it has bulky size and heavy weight and the power factor cannot be very high [1]. Therefore it is now not
applicable for the current trends of harmonic norms. Basically it is applicable for power rating of lower than
25 W. For higher power rating it will be bulky.

In active power factor correction techniques approach, switched mode power supply (SMPS) technique is
used to shape the input current in phase with the input voltage. Thus, the power factor can reach up to
unity. Figure 2 shows the circuit diagram of basic active power correction technique [2]. By the introduction of
regulation norms IEC 1000-3-2 active power factor correction technique is used now a day. There are different
topologies for implementing active power factor correction techniques. Basically in this technique power factor
correcting cell is used for tracking the input current in phase of input voltage such that input power factor come
up to unity. Comparing with the passive PFC techniques, active PFC techniques have many advantages such
as, high power factor, reduced harmonics, smaller size and light-weight. However, the complexity and relatively
higher cost are the main drawbacks of this approach.

Figure 1: Passive PFC technique. Figure 2: Active PFC technique.

The active PFC techniques can be classified as:

(1) PWM power factor correction techniques

(2) Resonant power factor correction techniques

(3) Soft switching power factor correction techniques

In PWM power factor correction approach, the power switching device operates at pulse-width-modulation
mode. Basically in this technique switching frequency of active power switch is constant, but turn-on and turn-
off mode is variable. The advantages are simple configuration, ease of analysis and control, lowest voltage and
current stress. Therefore it is extensively used in PFC circuits. For the minimization of converter size PWM
technique generates significant switching loss [1].

Different topologies of PWM techniques are as follows:

(1) Buck type

(2) Flyback type

(3) Boost type

(4) Cuk’ type

Figure 3 shows the buck type topology. The advantage of buck type topology is that the converter can
supply a low output voltage with respect to input voltage. The disadvantages are, significant current distortion,
EMI is higher because discontinuous input current so filter design is costly. It is a basic DC-DC converter and
it is not used for power factor correction [1].

Figure 4 shows the flyback type topology. Its advantages are, output voltage can be higher or lower than
input voltage and input and output can be isolated. The disadvantages are higher switching device voltage and
current rating, input current is discontinuous so requirement of careful design of input filter, difficult to program
the input current with current mode control [1].
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Figure 3: Buck type topology. Figure 4: Flyback type topology.

The boost type topology is shown in Figure 5. Advantages of this topology are current mode control is easy
and less EMI so reduced input filtering requirements. The main disadvantages are more conduction loss, no
isolation and output voltage is always higher than input voltage [1].

The Cuk’ type is shown in Figure 6. The advantages are, input current is remain continuous even if the
converter operates in discontinuous conduction mode, and output voltage can be lower or higher than the
instantaneous input voltage. The disadvantages are the increased voltage and current stress on power devices,
requirement of extra inductor and capacitor and isolation is not provided [1].

Figure 5: Boost type topology. Figure 6: Cuk’ type topology.

In the resonant converter, the voltage across a switch or the current through a switch is shaped by the
resonance of inductor and capacitor to become zero at the time of turned on or off. Thus the switching loss is
greatly reduced. The high power factor is achieved by the natural gain-boosting characteristic of the resonant
converter. The major drawbacks are higher voltage and current stress on the power switch with respect to
PWM mode and variable switching frequency employed. Figure 7 shows a PFC circuit in which a resonant
converter is inserted between the input diode rectifier and the dc-dc converter. This resonant converter can be
series resonant converter or a charge pump resonant network [3]. The advantage is that the current stress and
voltage stress on resonant components as well as power switches are lower than the previous resonant converter
[1].

Figure 7: Resonating PFC circuit. Figure 8: Soft switching PFC circuit.

The soft-switching PFC technique combines the advantages of PWM mode and resonant mode techniques
with an additional resonant network consisting of a resonant inductor, a resonant capacitor and an auxiliary
switch. The AC/DC converter operates in PWM mode during most portion of a switching cycle but operates in
resonant mode during the switch turn-on and turn-off intervals. As a result, the PFC circuit works at constant
switching frequency and the power switch turns on and off at zero current or zero voltage conditions. Thus
efficiency and power factor both improved by this technique. Figure 8 shows boost PFC circuit with a soft
switching network [1].
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3. Single Phase Active Power Factor Correction

Conventional off-line power converters with diode capacitor rectifier front-end have distorted input cur-
rent waveform with high harmonic content. They cannot meet neither the European line-current harmonic
regulations defined in the IEC1000-3-2 document nor the corresponding Japanese input-harmonic current spec-
ifications. To meet the requirements of above norms it is customary to add a power factor corrector ahead of
the isolated dc/dc converter section of the switching power supply. Again another dc/dc converter is needed for
output voltage regulation. Thus there are two converter is needed for single-phase active power factor correc-
tion for the requirement of high input power factor and tight output regulation. There are two approaches for
single-phase active power factor correction:

(1) Two-stage approach

(2) Single-stage approach

Two-stage approach is commonly used approach in high power applications [4]. The block diagram of two
stages PFC converter is shown in Figure 9. In this approach, there are two independent power stages. The
front-end PFC stage is usually a boost or buck-boost (or flyback) converter. The dc/dc output stage is the
isolated output stage that is implemented with at least one switch, which is controlled by an independent PWM
controller to tightly regulate the output voltage. The two-stage approach is a cost-effective approach in high
power applications; its cost-effectiveness is diminished in low-power applications due to the additional PFC
power stage and control circuits.

A single-stage scheme combines the PFC circuit and dc/dc power conversion circuit into one stage. A number
of single-stage circuits have been reported in recent years. Figure 10 shows the block diagram of single-stage
approach. Compared to the two-stage approach, the single approach uses only one switch and controller to shape
the input current and to regulate the output voltage. Although for a single-stage PFC converter attenuation
of input-current harmonics is not as good as for the two-stage approach. But it meets the requirements of
IEC1000-3-2 norms. Again it is cost effective and compact with respect to two stage approach [4].

Figure 9: Block diagram of two stage approach. Figure 10: Block diagram of single stage approach.

There are four possible combinations to obtain different single stage single switch PFC converters [5]:

(1) Discontinuous Conduction Mode PFC + Continuous Conduction Mode DC/DC

(2) Discontinuous Conduction Mode PFC + Discontinuous Conduction Mode DC/DC

(3) Continuous Conduction Mode PFC + Continuous Conduction Mode DC/DC

(4) Continuous Conduction Mode PFC + Discontinuous Conduction Mode DC/DC

4. Direct Power Transfer Scheme

Either in two-stage or single-stage of single phase PFC the input power is processed twice to reach the
output. There are two functional cells known as PFC cell and DC/DC cell is used for power factor correction
and output voltage regulation respectively. Figure 11 shows the power processing in typical single-phase single-
stage approach by block diagram. Suppose efficiency of PFC cell is η1 and DC/DC cell is η2 than the output
power will be

P0 − Pinη1η2 (1)
Thus the efficiency of single-stage AC/DC converter will be,

η = η1η2 (2)

Thus the twice power processing approach means low conversion efficiency because it is a product of two
fraction. So, advancement is needed for the improvement of conversion efficiency.
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The proposed approach come into picture according to that, it is not necessary to process all input power
twice to achieve well-regulated and high input power factor DC output power. In this approach some power is
processed only once and remaining power processed twice to keep the total DC output power constant. Figure 12
shows the proposed new direct power transfer scheme. For this kind of power transfer, with whom some power
is processed only once is called direct power transfer (DPT) scheme [6].

Figure 11: Conventional single stage approach. Figure 12: Proposed DPT scheme.

Let k portion of power from PFC cell be directly transferred to output, and remaining (1-k) power from
PFC cell is stored in intermediate bus capacitor and then processed by DC/DC cell. Based on the proposed
concept, output power can be obtained by Eq. (4), (3).

P0 = Pinη1η2(1 − k) + Pinη1k (3)

Thus efficiency of proposed direct power transfer scheme single-stage PFC AC/DC converter is,

η = η1η2 + k(1 − η2)η1 (4)

Comparing Eq. (2) and Eq. (4), it is easy to say efficiency of DPT scheme is more than the efficiency of
conventional single-stage scheme.

5. Direct Power Transfer Topology

The proposed DPT topology integrates flyboost PFC cell in existing single stage DC/DC cell. All the derived
topologies are differentiated by only application of DC/DC cell. Different DC/DC cells are used for improving
voltage regulation and reducing DC bus stress. Power unbalance between PFC stage and dc/dc stage is the
inherent reason for causing high DC bus voltage stress. In order to meet the criteria of low DC bus voltage
DC/DC cell used in this converter is work on the concept of “series charging, parallel discharging capacitors
scheme (SCPDC)” [5]. The SCPDC means that the two energy-storage capacitors are charged in series when
the switch is off and discharged in parallel when switch is on.

This topology integrates one parallel PFC cell and one parallel-series forward DC/DC conversion cell. Parallel
PFC cell is basically a flyback transformer and integration of boost features. For achieving high power factor
PFC block should work on DCM. Figure 13 shows the laboratory type AC/DC converter. Flyboost part is
already explained in section 4.2. Here main difference in flyboost part of previous topology is unbalanced power
is controlled properly, so DC bus voltage is less compared to other topologies of single stage single switch AC/DC
converter.

Figure 13: Proposed AC/DC converter. Figure 14: Modes of operation.

Parallel PFC cell contains; transformer T1, input bridge rectifier, two intermediate bus capacitors, diode
D1 and diode D2, and active switch S. The parallel-series forward DC-DC conversion cell contains, forward
transformer T2, output inductor Lo, output capacitor Co, and also bus capacitors, diodes, switch. Thus both
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cells share bus capacitors, the only active switch and controller. Same as other single-stage PFC topologies the
two cells are operate independently. But the operation of this topology differs in other topologies in terms of
parallel power flow nature and special mode of operation. For low input voltage, works as a flyback transformer
and at the high input voltage works as a boost inductor.

Figure 15: Flyback mode of operation. Figure 16: Boost mode of operation.

Figure 17: Waveforms of input voltage, input current
and modes of operation.

Figure 18: Waveforms of bus voltage, output voltage
and current.

Modes of Operation: PFC cell works in two modes of operation. The following discussion explains the modes
of operation.

Suppose diode D1 is conducting, applying KVL for primary side

|Vin(t)| = Vo/n1 + VD2 + Vcb

Figure 19: Waveforms of current of transformer T1

and T2.
Figure 20: Bus voltage versus line voltage.

Where Vin(t), is input voltage, Vo the output voltage, n1 the turn ratio of transformer T1, Vcb the voltage
across bus capacitor and VD2 the voltage across diode D2.
So, VD2 = |Vin(t)| − (Vcb − Vo/n1)
For D2 to be conducting the condition is;

|Vin(t)| ≥ (Vcb − Vo/n1) (5)

Now suppose diode D2 is conducting, the reflected voltage on secondary side will be;

[|Vin(t)| − Vcb]n1

Applying KVL on secondary side

[|Vin(t)| − Vcb]n1 + VD1 + Vo = 0
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Figure 21: Bus voltage versus output inductance.

Figure 22: Bus voltage versus DPT. Figure 23: DPT versus line voltage.

Where, VD1 is the voltage across diode D1. For D1 to be conduct VD1 should be greater or equal to zero, so
the condition is; |Vin(t)| ≤ (Vcb − Vo/n1) (6)

From the Eq. (5) and Eq. (6) it is clear that the diode D1 and the diode D2 do not conduct simultaneously.
So, when D1 will conduct D2 will not conduct vice-versa. Thus there are two modes of operation. Figure 14
shows the operation modes of flyboost PFC cell.

Thus there are two modes of operation:

(1) Flyback Mode

(2) Boost Mode

Flyback Modes of Operation: it is easy to understand for the interval when line voltage |Vin(t)| is less than
Vcb − n1Vo transformer T1 work as a flyback transformer. It discharges all its energy directly to the load. Thus
power transferred directly. This portion of power is processed by active switch only once. At the same time
DC/DC cell will deliver some power from bus capacitors to the load to improve output voltage regulation.
Operational waveform in this mode is shown in Figure 15. There are three interval of operation in flyback
mode.

(1) First Interval: When switch is on at to rectified line voltage is applied to the transformer T1. Transformer
T1 work as a flyback transformer. Power is transferred to the load at the time when switch is off. The
bus capacitors voltage is applied to the inductor through the transformer T2 for the regulation of output
voltage. The special configuration of parallel-series forward conversion cell is useful for controlling DC bus
voltage.

(2) Second Interval: When switch is turned off at t1, energy is transferred by transformer T1 to the load so
voltage across T1 will be n1Vo. Freewheeling path of diode D6 is through output inductor Lo. Transformer
T2 resetting its energy through bus capacitors by the help of diodes D2–D4. Voltage across switch is
clamped to sum of capacitors, C1, C2 voltage. Thus the switching voltage is reduced by this configuration.

(3) Third Interval: At t2 all magnetizing energy of transformer T1 is transferred to the load. Now the current
of secondary winding of transformer will be zero. Transformer T2 continues to reset through the bus
capacitors, since it is fixed to bus voltage.

Boost mode of operation: When line voltage |Vin(t)| is higher than Vcb − n1Vo transformer T1 works like a
boost inductor. All magnetizing energy of both bus capacitors is discharged via D2 and DC-DC cell delivers
all output power from bus capacitors to the load. Thus power processing two times by the active switch. The
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operational waveform is shown in Figure 16. Circuit operation in this mode is same as flyback mode in the
first and third interval. But for the second interval it is different. In the second interval primary current of
transformer T1 will decrease. The current of output inductor freewheels through diode D6. Transformer T2 is
resetting through diode D3–D4. The transformer action of flyback transformer is not working. This is due to
reverse biased nature of flyback transformer diode D1. Therefore output current of secondary transformer is
zero in this mode.

6. Simulation Results

The circuit shown in Figure 13 has been simulated in Matlab, the simulation results is shown in Figures 17,
18 and 19. The operating switching frequency is 50 kHz. As Figure 17 shows the input current tracks the input
voltage so input power factor is almost unity. The two modes of operation, flyback mode and boost mode are
clearly specified in Figure 17. As shown in Figure 18, bus voltage is fixed at 420 V; so switching stress is not
high. Output voltage is almost fixed at 30 V, so it is well regulated. Simulation is done for 100 W AC/DC
converter.

The Figure 19 shows currents in different cells. As the requirement is PFC cell works on DCM mode and
DC-DC cell works on CCM mode, it is clearly specified in Figure 19. Secondary winding current of flyback
transformer carry current only in flyback mode, in boost mode primary winding of flyback transformer works
as a boost inductor.

Figure 20 shows bus voltage versus line voltage at different turns ratio. As turns ratio of transformer T1

increases bus voltage increases almost linearly.
Figure 21 shows DC bus voltage output inductance value of forward DC-DC cell. As output inductance

increases DC bus voltage increases. Again it is a function of turn ratio of flyback transformer, higher the turn
ratio lowers the flyback mode, lower the direct power transfer and so lower the efficiency. But small turns ratio
will results in very low bus voltage, which may cause PFC cell to operate under CCM. Since there is no active
control over PFC cell, it will cause very high peak current. So, it limits the minimum turns ratio value. Hence,
in order to achieve lower bus voltage, L1 should be as large as possible, while n1 and Lo should be as small as
possible.

Figures 22 and 23 shows the direct power transfer versus bus voltage and line voltage. Higher the line voltage
and bus voltage higher will be the direct power transfer.

7. Conclusion

From above discussions in this paper, it is clear that the power factor correction is being given significant
importance for low power applications. Also as power electronic equipments are increasingly being used, they
pose a serious problem of low order harmonics on utility side. Among various schemes available for PFC,
the single stage scheme is best suited for low power application because of its cost effectiveness. But in this
scheme, there is a serious limitation of high dc link voltage rise under light load condition. This problem can
be addressed by using the concept of Direct Power Transfer. From the simulation and experimental results
of DPT topology, it is clear that DPT is an effective way to control high dc link voltage and hence reduces
the component stresses. This topology also maintains a good source power factor and a tight output voltage
regulation without compromising with high DC bus voltage. Moreover, the efficiency of overall power conversion
is high.
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A New Generalized Space Vector Modulation Algorithm
for Neutral-point-clamped Multilevel Converters
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Abstract—Neutral-point-clamped converters are increasingly applied in industrial drive systems as they allow
the use of lower voltage devices in higher voltage applications, provide reduced output voltage total harmonic
distortion(THD), and can develop low common mode voltage. Several distinct modulation strategies have been
proposed in the past for eliminating the common mode voltage, providing low THD output voltage or reducing
the neutral point current ripple. However each of these strategies improves the performance of the converter in
one view point while losing performance in the other view point. A new generalized space vector modulation
technique is proposed. Analytical model and simulation results are presented.

1. Introduction

In recent years, industry has begun to demand higher power equipment, which now reaches the megawatt
level. Controlled ac drives in the megawatt range are usually connected to the medium voltage network. Today
it is hard to connect a single power semiconductor switch directly to medium voltage grids. For these reasons,
a new family of multilevel inverters came as the solution for working with higher voltage levels. In particular,
they provide low line voltage dv/dt and improved spectral characteristics of the output signals. The three level
neutral-point-clamped (NPC) converters are used widely in adjustable speed a.c drive systems, providing less
stress on motor winding, insulation and bearings. It is leading to an increase of the reliability and the life period
of the drive systems.

Several carrier-based and space vector modulation strategies have been proposed for these converters [7].
These algotithms were designed to provide adjacent state switching action in the converter which yields the lowest
possible output voltage and current total harmonic distortion. The most significant advantages of SVPWM are
fast dynamic response and wide range of fundamental voltage compared with the conventional PWM. But when
it is applied to the diode-clamped converter, the SVPWM strategy also has to solve the neutral-point voltage
un-balance problem.

There are three main steps to obtain the proper switching states during each sample period for the SVPWM
method:

1. Choose proper basic vectors.

2. Calculation of dwelling time of selected vectors.

3. Selection of proper sequence of pulses.

One way for calculating the time is to decompose all the vectors into real and imaginagy part [1]. Another
way is to calculate the time according to reference voltage vector of each phase [3, 2].

To solve the problem of computational complexity in multilevel converter due to large number of redundant
switching states, a new generalized space vector algorithm is proposed. This new space vector strategy elimi-
nates low frequency ripple from the dc link capacitors of a three-level converter. The proposed algorithm for
threeClevel converter is verified by simulation and the results are compared with the existing method, nearest
three vector algorithm [4].

2. Three-phase Three-level Converter

Figure 1 presents the basic structure of a three-level neutral-point-clamped converter. Each of three legs of
the converter consists of four power switches, four freewheeling diodes and two clamping diodes that limit the
voltage excursions across each device to half the input dc-bus voltage.

3. Nearest Three Vector Modulation

Table 1 shows the possible switching states for the three level converter of Figure 1. There are nineteen
basic space vectors for a three-level converter and they are shown in Figure 2. The zero voltage vector has three
switching states (000, 111, -1-1-1). Each of the six small vectors (V1–V6) has two switching states and each
of the middle vectors (V8, V10, V12, V14, V16) and the large vectors (V7, V9, V11, V13, V15, V17) has one state
respectively.
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Figure 1: Basic structure of three level diode clamped con-
verter.

Figure 2: Switching states of converter.

Table 1: Switching states of three-level converter (X = A,B,C).

STATUS S1X S2X S3X S4X

1 ON ON OFF OFF

0 OFF ON ON OFF

-1 OFF OFF ON ON

In SVPWM technique, the reference voltage vector Vr is located in a triangle, in which three voltage vectors
are corresponding to the three apexes. They are selected to minimize the harmonic components of the output
line voltage.

The dwelling time of each vector should satisfy the following equations:

V1t1 + V7t7 + V8t8 = VrT (1)

t1 + t8 + t8 = T (2)

where T is the sampling period and t1, t7 and t8 are the dwelling time of V1, V7 and V8 respectively.
Following four methods are required in the nearest three vector modulation algorithm to attain the complete

switching states for a multilevel converter by using SVPWM.
Step I: Decomposing of Basic Vectors

A new coordinates namely m-n coordinates can be established. The new coordinate have two axes intersect-
ing with the angle of π/3. Only the first quadrant of the coordinate is used because the vector located in other
region can be transformed to the first quadrant by clockwise rotating an angle K∗(π/3) where, K = 1, 2, 3, 4, 5
for region B, C, D, E and F respectively.

Figure 3: Space vector of the three level converter. Figure 4: Decomposing of reference vector.
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Universally a (M + 1) level inverter is discussed here. As shown in Figure 4, the reference vector is decom-
posing into m-axis and n-axis.

Vrm = 2MVr/(
√

3Vdc) sin(π/3 − θ) (3)

Vrn = 2MVr/(
√

3Vdc) sin(θ) (4)

Step II : Selecting Three Nearest Vectors

Considering that following inequalities are satisfied by Vrm and Vrn

(m− 1) < Vrm < m (5)

(n− 1) < Vrn < n (6)

where m and n are integers. There are three possible cases:

1. Vrm + Vrn < (m + n − 1): That means Vr is located in the left bottom shadow triangle. The vectors
(m− 1, n− 1), (m− 1, n) and (m,n− 1) are the nearest vectors.

2. Vrm+Vrn > (m+n−1): That means Vr is located in the right top shadow triangle. The vectors (m−1, n),
(m,n− 1) and (m,n) are the nearest vectors.

3. Vrm + Vrn = (m+ n− 1): Vr lies at the middle line and either 1. or 2. can be choosen.

Step III : Dwelling Time Calculation

Dwelling time calculation is given here. Taking (m1, n1), (m2, n2) and (m3, n3) are three nearest vector.
Corresponding dwelling time can be calculated from the following equations.

m1t1 +m2t2 +m3t3 = Vrm ∗ T (7)

n1t1 + n2t2 + n3t3 = Vrn ∗ T (8)

t1 + t2 + t3 = T (9)

Step IV : Neutral Point Potential Control

It is very important to balance neutral point potential. For balancing neutral point potential selection of
proper switching sequence is necessary. For example, when Vr falls in the triangle formed by the apexes of
vectors V1, V7 and V8, the switching sequence can be selected as (100) - (10-1) - ( 00-1) - (0-1-1) or (110) - (100)
- (10-1) - (00-1). The two sequences lead to the same output voltage but have the opposite effect on the neutral
point voltage.

Over Modulation Control

However, there is one exception when the reference voltage vector lies outside the hexagon. In this case, the
over modulation mode occures and the output line voltages distort.

Figure 5: Over modulation control.

Following algorithm can be used when reference vector lies in the over modulation region,

If (Vrm + Vrn) > M

Vrm′ = Vrm ∗M/(Vrm + Vrn) (10)

Vrn′ = Vrn ∗M/(Vrm + Vrn) (11)
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Figure 6: Redistribution of switching states in R.S.S. algorithm.

4. New Space Vector Modulation Algorithm
It has been shown that switching states where the three ac terminals are connected to the three different

voltage level of dc bus are the primary cause of increased harmonic content in the dc bus currents. The presence
of significant third harmonic content in the neutral point current causes a significant sizing penalties on the dc
link capacitor of three level converter [6]. A new space vector modulation algorithm is proposed to eliminate
the harmonic content in neutral current.

It can be deduced that the identical voltages can be generated if the duty cycle of these state is equally
divided between two states that are adjacent to it and lie on the same hexagonal plane. Figure 6 shows the
redistribution of switching states.

As an example, redistribution of dwelling time in Figure 6 for (1,-1,-1), (1,1,-1) and (1,0,-1) can be done as
follows,

t1,−1,−1 = t1,−1,−1 + (t1,0,−1/2) (12)

t1,1,−1 = t1,1,−1 + (t1,0,−1/2) (13)

t1,0,−1 = 0 (14)

Though we have eliminated six switching states still DC-bus utilization factor in this method is identical
with nearest three vector modulation, as the hexagon and inscribe circle are equal.

5. Simulation Results

Extensive MATLAB/SIMULINK models of three level inverter systems were developed for analysing the
nearest three point modulation and new proposed method on output line voltage and neutral point current.The
simulation of threeClevel converter shown in Figure 1 was done under the conditions listed in Table 2.

Table 2: Simulation conditions.

Sampling Time 50 µSec.

DC Link Voltage 400Volts

Active Load 1 KW

Reactive Power (-ve) 500VAR

Output Frequency 50Hz

Modulation Index 0.7

1. Output Line Voltage
Figure 7 and Figure 9 are the line-line voltage of nearest three vector modulation and new proposed approach

respectively. The FFT analysis (Figure 8 and Figure 10) of both the line-line voltages are also shown.
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Figure 7: Line-line voltage. Figure 8: FFT analysis of line-line voltage.

Figure 9: Line-line voltage waveform. Figure 10: FFT analysis of line-line voltage.

Figure 11: Line current waveform. Figure 12: FFT analysis of line current.

Figure 13: Line current waveform. Figure 14: FFT analysis of line current.

Figure 15: FFT analysis of neutral current. Figure 16: FFT analysis of neutral current.

2. Line Current
Figure 11 and Figure 13 are the line currents of nearet three vector modulation and new proposed approach
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respectively and their FFT analysis also shown in Figure 12 and Figure 14.
3. Neutral Point Current

FFT analysis of neutral current of nearet three vector modulation and new proposed approach are shown in
Figure 15 and Figure 16 respectively. New proposed method eliminates the harmonic content in neutral point
current while the nearest three vector method shows harmonics in neutral point current.

6. Conclusion

A new simple SVPWM method is proposed and verified by simulation of three-level-inverter. If number of
levels increases more complexity will come in the proposed method while algorithm will be same. This paper
presents a new way of implementing the proposed space vector modulation algorithm for reducing the neutral
point current in the multilevel inverter.

From the FFT analysis of line voltage and neutral current it is concluded that

1. Low frequency harmonic content of the neutral current is zero.

2. Neutral point current has a zero d.c average value.

3. Line voltage contains slightly larger harmonics in proposed method with respect to nearest three vector
modulation.
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Improved Mesh Conforming Boundaries for the TLM
Numerical Method

I. J. G. Scott and D. de Cogan
University of East Anglia, UK

Abstract—The numerical simulation of wave propagation in bounded space using differential-based models
generally encounter spatial discretisation problems when the boundaries of the computation space do not fall on
exact multiples of the models discretisation. While the accuracy can be improved by refinement of the model,
the computational load can increase exponentially, often making the problem unsolvable. There have been
some previous attempts to achieve boundary conforming meshes for the TLM numerical method. This paper
describes a novel approach which compares well with these methods with a significantly reduced computational
load.

1. Introduction

While the Transmission Line Matrix (TLM) numerical method is becoming increasingly easy to utilise for
a wider variety of electromagnetic problems, in part, due to the definition of perfectly matched loads (PMLs)
[1–3], boundary conforming schemes often increase the computational load and/or complexity of the algorithm,
making TLM difficult to implement for simulations of bounded regions that fluctuate rapidly along the periphery
(Figure 1(a)). The dotted lines show the sections that will require extra analysis in order to meet with the
boundary. While some TLM simulations can be approximated reasonably accurately with a stepped formulation
(by extension/deletion of the dashed sections), in the case of most TLM simulations the errors introduced are
unacceptable and refinement of the mesh is often performed, increasing both time and memory requirements.
If the true distance, la in figure lb could be incorporated within the simulation, the mesh would pertain much
more closely to the true boundary/surface of the device being modelled.

The length of the transmission line in the TLM algorithm cannot simply be adjusted. As can be observed
from Figure 1(b), a signal travelling along the full length (∆x/2, where ∆x is the spatial discretisation in the
model), will, after reflecting from the surface, appear back at the boundary adjacent node at time (k + 1)∆t,
the same signal travelling along the line of length lA will appear back at the boundary adjacent node at a time
less than (k+ 1)∆t, but greater than k∆t (where k is the current iteration (discrete time step) and k+ 1 is the
succeeding iteration). As propagating signals in TLM must all arrive in steps of the same discretised time (∆t),
this cannot be modelled directly.

Figure 1: a) Cartesian mesh of non-stepped boundary, b) boundary adjacent node.

De Cogan and de Cogan [4] have adapted existing schemes to demonstrate the application of boundary-
conforming finite difference schemes for the solution of the Laplace equation. In a uniformly bounded space
where h is the length of the line segments (Figure 2) we use

T (x+ h, y) + T (x, y + h) + T (x− h, y) + T (x, y − h) + 4T (x, y) = 0 (1)
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Figure 2: a) 2D FDTD visual representation, b) 2D FDTD irregular boundary visualisation.

In the situation where we take account of a node where we have unequal distances between nodes, given by
ah, bh, ch and dh (h is the uniform line-length), the two-dimensional Laplacian becomes

∇2V =
2

h2

[
VA

a(a+ c)
+

VB
b(b+ d)

+
VC

c(c+ a)
+

VD
d(d+ b)

− ac+ bd

abcd
V0

]
(2)

where we consider the potentials of the four nodes, A, B, C, and D which surround the potential V0.
Using concepts developed in [5] it is easy to see how one might develop a boundary conforming implemen-

tation of the wave equation

∇2V =
1

c2
∂2V

∂t2
(3)

Although FDTD is well established in electromagnetics and hybrid schemes involving finite difference are well
known, there is not much evidence that such a mesh conforming scheme is widely used. Probably because time is
implicitly discretised in TLM and because coincidence of arrival is such an important part of TLM algorithms,
this subject has received significantly more attention. Early amongst these was the work of Jaycocks and
Pomeroy [6]. However, the first really effective technique which was based on firm theoretical foundations was
due to Beyer, Mueller and Hoefer [7] and this will hereafter be referred to as the BMH method.

This paper will start with a restatement of the BMH method. We will then present our improved formu-
lation which represents a significant improvement in computational efficiency. Analytical results for the horn
antenna [8] will be used as a benchmark against which to compare these boundary-conforming schemes against
a conventional TLM model with stepped boundaries.

2. Introduction to the BMH Method

The technique proposed in [7] suggests a recursive definition to describe the arbitrary placed boundaries of
the mesh. The definition we are interested in here describes an electric wall (reflection coefficient of ρ = −1), by
adjusting the incident pulses on the line intersected by the boundary. This is given in formula (5) of the BMH
paper [7] as:

kV
i = ρ

1 − κ

1 + κ
kV

r +
κ

1 + κ
(ρk−1V

r + k−1V
i) (4)

where κ = 2l/∆x, k is the discretised time step and k−1V
r
kV

i represent the reflected (scattered) and incident
pulses at time k − 1 and k respectively. Figure 3 illustrates the technique graphically. This approach uses a
reference plane located at ∆x/2 from a surface adjacent node (broken line in Figure 3). While this is very
effective, there are two important shortfalls. As observed from Figure 3, the bounding wall can only cut the
transmission line segment after ∆x/2, if the transmission line is intersected before this, it is necessary to remove
the node, extending the line from the previous node, causing κ to become greater than 1. While analysis of this
has been performed in [7] ensuring the system remains stable, another error is introduced in the system as the
connections between neighbouring nodes are now missing. It appears this does not inhibit the accuracy of the
technique as much as a stepped approximation would.
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Figure 3: BMH model of arbitrary placed boundary.

Figure 4: a) Apparent impedance of section of length lA, b) transformed impedance.

The large memory requirements of the recursive procedure proved particularly limiting in the simulations
performed in section 4. For a stepped Cartesian mesh using a scatter-collect type algorithm it is necessary
to store only 12 scatter and collect matrices (for the 3D case). To implement (4), a further 8 matrices were
required to save the previous scattered and incident pulses. While it is possible to only save the data for the
boundary nodes, the complexity of the algorithm is further increased.

3. Improved Conforming Boundary Description

The technique we propose avoids the need for recursion, removing the limitations of the BMH approach,
while obtaining results in comparison. We begin with a load termination at some arbitrary non-discrete distance
from the ∆x/2 line end (Figure 4(a)). Observing the impedance looking ‘down’ this line from the node:

Zobs = Z0

[
ZL + Z0 tanh(βlA)

Z0 + ZL tanh(βlA)

]
(5)

where Z0 is the intrinsic impedance of the line of length lA, ZL represents the load impedance, tanh is the
hyperbolic tangent function, and β = 2π/λ, where λ is the wavelength.

As: Z0 = ∆t/2
Cd∆x/2 = ∆t′

CdlA
, where ∆t′ is the time a signal takes to traverse the line of length lA we can replace the

line of length lA, impedance Z0, with another line of length ∆x/2, with impedance ZA, as shown in Figure 4(b).
For the case when ρ = 1 i. e., ZL → ∞ Eq. (5) can be simplified to give, after transformation:

Zobs =
ZA

tanh(β∆x/2)
,

where ∆x/2 is the discretisation of the model.
Assuming low frequencies tanh(β∆x/2) ≈ β∆x/2. The impedance transformation observed from the node

must be the same before and after transformation:
Z0

βlA
=

ZA
β∆x/2

hence:
ZA = Z0

[
∆x

2lA

]
(6)
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Figure 5: The two cases of impedance transformations covered by (6) and (7).

so if lA = ∆x/2 ZA = Z0

if lA > ∆x/2 ZA < Z0 case A in Figure 5
if lA < ∆x/2 ZA > Z0 case B in Figure 5

Likewise for the case when ρ = −1 (i. e., ZL → 0) (5) simplifies to give, after transformation:

Zobs = ZA tanh(β∆x/2), again assuming tanh(β∆x/2) ≈ β∆x/2,

Equating before and after transformation:

Z0βlA = ZAβ∆x/2

therefore:
ZA = Z0

[
2lA
∆x

]
(7)

Using both (6) and (7) to describe the boundary adjacent transmission lines for the cases when ρ = 1 and
ρ = −1 respectively, causes the propagating signal to arrive back at the node at time (k + 1)∆t, appearing to
have travelled to the true boundary location, while propagating on a line of length ∆x/2.

This scheme will be termed as uniform in the analysis performed in section 4.
The nature of mesh-lines at the interface with real surfaces means that we could be dealing with line-lengths

in the range 0 < lA < ∆x. Our treatment of this involves expressions with either tanh(β∆x/2) or tanhβ∆x.
The subsequent analysis assumes that tanh θ + θ so that it is sensible to consider the error bands that are
involved. In order to reduce the effects of mesh dispersion conventional TLM in two-dimensions is modelled
using discretised frequency ∆x/λ ≤ 0.1, which means that we are looking at λ ≥ 10∆x. If this is the case then

tanhβ
∆x

2
= tanh

2π

λ

∆x

2
= tanh

π

10
The difference between this and π/10 is 3.16%, a lower bound.

If lA + ∆x then our transformation requires that we have tanhβ∆x + β∆x so that if we persist with
∆x/λ ≤ 0.1 then there is an error of 11.37% in this assumption, an upper bound. We can deduce from this that
if we operate at ∆x/λ ≤ 0.1/π, then the dispersion at any of the boundary-conforming transmission lines will
be no different than if we had used a stepped boundary description with ∆x/λ ≤ 0.1.

4. Comparison of All Techniques

In order to test the accuracy and viability of this technique, an E-plane sectoral horn antenna has been
modelled. The analytical solution to describe the radiated fields from the aperture of the horn is described in
Balinis [8]. Figure 6 shows the coordinate system used to describe the dimensions of the horn. The field emitted
from the E-plane (y-direction in the TLM models) is given as:

Eθ = −j
(
a
√
πζρ1E1e

−jζr

8r

){
−ej(ζρ1 sin2 θ/2)

(
2

π

)2

(1 + cos θ)F (t1, t2)

}
(8)

where ζ denotes the phase factor, E1 is a constant F (t1, t2) = [C(t2) − C(t1)] − j [S(t2) − S(t1)], C(tn) and
S(tn) denote the cosine and sine Fresnel integrals:
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C(tn) =

tn∫

0

cos
(π

2
x2
)
dx, S(tn) =

tn∫

0

sin
(π

2
x2
)
dx

tn represents:

t1 =

√
ζ

πρ1

(
−b1

2
− ρ1 sin θ

)
, t2 =

√
ζ

πρ1

(
b1
2

− ρ1 sin θ

)

Figure 6: 3D view of E-plane sectoral horn, analytical coordinate system.

Modelling the horn with the dimensions shown in Figure 6, inserting a point source with wavelength of 15 m
at the apex of the horn, produces the radiation pattern, along the E-plane, as shown in Figure 7. This has been
extracted across the aperture of the horn, from 1/4 into the aperture to 3/4 across (Figure 8), i. e., the centre
half of the pattern, this is then plotted over half of the polar diagram. This will act as the benchmark against
which to compare the 3D TLM solutions.

Figure 7: E-plane radiation pattern of E-plane sec-
toral horn antenna, analytical solution.

Figure 8: Plotted section of radiated field.

The standard TLM approach creates a 3D Cartesian mesh (for this problem, this is 81 nodes in the north-
south direction (y), 128 in the east-west direction (x) and 27 front-back (z)), however as elaborated upon in the
discussion given earlier the non-discrete boundaries will become stepped approximations to the true boundary.
For this problem the top (south) and bottom (north) boundaries of the mesh will become stepped. The east,
west, front and back boundaries are chosen to fall on exact multiples of the models discretisation for the edges
of the horn, however to allow the data propagating on the ‘corners’ of the horn to be included in the simulation,
the mouth of the horn has been placed inside the computation space, resulting in east and west boundaries that
are also stepped on the flared section of the antennas aperture (Figure 9). Using a reflection coefficient (ρ) of
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-1 on all bounding surfaces of the horn and inputting a continuous sinusoidal wave of wavelength 15 nodes (m)
at the apex of the horn (marked as ◦ in Figure 9), centred in the z direction, the results for the pattern along
the aperture of the horn, in comparison to those from the analytical solution are generated in Figure 10. The
patterns from the TLM models will never match the analytical solution directly due to the stepwise nature of
the computation space. The boundaries are placed at the ends of the transmission lines of length ∆x/2, in
comparison to some TLM models which place the boundary at the node. A section of wave-guide of length 150
nodes is appended to the beginning of the model to ensure any errors from the PML have little effect on the
signal propagating into the horn. This approach is also used in the BMH and uniform models. A mean error
(sum of absolute differences) of 0.0583 is observed, indicating that while the technique produces considerably
accurate results given the simplicity of the formulation, they are far from perfect.

Figure 9: North-south, east-west plane view of 3D E-plane sectoral horn antenna, illustrating TLM stepped
formulation.

Figure 10: E-plane radiation pattern of E-plane sec-
toral horn antenna, analytical against stepped TLM
(run for 2500 iterations).

Figure 11: E-plane radiation pattern of E-plane sec-
toral horn antenna, analytical solution against BMH
TLM (run for 788 iterations).

The boundary conforming mesh described in [7] and analysed above was implemented as a comparison to
the stepped mesh, again, placing the mouth of the horn inside the computation space, the results which were
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produced were a considerable improvement on those generated from the stepped mesh and are illustrated in
Figure 11, this is modelled with a reflection coefficient of -1 (or electric wall in the terminology of [7]). As can
also be seen the BMH technique requires considerably less iterations than those of the stepped formulation,
producing results comparable with the analytical solution after only 788 iterations. The mean error recorded
for this mesh was 0.0441.

When the technique that we propose here is implemented, it is clear that its memory requirements are almost
identical to those of the stepped mesh. The extra computation needed at the start of the simulation to calculate
the lengths of the transmission line segments meeting with the boundaries are usually performed in stepped
schemes before the rounding up or down is performed, therefore the only extra computation required in the
formulation is the adjustment of the impedances saved in the boundary locations of the impedance matrices. The
algorithm then runs in an identical manner to the stepped system. The results produced when this technique
was implemented are given in figure 12. The mean error was recorded at 0.0406. Figure 13 shows the uniform
scheme in comparison to the BMH results and these are within 0.0035 units of one another, illustrating the
accuracy of the new scheme with a substantially smaller computational ‘footprint’ than the BMH approach.

Figure 12: E-plane radiation pattern of E-plane sec-
toral horn antenna, analytical solution against uni-
form (run for 2118 iterations).

Figure 13: E-plane radiation pattern of E-plane sec-
toral horn antenna, BMH TLM solution against uni-
form TLM (BMH run for 788 iterations, uniform run
for 2118 iterations).

Figure 14: Difference plots of stepped, BMH and uniform TLM models against analytical solution.

Figure 14 gives a graphical view of how close the BMH and uniform models are. Due to the symmetry of the
patterns, only half of the plot is shown. As can be observed, the uniform mesh is slightly closer to the analytical
solution than the BMH model, while the stepped mesh, as expected, displays significant deviation.
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5. Conclusion

The TLM numerical method is widely used, not only in electromagnetics, but many other fields of physics.
The technique proposed in this paper gives an accurate approximation to arbitrary placed boundaries of a
TLM mesh, while achieving a computational complexity and load equivalent to a normal Cartesian stepped
formulation. The method has been compared with another widely used boundary smoothing scheme, illustrating
its desirable properties further. The accuracy obtained from the new scheme is in tier with the previously used
technique.

We propose this novel approach to model arbitrary placed boundaries of a TLM mesh that do not fall
within the discretised formulation of the model. Due to the simplicity of the impedance transformations the
computational requirements are practically unaltered from the stepped formulation most commonly used by
engineers.
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The Spectral Expansion on the Entire Real Line of
Green’s Function for a Three-layer Medium in the

Fundamental Functions of a Nonself-adjoint
Sturm-Liouville Operator

E. G. Saltykov

Lomonosov Moscow State University, Russian Federation

Abstract—We obtain a new representation for Green’s function in the space R2 of the Helmholtz equation
with the coefficient representing a complex-valued piecewise constant function. We set that the coefficient in
the equation depends on the one variable and represents three complex constants.

This representation is the expansion of Green’s function in the fundamental functions which are bounded
on the entire real line R1 solutions of the ordinary Sturm-Liouville equations with complex coefficients.

The spectrum consists of two half-lines parallel to the real axis on the complex plane, issuing from the points
characterized by the coefficient in the equation on semi-infinite intervals, and going in the positive direction of
the real axis.

1. Introduction
In the present paper, we obtain a new representation ([1, 2]) for the solution of a problem for a three-

layer medium similar to the problem on a dipole in the space containg a plane interface between two media
characterized by constant wave numbers ki, i = 1, 2. The latter problem was considered in [3].

The new representation follows from the representation of Green’s function in the form of a Fourier integral
obtained by reducing an integral on the complex plane of the spectral parameter to integrals over the edges
of cuts passing through the points ki, i = 0, 2(ki = const) characterized by the coefficient k(z) of the equation
outside a finite interval [0,H] where k(z) = kl = const(l = 1). The function k(z) represents a complex-valued
piecewise constant function of a variable z on the entire real line R1.

2. Formulations and Equations
Green’s function u(z, x) satisfies the Helmholz equation

∂2u

∂z2
+
∂2u

∂x2
+ k2(z)u = −2δ(z − z′)δ(x− x′) (1)

with the delta function on the right-hand side and with either the radiation condition u→ 0 as r =
√
z2 + x2 →

∞ [if Imk(z) 6= 0] or the radiation condition following from the limiting absorption principle [if Imk(z) = 0].
The function u is a bounded function in R2 with the exception of the source position M ′(z′, x′) where it has a
logarithmic singularity. At the points z = 0, z = H of discontinuity of the function k(z), the function u(z, x)
satisfies the matching conditions for the function and its normal derivative on the boundary. We consider
Eq. (1)under the assumption that z, z′, x, x′ ∈ R1, where R1 is the real axis. We set

k(z) =





k0 = const, z < 0,
k1 = const, 0 < z < H,
k2 = const, z > H.

where the kl are complex constants, k2
l = εl + jσl, εl ∈ R1, ε0 = ε2, σl ≥ 0, σ0 < σ1 < σ2 or σ0 > σ1 > σ2,

l = 0, 1, 2, and j is the imaginary unit.
To find the solution, we consider the Fourier expansion of u with respect to the variable x [of which the

cofficient in Eq. (1) is independent]:

u = lim
Λ→∞

uΛ, uΛ =
1

π

∫ Λ

−Λ

ejα(x−x′)g(z, z′;α) dα. (2)

The function g can be found from the equation

lg + α2g = δ(z − z′), z, z′ ∈ R1, (3)

where l is the differential operator
lψ = −d2ψ/dz2 − k2(z)ψ,
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and has the form
g(z, z′;α) =

ψ(z>, α)ϕ(z<, α)

w(α)
. (4)

Here z> = max(z, z′), z< = min(z, z′), and w(α) is the Wronskian of the linearly independent solutions ψ and
ϕ of the homogeneous Eq. (3). The function g is bounded for z, z′ ∈ R1 and satisfies the matching condition
for the function and its derivative dg/dz at the points z = 0 and z = H.

Taking into account the representation (4) of the function g via the functions ϕ,ψ, and w, we find that the
function g has the ramification points ±ki in the complex plan α ([4] p. 23–25, Vol. 2 of the Russian translation).

The cuts corresponding to the ramification points ki go along the lines

α =
√
−µ2 + k2

i = j
√
µ2 − k2

i , µ ∈ R1, i = 0, 2.

We assume that Re
√

−µ2 + k2
i ≥ 0, and Re

√
µ2 − k2

i ≥ 0.
Consider the case in which ε0 = ε2, σ2 > σ0, σ0 > 0, σ2 > σ1 > σ0.
The Wronskian w(α) 6= 0 on the entire complex α-plane [5, 6].
Consider the case x− x′ > 0.
Using the Cauchy theorem, we reduce the integral uΛ given by (2) in the upper half of the complex α-plane

to two integrals over the edges of the cuts passing through the points ki and the integral ICΛ
over the half-circle

CΛ of the radius Λ.
We have

uΛ(z, x) = σΛ(z, u) + ICΛ
, (5)

where

σΛ(z, u) =
j

π

∑

i=0,2

∫ Mi(Λ)

−Mi(Λ)

µ
e−

√
µ2−k2

i (x−x′)

√
µ2 − k2

i

ψi(z>, µ)ϕi(z<, µ)

wi(µ)
dµ. (6)

The function Mi(Λ), which define the limits of integration in (6), depend on Λ, and Mi(Λ) ∼ Λ as Λ → ∞.
The quantity Mi(Λ) > 0 occuring in (6) is the value of µ at which the right edge of the cut passing through the
point ki intersects the half-circle CΛ.

The functions ψi(z, µ) and ϕi(z, µ) are linearly independent solutions of the equations

lχi = (µ2 − k2
i )χi, µ ∈ R1, i = 0, 2. (7)

They are related to the functions ψ(z, α) and ϕ(z, α) [which are linearly independent solutions of the equation
(l + α2)χ = 0] by the formula χ(z, µ) = χ(z, α = j(µ2 − k2

i )
1/2).

The Wronskian on the cuts passing through the ramification points ki is given by the formula wi(µ) = w(α =
j(µ2 − k2

i )
1/2).

The integral ICΛ
occuring in (5) has the form

ICΛ
=

1

π

∫

CΛ

ejα(x−x′)g(z, z′;α)dα,

where CΛ is the half-circle of radius Λ centered at the point α = 0 in the upper half-plane of the complex
variable α.

We introduce the functions ηl =
√
α2 − k2

l , l = 0, 1, 2, Reηl ≥ 0. The representations of the functions ψi,
ϕi, and wi can be derived from ψ, ϕ, and w with regard to the the fact that Imηl < 0 in the domain lying
on the left of the hyperbola α2 = σl/(2α1) passing through the point kl in the upper half-plane of the variable
α = α1 + jα2; next, Imηl > 0 in the domain on the right of the hyperbola α2 = σl/(2α1) passing through the
point kl ([4] p. 30, Vol.2 of the Russian translation). The following condition is satisfied on the cuts drawn
along the hyperbolas: µ > 0 on the right edge of the cut, and µ < 0 on the left edge of the cut passing trough
the points ki, i=0, 2.

We have ICΛ
→ 0 as Λ → ∞.

Using the functions u0 = ψ0 and u2 = ϕ2, we can rewrite the function (6) as

σΛ(z, u) =
∑

i=0,2

∫ Mi(Λ)

0

e−
√
µ2−k2

i (x−x′)

√
µ2 − k2

i

ui(z, µ)ui(z
′, µ)dpi(µ), (8)

where dp0(µ) = dµ/a0
0(µ)b00(µ)2π, dp2(µ) = dµ/a2

2(µ)b22(µ)2π. aii and bii are coefficients connected with trans-
mission and reflection coefficients of ui.

In deriving (8), we represent the integral (6) as two integrals over the positive and negative semiaxis and
make the change of variables µ′ = −µ in the integral over the negative semiaxis.
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Passing to the limit in (5) as Λ → ∞, we obtain the representation

u =
∑

i=0,2

∫ ∞

0

e−
√
µ2−k2

i (x−x′)

√
µ2 − k2

i

ui(z, µ)ui(z
′, µ)dpi(µ). (9)

which holds for x− x′ > 0.
In a similar way, we consider the case x − x′ < 0 by reducing the integral uΛ with the use of the Cauchy

theorem in the lower half-plane of the complex variable α to two integral over the edges of the cuts passing
through the points −ki.

Passing to the limit in (9) as x→ x′, we obtain relation (9)) with x = x′.

3. Conclusion
We have thereby obtained the definitive representation

u =
∑

i=0,2

∫ ∞

0

e−
√
µ2−k2

i |x−x
′|

√
µ2 − k2

i

ui(z, µ)ui(z
′, µ)dpi(µ), (10)

which is valid for x, x′z, z′ ∈ R1. This representation of Green’s function u was obtained under the assumption
that σ2 > σ0 > 0 (σ2 > σ1 > σ0) The case 0 < σ2 < σ0 (σ2 < σ1 < σ0) can be treated in a similar way.

The representation (10) is the expansion of Green’s function in the fundamental functions ui, which are
bounded on the entire real line R1 solutions of the ordinary Sturm-Liouville Eq. (7) with complex coefficients.
This expansion is characterized by the spectral measure, which is a diagonal matrix function with nonzero
entries pi(µ).

Equation (7) for the functions ui indicates that the spectrum λ = µ2 −k2
i , µ ∈ R1, consists of two half-lines

parallel to the real axis on the complex λ-plane, issuing from the points −k2
i , and going in the positive direction

of the real axis.
Passing to the limit as σ2 → σ0, we arrive the case σ0 = σ2.
If σ2 → 0 and σ0 → 0, then we obtain the limit case σ0 = σ2 = 0. Then the spectrum belongs to real axis,

and the spectrum is double for λ ≥ −ε0. In this case, the lower bound of the spectrum is limited to the number
λ = −ε0. This case is an example of the expansion of a function of the class Lp(R

1), p > 2, in the fundamental
functions of the Sturm-Liouville operator with a real coefficient −k2(z) satisfying the Kato condition ([7]).
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Some Applications of the High-mode-merging Method
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Abstract—Waves guided along dielectric step discontinuity can be described by a multi-port network [1] and it
is simplified as a two-port network with the influence of high-modes retaining [2]. These results can be used for
treat dielectric strip waveguide, even more complicated structures. Some numerical results are got for a strip
and a groove dielectric waveguide some kind of resonant phenomena also is obtained. Some comments on this
method and some suggestions are given furthermore.

1. Introduction

A dielectric strip waveguide can be seen as a system constituted by 2 step discontinuous structure as shown
in Fig. 1. As a symmetric system, it also can be treated by so-called bisection method, namely, it can be see
equivalently as the result of superposition of 2 networks with short circuit(sc) and open circuit(oc) separately
at the terminals of transmissions of length l/2 (Fig. 2) [1].

Figure 1: Network of a dielectric strip waveguide. Figure 2: Bisection treatment of the dielectric strip
waveguide.

This problem can be simplified by high-mode-merging method provide in [2], a two-port network in which
the influence of high modes is considered has been obtained, but in present case, all Zm in E, F, G and H of
[2] ((17a-d) in [2] respectively) are replaced by

jZmtan k0(l/2) (for sc) (1)

−jZmcot k0(l/2) (for oc) (2)

There are three methods to treat the problem of strip waveguide.

2. Equivalent Circuit Method

As most of microwave engineers are more familiar to the circuit language, the network is realized by a
simple T circuit generally, (see Fig. 3), impedances of which, Za, Zb and Zc are related to elements of Z-matrix,
Z11Z12Z21 and Z22 by

Za = Z11 − Z12 Zb = Z22 − Z12 Zc = Z12(= Z21) (3)

(see appendix) and also be distinguished for sc and oc. In present case, we have Fig. 4(a), the impedances
Fig. 4(a), the impedances looking left into the network at 2-2’ plane in two cases are

Zscin = Zscb +
Zscc (Zsca + Zscin,0)

Zscc + Zsca + Zscin,0
(for sc) (4a)

Zocin = Zocb +
Zocc (Zoca + Zocin,0)

Zocc + Zoca + Zocin,0
(for oc) (4b)
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Figure 3: The comparison of a network and a circuit.

where Zscin,0 and Zocin,0 are the input impedances at 1-1’ plane looking left into transmission line with length l/2
in sc and oc cases, which can be got by (1a) and (1b) respectively.

(a) (b)

Figure 4: a) T -circuit b) Γ-circuit.

The system in Fig. 4(a) also can be changed to a Γ-circuit as shown in Fig. 4(b). Obviously,

ZscΓ,in = ZΓ,b (5a)

ZocΓ,in = ZΓ,b + 2ZΓ,m (5b)

Let them be equivalent, i.e., we have ZscT,in = ZscΓ,in and ZocT,in = ZocΓ,in, then,

ZΓ,b = ZscΓ,in = ZscT,in (6a)

ZΓ,m = (ZocΓ,in − ZΓ,b)/2 = (ZocT,in − ZscT,in)/2 (6b)

where ZscT,in and ZocT,in are given by (4a) and (4b) respectively. A strip dielectric waveguide can be seen as a
combination of two Γ-circuits which connected back to back as shown in Fig. 5(a), then it can be reformed as
Fig. 5(b). Going back to network, the elements of a strip waveguide can be got by (3a) and (3b) in opposite
way.

(a) (b)

Figure 5: (a) Combination of two Γ-circuits (b) Its deformation.

3. Equivalent Network Method

A little bit different approach is called equivalent network method (EN method).
The elements of Z-matrix can be normalized as follows.

Z ′
11 = Z11/Z0 Z ′

12 = Z12/

√
Z0Z0 (7a)

Z ′
21 = Z11/

√
Z0Z0 Z ′

22 = Z22/Z0 (7b)
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Considering the high-mode=merging method, we have

Z ′
11 = (

F

H
)/Z0 Z ′

12 = (E +
GF

H
)/

√
Z0Z0 (8a)

Z ′
21 = (

1

H
)/

√
Z0Z0 Z ′

22 = (
G

H
)/Z0 (8b)

Where E,F,G and H are given in [2], and the determinate of normalized Z-matrix

Det Z′ = Z′
11Z

′
22 − Z′

21Z
′
12 =

E

H
/(Z0Z0)

then we can get the transfer matrix for right step discontinuity of the strip waveguide

A′
r = A′ =

1

Z ′
21

[
Z ′

11 |Z ′|
1 Z22

]
=


F
√
Z0/Z0 −E/

√
Z0Z0

H
√
Z0Z0 G/

√
Z0/Z0


 (9)

Let voltage and current in both sides of the right discontinuity be normalized as

V ′
0 = V0/

√
Z0, I

′
0 = I0

√
Z0, V

′
0 = V 0/

√
Z0, I

′
0 = I0

√
Z0

Then we have [
V ′

0

I ′0

]
= A′

r

[
V ′

0

I ′0

]

Considering symmetry of the strip, the matrix of left step discontinuity is just the inverse matrix of one of
the right step:

A′
l = (A′

r)
−l(= (A′)−l) =


G

√
Z0/Z0 H/

√
Z0Z0

−E
√
Z0Z0 F/

√
Z0/Z0


 (10)

The uniform structure between two step discontinuities corresponds a segment of an uniform transmission line
with length l, the transfer matrix of which is

A′
m =

[
cos k0l j sin k0l
j sin k0l cos k0l

]
(11)

Finally, the transfer matrix of the whole strip can be got as the continued-multiplication product:

A′
strip = A′

lA
′
mA

′
r = (A′)−1A′

mA
′ (12)

This procedure can be shown in Fig. 6(a). For a rectangular groove dielectric waveguide, corresponding
matrix, then, is

A′
groove = A′A′

m(A′)−1 (13)

(see Fig. 6(b)).

(a) (b)

Figure 6: (a) Strip waveguide (b) Groove waveguide .
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4. Effective Dielectric Constant Method

Besides there is also a rather rough method, in which the influence of all high-modes is neglected, that we
only take the A′

m as the transfer matrix of whole strip (or groove waveguide):

A′
strip = A′

m (14)

It’s so-called effective dielectric constant (EDC) method.

5. Numerical Examples

For comparing these 3 methods, some numerical calculations have been done for some characteristics of some
kinds of waveguides: Fig. 7(a)–(c) show plots of reflection and transmission coefficients (including the argument
and modulus both of them) vs width of waveguide; Fig. 7(d) gives ones for loss.

  

       (a)                                                                                (b)                                   

   (c)                                                                                (d)                                   
Figure 7: Some numerical results.

 
Figure 8.

 
Figure 9.
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6. Conclusion

(1) The results for all methods give similar tendency and accord one another pretty good in certain accuracy;
especially results of EN method and EC method are more closed.

(2) The EDC method is still useful in some cases because it is rather simple and easy for calculations and
with clear physical meaning. A significant defect is that it can’t give the loss.

(3) There is some kind of periodic phenomena existing. The reflection coefficients, both argument and modu-
lus, and loss are varying with the width of waveguide periodically. It is coincide with the conclusion of [3].
This phenomena can be seen as resonance, but the mechanism of it is remained to be explained further.
It is also indicated that the high-mode-merging method is correct.

(4) In high-mode-merging method, the coupling between TE modes and TM-modes has not been considered.
It is also one of the defects of this theory.

(5) In the original theory of [1], two parallel perfect conductive planes are needed. So, the waveguide discussed
here is not open absolutely. If the upper one of them moved far enough, it almost can be seen as an open one
approximately. If we want to remove the upper conductive plane, we’ll get infinite number of continuous
high modes it is a problem of continuous spectrum and is out of the topic of this paper.

(6) The cascade network method is not confined to solve only symmetric system like single strip dielectric
waveguide but also can be extended to treat some more complicated structures, such as finite periodic
strip(groove) dielectric waveguide (Fig. 8), the curved surface dielectric waveguide (Fig. 9) etc.

Appendix

Consider a T-circuit as shown in Fig. 3. The transfer matrixes of Fig. 3 devices are

Aa =

[
1 Za
0 1

]
, Ac =

[
1 0

1/Zc 1

]
, Ab =

[
1 Zb
0 1

]

As a whole, the transfer matrix then is

A = AaAcAb =

[
1 + Za/Zc Za + Zb + ZaZb/Zc

1/Zc 1 + Zb/Zc

]
=

[
a b
c d

]

where a = 1+Za/Zc, b = Za+Zb+ZaZb/Zc, c = 1/Zc, and d = 1+Zb/Zc with |A′|= ad-bc=1. Then, changing
it to impedance matrix equivalently, we get

Z =
1

c

[
a |A|
1 d

]
=

[
Za + Zc Zc
Zc Zb + Zc

]
=

[
Z11 Z12

Z21 Z22

]

Namely, we get

Z11 = Za + Zc Z12 = Z21 = Zc Z22 = Zb + Zc
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Abstract—Two Non-Uniform High Impedance Surfaces (NU-HIS or tapered HIS) are proposed against a
Uniform HIS (U-HIS). All surfaces are one dimensional (1D) and made of parallel wires with a length a little
less than λ/2 around the resonance frequency. To show the effect of the surfaces, a half wavelength dipole
antenna is placed over four different surfaces, PEC, U-HIS, NU-HIS, and modified NU-HIS (MNU-HIS) while
the dipole height is fixed and very close to the surface. These four EM problems are analyzed numerically by
the method of moments (MoM), and the results are compared. It is concluded that MNU-HIS yields more
bandwidth than NU-HIS, and also, NU-HIS yields more bandwidth than U-HIS, while overall structures in all
cases have identical volumes and nearly identical gains. This effect is attributed to the decrease of sensitivity
to the angle of incidence by applying non-uniformity.

1. Introduction

It is well known that a high impedance surface or specifically a hypothetical perfect magnetic conductor may
be very useful in a large variety of microwave and antennas applications. Recently, electromagnetic bandgap
(EBG) structures have been widely studied for their behavior as High Impedance Surface (HIS) or Artificial
Magnetic Conductor (AMC). Principally, they show stop band frequencies in which the tangential magnetic fields
are considerably reduced. AMC is a special member of HIS family, which is designed to imitate the behavior
of a perfect magnetic conductor (PMC). In fact, the AMC condition is characterized by the frequencies where
the phase of the reflection coefficient is zero, i.e., Γ = +1 [1]. In contrast, a HIS may deviate a little from this
condition, sometimes yielding more flexibility in antenna design. For example, in [2], the mushroom structure
played the role of a ground plane for a dipole antenna a little upper than its resonance or AMC condition.
Besides, in [3] the behavior of the same structure as a reactive impedance surface (RIS) was introduced, and
the idea was applied to patch and dipole antennas. Repeatedly, it has been shown that HIS structures improve
antenna performance and reduce the effects of surface waves. The latter feature yields better antenna radiation
pattern and less coupling between elements of an array [2, 4]. So far, some 3D [5] and 2D [1, 3] structures have
been proposed to realize HISs. Current realizations of 2D HISs are based on a planar FSS at the interface of
a metal-backed dielectric slab with or without vertical vias [6]. This configuration is desirable because it is
low-cost and easy to integrate in practice [7]. There is a problem with most of proposed HISs, however. In
fact, the shift of the resonant frequency versus the incidence angle affects the performance of most well known
HISs [8, 9]. To clarify this flaw, the behavior of a typical mushroom structure for different angles of incidence is
presented in Fig. 1.

The curve has been obtained by Ansoft’s Designer software, which is an electromagnetic solver based on
MoM (equipped with Periodic MoM, PMM [1]). Generally, if the frequency bandwidth of low-profile antennas,
placed near a typical HIS is within the resonance band of HIS, a significant improvement in the radiation
efficiency is expected, compared to the conventional cases using PEC ground plane. However, the improvement
is not always as much as desired [10]. An explanation for this behavior is that the high-impedance surface does
not exhibit uniform surface impedance with respect to the different spatial harmonics radiated by an antenna,
as depicted in Fig. 1. For instance, it is known that electrically small horizontal antennas radiate a large angular
spectrum of TE and TM-polarized plane waves. As a result, the resonant frequency at which the effect of the
magnetic wall is observed depends on the incidence angle; Therefore, the total interaction between the antenna
and the HIS will be a summation of constructive and destructive effects [6].

References [1, 6, 7, 9, 11] are examples of the works concentrating completely on designing angularly stable
HISs or AMCs. In all of these cases, the basic cell shape is changed and optimized, while the cell size is fixed
throughout the structure (uniformly periodic structures). In the present work, we seek angular stability for HIS
in order to improve antenna radiation near the surface. This is done by applying non-uniformity to a uniform
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(a)

(b)

Figure 1: Behavior of a typical mushroom structure in different angles of incidence, f = 18.55 GHz, a) front
view, cross section, and the relevant dimensions, b) phase of reflection coefficient versus angle of incidence
obtained by Ansoft’s Designer software.

HIS. Two 1D NU-HISs made of parallel wires are proposed, and their behaviors are compared with that of the
uniform version (U-HIS). Then, the performance of a half wavelength dipole very close to all of these surfaces
is investigated. During the process, as shown in Fig. 2, the dipole length and radius (≈ 0.45λ & λ/220), the
spacing of side elements from center (≈ 0.23λ), and the spacing of dipole from the lower section of the planes
(PEC planes) (≈ λ/12) are kept fixed for better understanding of the influence of the surfaces alone. Because
the structures are composed of wires, NEC software (NEC Win Pro. V 1.1), which is an electromagnetic solver
based on MoM, is used for analysis.

 

Z 

Y 

X 
C C´ D C C´ D C C´ 

(a) (b) (c)

Figure 2: The geometry of the dipole antenna located over a) U-HIS, b) NU-HIS, and c) MNU-HIS.

2. The Main Idea, Explanation and Verification

The underlying basis for the idea in this paper returns to an important clue from this equation [12]:

X

η0
= F (p,w, λ) =

p cos θ

λ

[
ln

(
cos ec(

πw

2p
)

)
+G(p,w, λ, θ)

]
(1)

where η0 and λ are free space wave impedance and wavelength respectively. Also, G is a correction term for
large angles of incidence. The equation gives the surface impedance of parallel strips facing a TE plane wave as
depicted in Fig. 3. Ignoring G in (1), the clue is that when w and λ are fixed, X can be kept stable by a proper
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Figure 3: Front and side view of parallel metal strips (or equivalently wires) facing a TE plane wave impinging
in different angles of incidence.

 

a) 

b) 

c) 

e) 

d) 

f) 

Figure 4: VSWR and input impedance of the dipole located over
a) PEC ground plane, b) U-HIS, c) NU-HIS, d) MNU-HIS, e)
MNU-HIS with finite wire ground plane, and f) the last design
after a little tuning the dipole length and radius of side wires.

 

• • • Freq = 181 MHz 

—-  Freq = 197 

MHz 

• • • Freq = 181 MHz 

—-  Freq = 197 

MHz 

Figure 5: Gain (dB) for Fig. 2 (c), while the
infinite PEC plane is replaced by the finite
wire ground plane, a) E-plane, b) H-plane.

increase of p against the increase of θ. In other words, by gradually increasing p from center elements to the
side ones (applying tapering), more angular stability is achievable. Note that the same effect is also attained
by gradually decreasing w. But there are three problems in using such an idea. Firstly, as in Fig. 2, we have
used parallel wires instead of strips; Secondly, (1) is not correct when the structure is placed near the PEC
plane; Thirdly, in Fig. 3, the length of strips are infinite while those of this work are finite (≈ λ/2). The first
problem is solved considering the nearly equivalent scattering properties of strip and wire as depicted in Fig. 3
and stated in [6]. As for the second, it can be said that because here we need the general (not exact) effect
of tapering on X, we can foresee that even in the present condition the general behavior in (1) remains true.
Finally, as for the third, it is reminded from transmission line theory that a nλ/2 slice of a transmission line
represents an infinite line because the input impedance of such a line equals the load impedance. Fortunately,
our numerical investigations have confirmed the correctness of the approximations and predictions above, at
least for our proposed structures.

To study the effect of the idea, a half wavelength dipole antenna is numerically analyzed (by NEC) placed
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(a)

 

(b)

 

(c)

Figure 6: Near electric fields on the high impedance surfaces along Y -axis, excited by the dipole in Fig. 2,
X = 0, Z = 7.5 cm, f = 184 MHz, a) U-HIS (a), b) NU-HIS (b), and c) MNU-HIS (c) (upper row for amplitude
and lower for phase of the fields).

Figure 7: Phase of near electric fields excited by TE plane wave (in Fig. 2, EX) on the high impedance surfaces,
along Y -axis, X = 0, Z = 7.5 cm, f = 184 MHz.

over four different surfaces, PEC, U-HIS, and NU-HIS, and modified NU-HIS (MNU-HIS) while the dipole
height is fixed and very close to the surface. The proposed HISs are shown in Fig. 2 in which the dipole and
the parasitic wires radii are 1 mm and 8 mm, respectively. As in Fig. 4 (a), for the dipole near the PEC plane
without any parasitic wires, there is no resonance in Zin. As a result, the VSWR is very poor. Deploying
uniformly-placed wires (≈ λ/17.5) close to the PEC plane (≈ λ/22), as in Fig. 2 (a), a U-HIS is formed. As
a result, the VSWR of the dipole will improve very much as in Fig. 4 (b). The bandwidth on VSWR (< 2,
Z0 = 50) is 6.3%. The curves are very similar to those in [2] and [3]. Now the non-uniformity idea emerging from
(1) is applied by removing the two wires A and A’ in Fig. 2 (a) and properly shifting the positions of B and B’
sidewards. The best result rendering the most bandwidth is a Non-Uniform HIS (tapered HIS) shown in Fig.2
(b). Here the spacing BC is about λ/13.5. Fig. 4 (c) shows the VSWR and Zin of this surface. As observed, the
bandwidth increases form 6.3% to 9.3%. In the second step, considering the same point emerging from (1), it
seems that also by making the center elements, C, D and C’ a little denser the bandwidth may become better.
Thus, using a simple optimization procedure, the spacing CD and simultaneously BC are adjusted in order to
optimize the bandwidth on VSWR. The result is referred to as MNU-HIS and is shown in Fig. 2 (c). The spacing
BC and CD are about λ/13 and λ/29 respectively. Fig. 4 (d) shows the related VSWR and Zin. As seen, the
bandwidth increases from 9.3% to 11.33%. Note that in all of these cases, the overall gain is nearly identical
(≈ 9 dB) while the overall structure volume is fixed (not including the PEC plane, 0.45λ× 0.45λ× λ/12).

Up to this point, all of the presented designs used an infinite PEC plane. In the next step, this ideal plane
is modeled in NEC as a real finite plane (x ≈ 0.45λ & y ≈ 0.63λ). Therefore, the overall structure volume is
(0.45λ× 0.63λ× λ/12). The corresponding VSWR and Zin are shown in Fig. 4 (e). As obvious, due to cutting
the plane, the bandwidth deteriorates to 7.95%. To remove this descent, the radius of the side elements is tuned
a little. In fact, from (1), it is deduced that gradually reducing the radius is an alternative means of improving
angular stability of the surface. This tuning is done simultaneously with a little tuning of the dipole length.
After tuning, the best side elements radius is 7 mm (formerly 8 mm) and dipole length is 79.6 cm (formerly fixed
at 80 cm). The improved result shows 9.45% bandwidth as in Fig. 4 (f). The relevant gains in E and H-planes
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are depicted in Fig. 5. To give better understanding of the behavior of the surfaces, phase and amplitude of
near fields excited by the dipole on the surfaces are presented in Fig. 6. In addition, the phases of near fields
(on the surfaces) exited by a TE plane wave in different angles of incidence are rendered in Fig. 7. As deduced
from Fig. 6, both the amplitude and phase become more stable as a result of imposing non-uniformity. In other
words, in MNU-HIS the element right under the dipole and those on sides are illuminated much the same by the
dipole. This is an implication for angular stability of the surface. Note that from apertures theory it is known
that uniform phase and amplitude is an ideal condition yielding maximum performance. Fig. 7 is also a good
indicator of angular stability of the surfaces. As observed, the phase of near fields on NUM-HIS withstands
the most against increase of incidence angle. It can be concluded that the more the surface is angularly stable,
the more bandwidth it renders near the dipole antenna. In other words, angular stability of the HIS, obtained
through non-uniformity, improves the antenna performance.

3. Conclusion

The paper studies the effects of applying non-uniformity to a 1D uniform HIS. The proposed surfaces are
made of parallel wires placed uniformly (U-HIS) or non-uniformly (NU-HIS) over a PEC ground plane. To
show the effect of imposing non-uniformity, a half wavelength dipole antenna is numerically analyzed by MoM
in the close vicinity of four different ground planes, PEC, U-HIS, NU-HIS, and modified NU-HIS (MNU-HIS),
while the dipole height and length are kept fixed. Comparison of the results shows that MNU-HIS yields more
bandwidth than NU-HIS, and also, NU-HIS yields more bandwidth than U-HIS, while all cases have identical
volume and nearly identical gain. This effect is attributed to the improvement of angular stability of the surfaces
caused by applying an apt non-uniformity.
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Abstract—Due to the extremely low power, GPS signal can be easily affected by interferences. In this paper,
from the point of adaptive array processing, we review the existing spatial and space-time interference sup-
pression methods which attempt to mitigate interferences before the GPS receiver performs correlation. These
methods comprise self-coherence restoral technique based on the nature of GPS signal, space-time minimum
mean square error, power minimization technique, GPS multipath mitigation technique using the vertical array
etc. Also we summarize their performance and applicability by analyzing all these techniques, in which some
of our work and opinions are included.

1. Introduction

Global Positioning System (GPS) is a satellite-based navigation system which can provide the position,
velocity and timing information for users in all weather conditions, anywhere in the world and anytime in the
day. Therefore, it has been widely used in civil and military applications such as navigation by general aviation,
positioning for users and so on. Because of its high precision, general acceptability and easier equipment of
user’s receiver, GPS will gradually become a main means of global navigation.

However, GPS signal is susceptible to interferences from either intentional or unintentional sources for the
reason that it arrives at the receiver at a very low-power level, typically 20∼30 dB below the receiver’s thermal
noise level [1]. Based on that, the performance of GPS navigation and positioning degrades dramatically. Hence,
one of the hot topic of using GPS is to cancel the interference as completely as possible without any distortion
of desired GPS signal.

Conventional GPS suppression methods including time-domain and frequency-domain filtering techniques [1–
4] employ DFT technology to suppress interference by taking out abnormal spectrum line of digital intermediate
frequency signal. These methods have the advantages of easy implementation and low cost, but they can
not mitigate multiple narrowband interferences as well as wideband interferences owing to its incapability of
differentiating between desired signal and interference in the spatial domain. However, array signal processing
techniques can efficiently suppress the above interferences according to the spatial information. Adaptive nulling
technique [5] based on array antennas can adaptively place nulls in the direction of interferences, which is very
popular to be used in improving the performance of GPS receiver. Unfortunately, the above method may be
inadequate for broader band operation, especially when interference multipath is present. In order to solve
this problem, space-time adaptive processing (STAP) techniques [6–9] are proposed in recent years. STAP
can greatly increase the number of degrees of freedom under the equivalent antennas condition and thus can
efficiently suppress wideband interference. So it is a trend of GPS interference mitigation.

This paper mainly discusses the existing methods based on adaptive array processing. The following section
will describe some spatial techniques emphasis on self-coherence restoral technique using the nature of GPS
signal. In Section 3 we firstly give a uniform data model, and then several STAP methods consisting of
maximum signal-to-interference ratio algorithm, minimum mean square error, space-time Capon algorithm and
power minimization technique are described. GPS multipath mitigation technique using the vertical array is
given in Section 4. While, concluding remarks are given in Section 5.

2. Spatial Adaptive Processing Techniques

As demand for accurate GPS positioning, adaptive beamforming algorithm should not cause any significant
distortion of the desired GPS signals when it is used to suppress interferences. Such algorithms include the
direction finding algorithm [10], which is an adaptive beamforming algorithm based on estimation of the direc-
tions of arrival (DOAs) of the received signals, and directional constrained adaptive beamforming algorithm,
which is based on the principle that if the dynamic of the GPS receiver is not too high and the beampattern



358 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

is not too narrow, rough coordinates of the receiver and the coordinates of the satellites in view can be used
to calculate the DOAs of the signals of interest from different satellites, and so on. However, these algorithms
do not fully take advantage of the GPS signal structure. So Wei Sun proposed a GPS interference mitigation
method using self-coherent feature of GPS signal [11, 12].

The method considers interference suppression in GPS using spatial processing that incorporates the known
temporal structure of the GPS signal. And it utilizes the replication property of the C/A-code within the
navigation symbol to suppress interferences which are aperiodic or have a different periodic signal structure
from that of the GPS signal. A block diagram of the proposed algorithm is shown in Fig. 1, which consists of a
main channel and a reference channel. The samples in the main channel and the reference channel are processed
by a beamformerwand another processor f respectively, where the samples of reference channel are lP chips
(P = 1023, 1 ≤ l < 20) delay of the main channel’s data. These samples in the main channel are given by:

x(n) = as(n) +

K∑

j=1

bjij (n) + v(n) (1)

where x(n) is the M × 1 data vector, s(n) is the desired GPS signal and ij (n) is the jth interference, a and
bj are M × 1 steering vectors of the desired GPS signal and the jth interference respectively, and v(n) is the
thermal noise vector. This paper provided that GPS signal, interference, and noise are uncorrelated unless
special statement.

Due to the repetition of GPS signal, GPS signal samples of two channels in Fig. 1 have the same values as
long as they are within the same symbol. However, the interference samples have different values because they
are aperiodic or have a different periodic signal structure from that of the GPS signal. Thus the samples in the
reference channel are given by:

x(n− lP ) = as(n) +

K∑

j=1

bjij (n− lP ) + v(n− lP ) (2)

The algorithm proposed can adaptively update the weight vectors w and f by maximizing the cross-
correlation between the output of the main channel and the reference channel. Accordingly, we define the
following cost function:

C(w, f) =
|Rzd|
RzzRdd

=

∣∣wHRP
xxf
∣∣2

|wHRxxw| |fHRxxf |
(3)

where

Rzd = E
{
z(n)dH(n)

}
= wHE

{
x (n)xH (n− lP )

}
f = wHRP

xxf

Rzz = E
{
z (n) zH (n)

}
= wHE

{
x (n)xH (n)

}
w = wHRxxw

Rdd = E
{
d (n) dH (n)

}
= fHE

{
x (n− lP )xH (n− lP )

}
f = fHRxxf (4)

The algorithm makes full use of the nature of GPS signal and does not need any knowledge of transmitted
signals or the location of the satellite. Meanwhile, it is not sensitive to steering error and robust. So the
algorithm is a promising method in GPS interference cancellation.

Generally speaking, spatial adaptive processing techniques are easy to implement and convenient for calcula-
tion. But it will increase array cost for an interference consuming one degree of freedom. To solve this problem,
the techniques based on space-time joint processing are proposed [7–9, 13]. They all provide more degrees of
freedom via time tap than only space processing.

3. Space-time Joint Processing Techniques

STAP algorithms employ the multiple receiving elements (“space”) of an antenna array and multiple tem-
poral samples (“time”) to cancel interferences. The space-time weights are realized through a tapped-delay-line
behind each antenna, as shown in Fig. 2. Some scholars, such as Dr. Fante and Dr. Zoltowski, have gained some
achievements in GPS interference mitigation based on STAP [7, 8, 14]. In this section, based on the fruits of
their study, we give the general space-time data model for GPS interference suppression.
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Figure 1: Block diagram of the interference suppres-
sion based on the self-coherence of GPS signal.

Figure 2: Block diagram of the STAP technique for
GPS interference mitigation.

3.1. Data Model
The space-time data model can be written as:

x(t) = As(t) +
K∑

j=1

Bjij(t) + V(t) (5)

where x(t) = [x11(t) . . . xM1(t)x12(t) . . . xM2(t) . . . x1N (t) . . . xMN (t) ]T is the received data (M is the number

of antenna and N is the number of tap each antenna), A = IN×N ⊗ a and s(t) = [s(t) . . . s(t− (N − 1)T )]
T
,

Bj and ij(t) have the same structure as A and s(t) respectively.

3.2. STAP Algorithm
3.2.1. Maximum Signal-to-Interference-plus-Noise Ratio

This approach chooses weight vectors w to maximize signal-to-interference-plus-noise ratio of the output of
beamformer. Accordingly, there is the following cost function:

wopt = arg max
w

SINR =
wHRsw

wHRnw
(6)

where Rn is interference-plus-noise covariance matrix. Because the GPS signal strength is at least 20 dB below
the thermal noise floor, Rn can be estimated by averaging approximately 4MN independent samples of the
received signal [15], namely:

Rn ≈ R = E
{
x(t)xH(t)

}
≈ 1

4MN

4MN∑

q=1

x (q)xH (q) (7)

Rs is the desired GPS signal covariance matrix, which can be derived by the density of power spectrum of
GPS signal. Note that this method requires information on platform attitude in order to determine Rs, and
meanwhile the processor is required being repeated for each GPS satellite which is used to determine user’s
position.

3.2.2. Minimum Mean Square Error Algorithm
This method obtains the weight vector by minimizing the mean square error between the desired GPS signal

and the output of the processor in Fig. 2. Accordingly, the cost function is given by:

wopt = arg min
w

E
{(
sd − wHx

) (
sd − wHx

)H}
(8)

where sd is the desired signal. By solving this optimum question, we can find:

wopt = R-1gs (9)

where gs = E {xs∗d} is the first column of Rs. Note that the processor is also repeated for each GPS satellite
to calculate user’s position and requires attitude information.
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3.2.3. Space-time Capon Beamforming
When the direction of desired GPS satellite signal can be estimated, this algorithm minimizes the output

power with attempting to preserve the gain in the desired signal direction for each of the N “tap times” of the
processor in Fig. 2. This leads to the power minimization with N linear constraints:

min
w

wHRw

s.t. wH
i a = 1, i = 1, . . . , N

(10)

where w = [w1, . . . ,wN ]
T
, wi = [w1i, . . . , wMi]. And (10) can be rewritten as:

min
w

wHRw

s.t. wHA = 1N×1

(11)

Using the method of Lagrange multipliers, the solution to (11) is:

wopt = R−1A(AHR−1A)−11N×1 (12)

This result is similar to the one obtained by standard capon beamforming (SCB). So the approach is called
space-time capon method. Like the SCB, the performance of the approach becomes worse when steering vector
error exists. Therefore, some robust STAP algorithm will be developed based on the robust capon beamforming
algorithm [16].
3.2.4. Space-time Power Minimization Algorithm

Because the received GPS satellite signals are well below the thermal noise floor, this method is extraordinary
efficient for GPS interference cancellation. It simply constraints the weight on the first tap of reference antenna 1
(see Fig. 2), and then minimizes the output power, namely:

min
w

wHRw

s.t. wHδMN = 1
(13)

where δMN = [1, 0, . . . , 0, . . . , 0]T is the MN × 1 vector. Using the method of Lagrange multipliers, the solution
to (13) is

wopt =
R−1δMN

δHMNR−1δMN
(14)

This approach has the advantages of not requiring to know the DOA of the incoming GPS signal and
implementing easily. So it is adopted by some available GPS antennas [13] to mitigate interference.
3.3. Reduced-rank STAP Technique

Because of the large dimensionality of the space-time covariance vector and weight vector, STAP techniques
will lead to a larger computational burden and slower convergence. Therefore, the study on reduced-dimension
techniques becomes a hot topic in recent years [8, 17]. Reduced-dimension techniques are mainly to constraint
weight vector to lie in a lower dimensional subspace by the transformation matrix TNM×D (D < NM), namely
let:

w = Twr (15)

so (13) can be rewritten as:
min
w

wH
r THRTwr

s. t. wH
r THδMN = 1

(16)

the solution to (16) is

wr =
(THRT)−1THδMN

δHMNT(THRT)−1THδMN
(17)

where the dimension of THRT is D ×D, which is less than the one of R. This leads to lower computational
complexity and rapid convergence. We can obtain the matrix T by techniques such as the cross-spectral metric
(CS) or principal-components (PC). But both techniques are quite computational burden since it is necessary
to generate the eigenvectors of covariance matrix before finding T.

Fortunately, Dr. Zoltowski proposed a reduced-dimension STAP technique based on multistage nested wiener
filter (MSNWF) [17]. This technique accomplishes the reduced-dimension processing via the innovative mul-
tistage wiener filter and does not require computing the inversion of R. Thus it can reduce computational
complexity and improve the speed of convergence compared with CS and PC.
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4. GPS Signal Multipath Mitigation Techniques

The error due to GPS signal multipath is an important factor of positioning error. At the present time,
the common techniques for multipath mitigation mainly include DLL and MEDLL. Both techniques change a
standard receiver structure, so their compatibility is very poor. In [18] Dr. Stoica proposed a multipath miti-
gation algorithm based on the vertical array, which suppress multipath interference before correlation without
changing the receiver structure.

The above method assumes that the directions of arrival of the GPS multipath signals are approximately
known relative to the direction of arrival of the GPS signal, which is possible in GPS vertical array. When the
GPS multipath signals exist, the data model received by GPS vertical array is given by:

x(t) = as(t) +

Q∑

q=1

aqβqs(t) +
K∑

j=1

bjij(t) + v(t) (18)

(18) can be rewritten as:

x(t) = (a + Vβ)s(t) +

K∑

j=1

bjij(t) + v(t) (19)

where the matrix V’s range space is a good approximation of the one spanned by the GPS multipath signals,
β is an unknown vector whose elements equal to the ratios between the GPS multipath signals and the GPS
signal. According to literature [16], a and β can be determined by solving the following problem:

min
a,β

(a + Vβ)HR−1(a + Vβ)

s. t. a = Bu + ā, ‖u‖2 ≤ ε
(20)

let G be a basis of the null space of VH , so (20) can be rewritten as:

min
a,β

aHG
(
GHRG

)−1
R−1

s. t. a = Bu + ā, ‖u‖2 ≤ ε
(21)

let â denotes the solution to (21), we can find the weight vector:

w = G(GHRG)−1â (22)

In essence, the method proposed by Dr. Stoica removes the GPS multipath signals by “pre-filtering” the
received data via the matrix GH . Although this algorithm is appropriate to GPS vertical array, its main idea
can be further extended to the general array to suppress GPS multipath signals.

5. Conclusion

Several methods used to mitigation GPS interference have been discussed in this paper. The conventional
spatial techniques can adaptively null the interference, but they are incapability of canceling many narrowband
interferences as well as wideband and mutipath ones due to the limited degrees of freedom. STAP can overcome
the above problem. However, the computational complexity is a troublesome question. Fortunately, the reduced-
dimension technique proposed by Dr. Zoltowski has made a breakthrough in GPS interference mitigation.
Different from the above reduced-dimension method, the next work we will do is to develop an adaptive recursive
least square (RLS) space-time algorithm combined with cyclostationary properties of GPS signal, which will
improve speed of convergence by RLS algorithm. Also the algorithm belongs to blind adaptive algorithm by
only using the nature of GPS signal, so it is very robust.
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A Simulation Tool for Space-time Adaptive Processing
in GPS
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Abstract—With the wide use of GPS, it becomes more and more important to improve the positioning accuracy.
The GPS signal is very weak, and can be easily interfered. Space-time adaptive processing(STAP) can suppress
the jamming not only in the temporal domain, but also in the spatial domain. STAP has now become a good
candidates for jamming mitigation in GPS.

In order to evaluate the performance of various kinds of STAP algorithms, and to develop the novel STAP
algorithms. we need to simulate space-time array GPS data with high fidelity and the software GPS receiver.
This paper mainly presents a simulation method for space-time GPS data, as well as the simulation of some
typical kinds of jammers. The simulation method for software GPS receiver is also introduced. The data that
after the process of STAP is computed by the simulated GPS receiver. The simulation results show that the
simulation tool is a good platform for the development of STAP algorithms.

1. Introduction

GPS is a network which is composed of many satellites, it can provide accurate position and time information
[1]. The signal received by GPS receiver has the characteristics not only in temporal domain, but also in spatial
domain. With the advent of STAP algorithms, the jammings can be suppressed through spatial and temporal
characteristics effectively, and the positioning precision can be further improved. To evaluate the effect of the
STAP algorithms on GPS jamming mitigation, we set up this simulation platform for Space-Time array GPS
data. Besides we also simulate the software GPS receiver to validate the data after being processed by algorithms
[2, 3].

In the second section of this paper, the simulation method for Space-Time array data is introduced. In the
third section we introduce the common jammings to the GPS and simulate some typical of them. In the forth
section we introduce the simulation method of GPS receiver briefly. The simulation results are given in the fifth
section and in the sixth section we get the conclusion.

2. The Method for Simulating Space-time Array Data

2.1. Single Channel Temporal GPS Data Generation

The GPS signal is composed of navigation data, PRN code and carrier for modulation. The navigation data is
a binary coded file, and is transmitted in frames according to certain format. It contains ephemeris parameters,
satellite almanac and so on. We can compute the satellites position with them. These parameters value can be
found from related data resources. In this paper, we choose the data from CDDIS (http://cddisa.gsfc.nasa.gov).
They are coded in RINEX format. We should find the corresponding parameters from them first. These
parameters, multiply by themselves scale factors, are converted to binary bits that fit the navigation data
format. We only need to simulate the first three sub-frames [3].

The GPS signal is of two kinds of PRN codes, that is C/A code and P code. The structure of P code is
quite complex and secret to civil users. Here we only introduce the simulation of C/A (coarse/acquisition)
code. The C/A code is coded in binary format, and has the characteristics of multi address, searching GPS
signal, coarse acquisition and anti-jamming. It is generated by two 10-order feedback shift registers, which can
generate C2

10 + 10 = 55 kinds of different C/A code [3]. The 24 satellites have different C/A codes. The chip
shift between the satellites is fixed. According to one satellite’s C/A code, we can obtain the others’ C/A codes.

After the navigation data is spread by the C/A code, they modulate the carrier centered at 1575.42 MHz
by BPSK. Since the data we need is at the intermediate frequency that after down-conversion, we select it as
fIF = 21.25 MHz. And after band-pass sampling, the output center frequency is f0 = 1.25 MHz. The power of
the signal arrived at the receiver is about -155 db. We select the gain of the receiver antenna as 4 db, and the
gain of its’ amplifier as 31 db. Thus the signal at IF is -120 db. Once assume the position of the receiver, we
can get the propagation time of the GPS signal.
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2.2. Multiple Channel Space-time GPS Data Generation

Suppose the signal of a GPS Satellite arrive at the receiver antenna with the direction of θ, the expression
of it is f(t), refer to Fig. 1. So the signal that reaches the second antenna [4] is f(t− τ), τ = l/c, l = d cos(θ),
where τ denotes the arrival time difference between the first antenna and the second antenna, and d denotes
the inter-element distance. So the signal received by the second antenna can be expressed as f(t− d cos(θ)/c),
approximately to f(t)e−jωτ = f(t)e−j2πf×d cos(θ)/c.

Figure 1: Uniform linear array.

Similarly, the signal of the satellite that arrives at the nth antenna can be expressed as:

f(t)e−jω(n−1)τ = f(t)e−j2πf×(n−1)d cos(θ)/c (1)

Suppose that every antenna has M time delays, and each time delay is T , so the Space-Time satellite data
can be expressed as:

F (t, θ) =




f(t)
f(t− T )

· · ·
f(t− (M − 1)T )


 (1 e−jωτ · · · e−jω(N−1)τ ) (2)

As for the arrived signal that contains four GPS satellites, its’ multiple channel Space-Time data model can
be expressed as:

S(t, θ) =
4∑

i=1




fi(t)
fi(t− T )

· · ·
fi(t− (M − 1)T )


 (1 e−jωτi · · · e−jω(N−1)τi) (3)

where fi(t) denotes the ith satellite signal received, τi denotes the ith of the satellite time delay.

3. Jamming Simulation

During the GPS signal propagation, it can be affected by Satellite Clock error, Ionospheric error, multi-path
jamming, radio station RF jamming, noise and so on. The typical jamming sources are broadcast TV–UHF
channel, air-borne VHF, personnel electronic device, Ultra broadband communication, Multi-path, etc. For
the purpose of build Space-Time data platform, we only consider narrowband RF jamming, broadband FM
jamming, and receiver random noise.

Take the broadband FM jamming for example, its’ model can be expressed as:

J(t) = A0 cos[ω0t+ kf

∫ t

0

VΩ(t)dt] (4)

The system frequency scope is ω0−kf | VΩ |≤ ω ≤ ω0 +kf | VΩ |. On the basis of typical value, the jamming
requires lowest power lever and has the worst affection when the frequency bias is between 400 K–600 K. So we
select the biased frequency ∆f = 500 MHz, centered frequency f0 = 1.2 MHz, and the jamming power is 60 db
above the signal power, that is -60 db.

As the single channel temporal data extend to multiple channel Space-Time data, we also need to extend
the jamming into multiple channel Space-Time form, its’ mathematical model can be expressed as:
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I(t, θ) =

m∑

i=1




Ji(t)
Ji(t− T )

...
Ji(t− (M − 1))


Ai(θ) (5)

where Ai(θ) denotes the steering vector of the jamming.

The receiver internal noise n(t) obeys Gauss statistical distribution, it can occupy the whole frequency. The
Space-Time GPS data with jamming can be expressed as:

D(t, θ) = S(t, θ) + I(t, θ) + n(t) (6)

4. The Simulation Method of Software GPS Receiver

In the simulation of software GPS receiver, we take the advantage of the flexibility of software. We mainly
introduce the acquisition and tracking modules.

The traditional acquisition is a two-dimensional search process. The computation amount is quite large.
Based on the software, we use the circular correlation method, showed as Fig. 2.

Assume the input signal is yk. We take the local carrier at fi as li,k = exp(j2πfitk). First the FFT result
of N points of yk · li,k is multiplied by the conjugate FFT of the N points of local C/A code. Then the IFFT
of the product gives the correlation result in the time domain for all the 1023 code phase offsets.

Figure 2: Acquisition based on circular correlation. Figure 3: The correlation curve.

In the code tracking module [5], we use the numerical relation of correlation values of prompt code, early
code and late code with the input IF sampled signal to adjust the input signal and get the finer code phase
offsets x instead of traditional DLL. Assume the correlation values are yp, ye, yl respectively. The relationship
of them is showed as Fig. 3, where Tc is the code chip width, p is the code offset between prompt code and
early/late code. From Fig. 3, we obtain that

r =
yl
ye

=
Tc − x− p

Tc + x− p
⇒ x =

(1 − r)(Tc − p)

1 − r
(7)

From x, we shift the input signal left or right one sample, and can evaluate the finer code phase error.

Due to the flexibility of software, we use third-order PLL to fit the high dynamic situation. We choose the loop

filter as F (s) =
1 + sτ2
sτ1

· 1 + sτ4
sτ3

, So the error transfer function isHe(s) =
τ1τ3s

3

τ1τ3s3 +Kτ2τ4s2 +K(τ2 + τ4)s+K
,

where K is the loop gain. Let a = K
τ1τ3

= ω2
nη, b = a(τ2 + τ4) = ω2

n + 2ζωnη, c = a · τ2τ4 = 2ζωn + η, and we
can get

He(s) =
s3

s3 + cs2 + bs+ a
=

s3

(s+ η)(s2 + 2ζωns+ ω2
n)

(8)

From the formula (8), we can choose the ζ, ωn and η according to the dynamic situation easily.
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5. Simulation Results

In this paper, we choose the digital centered frequency as 1.25 MHz. According to Shannon sampling
theorem, we choose acquisition frequency as 5 MHz, the power of jamming 60 db above that of GPS signal,
that is -60 db. The receiver internal noise 20 db above that of GPS signal, that is -100 db. The Fig. 4 denotes
the waveform of GPS data without jamming on one antenna. And the Fig. 5 denotes the waveform of GPS
data with Broadband FM jamming on one antenna. Their spectrums that are with and without the broadband
jamming are indicated in Fig. 6 and Fig. 7 respectively. In the experiment, we choose the antenna position
as (X:-3173088.339 m;Y:-3625066.392 m;Z:4181362.566 m), and the position computed by our software receiver
is(X:-3173092.972m; Y:-3625044.536 m; Z: 4181358.520 m). The Fig. 8 denotes the spectrum of GPS data after
STAP processing.

Figure 4: Waveform of Space-Time GPS data without
jamming.

Figure 5: Waveform of Space-Time GPS data with
broadband FM jamming.

Figure 6: Spectrum of Space-Time GPS data without
jamming.

Figure 7: Spectrum of Space-Time GPS data with
broadband FM jamming.
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Figure 8: The spectrum of GPS data after STAP processing.

6. Conclusion

The simulation result shows that the Space-Time array data simulation method is valid and of high fidelity.
And the simulation tool has been testified as a good platform for evaluating the STAP algorithms and using
them in GPS. It will be of great help to improve the GPS positioning precision further.
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Abstract—An analysis of the broadband beamspace adaptive array is provided. There are two conditions
imposed on the array. First, the individual beams should have a good frequency invariant property. Second,
they should be linearly independent. However, these two conditions are not independent and it is shown that
there is a trade-off between them. To improve the interference cancellation capability of the array, we may
need to sacrifice the frequency invariant property of the beams to some degree for more linearly independent
beams. A DFT-modulated design method is also proposed, where the beam directions are uniformly distributed
over the spatial domain and the linear independence of the beams is guaranteed inherently. Simulation results
verified our analysis and the proposed method.

1. Introduction

Adaptive beamforming has found numerous applications in various areas ranging from sonar and radar to
wireless communications [1]. For arrays to accomplish nulling over a wide bandwidth, tapped-delay lines (TDLs)

Figure 1: A signal impinges from an angle θ onto
a uniformly spaced broadband linear array with M
sensors, each followed by a J-tap filter.

are employed, resulting in an array with M sensors and
TDLs of length J , as shown in Fig. 1. To perform beam-
forming with high interference rejection and resolution,
we need to employ a large number of sensors and long
TDLs, which unavoidably increases the computational
complexity of its adaptive part and slows down the con-
vergence of the system. To reduce the computational
complexity of a broadband adaptive beamformer and in-
crease its convergence speed, Many methods have been
proposed, including the time-domain subband adaptive
beamformer [2, 3], a combination of subband decomposi-
tion in both the temporal and spatial domains [4], and
those based on frequency invariant beamforming tech-
niques [5, 6].

As the broadband counterpart of the narrowband
beamspace adaptive array, the beamspace broadband
adaptive array was proposed in [5], where several fre-
quency invariant beams (FIBs) are formed pointing to different directions by a fixed beamforming network with
two-dimensional (2-D) filters; thereafter the outputs of these beams are combined adaptively by a single weight
for each of them. Since both the number of beams and the number of selected beams are small, the total number
of adaptive weights is greatly reduced.

In this paper, we will first give an analysis of the broadband beamspace adaptive array to show a trade-off
between two conditions imposed explicitly or implicitly and its impact on the performance of the resultant
beamformer. It can be proved that the number of independent beams formed is the same as the length N of
the prototype filter for the fan filter design. Although we can design as many frequency invariant beams as
we want, only N of them are independent and at most we can only null out N − 1 interfering signals. As
the array’s interference cancellation ability is dependent on both the number of independent beams and the
frequency invariant property of those beams, we can sacrifice the frequency invariant property to some degree
to design more independent beams. As a result, the array’s interference cancellation property will be improved.
With the above analysis, we then propose a new design of the frequency invariant beams, where their beam
directions are uniformly distributed in the spatial domain and their independence is guaranteed inherently by
the special form of the prototype filters, which are derived from another prototype filter by the discrete Fourier
transform (DFT) modulation with appropriately imposed zeros.
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This paper is organised as follows. A brief review of the broadband beamspace adaptive array is provided
in Section. An analysis of the trade-off in its design is given in. The design based on the DFT modulation is
proposed in Section. Design examples and simulation results are given in Section, and conclusions drawn in
Section.

2. Broadband Beamspace Adaptive Array

In a narrowband beamspace adaptive array [7], a total of N beams are formed by a beamforming network,
where one is the main beam pointing to the direction of the signal of interest and the remaining N − 1 beams
are auxiliary beams pointing to the remaining directions. The output power levels of the auxiliary beams are
compared to a threshold and those higher than the threshold will be chosen in the following adaptation. In this
way the resultant partially adaptive array can maintain an acceptable performance with a lower computational
complexity. Extend this idea to the broadband case, we can also design N broadband beams pointing to
different directions to form a broadband beamspace adaptive array. To combine the outputs of the beams with
one adaptive weight for each of them, their response should be frequency invariant.

In [5], such a broadband beamspace adaptive array was proposed for an equally spaced linear array. With the
recent development in the design of frequency invariant beamformers for one-dimensional (1-D), two-dimensional
(2-D) and three-dimensional (3-D) arrays [8], we can easily extend the idea of a beamspace adaptive array to
the 2-D and 3-D cases. Here we will focus on the case of a linear array and first we give a brief review of the
proposed beamspace approach.

Suppose a signal with an angular frequency ω and an angle of arrival θ impinges on the uniformly spaced
linear array of Fig. 1, then its output in continuous form can be written as

y(t) = ejωt
M−1∑

m=0

J−1∑

k=0

wm,k · e−jmω∆τ · e−jkωTs (1)

with ∆τ =
d

c
sin θ, where Ts is the delay between adjacent samples in the TDL, d is the array spacing, and c is

the wave propagation speed. Then the array’s response can be written as

R̃(ω, θ) =
M−1∑

m=0

J−1∑

k=0

wm,k · e−jmω∆τ · e−jkωTs . (2)

With the normalised angular frequency Ω = ωTs, we obtain the response as a function of Ω and θ

R(Ω, θ) =
M−1∑

m=0

J−1∑

k=0

wm,k · e−jmµΩ sin θ · e−jkΩ with µ =
d

cTs
. (3)

With the substitution of Ω1 = Ω and Ω2 = µΩsin θ in (3), we obtain a 2-D digital filter response

R(Ω1,Ω2) =

M−1∑

m=0

J−1∑

k=0

wm,k · e−jkΩ1 · e−jmΩ2 . (4)

We see that the spatio-temporal spectrum of the received signal lies on the line Ω2 = µΩ1 sin θ. Suppose the
desired frequency invariant response of the array is P (sin θ). By the substitution sin θ =

(
Ω2

µΩ1

)
, we can obtain

the response R(Ω1,Ω2) with nominal parameters Ω1 and Ω2. Sample the function R(Ω1,Ω2) at the (Ω1,Ω2)
plane and then apply an inverse discrete Fourier transform (DFT) to the resultant 2-D data, we will then find
the corresponding coefficients wm,k. To fit the spatial and temporal dimensions of the array, we may need to
truncate the result from the inverse DFT [5, 8].

For the desired response P (sin θ), it can comes from a 1-D digital filterH(ejΩ) by the substitution Ω = π sin θ.
If H(ejΩ) is a lowpass filter [5], then signals from the directions around θ = 0 will correspond to its passband,
and a beam is formed pointing to the direction θ = 0. If we want to steer this beam to the direction θ = θ0
with the same low pass filter H(ejΩ), we can vary it into the form H̃(ejπ sin θ) = H(ej(Ω−π sin θ0)) and consider
H̃(ejπ sin θ) as the new desired frequency invariant response.
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As the sampling frequency is in general twice the highest frequency component of the signal and array
spacing is half the wavelength of the highest frequency component, we have d = 1

2 · c · (2Ts) = cTs and µ = 1.
Therefore, without loss of generality, we will only consider the case with µ = 1 in the design and simulations.

Moreover, we also assume the signal of interest comes from the broadside, then the main beam will point
to the direction of θ = 0. For the auxiliary beams, their directions are decided in such a way that the main

Figure 2: A broadband beamspace adap-
tive array with P frequency invariant
beams (FIBs).

direction of a beam should ideally coincide with nulls (zero re-
sponses) of all other beams, as mentioned in the simulation part of
[5].

A single adaptive weight is applied to each of the auxiliary
beams by minimizing the variance of the error signal between the
main beam and the auxiliary beams. In the adaptation, some of
the auxiliary beam outputs are active and some others are simply
discarded if their output signals are below some prescribed level.
Fig. 2 shows the diagram of such a broadband beamspace adap-
tive array, where x[n] is the vector containing the received signals
x0[n], . . . , xM−1[n] and w1, . . . , wP−1 are the adaptive weights at-
tached to each of the beam outputs.

3. Analysis of the Broadband Beamspace Adaptive Array

For the beamspace array to work, the frequency invariant beamforming network needs to meet two conditions,
which are imposed explicitly or implicitly.

First, the beams formed should have a satisfactory frequency invariant property for the interested frequency
band, which is dependent on the required shape P (sin θ) of the beam and the temporal/spatial dimension of the
corresponding 2-D filter. The more complicated the shape, the more coecients we need in each of the frequency
invariant beams, i.e., a larger M and J .

From the discussion of the last section, the desired beam response can be derived from the corresponding
prototype filter H(ejΩ). Suppose the length of filter is N . As the shape is decided by the prototype filter, the
dimension M and J of the 2-D fan filter (frequency invariant beamformer) should be at least 3 times that of
the prototype filter to maintain the shape of the response of the prototype filter, that is, N ≤ min{M3 , J3 } [5].

Secondly, the beams formed should not be linearly dependent. Otherwise, some of the beam outputs will be
a linear combination of the others, which leads to a waste of resources and also reduces the number of effective
beams. As a result, we will not be able to null out the desired number of interfering signals. This second
condition is not mentioned explicitly in [5], but it is a necessary condition to fully exploit the potential of the
beamspace adaptive array. We will see later that the beam direction arrangement in [5] guarantees the linear
independence of the beams.

These two conditions are not independent and there is a close relationship between them. In the following,
we will show that the number of independent beams formed Nind cannot exceed the length N of the prototype
FIR filter. We prove this by contradiction.

Suppose we can have P > N independent beams formed by some prototype filters with a length N . These
beams have a response of Hp(e

jπ sin θ), p = 0, 1, . . . , P − 1. Each of them is derived from the corresponding
prototype filter Hp(e

jΩ), p = 0, 1, . . . , P − 1, with an impulse response of hp = [hp,0, hp,1, . . . , hp,N−1]
T , p =

0, 1, . . . , P −1. These prototype filters Hp(e
jΩ), p = 0, 1, . . . , P −1 can further be derived from the same lowpass

filter as discussed in the last section, or they can simply be some different filters.
Now consider the linear combination of the following form

0 = α0h0 + α1h1 + · · · + αP−1hP−1, (5)

where α0, · · · , αP−1 are scalars to be found for this equation to hold. Taking the transpose of both sides and
then multiplying the equation with the vector [1 ejπ sin θ . . . ej(N−1)π sin θ]T , we arrive at

0 = α0H0(e
jπ sin θ) + α1H1(e

jπ sin θ) + · · · + αP−1HP−1(e
jπ sin θ), (6)

where Hp(e
jπ sin θ), p = 0, 1, . . . , P − 1 is exactly the response of those independent beams. Since they are

independent, all the scalars α0, · · · , αP−1 must be zero for (6) to hold, and then for (5) to hold, which means
that hp, p = 0, 1, . . . , P − 1 are independent. However, as P is larger than the length of each vector hp, the
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rank of the N × P matrix formed by H = [H0,H1, . . . ,HP−1] cannot be larger than N , that is, it is impossible
for all of the vectors hp to be independent. Thus, we reach a contradiction.

As the maximum rank of H is N , we can see from the proof that the maximum number of independent
beams formed will be equal to the length N of the prototype FIR filter. Clearly, although we can design as
many frequency invariant beams as we want, only N of them are independent and at most we can only null out
N − 1 interfering signals. As the array’s interference cancellation ability is dependent on both the number of
independent beams and the frequency invariant property, there is trade-off between these two factors for a fixed
M and J . We may choose a prototype filter with N = min{M3 , J3 } for a good frequency invariant property,

but when the number of interferences increases and becomes larger than (min{M3 , J3 } − 1), the array will not
be able to null out the additional interferences. Therefore we may need to sacrifice the frequency invariant
property a little to increase N and design more independent beams. The loss in frequency invariant property
can be compensated by the gain in the increasing number of independent beams. As a result, the interference
cancellation ability of the array is improved. We will give some results to show this trade-off in our simulations.

The next question is, provided the length of the prototype filter N , how to design N independent frequency
invariant beams. We will propose a DFT-modulated method in the next section with the beam directions
uniformly distributed in the spatial space and their independence guaranteed inherently.

4. DFT-modulated Design of the Frequency Invariant Beamformers

Before we proceed further, we want to give a sufficient condition with which the P beams formed by P
general prototype filters hp, p = 0, 1, . . . , P − 1 are linearly independent. This condition is stated as follows.

• As long as for the p̂−th frequency response Hp̂(e
jΩ), p̂ = 0, . . . , P−1, there exists a point Ω = Ωp̂,

where Hp̂(e
jΩp̂) 6= 0 and all the remaining frequency responses Hp6=p̂(ejΩp̂) = 0, the set of frequency

responses Hp(e
jΩ), p = 0, 1, . . . , P − 1, and hence the set of beams formed by them will be linearly

independent.
The proof is given in the following. Consider the equation (5) again. Taking the transpose of both sides and

then multiplying the equation with the vector [1 ejΩ . . . ej(N−1)Ω]T , we arrive at

0 = α0H0(e
jΩ) + α1H1(e

jΩ) + · · · + αP−1HP−1(e
jΩ), (7)

For p̂ = 0, put the value Ω = Ω0 into the above equation, we have

0 = α0H0(e
jΩ0) + α1H1(e

jΩ0) + · · · + αP−1HP−1(e
jΩ0) = α0H0(e

jΩ0) + 0 + · · · + 0. (8)

As H0(e
jΩ0) 6= 0, we have α0 = 0. Similarly, we have αp = 0, p = 0, 1, . . . , P − 1. Therefore, for (7) to

hold, all the P scalars must be zero, that is, both the vectors hp and frequency responses Hp(e
jΩ) are linearly

independent. The proof is complete.
In [5], the main direction of a beam was arranged to coincide with nulls (zero responses) of all other beams.

From the above proof, clearly, this arrangement guarantees the independence of the beams. However, in [5], the
authors were simply using the existing nulls of the prototype filter, so the direction of the auxiliary beams can not
be controlled by the designer and they can point to anywhere depending on the chosen lowpass prototype filter.
Here we propose a DFT-modulated method for the design of the independent frequency invariant beamformers,
where the beam directions are uniformly distributed in the spatial domain and their independence is guaranteed
inherently.

Assume the impulse response of a lowpass filter is h[n], n = 0, 1, . . . , N − 1. Based on h[n], we can obtain
the response hp of the p− th prototype filter for the p− th beam shape design by the following DFT modulation

hp,n = h[n]ej
2pnπ

P . (9)

In the frequency domain, this modulation shifts the response of original prototype filter h[n] along the frequency
axis by 2pπ

P . If the z-transform H(z) of h[n] can be expressed as

H(z) =

P−1∏

p=1

(1 − ej
2pπ
P z−1), (10)

then after modulation, the main direction of the P resultant beams will coincide with the nulls of the other
beams, hence these beams will be independent. Note in this case, we have P = N , i.e., the number of independent
beams formed will be the length of the prototype filter.
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For the main directions of these beams, we have

π sin θ =

{
2pπ
P for 2pπ

P < π
2pπ
P − 2π for 2pπ

P ≥ π
⇒ sin θ =

{
2p
P for 2p

P < 1
2p
P − 2 for 2p

P ≥ 1
, (11)

for p = 0, 1, . . . , P − 1. They are uniformly distributed in the sin θ domain, where the first beam point to the
direction sinθ = 0 will be the main beam and the others will be the auxiliary beams. Fig. 3 gives an example

Figure 3: The desired beam shapes with P =
N = 5 formed by DFT modulations.

of the desired beam shapes with P = N = 5, where it can
be seen clearly that each of the five beam directions coincides
with the nulls of the other beams. Once we obtain the P desired
beam responses Hp(e

jπ sin θ), we can follow the procedures given
in [8] to obtain the coefficients of the corresponding beamform-
ers.

One point to note is, in general, the Hp(e
jπ sin θ) obtained

by DFT modulation is of complex value for different θ that is,

Hp(e
jπ sin θ) = Ap(θ)e

jBp(θ) (12)

where Ap(θ) and Bp(θ) are some real functions. The change of
both Ap(θ) and Bp(θ) with respect to different θ will lead to
a more complicated (Ω1,Ω2) pattern for the design, which will
require more coefficients in the temporal domain and therefore
larger dimension of the array. As Ap(θ) contains enough information about the shape of the beam response, we
can ignore the phase part Bp(θ) and our results show that in this way we can significantly improve the frequency
invariant property of the beams with the same array dimensions.

5. Simulations

To show the trade-off between the frequency invariant property and the number of linear independent
beams, the spatial and temporal dimensions of the frequency invariant beams are fixed as M = 14 and J = 16.
According to [5], ideally we should use a prototype filter of length b14/3c = 4 for the design of the 4 FIBs.
Fig. 4 shows the pattern of the main beam based on a 4-tap filter over the bandwidth [0.4π; 0.9π].

Figure 4: The magnitude response of the main beam over the bandwidth of [0.4π; 0.9π], based on a 4-tap and
a 6-tap prototype filter, respectively.

The signal of interest comes from broadside and with a signal to interference ratio (SIR) of -20 dB and signal
to noise ratio (SNR) of 20 dB. Five interfering signals come from the angles of 20◦, -25◦, 45◦, -50◦, and -80◦,
respectively. Both the interfering signals and the signal of interest have a bandwidth of [0.4π; 0.9π]. We used a
normalised LMS algorithm for adaptation. The learning curve with a stepsize of 0.01 is shown by the dashed
line in Fig. 5. As the number of interfering signals are 5, which is larger than 4− 1 = 3, the number of auxiliary
beams, the 4-beam adaptive array can not null out all of the interferences, although all of the beams have a
very good frequency invariant response over the interested bandwidth [0.4π; 0.9π]. As a result, the learning
curve only reaches a level of 15 dB. In order to improve its performance, we need to sacrifice the frequency
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Figure 5: The learning curves for different number of independent beams.

invariant property a little. So, we increased the length N of the prototype filter to 5, and 5 independent beams
were obtained. The learning curve of this new system with the same stepsize is shown by the dotted line in
Fig. 5. Compared to the 4-beam array, the ensemble mean square residual error has been reduced to about
8 dB. We can further to improve the performance of the system by designing 6 independent beams based on a
6-tap prototype filter (N = 6). The frequency invariant property of the main beam in this case is also shown in
Fig. 4, which is clearly not as good as that of N = 4. However, as there are more independent beams formed in
this array, a further improvement of more than 10 dB has been achieved, as shown by the solid line in Fig. 5.

6. Conclusions

An analysis of the broadband beamspace adaptive array has been provided and it is shown that in order to
improve the interference cancellation capability of the array, we may need to sacrifice the frequency invariant
property of the beams to some degree for more linearly independent beams. We also proposed a DFT-modulated
design of the frequency invariant beams employed in the broadband beamspace adaptive array, where the
beam directions are uniformly distributed over the spatial domain and the linear independence of the beams is
guaranteed inherently. Simulation results verified our analysis and the proposed method.
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A Subspace-based Robust Adaptive Capon Beamforming

G. S. Liao, H. Q. Liu, and J. Li
Xidian University, China

Abstract—Adaptive beamforming suffers from performance degradation in the presence of mismatch between
the actual and presumed array steering vector of the desired signal. This idea enlightens us, so we propose a
subspace approach to adaptive beamforming that is robust to array errors based on minimizing MUSIC output
power. The proposed method involves two steps, the first step is to estimate the actual steering vector of
the desired signal based on subspace technique, and the second is to obtain optimal weight by utilizing the
estimated steering vector. Our method belongs to the class of diagonal loading, but the optimal amount of
diagonal loading level can be calculated precisely based on the uncertainty set of the steering vector. To obtain
noise subspace needs eigen-decomposition that has a heavy computation load and knows the number of signals
a priori. In order to overcome this drawback we utilized the POR (Power of R) technique that can obtain noise
subspace without eigen-decomposition and the number of signals a priori. It is very interesting that Li Jian’s
method is a special case where m = 1, and the proposed subspace approach is the case where m → ∞, so we
obtained a uniform framework based on POR technique. This is also an explanation why the performance of
the proposed subspace approach excels that of Li Jian’s method. The excellent performance of our algorithm
has been demonstrated via a number of computer simulations.

1. Introduction

Array signal processing has wide applications in radar, communications, sonar, acoustics, seismology, and
medicine. One of the important tasks of array processing is beamforming. The standard beamformers include
the delay-and-sum approach, which is known to suffer from poor resolution and high sidelobe problems. The
Capon beamformer adaptively selects the weight vectors to minimize the array output power subject to the linear
constraint that the signal of interest (SOI) does not suffer from any distortion [1]. The Capon beamformer has
better resolution and interference rejection capability than the standard beamformer, provided that the array
steering vector corresponding to the SOI is accurately known. In practice, the knowledge of the SOI steering
vector may be imprecise, the case due to differences between the presumed signal steering vector and the actual
signal steering vector. When this happens, the Capon beamforming may suppress the SOI as an interference,
which result in array performance drastically reduced, especially array output signal-to-interference-plus-noise
ratio (SINR) [4].

In the past three decades many approaches have been proposed to improve the robustness of the Capon
beamforming. Additional linear constraints, including point and derivative constraints, have been imposed
to improve the robustness of the Capon beamforming [2, 3]. However, for every additional linear constraints
imposed, the beamformer loses one degree of freedom (DOF) for interference suppression. Moreover, these
constraints are not explicitly related to the uncertainty of the array steering vector. Diagonal loading (including
its extended versions) has been a popular approach to improve the robustness of the Capon beamformer [4].
However, for most of the diagonal loading methods, determining the diagonal loading remains an open problem.
Recently there are some methods been proposed (for examples, [5–7] and reference therein) to this point.

Mismatch between the presumed steering vector of the SOI and the actual one result in drastically reduced
array SINR, therefore if we can estimate actual steering vector of the SOI, robustness of the array will be
improved. In this paper, from the point of view of the subspace we propose a novel robust Capon beamformer,
which involves two steps, the first step is to estimate actual steering vector of SOI, and the second is to calculate
optimal weight by Capon method. The rest of this paper is organized as follows. Section 2 contains background
material. In section 3, the robust Capon beamformer is developed. Computer simulation results illustrating
the performance of the robust Capon beamformer are presented in Section 4. Finally, Section 5 contains the
conclusions.

2. Background

2.1. Signal Model
We consider the standard narrowband beamforming model in which a set of M narrowband plane wave

signals, impinge on an array of N sensors with half wavelength spacing, where M < N . The N × 1 vector of
received signals is given by
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x(tk) =

M−1∑

m=0

a(θm)sm(tk) + n(tk), k = 1, 2, . . . , L (1)

where sm(tk),m = 0, . . . ,M − 1; k = 1, 2, . . . , L are the source signals snapshots,

a(θm) = [1, e−jπ sin θm , . . . , e−jπ(N−1) sin θm ]T

is the steering vector in the direction θm, and n(tk), k = 1, 2, . . . , L are the vectors containing additive white
noise samples, L is the number of the snapshots. Also, in this paper, the sources and noise are assumed to be
statistically uncorrelated.

We assume that one of the signals is the desired signal, say s0(t), and treat the remaining signals as in-
terferences. Since s0(t) is uncorrelated with the noise and interferences, the data covariance matrix has the
form,

R = σ2
0a(θ0)a

H(θ0) +

M−1∑

k=1

σ2
ka(θk)a

H(θk) + Rn , Rs + Ri+n (2)

where Rs = σ2
0a(θ0)a

H(θ0), σ
2
i = E

{
|si(tk)|2

}
is the power of ith signal, and Ri+n is the interference plus noise

covariance matrix. In practice, the covariance matrix R is estimated by

R̂ =
1

L

L∑

n=1

xnx
H
n (3)

where all received signals have zero means and L samples are independent.

2.2. Capon Beamforming
The Capon beamforming is as follows.
Determine the N ×1 vector w0 that is the solution to the following linearly constrained quadratic minimiza-

tion problem,
min
w

wHRw s.t.wH ā(θ0) = 1 (4)

where ā(θ0) is presumed steering vector of the desired signal.
Appling Lagrange multiplier method results in the following solution,

w0 =
R−1ā(θ0)

āH(θ0)R
−1ā(θ0)

(5)

The array mean output power p0 is
p0 =

1

āH(θ0)R
−1ā(θ0)

(6)

The Capon beamformer has better resolution and much better interference rejection capability than the
standard beamformer, provided that the presumed array steering vector of the SOI match actual array steering
vector precisely. In practice, the exact steering vector of the SOI is unavailable or its measure/estimation is
imprecise, therefore, we only use the presumed ā(θ0) instead of the actual a(θ0) in the Capon beamformer, and
the mismatch between the exact steering vector and the presumed one may drastically degrade the performance
of the Capon beamformer.

The array output SINR can be written as,

SINR =
E[|wH

0 s0(t)|2]
wH

0 Ri+nw0
=

σ2
0 |wH

0 a(θ0)|2

wH
0

(
M−1∑
k=1

σ2
ka(θk)aH(θk) + Rn

)
w0

(7)

where σ2
0 = E(|s0(t)|). Inserting (5) into (7) yields,

SINR = σ2
0

∣∣āH(θ0)R
−1
i+na(θ0)

∣∣2

āH(θ0)R
−1
i+nā(θ0)

(8)

where a(θ0) is the actual steering vector, then (8) can be rewritten as:

SINR = σ2
0a
H(θ0)R

−1
i+na(θ0) ×

∣∣aH(θ0)R
−1
i+nā(θ0)

∣∣2

(aH(θ0)R
−1
i+na(θ0))(āH(θ0)R

−1
i+nā(θ0))

= SINRm · cos2(a(θ0), ā(θ0);R
−1
i+n) (9)
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where SINRm = σ2
0a
H(θ0)R

−1
i+na(θ0) and cos2(·) is defined as,

cos2(a,b;Z) =

∣∣aHZb
∣∣2

(aHZa)(bHZb)
(10)

Clearly, 0 ≤ cos2(a,b;Z) ≤ 1. Therefore, array output SINR is reduced due to mismatch between the presumed
steering vector of the SOI and its true value.

In recent years, diagonal loading (DL) is a popular approach to improving the robustness of Capon beam-

former to the mismatch above. In DL methods, the data covariance R̂ is replaced by R̂+γI, where γ is positive
constant (see reference [4–6] for details). The DL method proposed in [4] is used in Section 4 for comparisons.
In the following section, a novel robust beamforming is developed to alleviate the effects of the steering vector
mismatch on the SINR performance of Capon beamformer.

3. Robust Capon Beamforming

The robust beamforming problem we will deal with in this paper can be briefly stated as follows: Extend the
Capon beamformer so as to improve array output SINR even only an imprecise knowledge of steering vector
a(θ0) is available. To simplify the notation, in what follows, we sometimes omit the argument θ of a(θ) and
ā(θ). We assume that the only knowledge we have about a(θ0) is that it belongs to the following uncertainty
[5]

[a(θ0) − ā]HC−1[a(θ0) − ā] ≤ 1 (11)

where C are given positive definite matrix.
As shown above, array performance loses will occur in the presence of mismatch between the presumed and

actual steering vectors of the SOI. If we estimate the actual steering vector of the SOI as more precise as we can,
then performance of the beamformer will be improved. The proposed robust Capon beamforming is based on
this idea. From subspace theory we know that the actual steering vector of desired signal is orthogonal to noise
subspace, our approach is based on the optimizing the projection of signal steering vector onto noise subspace.
The steering vector is normed as ||a||2 = aHa = N . To derive our robust Capon beamformer, we use following
constrained optimization

min
a

aHUnU
H
n a

s.t.(a − ā)HC−1(a − ā) ≤ 1 (12)

||a||2 = N

where ā is known to us in advance, but has error (mismatch to the actual steering vector of the SOI). Un is the

noise subspace, which is obtained by the eigen-decomposition of R̂. To make up the noise subspace, we assume
that the number M , of plane waves impinging on the array is known a priori. We use this assumption only for
derivations and cancel it later. Note that we can improve the estimation accuracy of the actual steering vector
of the SOI from (12), and then obtain optimal weight w0 by Capon method.

Without loss of generality, we will consider solving (12) for the case in which C = εI, (ε is user parameter),
then, (12) becomes

min
a

aHUnU
H
n a

s.t.||a − ā||2 ≤ ε (13)

||a||2 = N

We use the Lagrange multiplier methodology again, which is based on the function

L(a, λ, µ) = aHUnU
H
n a + µ(2N − ε− āHa − aH ā) + λ(aHa −N) (14)

where µ ≥ 0, λ ≥ 0 are the Lagrange multiplier.
Hence, the unconstrained minimization of (14) for fixed µ, λ, is given by

δL(a, µ, λ)

δa
= 2UnU

H
n a − 2µā + 2λa = 0 (15)

Clearly, the optimal solution of a is
â = µ(UnU

H
n + λI)−1ā (16)
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Inserting â into (14), minimizing L(a, λ, µ) with respect to µ gives

δL(â, µ, λ)

δµ
= 2N − ε− āH â − âH ā = 0 (17)

Then, we obtain µ̂ =
2N − ε

2āH(UnU
H
n + λI)−1ā

(18)

Inserting µ̂ into (14), minimizing Lagrange function with respect to λ yields

δL(â, µ̂, λ)

δλ
= âH â −N = 0 (19)

and the following equation can be derived,

āH(UnU
H
n + λ̂I)−2ā

[āH(UnU
H
n + λ̂I)−1ā]2

=
N

(N − ε

2
)2

(20)

Then, the solution of λ̂ can be obtained by some simple manipulations.
Substituting (18) into (16) yields

â = (N − ε

2
)

(UnU
H
n + λ̂I)−1ā

āH(UnU
H
n + λ̂I)−1ā

(21)

To summarize, the proposed robust Capon beamforming consists of following steps.
The algorithm:
Step 1: Calculate data covariance matrix, i.e.,

R̂ =
1

L

L∑

n=1

xnx
H
n

Step 2: Compute the eigen-decomposition of R̂ and obtain the noise subspace Un.
Step 3: Solve λ̂ in (20).

Step 4: Use the λ̂ in Step 3 to calculate

â = (N − ε

2
)

(UnU
H
n + λ̂I)−1ā

āH(UnU
H
n + λ̂I)−1ā

(22)

Step 5: Compute optimal weight by Capon method, i.e.,

w0 = αR̂
−1

â, α =
1

âHR̂
−1

â
(23)

The proposed robust beamforming belongs to the class of diagonal loading, but the optimal amount of
diagonal loading level can be precisely calculated based on the uncertainty set of the steering vector. In the
Section 4 computer simulation results demonstrate excellent performance of the proposed algorithm.

In order to avoid eigen-decomposition and knowing the number of signals a priori, we use the POR approach
to obtain noise subspace. In [8], R is decomposed by EVD as

R = [Us Un]

[
Λs + σ2

vI 0
0 σ2

vI

] [
UH
s

UH
n

]
(24)

where Λs = diag{δ21 , . . . , δ2M}, Us denotes the signal subspace. It approximates the noise subspace of R based
on R−m (m is a positive integer). Accordingly

σ2m
v R−m = UnU

H
n + Usdiag

{( σ2
v

δ2i + σ2
v

)m}
UH
s (25)

Clearly, (σ2
v/(δ

2
i+σ

2
v))

m is less than 1 and converge to zero for sufficiently largem. Theoretically, limm→∞ σ2m
v R−m =

UnU
H
n . As result, we modify the criterion (12) and consider the following POR cost function

min
a

aHR̂
−m

a

s.t.||a − ā||2 ≤ ε (26)

||a||2 = N
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By contrast, the (26) avoids estimating that dimension directly. Moreover, as m → ∞, the proposed the POR
beamforming method in (26) converges to the subspace one in (12), and it can be shown that the performance
of the POR method for finite m will converge to the subspace one through computer simulation. We compared
our method with previous one in [6], where m = 1 in the section 4.

(a) (b)

Figure 1: Output SINR versus different SNR, pointing errors ∆ = 3◦, for (a) ε = 0.7, for (b) ε = 7.

(a) (b)

Figure 2: The Output SINR versus pointing errors for (a) ε = 0.7, for (b) ε = 7.

4. Computer Results

Our main motivation of simulation is to demonstrate the performance in the presence of some errors in the
steering vector. In all of the examples considered below, we assume a uniform linear array (ULA) with N = 20
sensors and half-wavelength spacing is used. The sources emitted mutual independent narrowband waveforms.
All the results are achieved via 50 Monte Carlo trials.

In the first example, we consider the effect of the pointing error of the SOI on array output SINR. The exact
direction of arrival of SOI is θ0, of which assumed value is θ0 +∆, i.e., ā(θ0) = a(θ0 +∆). We assume that a(θ0)
belongs to the uncertainty set

||a(θ0) − ā(θ0)||2 ≤ ε (27)
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where ε is a user parameter. Let ε0 = ||a(θ0)− ā(θ0)||2. Then, choosing ε = ε0. However, since ∆ is unknown in
practice, the ε we choose may be greater or less than ε0. To show that the choice of ε is not a critical issue for
our algorithm, we will present simulation results with several values of ε in equation (21). In this example, the
directions of the SOI and an interference source are θ0 = 30◦, θ1 = −30◦, respectively. The assumed direction
of the SOI is θ0 + ∆ = 33◦, which results exact ε0 = 5.7750. The interference-to-noise ratio (INR) is 40 dB.

Figure 1 plots array output SINR versus the SNR of the SOI when the number of snapshots is set to be
L = 100. It is observed that the proposed algorithm (12) performs better than other two algorithms at all input
SNR. Also, since the error in steering vector of SOI is relatively large and cannot be negligible, the standard
Capon beamformer and its diagonal loading version suffer from severe performance degradation when SNR
increases. However, the proposed beamformer has SINR loss of 5 dB when SNR = 20 dB. The proposed the
POR method for different m over various input SNRs is also illustrated in Figure 1. Obviously, the Output
SINR for m = 2 and m = 3 all converge to subspace approach (12), the counterpart for m = 1 [6] has the large
output SINR loss.

Figure 2 shows the array output SINR curve versus the pointing errors, in which SNR = 0 dB, INR = 20 dB,
L = 100. In this figure, the excellent performance achieved by the proposed algorithm is observed, which shows
the robustness to the pointing errors. It is noted that, similar to other robust approaches, our method will
worsen if there is/are strong interference spatially closed to the SOI. The reason is that for a given uncertainty
region (11), the solution of a in optimization (12) is converge to the strong interference source. Also, it can
be seen that the Output SINR of the proposed POR method increases as m increases, with m = 3 has same
performance with subspace one (12).

5. Conclusion

In this paper, we discuss the performance degradation due to the presence of steering vector uncertainty of
the SOI, such as, direction of arrival estimation error, finite number of snapshots, and array response error, etc.
A robust Capon beamformer is developed by utilizing the orthogonality between signal and noise subspace. A
more accurate estimate of the actual steering vector of the SOI is obtained via constrained optimization, by
which the optimal weight is computed according to Capon beamforming. We have shown that the proposed
algorithm belongs to the class of diagonal loading approaches, and the optimal amounts of diagonal loading can
be precisely calculated. In order to avoid eigen-decomposition and knowing the number of signals a priori, we
have proposed a POR-based robust beamforming scheme. It significantly outperforms the method proposed in
[6] and converge to the subspace one (12). The excellent performance of our algorithm has been demonstrated
via a number of computer simulations.
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Abstract—This paper examines the problem of complex amplitude estimation of a multichannel signal in the
presence of colored noise with unknown spatial and temporal correlation. A number of amplitude estimators are
developed, including the optimum maximum likelihood (ML) estimator, which involves nonlinear optimization,
and several suboptimal but computationally more efficient estimators based on least-squares (LS) or weighted
LS (WLS) estimation. The Cramér-Rao bound (CRB) for the estimation problem is presented. Numerical
results are presented to illustrate the performance of these estimators with or without training data.

1. Introduction

Amplitude estimation occurs in numerous signal processing applications. A survey of amplitude estimation
techniques for sinusoidal signals with known frequencies in colored noise is found in [1]. While [1] is primarily
concerned with single-channel sinusoidal signals, we consider amplitude estimation of an arbitrary multichannel
signal observed in space and time using a sensor array. The observed data is contaminated by a spatially and
temporally correlated disturbance signal with unknown correlation. Among other applications, this problem is
encountered in an airborne radar system equipped with multiple antennas (e. g., [2]), where the multichannel
signal refers to the space-time steering vector of the antenna array, the amplitude refers to the radar cross section
(RCS) of a target, and the disturbance lumps together the thermal noise, radar clutter, and other interferences.
Amplitude estimation within such a context would be useful for estimating the spatial and temporal correlation
of the disturbance, developing effective target detectors, and finding solutions to several other relevant problems.

To account for its temporal and spatial correlation, our approach is to model the disturbance as a multichan-
nel autoregressive (AR) process. Using extensive real radar data, [2] has shown that multichannel AR models
are appropriate and offer efficient representation of the disturbance signal in airborne radars. Our paramet-
ric approach to the modeling of the disturbance is another major distinction compared to the non-parametric
approach of [1]. Based on the parametric approach, our problem of interest is to find estimates of the signal
amplitude, the AR coefficient matrices, and the spatial covariance matrix of the multichannel signal that drives
the AR model. In the sequel, we first examine the optimum ML detector, and show that it involves nonlinear
optimization. We then introduce several suboptimal but computationally more efficient LS and WLS amplitude
estimators, which can be used to initialize the nonlinear searching involved in the ML estimator. The CRB
for the estimation problem is presented as a performance baseline. In our numerical comparison of the differ-
ent estimators, we focus on the case with no or very limited training data, which is of particular interest for
applications in non-stationary or dense-target environments (e. g., [3]).

2. Data Model and Problem Statement

The observed noisy multichannel signal x0(n) can be written as

x0(n) = αs(n) + d(n), n = 0, 1, . . . , N − 1, (1)

where all vectors are J×1 vectors, J is the number of spatial channels, N is the number of temporal observations,
s(n) denotes the signal vector that is assumed known but with unknown complex amplitude α, and d(n) denotes
the disturbance that is correlated in space and time. In addition, there are a set of disturbance-only training
(i. e., α = 0) data xk(n), k = 1, 2, . . . ,K and n = 0, 1, . . . , N − 1, available to assist amplitude estimation. In
radar systems, training data may be obtained from range cells adjacent to the test cell. However, training is
generally limited or may even be unavailable, especially in non-stationary or dense-target environments [3]. We
consider amplitude estimation with and without training; in the later case, we have K = 0.
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Let xk , [xTk (0), xTk (1), . . . , xTk (N−1)]T , and d and s are formed similarly from d(n) and s(n), respectively.
It is assumed that the training data {xk}Kk=1 and d are independent and identically distributed (i.i.d.) with
complex Gaussian distribution CN (0,R), where R denotes the unknown space-time covariance matrix. A
J-channel AR process is used to model the disturbance:

xk(n) − αs(n) = −
∑P

p=1
AH(p){xk(n− p) − αs(n− p)} + εk(n), k = 0, 1, . . . ,K, (2)

where {AH(p)}Pp=1 denote the unknown J × J AR coefficient matrices and εk(n) denotes the driving spatial
noise with distribution CN (0,Q), where Q denotes the unknown J × J spatial covariance matrix. With some
notational abuse, we have α = 0 (i. e., disturbance-only) for k 6= 0 in (2). To focus on the amplitude estimation
problem, we assume the model order P is known. In practice when P is unknown, it can be estimated by using
a variety of model selection techniques [4].

The problem is to estimate the amplitude α, which is the signal parameter of primary interest, as well as
nuisance parameters {AH(n)} and Q, from observations {xk(n)}.

3. Amplitude Estimators

For compact presentation, let AH , [AH(1), . . . ,AH(P )] ∈ C
J×JP which contains all the coefficient matrices

involved in the P -th order AR model, yk(n) , [xTk (n − 1), . . . ,xTk (n − P )]T which contains the regression
subvectors formed from the observed signal x0 or the k-th training signal xk, and t(n) , [sT (n− 1), . . . , sT (n−
P )]T , which contains the regression subvectors formed from the steering vector s. In the following, we first
consider the optimal ML estimator, followed by the suboptimal LS and WLS estimators.

3.1. Optimal ML Amplitude Estimator
In Appendix 1, we show that the ML estimator of α is given by

α̂ML = min
α

∣∣∣R̂xx(α) − R̂
H

yx(α)R̂
−1

yy (α)R̂yx(α)
∣∣∣, (3)

where the correlation matrices are given by

R̂xx(α) =
∑N−1

n=P
[x0(n) − αs(n)][x0(n) − αs(n)]H +

∑N−1

n=P

∑K

k=1
xk(n)xHk (n), (4)

R̂yy(α) =
∑N−1

n=P
[y0(n) − αt(n)][y0(n) − αt(n)]H +

∑N−1

n=P

∑K

k=1
yk(n)yHk (n), (5)

R̂yx(α) =
∑N−1

n=P
[y0(n) − αt(n)][x0(n) − αs(n)]H +

∑N−1

n=P

∑K

k=1
yk(n)xHk (n). (6)

Although statistically optimal, there is no closed-form expression for the above ML estimate. The cost function
(3) is a highly nonlinear bivariate function (α is complex-valued). A brute-force exhaustive search over the
two-dimensional parameter space is generally impractical. Alternatively, we can resort to Newton-like iterative
nonlinear searches, providing an initial estimate of α is available. Next, we discuss suboptimal estimators that
can be used for initialization.

3.2. LS Estimator
A linear LS amplitude estimator based on x0 only is given by

α̂LS =
sHx0

sHs
, (7)

which ignores the coloredness of the disturbance signal. Albeit simple, the LS estimator is useful when training
is unavailable. In addition, it can be used in combination with the WLS amplitude estimator presented next
for improved estimation accuracy.

3.3. WLS Estimator
Suppose we have some initial estimates of A and Q, denoted by Â and Q̂, respectively. Then, as shown in

Appendix 2, a WLS amplitude estimator is given by

α̂WLS =

∑N−1
n=P {s(n) +

∑P
p=1 Â

H
(p)s(n− p)}HQ̂−1{x0(n) +

∑P
p=1 Â

H(p)x0(n− p)}
∑N−1
n=P {s(n) +

∑P
p=1 Â

H
(p)s(n− p)}HQ̂−1{s(n) +

∑P
p=1 Â

H(p)s(n− p)}
. (8)
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To find initial estimates Â and Q̂, we consider two cases with and without training. First, if training is available
(i. e., K ≥ 1), an ML estimator based on only the training data can be used to estimate A and Q. Following
similar steps in Appendix 1, we can show that the training-only ML estimates are given by

Â
H

= −R̂
H

yx,tR̂
−1

yy,t, (9)

Q̂ =
1

K(N − P )

(
R̂xx,t − R̂

H

yx,tR̂
−1

yy,tR̂yx,t

)
, (10)

R̂xx,t =
∑N−1
n=P

∑K
k=1 xk(n)xHk (n), and R̂yy,t and R̂yx,t are correlation matrices formed similarly as in (5) and

(6), however, using only the training signals.

On the other hand, if no training data are available (K = 0), we can create artificially one “training signal”
by by subtracting. α̂LSs(n) from the observed signal, i. e.,

x̄0 , x0 − α̂LSs

where αLS is given by (7). Then, the training-only ML estimator (9) and (10) can be used to estimate A and
Q as if K = 1. Finally, it is noted that once the WLS estimate α̂WLS is obtained, it can be used to update
estimates of A and Q. We can iterate the above procedure a few times.
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4. Cramér-Rao Bound

The CRB provides a lower bound on the variance of the parameter estimates obtained by any unbiased
estimators, and it can be used to access the accuracy of various amplitude estimation schemes. It can be shown
that CRB for the signal amplitude estimation is given by

CRB(α) =

[
∑N−1

n=P

{
s(n) +

∑P

p=1
AH(p)s(n− p)

}H
Q−1

{
s(n) +

∑P

p=1
AH(p)s(n− p)

}]−1

. (11)

5. Numerical Results

We present numerical results to compare the proposed amplitude estimation schemes. In the following, the
SINR is defined as SINR= |α|2sHR−1s where R is the JN × JN joint space-time covariance matrix of the
disturbance d. For the no training case (K = 0), we consider 1) LS amplitude estimator given by (7); 2) WLS1

amplitude estimator given by (8) with estimates Â and Q̂ obtained by using the artificially created training
signal; 3) WLS2 estimator which extends WLS1 with another iteration; 4) ML amplitude estimator given by
(3). For the case when training is available (K > 0), we consider 1) WLS amplitude estimator given by (8)
along with (9) and (10); 2) ML amplitude estimator given by (3). In both cases, the CRB (11) is included.

Figures 1 and 2 depict the mean-squared error (MSEs) of the various amplitude estimates versus the input
SINR. We can see that 1) the MSE of WLS1 estimator is slightly larger than the CRB when N = 32, but is
close to the CRB when N = 128; 2) as N increases, the MSEs of the WLS1, WLS2, and ML estimators are
getting close to the CRB; 3) the MSE of the LS estimator is away from the CRB even at N = 128.

Figures 3 and 4 depict the MSEs of the various amplitude estimates versus the input SINR when very limited
training is available (K = 1). It is seen that as N increases, the WLS estimates are close to the ML estimates
and the CRB.

6. Conclusion

We have examined the problem of amplitude estimation of a known multichannel signal in the presence of
a temporally and spatially correlated disturbance signal. To deal with temporal and spatial coloredness, the
disturbance signal is modeled as a multichannel AR process with unknown AR coefficient matrices and spatial
covariance matrix. We have derived the ML estimate of the signal amplitude which involves two-dimensional
nonlinear searches. We have also introduced several suboptimal LS and WLS estimators that can be utilized to
initialize the searching.

Appendix 1: Derivation of ML Estimators
The exact maximization of the joint PDF or likelihood function with respect to the unknown parameters

produces a set of highly nonlinear equations that are difficult to solve. For large data records, the likelihood func-
tion can be well approximated by a joint conditional PDF (12) conditioned on {xk(n)}P−1

n=0 }, k = 0, 1, . . . ,K [5].
For brevity, the conditional PDF is referred to as the likelihood function henceforth. The loglikelihood function
is proportional to (within an additive constant) [6]

− L ln |Q|−
∑K

k=1

∑N−1

n=P

[
xk(n) +

∑P

p=1
AH(p)xk(n− p)

]H
Q−1

[
xk(n) +

∑P

p=1
AH(p)xk(n− p)

]

−
∑N−1

n=P

[
{x0(n) − αs(n)} +

∑P

p=1
AH(p){x0(n− p) − αs(n− p)}

]H
Q−1

×
[
{x0(n) − αs(n)} +

∑P

p=1
AH(p){x0(n− p) − αs(n− p)}

]
(12)

where L = (K + 1)(N − P ). Taking the derivative of the likelihood function with respect to Q and equating
the result to zero produce the ML estimates of Q given α and A:

Q̂(α,A) ,
1

L

{
∑K

k=1

∑N−1

n=P

[
xk(n) +

∑P

p=1
AH(p)xk(n− p)

] [
xk(n) +

∑P

p=1
AH(p)xk(n− p)

]H

+
∑N−1

n=P

[
{x0(n) − αs(n)} +

∑P

p=1
AH(p){x0(n− p) − αs(n− p)}

]

×
[
{x0(n) − αs(n)} +

∑P

p=1
AH(p){x0(n− p) − αs(n− p)}

]H}
. (13)
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Substituting the above Q̂ back in the likelihood function, we find that maximizing the loglikelihood reduces to
minimizing |Q̂(α,A)|. Therefore, the ML estimates of α and A can be obtained by minimizing |Q̂(α,A)| with
respect to α and A. In turn, we can get the ML estimate of Q by replacing α and A with their ML estimates
in (13). Next, observe that

LQ̂(α,A) = R̂xx(α) + AHR̂yx(α) + R̂
H

yx(α)A + AHR̂yy(α)A

=
(
AH+R̂

H

yx(α)R̂
−1

yy (α)
)
R̂yy(α)

(
AH+R̂

H

yx(α)R̂
−1

yy (α)
)H

+R̂xx(α) − R̂
H

yx(α)R̂
−1

yy (α)R̂yx(α)
(14)

where the correlation matrices are given by (4), (5), and (6). Since R̂yy(α) is non-negative definite and the

remaining terms in (14) do not depend on A, it follows that Q̂(α,A) ≥ Q̂(α,A)|
A=Â(α), where

Â
H

(α) = −R̂
H

yx(α)R̂
−1

yy (α). (15)

When Q̂(α, A) is minimized, the estimate Â
H

(α) of AH will minimize any non-decreasing function including

the determinant of Q̂(α, A)) [7]. Hence, Â
H

(α) is the ML estimate of AH given α. Replacing AH in (14) by

Â
H

(α) yields the ML amplitude estimator (3).

Appendix 2: Derivation of WLS Estimator
Suppose that Q and A are known. Then, taking the derivative of the loglikelihood function (12) and setting

the result to zero yield

α
∑N−1

n=P

{
s(n) +

∑P

p=1
AH(p)s(n− p)

}H
Q−1

{
s(n) +

∑P

p=1
AH(p)s(n− p)

}

−
∑N−1

n=P

{
s(n) +

∑P

p=1
AH(p)s(n− p)

}H
Q−1

{
x0(n) +

∑P

p=1
AH(p)x0(n− p)

}
= 0.

(16)

By solving (16), we have the ML estimate of α. It is different from the ML estimate (3) which assumes Q and

A are unknown. In practice, Q and A are unknown. If these matrices are replaced by their estimates Q̂ and
Â, the resulting WLS estimator is given by (8).
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Diagnostic Applications

S. Caorsi and G. Cevini
University of Pavia, Italy

Abstract—In this paper, a neural network approach is applied to a typical electromagnetic diagnostic problem
consisting in the prediction of the electromagnetic field absorption inside a dielectric phantom. The approach
has been tested by considering, at the input of the neural network, the values of the incident electric field at
a fixed number of locations. Also phaseless measures have been taken into account. The outputs are some
features describing the electromagnetic absorption, such as the peak amplitude of the induced field, the location
of the absorption peak and a measure of the extension of the induced spot inside the phantom.

Preliminary results show that the approach shows a satisfactory accuracy in reconstructing the selected
absorption features, and that it is able to estimate these characteristics very quickly.

1. Introduction

The purpose of this paper is to investigate the potentialities of the application of neural networks to an
electromagnetic diagnostic problem.

Electromagnetic non-destructive diagnostics is usually referred to the investigation and the reconstruction
of not accessible scenarios by the exploitation of measurable data coming from the interactions between elec-
tromagnetic waves and the unknown scatterers. Recent years have experienced a relevant interest in developing
electromagnetic inverse scattering approaches for NDE/NDT applications (subsurface mapping of underground
utilities, detection of mines or unexploded ordnances, archaeological surveys, inspection of industrial products,
monitoring of buildings’ deterioration and so on). Among other techniques, new approaches based on neural
networks have been recently proposed in order to reconstruct the position, the dimension and the dielectric
properties of a subsurface object [1–3].

Nonetheless, electromagnetic non-destructive diagnostics also refers to the prediction of the electromagnetic
field distribution inside not accessible scenarios. In this case, also, research areas are manifold. In particular,
the scientific community is largely interested in developing electromagnetic non-invasive techniques to achieve
the prediction of the absorption of the electromagnetic field inside biological bodies exposed to wireless com-
munication systems. A large amount of research efforts have been spent in order to develop accurate solution
approaches, mainly based on the solution of the direct scattering problem and thus requiring the exact knowl-
edge of the electromagnetic source and of the dielectric properties of the investigated biological body, which had
to be replicated in a reference phantom. Nowadays, some researchers turned to inverse scattering approaches to
predict the electromagnetic field distribution inside the human head [4, 5]. The idea which is behind the inverse
scattering approach is that it allows, in principle, to recover the electric field and the dielectric properties of
the investigated scenario though the exploitation of the measurements of the scattered field in an observation
domain external to the investigation area, and the values of the exposure inside the investigation area. This
way, it is indeed possible to avoid the numerical modelling of the electromagnetic source, which is often a very
difficult task to be achieved. Also, the approach is completely non-destructive and it could be suitable for
in-vivo evaluations.

Since in general this kind of approach is characterized by large computational costs, an alternative approach
can be taken into account which is based on neural networks. The fundamental difference with respect to the
microwave imaging technique already investigated in [4, 5] is that the new approach is based on a “learning-
by-examples” technique able to estimate the function relating the inputs and outputs of the problem provided
that a training set of examples is available. It turns out that, as we have already experienced when we applied
neural networks to reconstruct buried objects [2, 3], the solution of the problem is very fast, thus making it very
appealing for applications requiring a fast and accurate monitoring of in-vivo biological tissues.

The input data for the proposed approach are the complex values of the incident field at few locations
inside the investigation domain. However, in real application, near-field phase measurements often require the
use of sophisticated equipments and they can be quite inaccurate due to a number of different factors. Thus,
accordingly to what has been done for the validation of the microwave imaging approach in [4, 5], in the present
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paper also the exploitation of amplitude-only information has been considered. This has been done to simulate
real conditions measurements but also in order to fully investigate the potentialities of the proposed technique
and to underline its limits.

The paper is organized as follows: in section 2 the investigated electromagnetic problem will be described and
the neural network approach will be introduced; in section 3, some numerical results, concerning the prediction
of the absorption features inside the cross-section of a simplified biological phantom, will be reported.

2. Problem Definition and Neural Network Approach

The neural network is a learning machine whose architecture was inspired by a biological analogy with
the human brain. It is well known that a neural network is a very general tool that can be used to solve
both classification (pattern recognition) problems and regression ones [6, 7]. Indeed, different models of neural
networks have been proposed in the literature. However, as stated by the so-called Universal Approximation
Theorem [1], [6], a two-layer feed-forward perceptron with a non-constant, bounded and monotone increasing
continuous activation function can approximate any non-linear function relating two sets of variables.

Let us describe the problem we have considered. We have modelled a simple dielectric phantom by means of
a homogeneous cylindrical biological scatterer Ω of rectangular cross section. The phantom is characterized by
known relative permittivity εr = 47.76, relative permeability µr = 1.0 and conductivity σ = 1.0 S/m while the
external medium is free-space (ε = ε0, µ = µ0). These values are the mean values of the dielectric characteristics
of human tissues inside a cross-section of a human head at the operating frequency f = 900 MHz [5]. The object
is illuminated by an electric current line which radiates a TM polarized wave, in the near field of the phantom.

It is well known that the electromagnetic scattering can be described trough the two well-known integral
equations

Ē(r̄) = Ēinc(r̄) +

∫

Ω

χ(r̄′)Ē(r̄′) · ¯̄G(r̄/r̄′)dr̄′ for r̄ ∈ Ω (1)

Ē(r̄) − Ēinc(r̄) =

∫

Ω

χ(r̄′)Ē(r̄′) · ¯̄G(r̄/r̄′)dr̄′ for r̄ /∈ Ω (2)

where Ēinc is the incident electric field, ¯̄G is the Green’s dyadic and χ(r̄) = εr(r̄) − 1 − j σ(r̄)
2πfε0

is the object
function.

Generally speaking, the application of an inverse scattering technique to predict the electric field absorption
in the dielectric phantom results in the exploitation of both the incident field measurements in the investigation
domain Ω and the scattered field measurements in an observation domain external to Ω. Thus, in [4, 5] a cost
functional has been constructed by computing the errors between the measurements and the reconstructed field
distribution obtained by the discretization of the integral equations. If we consider Eq. (1), data quantities are
thus the measurements of the incident field in the investigation domain, while the unknowns are the values of
the electric field inside Ω. It is possible then to define an operator φ such that

Ē(r̄) = φ(Ēinc(r̄)) for r̄ ∈ Ω . (3)

Equation (3) states that the inverse problem can be recast into a regression problem in which the function
φ can be estimated through the knowledge of a finite set of input/output pairs. In this work, the estimation
is performed by implementing a single-layer feed-forward perceptron neural network with sigmoid activation
[6]. Thanks to the flexibility of the prediction tool, it is indeed possible to simplify the problem. Instead of
estimating the field values inside Ω, we can focus on the relevant features of the absorption. To this aim, we
have identified three output variables: the absorption peak, the location of the absorption peak and the area of
the spot around the peak inside which the ratio between the peak value and the amplitude of the fields remains
over 6 dB. Thus, the problem can be rewritten as
to find an approximation of φ such that

Ψ̄ = φ(Ēinc(r̄i)) for i = 1, . . . , N, r̄i ∈ Ω (4)

being Ψ̄ the array of the output variables, provided a training set of examples {Ψ̄, Ēinc(r̄i)i=1,...,N}j , j = 1, . . . ,M
(input/output pairs).

The neural network here considered is a two-layer feed-forward perceptron neural network. The training
of the network has been achieved through implementation of a back-propagation algorithm [6]. During this
phase, the neural network is presented with all the examples (input/output patterns) of a suitably defined
training set and an iterative procedure, based on a gradient descent, attemps to minimize the error between
the outputs of the network and the actual ones, provided that the initial weights of the network are randomly
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Figure 1: Peak position prediction: (a) reconstructed values vs actual values at the output of the neural network
exploiting 15 amplitude and phase measurements; (b) absolute error as a function of the number of receivers.

chosen (batch mode of back-propagation learning). For all the computations reported in this paper we cosidered
a single training cycle. After the training phase, we have tested the generalization capabilities of the neural
network (i. e., we tested the accuracy of the input-output relationship computed by the neural network for
input/output patterns never used in training it [6]). Both for the training and testing of the neural network
we used synthetic data that have been obtained through the finite element modelling of the problem at hand.
The numerical domain has thus been discretized into triangular elements 0.003 m in size. In order to construct
a set of input/output patterns for the validation of the approach, we have simulated 1848 different exposure
conditions for the training set and 240 for the test set. Thus, 2088 different sets of incident field (input data)
distributions have been generated by considering different positions of the electromagnetic source and different
amplitudes of the current flowing through the line. For each of them, we also computed the associated features
describing the electric field absorption inside the phantom (output variables).

3. Numerical Results

In this section, we are reporting some preliminary numerical results in order to investigate the capabilities of
the approach described above. The input data come from the measurements of the electric field exposure while
the output data are the identified features describing the electric field absorption inside the dielectric phantom.
The measurements of the incident field have been collected at a finite number of points inside the investigation
domain.

In the first set of simulations, we tested the capability of the neural network in predicting the electric
field absorption for different numbers of observation points. We started from a configuration employing fifteen
measurement points equally spaced inside the investigation domain. Input data are represented by the complete
information (amplitude and phase) on the incident field at the observation points. Thus, a neural network
with 30 neurons in the input layer, 30 neurons in the hidden layer and three nodes in the output layer has
been implemented. Results of the neural network processing of the test set patterns are showed in Figs. 1(a),
2(a) and 3(a). The dispersion curves in the graphs represent the reconstructed values of the position of the
absorption peak, the amplitude of the absorption peak and the 6 dB area, respectively, as compared to the
actual features. In this case, the position of the absorption peak is reconstructed with an average absolute error
equal to 0.00065 m and a maximum error of 0.00232 m. It is remarkable to notice that the error doesn’t exceed
the characteristic dimension of the finite element mesh. It is thus always possible to discriminate between two
adjacent positions of the absorption peak corresponding to two different illuminating conditions. As far as the
prediction of the amplitude of the absorption peak, also this variable seems to be correctly evaluated since
the average error is 5.0% while the maximum error is 10.8%. The extension of the absorption spot inside the
phantom is predicted with an average error equal to 8.4% while the maximum error is 21.8%.

The number of measurement points has then been reduced in order to investigate the influence of the field
sampling on the performances of the approach. Results are quite interesting, as the reader can infer from the
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Figure 2: Peak amplitude prediction: (a) reconstructed values vs actual values at the output of the neural
network exploiting 15 amplitude and phase measurements; (b) relative error as a function of the number of
receivers.
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Figure 3: 6 dB area prediction: (a) reconstructed values vs actual values at the output of the neural network
exploiting 15 amplitude and phase measurements; (b) relative error as a function of the number of receivers.

plots in Figs. 1(b), 2(b) and 3(b). In addition, on the same graphs, we reported the results of the neural
network processing of phaseless data as compared to the performances achieved when the complete information
on the field measurements is available. It is immediately evident that the performances of the neural network
undergo a significant deterioration only when very few measurement points are considered. When we consider
both the information on the amplitude and phase of the incident field at the input, performances seem not
to worsen if the number of measurement points remains over four. This seems to be a relevant feature in the
considered neural network application since it it proved that satisfactory results can be achieved even when the
information on the exposure condition are limited to a very restricted number of measurements. When phaseless
data are considered, performances are in general worse with respect to consider full information on the field
measurements. As an example, let’s consider the neural network exploiting fifteen phaseless measurements of
the incident field. In this case, we implemented a neural network with 15 nodes in the input layer, 15 neurons in
the hidden layer and three nodes in the output layer. The prediction of the absorption peak location is achieved
with an average absolute error equal to 0.00192 m; the average error on the estimated absorption peak is around
9.3%; the average error on the predicted 6 dB area is equal to 10.1%. Moreover, as we have already observed
when full data were considered, as the number of measurement points reduces, a significant worsening of the
performances is seen to apply only when that number reduces to four or less.
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The second set of simulations concerned the investigation of the robustness of the proposed approach. To
this aim we have considered the performances of the technique when noisy measurement data are taken into
account at six measurement points. We have simulated the presence of a Gaussian noise over the test data by
adding to the incident field values a complex quantity whose real and imaginary parts are Gaussian variables
characterized by zero mean and variance depending on the considered signal-to-noise ratio (SNR). Table 1
reports the average errors achieved in predicting the electric field absorption features for different values of the
signal-to-noise ratio. As can be expected, performances deteriorate when considering lower values for the SNR.
In particular, it seems that the prediction of the amplitude of the absorption peak and the extension of the spot
is significantly worse when SNR<30 dB.

As far as computational costs are concerned, the training phase of the neural network is usually an intensive
task often requiring tens of minutes or few hours, depending on the number of input data, to be ended. However,
after the training phase, the processing of the entire test set of data requires less than one second.

Table 1: Mean errors in the prediction for different signal-to-noise ratios.

no noise SNR=50 dB SNR=40 dB SNR=30 dB SNR=20 dB

absolute error on peak position 0.00074 0.000752 0.000821 0.00110 0.00245

relative error on peak amplitude 0.042 0.044 0.057 0.084 0.331

relative error on 6 dB area 0.092 0.099 0.110 0.116 0.292

4. Conclusion

In this paper a neural network approach has been investigated for the prediction of relevant features of the
electric field absorption inside an exposed dielectric phantom. The input data are the exposure measurements
at few locations inside the investigation domain. Moreover, also phaseless data have been considered in the
analysis. Preliminary results confirm that the approach seems to provide satisfactory performances in locating
the absorption peak and in predicting its amplitude and extension. The robustness of the approach has been
tested by considering the effect of noise on measurement data and good results have been obtained for SNRs
greater than or equal to 30 dB. These results are encouraging as they show the potentialities of the technique in
predicting the absorption with few measurement data and in real-time. Further investigations must be carried
out in order to improve the robustness of the approach.

REFERENCES

1. Caorsi, S. and P. Gamba, “Electromagnetic detection of dielectric cylinders by a neural network approach,”
IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 2, 820–827, 1999.

2. Bermani, E., S. Caorsi, and M. Rafftto, “Microwave detection and electromagnetic characterization of cylin-
drical objects from amplitude-only data by means of neural networks,” IEEE Trans. Antennas Propagat.,
Vol. 50, No. 9, 1309–1314, 2002.

3. Caorsi, S. and G. Cevini, “An electromagnetic approach based on neural networks for the GPR investigation
of buried cylinders,” IEEE Geosci. Remote Sens. Lett., Vol. 2, No. 1, 3–7, 2005.

4. Caorsi, S. and A. Massa, “Electromagnetic field prediction inside biological bodies by using an inverse
scattering procedure based on a statistical cooling algorithm,” Bioelectromagn., Vol. 21, No. 6, 422–431,
2000.

5. Caorsi, S., A. Massa, and E. Bermani, “A microwave imaging approach based on amplitude-only data for
the reconstruction of the electromagnetic field induced in biological phantoms,” ACES J., Special Issue on
“Computational Bioelectromagnetics”, Vol. 16, No. 2, 79–89, 2001.

6. Haykin, S., Neural Networks, A Comprehensive Foundation, Macmillan College Publishing Company, New
York, 1994.

7. Vapnik, V., “An overview of statistical learning theory,” IEEE Trans. Neural Networks, Vol. 10, No. 5,
988–999, 1999.



390 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

2.5D AGILD Electromagnetic Modeling and Inversion

G. Xie, J. Li, and F. Xie
GL Geophysical Laboratory, USA

Abstract—In this paper, we propose a new 2.5D AGILD electromagnetic (EM) modeling and inversion algo-
rithms. We derive 2.5D differential integral equations for EM field on the boundary strip and center strip Ωs
with poles in cylindrical and spherical coordinate system. A 2.5D EM field Garlekin equation is derived on the
remainder domain. It supposes that the electrical parameters in the rotational direction are uniform. In the
cylindrical coordinate system, the EM field is function of the r, θ, and z. However, the electrical parameters
are only depended on ρ and z. Upon substituting the Fourier serious of the EM field into the strip differential
integral equation and Galerkin equation, we propose the 2.5D AGILD EM modeling and inversion algorithm
and develop its software. The 2.5D AGILD EM modeling and inversion algorithms and software are explained
in the ../files/051002183125/paper/Figs.1–6. The AGILD method has the following advantages. (1) It vanishes
error on the artificial boundary; (2) It reduces the full matrix and the ill posed for inversion; (3) It resolves coor-
dinate singularities in cylindrical and spherical coordinate system in continuous caster, geophysics, singularities
in north and south poles in Earth for EM field and Navier Stokes flow simulation in atmosphere; (4) AGILD
has widely applications in geophysics, atmosphere, nano-materials, caster, medical, radio, motor, etc. areas; (5)
The applications show that the 2.5D AGILD and GL are fast, accurate, and have reasonable high resolution.

1. Introduction

The Global Integral and Local Differential field modeling and parameter inversion GLID algorithms have
been proposed since 1997 by Xie and Li [6–8]. The new AGILD EM modeling and inversion has been published
in PIERS 2005 in Hangzhuo and PIERS 2006 [1–5]. In this paper, we propose 2,5D AGILD EM modeling and
inversion in cylindrical coordinate.

The AGILD modeling and inversion has widely applications for EM field and parameter in the motor and
generator. They are useful for GEOMAIL, VEMP, cross hole imaging, MT, EM sheet, nanometer pipe and ball,
blood pipe flow, MRI, medical instrument, microwave, coaxial antenna, and EM stirring, sensor, nondestructive
testing etc. in the science and industrial engineering.

The arrangement of this paper is as follows: In the section 1, we have introduced 2.5D AGILD method and
arranged our plan. In section 2, We propose the 2.5D EM differential integral equations. The 2.5D AGILD
modeling algorithms are presented in the section 3. In section 4, we propose the 2.5D AGILD inversion. The
Applications are described in the section 5. Finally, we present discussions and conclusion in the section 6.

2. The New 2.5D Em Differential Integral Equations

2.1. The 2.5D Em Differential Integral Equations
In the 2.5D EM modeling, the EM parameters σ, ε, and µ are independent on θ, and only variable in ρ

and z. We choose the continuous component Eθ and Hθ to be unknown function. Upon substituting [E, H] =
∞∑

m=−∞
[Em, Hm](ρ, z)eimθ into the Maxwell equation in cylindrical coordinate, we derive the following 2.5D

differential integral equations on the boundary strip and center strip domain containing pole ρ = 0, EJbρ,. . . ,

HM
bz are known green tensor in the background medium, they are calculated in rectangle, cylindrical, and

spherical coordinate system respectively.

Eθ(ρ
′, z′, θ′; ρs, zs, θs) −

∫

∂Ω−

EJbρHθρdρ+ EJbzHθρdz −HJ
bρEθρdρ−HJ

bzEθρdz

+

∫

∂Ω−

EρH
J
bθρdρ+ EzH

J
bθρdz −HρE

J
bθρdρ−HzE

J
bθρdz

−
∫

Ω

(((σb + iωεb) − (σ + iωε))(EJbρEρ + EJbzEz − EθE
J
bθ))ρdρdz
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+

∫

Ω

((−iωµb) − (−iωµ))(HJ
bρHρ +HJ

bzHz −HθH
J
bθ)ρdρdz

=

∫

Ω

((Jρ)Eρ + (Jz)Ez)ρdρdz −
∫

Ω

((−iωµb)MbρHρ + (−iωµb)MbzHz)ρdρdz

−
∫

Ω

((Jρ)E
J
bρ + (Jz)E

J
bz − JθE

J
bθ)ρdρdz

+

∫

Ω

((−iωµ)MρH
J
bρ + (−iωµ)MzH

J
bz + (iωµ)MθH

J
bθ)ρdρdz (1)

(−iωµb)Hθ(ρ
′, z′, θ′; ρs, zs, θs) +

∫

∂Ω−

EMbρHθρdρ+ EMbzHθρdz −HM
bρEθρdρ−HM

bz Eθρdz

−
∫

∂Ω−

EρH
M
bθ ρdρ+ EzH

M
bθ ρdz −HρE

M
bθ ρdρ−HzE

M
bθ ρdz

+

∫

Ω

(((σb + iωεb) − (σ + iωε))(EMbρEρ + EMbzEz − EθE
M
bθ ))ρdρdz

−
∫

Ω

((−iωµb) − (−iωµ))(HM
bρHρ +HM

bzHz −HθH
M
bθ )ρdρdz

= −
∫

Ω

((Jρ)Eρ + (Jz)Ez)ρdρdz +

∫

Ω

((−iωµb)MbρHρ+(−iωµb)MbzHz)ρdρdz

+

∫

Ω

((Jρ)E
M
bρ +(Jz)E

M
bz −JθEMbθ )ρdρdz

−
∫

Ω

((−iωµ)MρH
M
bρ + (−iωµ)MzH

M
bz − (−iωµ)MθH

M
bθ )ρdρdz (2)

where the Eρ, Ez, Hρ, and Hz will be represented by Eθ, Hθ in the Eqs. (1) and (2).

2.2. The 2.5D EM Garlekin Equation in the Cylindrical System

Upon substituting Fourier series [E, H] =
∞∑

m=−∞
[Em, Hm](ρ, z)eimθ into the Maxwell equation in cylindrical

coordinate, let Eθ, Hθ denote Eθm, Hθm, we derive the following 2.5 D EM Garlekin equation,

∫

Ω

ρ2

(k2ρ2 −m2)

((
1

ρ
im

∂Hθ

∂z
+ (σ + iωε)

1

ρ

∂ρEθ
∂ρ

)
1

ρ

∂ρφ

∂ρ
−
(

1

ρ
im

1

ρ

∂ρHθ

∂ρ
− (σ + iωε)

∂Eθ
∂z

)
∂φ

∂z

)
ρdρdz

−
∮

∂Ω

ρ2

(k2ρ2 −m2)

((
1

ρ
im

∂Hθ

∂z
+ (σ + iωε)

1

ρ

∂ρEθ
∂ρ

)
ρφdz +

(
1

ρ
im

1

ρ

∂ρHθ

∂ρ
− (σ + iωε)

∂Eθ
∂z

)
ρφdρ

)
,

=−
∫

Ω

ρ2

(k2ρ2 −m2)

((
1

ρ
im(Jz) + (k2)Mρ

)
∂φ

∂z
+

(
1

ρ
imJρ − k2Mz

)
1

ρ

∂ρφ

∂ρ

)
ρdρdz

+

∫

Ω

((σ + iωε)(Eθ+Jθ)ρφdρdz+

∮

∂Ω

ρ2

(k2ρ2−m2)

((
1

ρ
imJρ−k2Mz

)
ρφdz −

(
1

ρ
im(Jz) + (k2)Mρ

)
ρφdρ

)
, (3)
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∫

Ω

ρ2

(k2ρ2 −m2)

((
1

ρ
im

∂Eθ
∂z

+ (−iωµ)
1

ρ

∂ρHθ

∂ρ

)
1

ρ

∂(φρ)

∂ρ
−
(

1

ρ
im

1

ρ

∂ρEθ
∂ρ

− (−iωµ)
∂Hθ

∂z

)
∂φ

∂z

)
ρdρdz,

−
∮

∂Ω

ρ2

(k2ρ2 −m2)

((
1

ρ
im

∂Eθ
∂z

+ (−iωµ)
1

ρ

∂ρHθ

∂ρ

)
φρdz +

(
1

ρ
im

1

ρ

∂ρEθ
∂ρ

− (−iωµ)
∂Hθ

∂z

)
φρdρ

)

=

∫

Ω

ρ2(−iωµ)

(k2ρ2 −m2)

((
−1

ρ
imMz − Jρ

)
∂φ

∂z
−
(

1

ρ
imMρ − Jz

)
1

ρ

∂(φρ)

∂ρ

)
ρdρdz

+

∫

Ω

(−iωµ)(Hθ +Mθ)φρdρdz +

∮

∂Ω

ρ2(−iωµ)

(k2ρ2 −m2)

((
1

ρ
imMρ − Jz

)
φρdz +

(
−1

ρ
imMz − Jρ

)
φρdρ

)
, (4)

where function φ is test function. When m = 0, the Eqs. (3) and (4) have singularity in the pole ρ = 0. The
traditional FEM and FD method have singularity in the pole ρ = 0.

3. The New 2.5 D AGILD Modeling

Fortunately, our 2.5D differential integral Eqs. (1) and (2) have no coordinate singularity in the pole ρ = 0.
We use collocation FEM points to discrete the Eqs. (1) and (2) on the boundary strip and center strip containing
the pole point ρ = 0. The double layered discrete matrix equation is as follows

KBB

[
EθBy

HθBy

]
+KBI

[
EθIy

HθIy

]
=

[
JsB
MsB

]
(5)

where [EθB , HθB ] is the θ component EM field on the external layer of the center strip and boundary strip,
[EθI , HθI ] is the θ component EM field on the internal layer of the center boundary strip. [JsB , JsB ] is the
discrete source term on the boundary and center strip, On the remainder domain which has no pole point, we
use Garlekin FEM to discrete the 2.5 D EM Garlekin Eqs. (3) and (4) and get sparse matrix equation. By GILD
processes from internal to external, we obtain

KIB

[
EθBy

HθBy

]
+KII

[
EθIy

HθIy

]
=

[
JsI
MsI

]
, (6)

where [JsI ,MsI ] is the composed source term in the internal layered. By solving the coupled Eqs. (5) and (6),
we obtain [EθB ,HθB ] and [EθI ,HθI ]. Using backward processes, we obtain [Eθ,Hθ] in the whole domain for
each m sheet (see Figure).

Because the Garlekin FEM (6) is build on the domain without singularity pole, and the differential integral
discrete Eq. (5) has no coordinate singularity, Therefore, Our 2.5D AGILD method resolve the coordinate
singularity historical difficulty.

4. The New 2D AGILD Inversion

In the 2.5D AGILD EM modeling, we suppose the EM parameter is invariable in the θ. The EM parameters
are variable in the ρ and z of 2D. We present the 2D AGILD inversion here.

4.1. Variance EM Differential Integral Equation
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We propose the 2.5D EM variation differential integral equation on the strip for inversion

δEθ(ρ
′, z′, θ′; ρs, zs, θs) − δ

∫

∂Ω−

EJbρHθρdρ+EJbzHθρdz −HJ
bρEθρdρ−HJ

bzEθρdz

+δ

∫

∂Ω−

EρH
J
bθρdρ+ EzH

J
bθρdz −HρE

J
bθρdρ−HzE

J
bθρdz

=

∫

Ω

δ(σ + iωε)(EJbρEρ + EJbzEz − EθE
J
bθ)ρdρdz

−
∫

Ω

δ(−iωµ)(HJ
bρHρ +HJ

bzHz −HθH
J
bθ)ρdρdz

= δ

∫

Ω

(JρEρ + JzEz)ρdρdz − δ

∫

Ω

((−iωµb)MbρHρ + (−iωµb)MbzHz)ρdρdz

+δ

∫

Ω

((−iωµ)MρH
J
bρ + (−iωµ)MzH

J
bz + (iωµ)MθH

J
bθ)ρdρdz, (7)

δEz=
−2kδkρ2

(k2ρ2 −m2)2

(
1

ρ
im

∂Eθ
∂z

+(−iωδµ)
1

ρ

∂ρHθ

∂ρ
+(−iωδµ)

1

ρ
imMρ−(−iωδµ)(Jz)

)
, (8)

Similarly, we can derive the variance of δE and δH. Also, we can derive the variance equation of the differential
integral Eq. (2), and Gerlekin Eqs. (3) and (4).

4.2. Discrete Variance Em Differential Integral Equation
By using collocation FEM discretization of the variance EM differential integral equations, and regularizing

with parameter and linearization, the matrix equation of the (7) relative [δσ, δε, δµ]Bs in boundary strip to
[δσ, δε, δµ]is in inside strip will be

=BsBs



δσBs

δεBs

δµBs


+ =BsIs



δσIs

δεIs

δµIs


 =

[
δEθ
δHθ

]

Ds

, (9)

and using EM discretization of the variance Garlekin equation and weaker regularizing linearization, we obtain
matrix equation relative [δσ, δε, δµ]is in inside strip to [δσ, δε, δµ]Bs in boundary strip. By solving the coupled
matrix equation and backward processes, we obtain the variance of the EM parameter [δσ, δε, δµ] that is used to
update the parameter. The 2.5D AGILD EM modeling and inversion are explained by ../files/051002183125/paper/Figs. 1-
6.

Fig. 1: AGILD forward node scheme. Fig. 2: Inside node layer to outside layer. Fig. 3: Outside node layer to inside layer.

Fig. 4: AGILD inverse block scheme. Fig. 5: Inside block layer to outside layer. Fig. 6: Outside block layer to inside layer.
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5. The Applications

The 2.5D AGILD modeling and inversion have widely applications in GEOMAIL, VEMP, EM sheet, cross
hole imaging etc. geophysical exploration, Earthquake exploration, coaxial antenna, motors and generators
design, EM stirring in caster, microwave cell phone design, environment, EM in nanometer pipe and ball, senor
design, nondestructive testing. AGILDMAIL, AGILDVEMP, AGILDSheet, and ADILDEMS [5] etc software
have been developed. The Earth sphere magnetic field is simulating. 2.5D AGILD can be parallelization by
using frequency fi, wave number kzj and angle number θm. Many GL [2] and AGILD results are publishing in
Journals.

6. Discussions and Conclusion

Many synthetic and field data imaging show that AGILD method is fast and accurate without any boundary
error refection, and AGILD inversion is high resolution. 2.5 AGILD has same merits as AGILD and GILD.
Its main merits are (1) to reduce cost to 2D, (2) vanish error boundary reflection, and resolve singularities in
cylindrical and spherical coordinate.
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Measured Electromagnetic Pulses Verify Asymptotics
and Analysis for Linear, Dispersive Media

T. M. Roberts
Air Force Research Laboratory, USA

Abstract—Electromagnetic precursors and other pulses in dispersive media have been studied theoretically
since 1914. Yet a recent National Research Council study [1, p. 73–75] found few measurements that verify
the relevant theories. Verification is useful because, where independent theories and measurements agree, the
results are highly reliable. This report describes two laboratory verifications of transient-electromagnetic theory
that I completed recently.

1. Introduction

Laboratory measurements of dc-content, electromagnetic pulses verify two groups’ asymptotics for the dis-
persive decay and spread of pulses in a Debye model and the spread in a Lorentz model [2]. The measured
peak amplitudes of pulses decay with depth nearly as x−1/2 (water) and x−1/3 (concrete) in coaxial cables.
The products of the measured peaks and full-widths at half-maximum (FWHMs) are nearly constant. This was
predicted for water and for all Debye models; for concrete, it was a surprise.

Other, independent measurements verify analysis showing that any pulse decays exponentially in a lossy
material if the pulse’s spectrum has nonzero separation from ω = 0 (dc) [3–5]. The energy and peak amplitude
then decay at least as fast as their respective slowest rates of exponential decay for the material and spectrum
at hand. By basic antenna theory, frequencies near dc have infinitesimal efficiency of radiating into the far field
[3]. Thus, exponential decay is nearly universal in far-field, lossy objects.

Figure 1: Peaks ∝ x−0.450 and FWHMs ∝ x−0.448 for x > 1 cm in water. Peaks ∝ x−0.388 for x > 8 cm in
concrete.

2. Verification of Debye- and Lorentz-model Asymptotics

Petropoulos and I showed that the Dirac δ(t) response of any Debye model will asymptotically approach the
δ response of an advection-diffusion equation as the depth x greatly exceeds an easily computed quantity that
we named the time-domain skin depth [6]. As x → ∞, the δ response’s peak amplitudes decay as x−1/2 and
the full widths at half-maximum (FWHMs) spread as x1/2 in Debye models. Some of these results, and further
results, were obtained independently by Kelbert and Sazonov [7, secs. 2.2 and 2.3] in the same year (1996) as
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[6]. In mid-1997, Farr and Frost published relevant experimental data for water and concrete [8]. Because the
three groups were unaware of each other’s work, the results were profoundly independent.

A theorem on “element convolution” [6] predicted that Farr and Frost’s measured pulse would propagate in
a Debye model of water with peaks ∝ x−1/2 and FWHMs ∝ x1/2, approximately [2]. This is evident in Fig. 1,
where peaks×FWHMs are constant to within ±1.4% for water, verifying much of the three groups’ work. For
concrete, peaks×FWHMs are constant to within ±6.2% but the reason is not known.

Debye models are not good for concrete. But Farr and Frost’s best Lorentz model for concrete is a good fit
for the real part of the complex permittivity, ε(ω). Unfortunately, the same Lorentz-model fit badly understates
Im ε, typical of Lorentz-model fits for solids [9, ch. 3, sec. 2.2 and 2.3]. Even in these circumstances, a derivation
[2, sec. IV] shows that the pulse’s measured FWHM would be well accounted for by asymptotics for the Lorentz
model, provided the asymptotics themselves are good.

One basic test of Lorentz-model asymptotics is that, as x→ ∞, the peak amplitude of any propagated pulse
decays asymptotically as x−1/3 if the incident pulse’s Fourier transform, f̃(ω), is nonzero at ω = 0; but the decay
is x−2/3 if f̃ has a first-order zero at ω = 0 [6, endnote 30]. This basic test has precedence in Brillouin’s x−1/3

revision, in 1932, of his incorrect x−1/2 Lorentz-model result from 1914; albeit for only one variety of incident
pulse [10, p. 105–110, 124–127]. Some more-recently-published Lorentz-model asymptotics [11, paragraph 2 of
p. 352] fail the basic test. Kelbert and Sazonov’s asymptotics [7, sec. IV] pass the test.

Kelbert and Sazonov’s asymptotics accommodate Farr and Frost’s Lorentz-model fit and their incident pulse
for concrete. The result is Fig. 2, which shows reasonably good agreement of theory and the FWHMs measured
beyond 6 cm in concrete.

Figure 2: Measured and theoretical FWHMs agree for x > 6 cm in concrete.

In this manner, one measurement group (Farr and Frost) and two theory groups (Kelbert and Sazonov,
and Petropoulos and me) published mutually verifying results within nearly a year of each other, without even
knowing of each other. The mutual verifications include both the Debye and Lorentz models. The verification
for Lorentz-model asymptotics is partial—valid for only FWHMs—because Lorentz models typically understate
the Im ε of solids [9].

3. Verification of Exponential Decay

From 1914 [10] until July 4, 2002 [3], apparently, almost every pulse-decay rate predicted for a dispersion
model was of the form x-const, called algebraic decay. Decay rates are sensitive to the degree of spectral
concentration near ω = 0 (dc) [6, endnote 30]. What happens if an incident pulse’s spectrum is confined to a
non-infinite band of frequencies separated by a nonzero amount from dc, as broadcast regulations and practicality
may require? The frequency components still would travel as exp(ikx), where k(ω) is the complex-valued wave
number. Let kmin

i be the smallest positive value that Im k has for the material and spectrum at hand. Intuition
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then suggests that the full pulse’s peak would decay at least as fast as the slowest rate of exponential decay,
exp(−kmin

i x).
Exponential-decay derivations [12] are suitable for undergraduate textbooks. Let E(x) = E(x)/E(0) be

the normalized energy, where E(x) =
∫∞
−∞ |E(x, t)|2dt. Incident pulses f(t) with Fourier transforms f̃(ω)

propagate linearly as E(x, t) =
∫∞
−∞ ei[k(ω)x+ωt]f̃(ω)dω. The Parseval equation then implies

∫∞
−∞ |E(x, t)|2dt =∫∞

−∞ |eikxf̃(ω)|2dω and algebra shows E(x) ≤
∫∞
−∞ e−2kmin

i x|f̃(ω)|2dω = e−2kmin
i x

∫∞
−∞ |f̃ |2dω = e−2kmin

i x
∫∞
−∞ f2dt.

The value kmin
i is defined in the previous paragraph.

A similar, 5-step derivation [3,12] proves the exponential decay of normalized peak amplitudes, P(x) =

P(x)/P(0), where P(x) ≡ maxt |E(x, t)|. In fact, P(x) ≤ e−2kmin
i x

∫∞
−∞ |f̃ |dω. This relation for peaks was

verified in 2002 by a 4-parameter, infinite family of numerical examples [3] for the Debye and Lorentz models.
Two years after the exponential decay of P was verified numerically, the exponential decay of E was verified

experimentally [4, 5]. The experiment is described next.
Choi and Österberg measured E(x) for a 660–740-nm-wavelength red laser pulse traveling 4.7 m in deionized

water [4]. Their explicit motivation was to observe a pulse that decays slower than exponentially.
Choi and Österberg’s data analysis yielded a graph [4, Fig. 1] that their concluding paragraph used as

evidence of ≈ x−1/2 decay of E(x). The evidence was weak: The x−1/2 claim was based on only the last 4 of
24 data points. The error bars along a logarithmic axis were centered on the data and had constant lengths,
without explanation for the cause. The dotted curve for exp(−2kmin

i x) was mislabeled. And the kmin
i value

used in [4] represented the experiment’s deionized water by this uncommon mixture: 25% Sargasso Sea water;
≈ 25% water from Crater Lake National Park, USA; and ≈ 50% doubly-distilled water [5, paragraph 3]. Sea
water, especially, is unlike the deionized water used experimentally in [4].

Figure 3 is adapted from [5]. It corrects [4, Fig. 1]. The experiment’s deionized water is represented here
by the kmin

i value for twice-distilled water at the 660 nm wavelength. The measurements of normalized energy
E(x) are marked. Fig. 3 shows that these measurements decay exponentially, as E(x) ≤ exp(−2kmin

i x), for 24
data points whose 0.001–4.7 m span covers 3.7 decades of depth. Please notice how close the measured data are
to the theoretically slowest rate of decay (solid curve) for the material and spectrum at hand.
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Figure 3: Experimental verification of the exponential decay of E(x), showing each datum in 3.7 decades of
distance.

4. Conclusion

Studies of 1D electromagnetic pulses in dispersion models date to 1914 [10]. For the next 88 years, apparently,
it was largely unnoticed that many pulses used in that theory could not propagate into the far field because they
had dc (ω = 0) content. Such pulses can travel in waveguides with dispersive fill, but few such measurements
existed until recently [1, p. 73–75]. Quantitative agreement of measurement and theory has since improved by
means mentioned in sec. 2, which regards pulses with dc in the spectrum or at a spectral endpoint.

When a 1D pulse’s spectrum is separated from dc by a nonzero amount, the pulse will decay exponentially
in lossy materials. The relevant measurements and derivations here in sec. 3 and in [4, 5, 12] seem suitable for
the undergraduate curriculum in electromagnetics.
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Abstract—A new integral equation formulation is introduced for solving, in the frequency domain, the problem
of electromagnetic scattering by an impedant (IBC) or perfect electric/magnetic (PEC/PMC) 3D body of
arbitrary shape. It is based firstly, on a special application of the equivalence principle [2] where the 0-field
exterior domain is filled with another impedant medium and, secondly, on the widely used PMCHW (Poggio,
Miller, Chang, Harrington and Wu) formulation which forces field continuity through the scatterer surface [3].
Unlike other IBC formulations such as [4], this one also applies to PEC/PMC. Furthermore, in this last case,
it appears to stabilize the numerical scheme in the vicinity of eigen frequencies. We will provide proofs and
conditions of the wellposedness of the problem for impedant as well as for PEC/PMC bodies.

1. Introduction

Since the pioneering work of Leontovitch, Impedance Boundary Condition (IBC) has been widely used to
simplify electromagnetic scattering problems. It simulates the material properties of a surface by forcing surface
electric and magnetic fields to respect: Etan = Rn×Htan, R ∈ C [1] where n is the unit normal to the surface
pointing into the outside of the impedant medium. It is absorbing when Re(R) > 0. Range of validity of IBC
for imperfect conductors has been discussed in [1]. Many specific implementations have been surveyed, but only
a few general numerical method are available. The last ones are from Lange [5] and Bendali [4]. Beyond the
algebric approach, [5] appears to be very similar to the proposed new formulation. It mimics the widely used
PMCHW (Poggio, Miller, Chang, Harrington and Wu) method [3] and introduces a specific parameter which
behaves like an impedant “complement medium” whose impedance would be equal to the scatterer’s one. But,
none of [5] and [4] methods extends to perfect electric (PEC) or magnetic (PMC) conductors. The proposed new
formulation follows a more physical approach. It is based on a special application of the equivalence principle
[2] where the 0-field exterior domain is filled with another impedant medium and on the use of the PMCHW
technic. It does not require scatterer and complement domain impedances to be the same and, most of all, it
extends to PEC and PMC bodies (Rs −→ 0 or ∞).

This paper describes a way to generalize [5] formulation. Before posing the concerned integral equation
system, we briefly remind how the initial problem is decomposed. The well posedness of the formulation is
then demonstrated. Finally we give some numerical illustrations which validate this approach and point out its
advantages.

2. Subproblem Decomposition

The equivalent principle [2] conduces to decompose any problem into several subproblems, each one being
dedicated to a given portion of the original problem. Given a subproblem, we denote “active domain” the piece
of problem extracted from the original one. The space surrounding an active domain is named “complement
domain”. Fields are expected to be null there. 0 field being a Maxwell Equation solution whatever the medium
within a source free domain, this allows to choose any medium for the complement domain. This property is
often used to transform a subproblem into a free space problem by replacing a scatterer by free space. It is
seldom used in other cases. The proposed formulation uses it twice: once, classically, in the first subproblem,
by filling the scatterer volume with free space and, another time, in the second subproblem, by filling the
complement domain with an impedant medium.

In order to illustrate this approach, let us consider a scatterer in free space lighted by a plane wave. We
refer by DS to the region of space embodying the scatterer. Its surface is denoted Γ. We refer by DE (“exterior
domain”) to the rest of the space interesting the problem. Normal vectors will always be supposed to be unit
vectors pointing outside the specified domain: nS and nE pointing from DS , respectively DE , toward DE ,
respectively DS . The initial problem is decomposed into 2 subproblems as follow (Fig. 1):
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Figure 1: subproblems decomposition.

PbE: the exterior problem. It includes: an active domain DE containing free space, a complement domain
CDE filled with free space, a set of surface electric and magnetic fictive currents, respectively JE and ME on
Γ, impressed sources generating a plane wave incident field. It is well known that this construction leads to a
standard problem where fictive sources radiate in a free space environment.

PbI: the interior problem. It includes: an active domain DS containing the impedant scatterer with local
impedance Rs, a complement domain CDS , filled with an impedant medium caracterised by its local impedance
Rc, a set of surface electric and magnetic fictive currents, respectively JI and MI on Γ, no impressed sources.
Due to the complement choice, fields must satisfy an impedance bondary condition on both sides of interface
Γ. On the scatterer side of Γ (point denoted xs):

Etan(xs) = RsnS × Htan(xs) (1)

On the complement side of Γ (point denoted xcs):

Etan(xcs) = −RcnS × Htan(xcs) (2)

3. Integral Equation Formulation

Once all subproblems posed, we evaluate, for each subroblem independantly, the scattered field on the active
side of the interface radiated by fictive currents.

PbE radiating operators In a free space environment, fields radiated by surface currents are controlled by
the familiar Stratton-Shu and jump relations on the interface. The field observed at point xe on the DE side of
surface Γ is given by (Refer to [4] for expressions of Z and operators T and K):

EpbEtan (xe) = Einctan(x) + ikZ(TJE)tan + (KME)tan + 1
2ME × nE

HpbE
tan (xe) = Hinc

tan(x) − (KJE)tan + ikZ−1(TME)tan − 1
2JE × nE

PbI radiating operators A right combination of the usual boundary conditions [2] that links E and H fields
on both side of a current sheet running on Γ
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{
EpbItan(xs) = EpbItan(xcs) + MI × nS
HpbI
tan(xcs) = HpbI

tan(xs) + JI × nS
(3)

and IBC relations (1 ) and (2) leads to the E and H field expression:{
EpbItan(xs) = Rs

Rc+Rs
(−RcJI + MI × nS)

Hpb1
tan(xs) = − Rc

Rc+Rs
(J1 × nS + MI

Rc
)

(4)

When the scatterer medium tends toward PEC (Rs → 0), (4) reduces to:{
Epb1tan(xs) = 0

Hpb1
tan(xs) = −J1 × nS − M1

Rc

Beyond there simplicity, they appear to be local operators, the numerical implementation of which does not
require any long calculation and leads to a sparse matrix.

Connection— According to PMCHW, integral equations are built by forcing equality between surface fields
associated to both subproblems:
{

JI = −JE

MI = −ME
and

{
Rs

Rc+Rs
(−RcJI + MI × nS) = Einctan(x) + ikZ(TJE)tan + (KME)tan + 1

2ME × nE
− Rc

Rc+Rs
(J1 × nS + MI

Rc
) = Hinc

tan(x) − (KJE)tan + ikZ−1(TME)tan − 1
2JE × nE

(5)

4. Well Posedness

It worth pointing out that the formulation is not a strict application of the equivalence principle. In
particular, nowhere it imposes 0 fields outside active domains. This fundamental characteristic must be proven
independantly. In this intent, we define a new subproblem called “complement problem” PbC. It is built from
the union of the complement domains of both subproblems, CDE and CDS plus their interface Γ.

According to the way subproblems are built, PbE and PbI solutions restricted to their respective complement
domains CDE and CDS are solutions of the complement problem PbC:

on CDS side

{
EpbCtan (xcs) = EpbItan(xcs)

HpbC
tan (xcs) = HpbI

tan(xcs)
and on CDE side

{
EpbCtan (xce) = EpbEtan (xce)

HpbC
tan (xce) = HpbE

tan (xce)
.

Furthermore, PMCHW formulation forces equality between surface fields located into PbE and PbI ac-
tive sides. By applying (3), one can easily prove that PMCHW formulation works as well with fields ob-

served into the complement sides:

{
EpbItan(xcs) = EpbEtan (xce)

HpbI
tan(xcs) = HpbE

tan (xce)
. Consequently, in the Complement problem

{
EpbCtan (xcs) = EpbCtan (xce)

HpbC
tan (xcs) = HpbC

tan (xce)
, tangential components of field are continuous through Γ and, finally, PbC appears

to be a source free problem. AS FAR AS IT IS NOT A SINGULAR PROBLEM subject to eigen modes, its
unique solution is ZERO. This proves that field solutions are equal to 0 in all complement domains whatever
the subproblem.

Consequently, PbI and PbE solutions are the same as the ones provided by the equivalence principle, com-
bination of which is known to be the unique solution of the original problem.

Finally, we can conclude that the well posedness condition requires that the problem built on the complement
domains union is a non singular problem.

5. Numerical illustrations

Numerical results obtained with a unit sphere meshed with planar triangles (750 edges) confirm the formu-
lation validity and advantages. Equivalent currents and test functions are expanded using RWG elements [6].

• Accuracy: in the case of an IBC sphere (Rs = 100), we have compared numerical results obtained from
three formulations: the new formulation, CERFACS implementation of Leontovitch problem [4] and Mie
series with boundary condition (1) imposed at the sphere surface [2]. The sphere is lighted from the
bottom (+z direction) by a x-polarised plane wave which wave number is set to k = 2. Complement
medium impedance is Rc = 2. Fig. 2 reports the radar cross section (RCS) observed in different direction
using the 3 methods. Angle 0 corresponds to the direction of incidence. The 3 resulting curves are in
perfect agreement. New formulation and CERFACS RCS results are strictly superimposed. This visual
feeling is confirmed by the relative errors values on equivalent currents computed via the 3 methods (see
Tab. 1).
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• Numerical stabilization: the behaviour of one selected RWG current element of a PEC sphere (Rs = 0)
has been followed when wave number k varies in the vicinity of the first eigenfrequency of the spherical
cavity: ke = 2, 76. In this case, we use edge excitation by turning on edge 1 (excitation vector set to[

1 0 0 . . . 0 0
]
). Fig. 3 reports real and imaginary parts of the observed flux as a function of k

when EFIE or proposed formulation is used. One can easily notice that the resonance peak, that clearly
appears with EFIE, is suppressed by the new method.The proposed formulation is thus no subject to
spurious solutions when Rs −→ 0 or ∞.

Table 1: Equivalent current relative error.

degree of freedom formulations error

electric Cerfacs / New formulation 1,6%

electric New formulation/ Mie 1,7%

magnetic New formulation / Mie 1,6%
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Figure 3: Real and imaginary part of current value
computed by EFIE and new formulation.

4. Conclusion

The proposed formulation provides practitioners in computational electromagnetism with a general well
posed method to deal with all kinds of impedant bodies, from usual IBC medium up to very good and even
perfect conductors without any risk of spurious solution. Interior problem local operators are very easy to
implement using RWG elements. They generate a negligible extra computation compared to the one needed
for the exterior problem. Since magnetic currents must always be taken into account, even for PEC/PMC, the
main drawback is the doubling of the number of degrees of freedom compared to [4]. In addition, it worth
noting that the well posedness condition which states that the complement problem must be non singular could
be extended to all forms of PMCHW formulations.

REFERENCES

1. Wang, D. S., “Limits and validity of the impedance boundary condition on penetrable surfaces,” IEEE
trans. Ant. Prop., Vol. 35, 453–457, Oct. 1987.

2. Harrington, R. F., Time Harmonic Electromagnetic Fields, Mac Graw Hill, 1961.
3. Poggio, A. J. and E. K. Miller, Computer Techniques for Electromagnetics, Oxford, U. K. permagon, 1973.
4. Bendali, A., M’B. Fares, and J. Gay, “A boundary-element solution of the leontovitch problem,” IEEE

Trans. Ant. Prop., Vol. 47, 1597–1605, Oct. 1999.
5. Lange, V., Equations Integrales Espace-Temps Pour Les Equations De Maxwell. Calcul Du Champ Diffracte

Par Un Obstacle Dissipatif, PhD dissertation, Univ Bordeaux I, France, 1995.
6. Rao, S. M., D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surface of arbitrary shape,”

IEEE Trans. Ant. Prop., Vol. 30, 409–418, may 1982.



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 403

Chasmas Including Magnetic Effects

D. K. Callebaut
University of Antwerp, Belgium

A. H. Khater
University of Beni-Suef, Egypt

Abstract—In a plasma one has by definition quasi-neutrality over distances of the order of the Debye length.
In some situations one has no quasi-neutrality over many times the Debye length. Such a non-quasi-neutral
plasma or charged plasma has been called chasma. We studied previously fairly simple chasmas [1–5] using
an integro-differential equation and using the partial differential equations [6], where we obtained the so called
‘chasma frequency’, playing a role in the steady state and in the stability. Now we extend the latter analysis
by considering the Maxwell equations from the start, i. e., including the magnetic terms. According to the
geometrical situation (electron and ion velocities perpendicular to the ‘electrodes’ or not) one may derive
expressions for all steady state quantities. Perturbation yields instability except in special cases, as was the case
in the non-magnetic situation.

1. Introduction

In a plasma one has by definition quasi-neutrality in volumes which have dimensions larger than the Debye
length or at least a few times the Debye length. In some situations one has no quasi-neutrality over many
times the Debye length. E. g., in certain discharges or in the multipactor effect [1] (secondary electron resonance
discharge) in the cavities of linear accelerators. It is expected that chasma’s occur too in certain extended
double layers with currents and magnetic fields playing a role in the solar convective zone and solar atmosphere
or in double layers in the terrestrial atmosphere. Callebaut and Knuyt [2] investigated theoretically the steady
state, using an approach based on a singular integro-differential equation, cf. [3–5] and [7–13] as well.

Here we want to analyze a fairly idealized situation, although not unrealistic in view of the studies cited
above, however now using the basic partial differential equations. The study made in [6] did not involve a
magnetic field, which was an inconsistency as currents were allowed to flow. Including the Maxwell equations
complicates the system very much. For the steady state this is still no big problem. However, the investigation of
the (linear) stability is more involved. In fact an extended quasi-nonneutral region requires already a particular
configuration and circumstances to allow for an equilibrium, or rather a steady state. Thus it may be expected
often to be unstable. Actually, observations in linear accelerators and in separated cavities seemed to indicate
sometimes a stable behavior and sometimes an unstable one, although the latter might have been caused in
some cases by exhaustion of the power supply.

2. Basic Equations

We have three sets of basic equations.

2.1. Maxwell Equations and Material Equations
With conventional notations we have

rotH = j + ∂tD = e(n+v+ − n−v−) + ε∂tE, (1)

divB = 0, → divH = 0, (2)

rotE = −∂tB = −µ∂tH, (3)

divD = ρ+ + ρ−, → εdivE = e(n+ − n−), (4)

where we have inserted the material equations: B = µH and D = εE. ε is the electric permittivity and equals
in vacuum 8.85× 10−12 C/Vm; µ is the magnetic permeability and usually is very close to its value in vacuum:
µ = 4π × 10−7 kgm/C (or henry/m), SI units. We assume that ε and µ are constant which is a reasonable
hypothesis as it will turn out that we shall deal for the steady state with a homogeneous density; however, as
some other quantities are varying in space an extension may be to have ε in tensorial form. The charge density
of the electrons is ρ−, their number density is n−, their velocity is v−, their charge is −e and their mass is m−.
For the ions, supposed ionized once only and all of the same mass, the same notation applies, but with a +sign
replacing everywhere the -sign.
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2.2. The Equations of Motion
With an obvious notation we have

n±m±v±.∇v± = ±en±E + ±µen±v± × H. (5)

These are the equations of motion for respectively ions and electrons in the cold plasma (chasma) approximation
that the pressure terms are negligible.

2.3. Conservation of Charges (and Particles)
We express the conservation of charges, as well as the conservation of particles.

∂tρ± + ∇.(ρ±v±) = ±P, (6)

with P the ion charge density produced per unit time. Clearly there is a background of neutral particles that
may get ionized by collisions. P is supposed here to be constant. P is usually the product of the beam density
(here supposed to be constant), the density of the neutral gas and the ionization coefficient. In view of charge
conservation during an ionization −P corresponds to the electron charge produced per unit time and unit
volume. In total we have 27 equations and 26 unknowns. After dropping B, D, j, ρ+ and ρ− we still have 16
equations with 15 unknown functions. (The equations for the charge conservation and the equations (1) and
(4) are not independent.)

3. Steady State

3.1. General
For the steady state we have ∂t = 0 and thus the basic equations reduce to

rotH = e(n+v+ − n−v−), (7)

divH = 0, (8)

rotE = 0, → E = −∇ϕ, (9)

ε∆ϕ = −e(n+ − n−), (10)

m±v±.∇v± = ∓e∇ϕ+ ±eµv± × H, (11)

∇.(n±v±) = ±P/e, (12)

where ϕ is the electric potential. We have omitted here for simplicity the index 0 for the steady state quantities.
Note that e. g., v+0 and v−0 and ϕ0 are still functions of space.

We consider the case of two infinite, plane-parallel plates (‘electrodes’) or infinite plane-parallel ‘potential
borders’ of a double layer, which are far enough from each other so that we may neglect boundary effects.
A homogeneous ionizing beam is creating electrons and ions while passing through the chasma region, either
parallel to the plates or perpendicular to them. We choose the x-direction perpendicular to the plates and
the y-direction parallel to them, along the beam if this one is parallel to the electrodes. The gradient of the
potential is then in the x-direction. We have ∂y = 0 and ∂z = 0. The equations for the magnetic field yield

n+v+ = n−v−, (13)

∂xHx = 0, ∂xHy = 0, ∂xHz = 0. (14)
The total current has to vanish, i. e., the electron current compensates the ion current; otherwise there is no
steady state. Moreover H has to be a constant field. It cannot be created by the chasma as there is no current,
hence it is an applied magnetic field. Its orientation does not matter much as the charges moving in one place
and deviated to another place replace other charges coming from elsewhere. For simplicity and with an eye on
experimental situation we take H = H0 either perpendicular or parallel to the electrodes.

Without an applied magnetic field, or when it is parallel to the velocities, the system of equations reduces
to the one studied in our previous work [6], however, now with the supplementary relation (13). Note that this
relation is rather natural as the same numbers of electrons and ions are generated in the ionization process,
however, their densities are inversely proportional to their velocity, which suits equation (13) very well. (The
fast back and forth sweeping h.f. beam, as e. g., in the multipactor effect, may be considered approximately as
averaging to a zero current.)

3.2. Homogeneous Chasma
We know from the studies using the singular integro-differential equation [2–5] that steady states exist in

which both n+ and n− are constant. Integration of the Poisson equation (10) yields then:
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ϕ = −e (n+ − n−)x2

2ε
, (15)

where we have chosen the origin where the gradient of ϕ vanishes and omitted the arbitrary constant.

3.3. Beam Parallel to the Electrodes
With v±×H = 0 we recover the analysis given in [6]. As the production is usually proportional to the beam

density, multiplied by an ionization frequency ωch we may write P = ωchρ−0. There results

ω2
ch =

e2(n+0 − n−0)

εm−
, (16)

where we have called ωch the chasma (angular) frequency in [6]. It is a strange mix of the quantities constituting
the electron and ion plasma frequencies. Moreover its meaning is different: this is an entity occurring in the
steady state, and as such occurring in the stability analysis too, while the plasma frequency, although constituted
by equilibrium quantities, appears in the perturbation analysis only.

4. Stability

The stability analysis of the chasma for the previous case is now much more involved than without current
and magnetic field. Again there is mostly instability for some particular situations.

5. Conclusion

The present results using the full set of basic equations complement and confirm the result previously ob-
tained with a singular integro-differential equation and the analysis in which the magnetic effects were neglected
[6]. A constant beam and constant ion production leads to a homogeneous ion density and a potential quadratic
in the coordinates. We introduced a so-called chasma frequency ωch which has a similar structure as the electron
plasma frequency, but uses the difference in ion and electron number density instead of the equilibrium number
density of either the ions or the electrons. Moreover its function is different. There is stability in particular
cases, depending on ωch and the geometry.
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Generation of Solar Magnetic Fields Using a
Quadripolar Seed Field

D. K. Callebaut
University of Antwerp, Belgium

Abstract—The exact solution for the kinematic dynamo problem in spherical coordinates r, ϑ, ϕ is given in
Ref. 1. The velocity is supposed to be azimuthal and to be an arbitrary function of r and ϑ only. Using a
bipolar seed field yielded a qualitative agreement with the sunspot butterfly diagram and the polar faculae
butterfly diagram. Here we investigate the case that a quadripolar seed field resides in the Sun (maybe in the
whole convective zone or rather only in the tachocline at the bottom of the convective zone). In fact some
observations reveal a quadripolar contribution to some surface phenomena. A combination of a bipolar and a
quadripolar field yields better agreement for a suitable choice of their amplitudes. The separation between the
sunspot region and the polar faculae, although both are generated by the same mechanism, is manifest: the
region where the radial variation of the angular frequency of the rotation vanishes.

1. Introduction

Here the dynamo is considered in the ideal magnetohydrodynamic (MHD) approximation: no resistivity and
no α-effect. The basic equations are the equation for the evolution of the magnetic field H and the conservation
of the magnetic flux

∂tH = rot(v × H), (1)

divH = 0, (2)
where v is the velocity (SI units). The velocity field in the solar case may be assumed as being mainly a rotation
around the solar axis (there is quite a good symmetry, sometimes a perfect anti-symmetry, with respect to the
equator). Superposed on this main rotation are some turbulent motions, usually of much smaller amplitude.
(Sometimes the turbulent speeds may be much higher, but they usually do not last long and alternate their
direction.) They are not considered here, although their azimuthal component may be included in the treatment.

2. Exact Solution for Given Azimuthal Velocity

The system of spherical coordinates (r, ϑ, ϕ) is chosen so that the velocity v(r, ϑ) has an azimuthal component
only, vϕ. As only differential rotation matters (in our approach) for the amplification of the magnetic field this
may be the differential velocity with respect to some chosen frame with uniform angular velocity, which is
co-moving with some point e.g., on the equator. Hence

vϕ = rω(r, ϑ) sinϑ. (3)
Here ω(r, ϑ) is the angular frequency. Using the requirement that the magnetic field has to be single-valued

Callebaut [1] obtained:

Hr =
−1

r2 sinϑ
∂ϑΦ + Pr(r, ϑ, ωt− ϕ), (4)

Hϑ =
1

r sinϑ
∂rΦ + Pϑ(r, ϑ, ωt− ϕ), (5)

Hϕ =
−t
r

∂(ω,Φ)

∂(r, ϑ)
+ Pϕ(r, ϑ, ωt− ϕ), (6)

where the Jacobian is introduced. Pr, Pϑ and Pϕ are purely periodic functions of ωt−ϕ, and contain r and ϑ in
addition; they are related through the equations of flux conservation and field evolution. As one is essentially
interested in growth with time and not in a periodic waxing and waning during one solar rotation, one does not
bother much about the periodic terms P , although they may be relevant in connection with e.g., the mean field
theory.

Φ is an arbitrary function of r and ϑ only. It follows from Eqs. (4) and (5) that Hr and Hϑ do not vary
with time except in their periodic terms. The only interesting time dependence (at present) is provided by the
linear time dependence occurring as a coefficient of the Jacobian in Hϕ. That the effective growth is linear with
time may easily be understood physically. In fact the differential rotation tears the plasma, and the frozen-in
magnetic field, differently in the ϕ direction, thus increasing Hϕ. As the rotation is supposed steady, the increase
is the same at all times, thus linear with time.
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3. Quadripolar Seed Field

A contribution to the seed field consists of what is left over after part of the field has escaped at the solar
surface. On the other hand there may be a part generated e.g., at the bottom of the convective zone. By lack of
data on the seed field we have considered in [1] as an example a bipolar field. We gave there several arguments in
favor of this choice: it is a fairly easy field, satisfying Eq. (2) and moreover planets have bipolar fields, although
inside their field is far more complicated. Moreover this gave qualitatively good results. However, at the surface
of the Sun, where huge currents encircling the Sun flow in filament bands, large-scale unipolar magnetic regions
occur which yield a field with latitude bands of alternating signs (Callebaut and Makarov, 1992; Makarov,
Callebaut, and Tlatov, 1997; Makarov et al., 2001; Makarov, Tlatov, and Sivaraman, 2003; Makarov, Tlatov,
and Callebaut, 2002, 2005). Thus the choice of bipolar magnetic fields may be reasonable as a start, but one
may be able to improve the results by using a combination of various types, e.g., a bipolar field together with a
multipolar one. Moreover, we may consider the seed field to be in a shell only instead of in the whole region for
r > 0.7 R with R the solar radius. Of course, the large and small scale turbulence and granular cells perturb
the field continuously and so do the mechanisms loosing magnetic fields to space (sunspots, flares, polar faculae,
bright points, coronal holes, ...) or to dissipation. We consider now the following quadripolar field separately
(at first) as a tentative choice for the seed field:

Hr = r−4Hp cosϑ, (7)

Hϑ = r−4Hp sinϑ, (8)

in the region r > R/2 or rather r > 0.7R. The starting value for Hϕ is irrelevant for the growth, however, it
has to be independent of ϕ to make the field divergence vanish. Hp is a constant. It is clear that this initial
field may be weak in general: to fix the ideas we may think of Hp/R

−3, the field at the equator, as a few gauss.
However, in a narrow shell at the bottom layer of the convective zone the field may be thousands of gauss, even
several hundred kilogauss. Of course, for the quadripolar field component the value may be much lower than for
the bipolar one. (A combination of bipolar, quadripolar and octopolar seed fields will be envisaged later.) The
components (7) and (8) may be matched to the expressions (4) and (5), which is an argument in favor for the
choice of a bipolar seed field. The main difference with a bipolar field is that the latter has an r−3 dependence.
We find

Φ = −r−2Hp sin2 ϑ. (9)

4. Analytic Expression for the Differential Rotation

In [1] we obtained an approximate analytic expression for the angular frequency of the solar rotation per
year:

ω = ωr0 +
5.77(r − r0)(cos2 ϑ0 − cos2 ϑ)(1 + 0.87 cos2 ϑ)

(R− r0) cos2 ϑ0
, (10)

Here cosϑ0 = 0.6 is approximately the present value where ∂rω vanishes.

5. Growth

Using Eqs. (6), (9), and (10) we obtain

Hϕ =
5.77Hpt sinϑ cosϑ

r4(R− r0) cos2 ϑ0

[
r(cos2 ϑ0 − cos2 ϑ)(1 + 0.87 cos2 ϑ)

+ 2(r − r0) sin2 ϑ(1 − 0.87 cos2 ϑ0 + 1.74 cos2 ϑ)
]
. (11)

The formula is very similar to the one for a bipolar field: now r−4 appears as a factor instead of r−3 and a
factor 2 in the second part of the formula. Proceeding with r0 = 0.7R (and r0 = 0.5R too, to see the influence)
and cosϑ0 = 0.6 we obtain for Hϕ and for X, the amplification factor per year, results similar to those obtained
for the bipolar field.

1. Again we have very small growth in the region around latitude 37◦ or ϑ = 53◦. Here cosϑ = cosϑ0 and
∂rω = 0. Again for the latitudes in the vicinity of 37◦ there may be some growth of the field in one sense
near r = r0, while the growth is in the opposite sense near the solar surface r = R, resulting in a small
total growth. This latitude band marks the separation between the equatorial region with sunspots and
the polar region with polar faculae as ∂rω reverses sign.
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2. Again there is no growth at the equator and at the poles. AgainHϕ has opposite signs in both hemispheres.
This suggests again that applying a time dependent seed field with period of about 22 years may be very
suitable to explain the magnetic cycle (22 years) and not only the cycle of 11 years. However, as pointed
out in [1], it is not a simple matter to explain the origin of such a time variation of the seed field.

3. An amplification of one order of magnitude is easily possible in some latitude bands. However, the growth
rates are somewhat smaller than with a bipolar field. The general result matches qualitatively the sunspot
butterfly diagram and the polar faculae butterfly diagram.

Using a combination of a bipolar and a quadripolar field may improve further the results by using appropriately
chosen coefficients for both fields. This is a snag as we do not have an independent estimate of the relative
ratios. However, from the observations of Makarov [7, 8, and 10] it may be possible to derive such an estimate,
at least approximately. Similarly one may add an octopolar field with appropriate small coefficient, again in
agreement with the observations of Makarov.

6. Conclusion

Growth rates of more than an order of magnitude during one solar cycle are easily possible in certain
latitude bands when using a quadripolar seed field. We obtained, without using yet the α-effect, a qualitative
correspondence for two of the main features of the solar activity depending on the latitude: the sunspot and
polar faculae activities are explained by the same mechanism, but with some latitude gap between them due
to the reverse of sign of ∂rω near latitude 37◦. Making the bold (and still difficult to explain) hypothesis that
the seed field oscillates with a period of 22 years would even allow to explain the magnetic cycle. Moreover,
it turned out that the poleward migration of the circulation is not essential for the generation of the magnetic
field.

The use of a quadripolar magnetic field as a seed field for the field generation in the solar dynamo seems
plausible as an additional effect to the use of a bipolar field. One may even add a weak octopolar seed field.
The appropriate ratios of bipolar, quadripolar and octopolar seed field may possibly be determined from certain
observations on the solar surface. The use of a more involved dependence on the latitude than just sin2 ϑ for Φ
doesn’t seem necessary. The main feature, the separation of the equatorial region with sunspots from the polar
region with polar faculae, is mainly due to the fact that ∂rω reverses sign at a certain latitude (presently 37◦)
and not to the choice of the seed field.
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Abstract—Several first order perturbations of moderate amplitude may easily occur together in nature in a
small interval of time. Each separately leads to a family of higher order terms which may total a somewhat larger
amplitude. However, all the nonlinear terms of all first order perturbations may lead for a certain phase to a
very large and even a divergent result. A kind of bunching, concentration of the energy in a small phase interval,
occurs. This may act as a trigger and explain sudden outbursts which occur in nature (e. g., in solar flares, CMEs,
bright points, prominences, etc.), on Earth (interruption of power generators) and in the laboratory. Inducing
several moderate perturbations in a quiet plasma (e. g., a Q-machine) may allow experimental verification of
the theoretical convergence limit.

1. Introduction

The nonlinear Fourier method of Callebaut consists in concentrating on the family of higher order terms
of a single Fourier term of the linearized analysis [1–3]. Thus we have obtained the higher order terms of
plasma perturbations, gravitational ones, etc. In the simplest case of a cold plasma this resulted in obtaining
an analytical expression for the higher order terms. This allowed to investigate the convergence of the series,
which in this case is e−1 of the equilibrium density. For the cases without an analytical expression we developed
a numerical-graphical method to obtain the convergence limit. Near this limit the total amplitude of the wave
becomes very large. The convergence limit decreases with increasing pressure.

We made an attempt [5] to explain a baffling aspect of some plasmas, e. g., prominences, that remain quiet
during weeks, even months, and then suddenly burst out in an explosion with no apparent reason. Now we
add a powerful argument to the reasoning in [5]: several first order perturbations of moderate amplitude may
easily occur together in nature in a small interval of time. Each separately leads to a family of higher order
terms which may total somewhat larger amplitudes. However, all the nonlinear combination of all first order
perturbations may lead for a certain phase to a very large and even a non-convergent result.

2. A Basic Result

The nonlinear Fourier analysis by Callebaut was developed in several papers [1–3]. In particular an analytic
expression for the cold plasma case was developed [2].Consider a first order perturbation n1 of the density
with amplitude A: n/n0 = Aei(ωt+kx) normalized to the equilibrium density, using conventional notations. The
associated family for the density) reads

n/n0 = Σ∞
s=1

ss

s!
Aseis(ωt+kx). (1)

Similar expressions are valid for the velocity, the potential and the pressure.
This analytic expression allows to calculate the convergence ratio: A < e−1. This means that the amplitude

of the first order term has to be less than 37 per cent of the equilibrium density. Otherwise the associated sum,
i.e., the full perturbation, diverges for at least one phase.

3. Several First Order Terms

Two remarks are here in order. The first one is that the above analysis is in fact an ordinary Fourier analysis
of a specific solution of the system of equations with specific initial conditions: A,ω, k (which are in fact given
by the first order term). In that sense the Fourier analysis is mathematically safe, as long as some very general
conditions are satisfied of which the main one is that the situation is periodic, which is the case for the cold
plasma. Nonlinearity comes in only when considering more than one of such first order terms. In that case
interference or mixing occurs between the various families. However, once the series (1) is known, the solution
for the nonlinear situation follows immediately from the binomial theorem:
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n/n0 = 1 + Σ∞
s=1

ss

s!
(Aei(ωt+kx) +Bei(µωt+kx) + Cei(λω+kx))s. (2)

B and C are first order amplitudes like A. The factors µ and λ are introduced as the various perturbations
have various frequencies; for simplicity we kept the same wavenumber k. The extension to any number of first
order terms is obvious.

The second remark concerns the initial amplitude required to have a divergent series: for the case of a single
first order term this amplitude has to exceed 37 per cent of the equilibrium density to yield an instability. This
requires usually an extremely strong perturbation, only possible if an extraordinary (big) bang is applied to the
plasma. The limit is lowered when pressure terms are included, but even 5 or 10 per cent of the equilibrium are
strong first order perturbations. This was a weak point in our paper (5). In nature or in the laboratory you
need practically a neighboring explosion or the application of a (sudden) very large perturbing field. Ordinary
shocks may not be sufficient. however, the application is quite different when we consider several perturbations
as illustrated in equation (2). Now it is the sum of A+ B + C + ... that has to reach 0.37 to have a diverging
total sum for some phases. If in nature e. g., perturbation occur with amplitudes around 0.01 then some 37 of
such perturbations may blow up the plasma once the phase is reached where the sum becomes divergent. This
is not an impossible demand, especially as the perturbations do not have to be originally in phase or have their
frequencies in a rational proportion. This may allow quite a delay before the instability sets in, a feature which
suits many observations. See below: applications.

We have drawn figures for several values of the parameters A,B,C, µ, λ: A+B+C varied from 0.05 to 0.4, µ
and λ took values 2, 5,

√
2,
√

10. We considered various orders: s = 1, 3, 10, 100. Here we put some conclusions

1. If the total sum of the amplitudes is smaller than about 0.2 then the difference between order 3, 10, and
100 is very small.

2. If the total sum of the amplitudes is greater than 0.2 but less than about 0.3 then the difference between
order 10 and 100 is very small.

3. If the total sum of the amplitudes is near 0.35, then one sees some difference between order 10 and 100.

4. For a total sum of the amplitudes above 0.35 the difference increases more and more. Above 0.37 (or
e−1) the series diverges (except for very special cases like the one in the cosine development). Moreover,
the total density becomes negative (total density becomes less than zero for some arguments, which is
physically impossible); this confirms that the series is not convergent.

5. The calculation time (using pentium 4 computer) is reasonable up to order 100. However, the time
increases for each wave which is added especially for high orders.

6. Starting from several small amplitudes one may reach a solitonlike behavior for a certain phase (either
in time or in space) with a quite large amplitude, especially when the sum of the initial amplitudes
approaches 37% of the initial density. As in nature several (many) small perturbations may occur more
or less together, although they may be generated at different places, this phenomenon may be important.

4. Applications
We just mention a few aspects. We refer to our paper (9), of course now having in mind several perturbations

of reasonable amplitudes instead of the very big one required there.

4.1. Solar Flares, Filament Bands, Bright Points and CMEs

E. g., for a solar flare to be initiated waves may come from all sides at all times and it may take a long time
(days, weeks) before the limiting value for instability is reached. Moreover, the strip in which the instability
is initiated is very narrow (a finite energy is bunched together into a narrow space). From that strip the
instability may spread over the whole flux tube (e. g., anomalous resistivity may occur) and thus some time
elapses between the ignition and the flash (typically a quarter of an hour)liberating a tremendous amount of
energy from a magnetic flux tube.

The same applies to e. g., a so-called “bright point” near the solar surface. Note that several small pertur-
bations may ignite a bright point and that several bright points may ignite a prominence.

4.2. Power Generators on Earth

It is well known that power generators may crack down due to some perturbation which was apparently too
small to cause the instability. Cf. March 1989 when the whole state of Quebec, Canada, was a day without
electricity due to a solar storm which caused a magnetic perturbation spreading to the Earth. Again those
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perturbations seem often too small to have such an effect, but adding all the higher order terms and all the
various perturbations may yield instability.

4.3. Ball Lightning

The most baffling feature of ball lightning is that it involves one or two orders of magnitude more energy
than what may be expected from its light emission; the corresponding stability is equally surprising, sometimes
followed by a quiet evanescent phenomenon, sometimes followed by a strong explosion. In [5] we have attempted
to explain the huge energy contained in ball lightning by waves of the type of equation (1), rotating (or moving
back and forth), but peaked in a narrow phase band. Moreover the cases where an explosion happens may be
due to the combination of several perturbations of moderate amplitude as explained above.

4.4. Experimental Suggestion

In some experimental setups like the Q-machine one obtains a quiet plasma during reasonable periods. One
may attempt to reach the instability limit by applying a very strong (sudden) external field, as suggested in [2].
However it may be easier to apply several perturbations (e. g., of different frequencies) each requiring a smaller
amplitude. Plasmas with heavy negatively charged ions (fullerenes attach electrons) and positive ions may be
suitable for this as their frequencies are much lower than for ordinary plasmas. However, a snag is that some
electrons do not attach, resulting in a three species plasma. We are developing the appropriate extension of our
nonlinear theory for this multiple species plasma.

5. Conclusion
In [5] we argued that a first order term may have a whole family of associated higher order terms which

for some phase all combine together to form a powerful wave which may act as a trigger causing instability.
The weak point was that the first order term had to be already very strong. Now, we have shown that the
combination of several moderate first order terms and their families can yield a very strong (even divergent)
perturbation in a narrow phase strip, thus having the possibility to act as a trigger locally or in a neighboring
configuration.
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Abstract—An analysis of the electric state of air shows the presence of various ion sorts. The therapeutic
effect of negative high-mobility ions of proper concentration is known. This positive effect was observed in caves
that are used for speleotherapy. This article presents the capability of methods for measuring ion concentration
and for ion spectral analysis.

1. Introduction

Air ion concentration and composition belong to the frequently monitored parameters of the atmosphere [5].
Their influence on living organisms has been the subject of intensive studies. Earlier research has demonstrated
the positive influence of light negative ions and air cleanness on human health. The Department of the Theo-
retical and Experimental Electrical Engineering of Brno University of Technology and the Institute of Scientific
Instruments of the Academy of Sciences of the Czech Republic are involved in the research of ion field in office
and living spaces. The objective is to increase the concentration of light air ions in these spaces. Another task
is to set up a simulated therapy room, with conditions similar to speleotherapy caves. It sets the requirements
for accurate measurement of ion field with good repeatability. The article deals with the design of gerdien
tube and peripheral measuring devices. An optimal design is important for eliminating the inaccuracy of ion
concentration measurement.

2. Measuring Method

Several methods are currently used to measure air ion fields: the dispersion method, the ionspectrometer
method, the Faraday cage method, and the gerdien tube method, whose principle is shown in Fig. 1 d1—inner
electrode diameter, d2—outer electrode diameter, l—length of gerdien tube, M—air flow volume rate, v—air
flow velocity, e—elementary charge of electron, ⊕ positive air particle (ion), 	 negative air particle (ion). The
gerdien tube consists of two electrodes. There is an electric field between the inner electrode (the collector)
and the outer electrode. The field is imposed by voltage source U. Air ions flow from the fan through the
gerdien tube. Negative ions in the electric field impact the collector, and the current produced is measured by
a pA-meter. The current measured is proportional to air ion concentration.

Figure 1: Principle of gerdien tube method.

The model of the measuring system is shown in Fig. 2. The values measured carry systematical measurement
errors. This is due to leakage currents and parasitic capacitances (modeled by ILEAK in Fig. 2) [6]. We have
to consider leakage resistances RAK of gerdien tube, leakage resistances and capacitance of the pA-meter input
(REH , CEH , REL, CEL), insulation resistance (RV ) of the collector voltage source. The current measured is
further affected by the input resistance of pA-meter and the input resistance of voltage source (RU , CU ). To
minimize the measurement error, RAK , and RV should be much larger than RI , and REH , and REL should
also be much larger than ROUT . Time constant RUCU has to be much larger than the measuring time.
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Figure 2: Model of a system for measuring air ion concentration—the gerdien tube method.

3. New Design of Gerdien Tube

The inner and outer electrodes are elliptical in shape. This shape ensures that the flow of air is laminar.
Air flow turbulence can distort the accuracy of measurement. The surface of the electrodes is required to be
as smooth as possible. These aspects make the design of gerdien tube quite demanding (fine grinding, lapping,
etc.,). The new design of gerdien tube is shown in Fig. 3.

Since in the measurement of air ion concentration very small currents are detected, it is necessary to eliminate
the influence of ambient electric charge. The influence of magnetic fields has to be minimized too.

Figure 3: New gerdien tube.

4. Weak Current Amplifier

Table 1: Amplifier parameters.

IIN UM Uout Gain RG

[pA] [V] [V] [-] [Ω]

0,1 1 m 1 1000 1 M

1 10 m 1 100 100 k

10 0,1 1 10 10 k

100 1 10 10 10 k

The current flowing through the gerdien tube consists of ions. Current intensity depends on polarization
voltage, on the dimension and parameters of gerdien tube, and on ion concentration. The specific current range
for the designed gerdien tube is 10−10 A–10−13 A.

For the following measurement it is suitable to convert the current to voltage. Because the current is very
weak, it is suitable to do this near the gerdien tube. The transimpedance configuration is used for the conversion
and amplification in the first stage.
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The transimpedance amplifier is realized with an INA 116 opamp. The INA 116 has a very low input bias
current Ib,max = 100 fA. The design of the amplifier is shown in Fig. 5. The first stage has transimpedance
RT = 10 GΩ. The second stage is a variable-gain amplifier. The gain is set by resistor RG. Table 1 shows
the values of gain, voltage and current for various gain resistors. The resulting current-to-voltage conversion
constant can be set to 0.1–1–10 pA/V.

Figure 4: Design of pA-amplifier.

5. Comparison of Gerdien Tubes

The gerdien tube of new design was compared with two others. Gerdien tube configuration and parameters
are shown in Figs. 5–7. Measurement results of tube are shown in Fig. 8.

Figure 5: Gerdien tube [5].

M = 10, 62 dm3, v = 4, 3 ms−1, Ileak=0,4 pA @ 150 V

Figure 6: Gerdien tube [5].

M = 12, 14 dm3, v = 3, 75 ms−1, Ileak = 0, 3 pA @ 150 V
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Figure 7: New design of gerdien tube.

M = 0, 75 dm3, v = 0, 8 ms−1, Ileak = 0, 05 pA @ 150 V

Figure 8: Results of measurment gerdien tube.

6. Conclusion
The new design of gerdien tube and the optimization of peripheral measuring devices have minimized the

systematic error of measurement. The new system allows measuring air ion concentration with a sensitivity >
100 ions/cm3. The ion mobility is in the interval 0.3–100 cm2V−1s−1. The system will be used to measure ion
field distribution in living and office spaces.

Very low leakage currents were achieved in the new design of gerdien tube. It allows higher sensitivity
measurement. A long-term research task is to create an environment with suitable ion concentration and
humidity in living spaces. The ion distribution in the environment will be simulated.
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Abstract—The rigorous mathematical modeling of nonlinear oscillations in microwave strip-slot resonator
structure (RS), loaded with a distributed planar Gunn diode, is based on the solution of the threedimensional
diffraction boundary problem, formulated rigorously taking into account the full set of Maxwell’s equations and
the nonlinear equation of transport carriers in a semiconductor. Using our numerical approach to determine the
bifurcation points of the solution of nonlinear Maxwell’s equations, the transition region from the stationary
regime of the nonlinear semiconductor device behavior (i. e., the frequency multiplication and the stable para-
metric amplification) to the generation (the onset of self-oscillations) caused by the instability process in the
distributed Gunn diode, was simulated taking into account constrained geometries of strip-slot RS.

1. Introduction

Microwave technology of monolithic integrated/hybrid circuits (MMIC) is moving up to higher frequencies
and higher bandwidths, into the mm wave range, up and above 100 GHz. As the industry turns to MMIC
devices, planar geometries have to be used. The development and manufacturing of microwave or mm-wave
integrated semiconductor devices depends on the development of computer aided design (CAD) tools, based
on the accuracy and the adequacy of mathematical models by solving Maxwell’s equations rigorously. The
goal of the paper is to investigate the nonlinear physical phenomena and effects in a distributed semiconductor
insertion, loaded into a resonator structure (RS), using mathematical modeling at the electrodynamic accuracy
levels and computing the bifurcation points of the nonlinear Maxwell’s operator for the design of prospective
MMIC nonlinear semiconductor devices.

2. The Mathematical Model Using the Decompositional Approach on Nonlinear Au-
tonomous Multimode Blocks

The mathematical simulation of nonlinear oscillations in a microwave strip-slot RS, loaded with a distributed
planar Gunn diode (Fig. 1) is based on the solution of three-dimensional diffraction boundary value problems for
nonlinear Maxwell’s equations, complemented with the equation of transport carriers in semiconductor [1]. The
computational algorithm for solving the nonlinear diffraction boundary problem is based on the decompositional
approach into nonlinear autonomous multimode blocks [2]. The autonomous block, placed between cross-sections
S3 and S4 (Fig. 1), is nonlinear and it is included in the software package for the mathematical simulation of
linear microwave devices [3]. The procedure of the decomposition and recomposition with linear and nonlinear
autonomous blocks is described in [2].

For computing of the scattering matrix of the strip-slot resonator and the tapered section in the RS (Fig. 1)
a second decomposition was made. The method of the calculation of the scattering matrix of interfaces between
regular strip-slot lines (SSL) was proposed in [4], and the method of determining of the scattering matrix of the
tapered section is described in details in [5].

The geometry of the tapered section is approximated by a function on f(z) = α · z − β · sin γ · z, were α, β,
γ are approximation coefficients. The accuracy of the results of mathematical modeling of the tapered section
depends on the number of step discontinuities p (p = 10), the number N of eigenwaves taken into account at
the interfaces between regular SSL (N = 5) and the number n of the basis functions taken into account at
virtual waveguides using the numerical method of multimode autonomous blocks [6] n = 25, providing the high
accuracy (better than 0.001%) of computation of propagation constants of eigenwaves of SSL.

The mathematical model of the nonlinear semiconductor RS was created by taking into account higher order
nonlinearities by using five combination frequencies M = 5 [1], the number of eigenwaves on regular SSL for each
of the combination frequencies is N = 5 at “seaming” of fields at the interfaces between SSL. The mathematical
model of the distributed planar Gunn diode accounts for the charging in the semiconductor and the ohmic
contacts [1].
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3. Accurate Electromagnetic Modeling of Nonlinear and Parametric Effects in the Semi-
conductor Insertion Loaded into the Resonator Structure

Let a monochromatic electromagnetic wave of frequency ω1 incident upon the input crosssections S1, S2 of
RS loaded with the planar Gunn diode (Fig. 1). The waves are the fundamental and the higher-order modes of
SSL having known magnitudes C+

n(α)(ω1), where α is the index of cross-sections, n are the indexes of eigenwaves

of SSL. It is necessary to determine the magnitudes C−
k(α)(ωm) of reflected (in local coordinate system on

the cross-sections S1, S2) modes on combination frequencies ωm, where m are the indices of the combination
frequencies.

The results of computing the normalized magnitudes
∣∣∣C−

1(2)(ω2)
∣∣∣ /
∣∣∣C+

1(1)(ω1)
∣∣∣ of the reflected (on the output

cross-section S2) fundamental mode at the second time harmonic (m = 2), with respect to the magnitude of
the incident (on the input cross-sections S1) fundamental mode at first time harmonic (m = 1), depending on

the resonator length L for variable magnitudes of
∣∣∣C+

1(1)(ω1)
∣∣∣ are represented in Fig. 2. For comparison, the

normalized magnitudes
∣∣∣C−

1(2)(ω1)
∣∣∣ /
∣∣∣C+

1(1)(ω1)
∣∣∣ of the reflected fundamental mode at the first time harmonic

(m = 1), with respect to the magnitude of the incident fundamental mode, are also shown in Fig. 2.

Figure 1: Resonator structure (RS) with the nonlinear
semiconductor insert: 1—tapered section; 2—distributed
planar Gunn diode; 3—strip-slot resonator (SSR).

Figure 2: Efficiency of frequency multiplication depend-

ing on the resonator length L: curve 1—C+
1(1)(ω1) =

16V/mm; 2—24 V/mm; 3—32 V/mm; 4—40V/mm;
f1 = 30 GHz; −−−m = 2, − − m = 1

The results of numerical modeling were obtained for the biasing electric field E0/ω0 = 1000 V/mm (at point
4 of the observation of electrostatic field [1]), and for the parameters of the epitaxial film ε = 12.5, µ = 1,
DF = 200 cm2/c; n0 = 1.5 · 1015 cm−3, and the substrate ε = 12.5; µ = 1; the length of planar semiconductor
insertion is l = 0.3 mm.

The results of computing of the normalized magnitudes
∣∣∣C−

1(2)(ω2)
∣∣∣ /
∣∣∣C+

1(1)(ω1)
∣∣∣, depending on the value of

parameter n0/f , where f is the frequency, n0 is the electron concentration (in the active layer of the semi-

conductor n0 = ND, were ND is the doping density) for variable
∣∣∣C+

1(1)(ω1)
∣∣∣ are represented in Fig. 3(a). For

comparison, the normalized magnitudes
∣∣∣C−

1(2)(ω1)
∣∣∣ /
∣∣∣C+

1(1)(ω1)
∣∣∣ are also shown in Fig. 3(b).

It follows from the results of electromagnetic modeling, shown in Figs. 2 and 3, that the nonlinear effect
of frequency multiplication in the distributed planar Gunn diode in the RS depends on changes of magni-
tudes C+

1(1)(ω1) of incident wave. If C+
1(1)(ω1) increases, the efficiency of frequency multiplication K1(ω2) =

20 lg
|C−

1(2)
(ω2)|

|C+
1(1)

(ω1)|
decreases (as for the amplification coefficient K1(ω1) = 20 lg

|C−
1(2)

(ω1)|
|C+

1(1)
(ω1)|

at the first time harmon-

ics); because the electromagnetic field is extinguished when the value of the electric field in semiconductor
becomes smaller than the Gunn threshold. The nonlinear effect of frequency multiplication is significant for the
optimum value of the parameter n0/f , because charging effects, depending on the ratio of the frequency f and
the Gunn effect transit-time frequency, determine the increase of the nonlinearity coefficient of the semiconductor
medium even for small values of C+

1(1)(ω1).

The results of numerical calculations of parametric amplification coefficient Ky(ω1) for small signal case,
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depending on the distance d between the RS strips, (in fact, d determines the intensity of the biasing electric field
E0), and taking into account variations of the electron concentration n0 in the semiconductor, are shown in Fig. 4.

(a) (b)

Figure 3: Efficiency of the frequency multiplication (a) and the amplification coefficient (b) depending on the elec-

tron concentration n0: curve 1– C+
1(1)(ω1) = 16V/mm; 2– 24V/mm; 3– 32 V/mm; 4– 40V/mm; f1 = 30 GHz; other

parameters are the same as in Fig. 1.

4. Numerical Modeling of the Onset of Self-oscillations by Computing the Bifurcation
Points

The numerical method, developed by us in [7], was used to determine the bifurcation points of the nonlinear
Maxwell’s operator. The generation in the distributed planar Gunn diode loaded into the strip-slot RS, caused
by the instability process in the semiconductor with a bulk negative conductivity, was simulated taking into
account the constrained geometries. The bifurcation points are those values of the bifurcation parameters, i. e.,
the frequencies fs, where self-excited oscillations appear [1]. Using the auxiliary computing algorithm [7] the
necessary and sufficient conditions for the existence of the bifurcation point [8] in neighborhood of the numerical
parameter F can be investigated. If only the sufficient condition, that the eigenvalue of matrix A(z) is an integer
[8], is satisfied, in this point the magnitude of self-oscillations is equal to zero for F (see Table 1). If the necessary
and sufficient conditions for the existence of the bifurcation point [8] are satisfied, then there is a new solution at
the bifurcation point, described by the onset of non-zero magnitude self-oscillations at the bifurcation parameter
fs (see Table 1).

Table 1: The bifurcation parameter fs and parameter F depending on the distance d between RS strips,
determining the biasing electric field E0(ω0), and the electron concentration n0.

d, mm n0 = 1.5 · 1015, cm−3 n0 = 3.5 · 1015, cm−3 n0 = 5.5 · 1015, cm−3

F, GHz C−

1(1,2)(ω) V/mm F, GHz fs, GHz C−

1(1,2)(ω) V/mm F, GHz fs, GHz C−

1(1,2)(ω) V/mm

0.00150 68.90 0.00 68.83 0.00 68.76 0.00

0.00200 51.68 0.00 51.63 0.00 51.58 75.39

0.00250 40.84 0.00 40.80 50.37 40.78 277.31

0.00300 33.98 0.00 33.95 79.56 33.91 398.16

0.00343 30.06 0.00 30.03 170.18 30.00 475.24

0.00400 25.81 0.00 25.78 281.31 25.76 495.23

0.00450 22.71 0.00 22.69 398.28 22.66 470.31

0.00500 20.43 0.00 20.41 451.71 20.39 463.31

0.00550 18.69 0.00 18.67 485.75 18.65 451.57

The results of computing the bifurcation points depending on the value of the intensity of biasing electric field
E0(ω0), are determined by the distance d between RS strips, and the electron concentration n0 in the semicon-
ductor are presented in Table 1, where F is a numerical parameter, fs are the bifurcation parameters, i. e., the
frequencies of the onset of self-oscillations, d is the distance between RS strips, n0 is the electron concentration in
the semiconductor, C−

1(1,2)(ω) are the magnitudes of self-excited oscillations on the output cross-sections S1, S2.



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 419

Figure 4: Efficiency of parametric amplification, de-
pending on the distance d between RS strips (i. e., the
biasing electric field E0(ω0)) for different electron concen-
trations n0: 1—n0 = 5.5 · 1015 cm−3; 2—3.5 · 1015 cm−3;
3—1.5 · 1015 cm−3; f1 = 15 GHz, C+

1(1)(ω1)=0.01 V/mm.

The optimum parameters and the size of the planar
Gunn diode for the efficiency of the generation and para-
metric amplification were determined by taking into ac-
count constrained geometries. The optimum value of d =
0.00343 mm determines the maximum of parametric am-
plification coefficientKy(ω1) (Fig. 4), when the frequency
of self-excited oscillations in the transit-time mode of the
planar Gunn diode (fs = 30 GHz from Table 1) is equal
to the frequency of pumping wave f = 2f1 in the degener-
ate regime of parametric amplification. At this frequency
for n0 = 5.5 · 1015 cm−3 the magnitude of self-excited os-
cillations (C−

1(1,2)(ω) = 475.24 V/mm) is more than for

n0 = 3.5 · 1015cm−3 (C−
1(1,2)(ω) = 170.18 V/mm), that is

why increasing the nonlinearity of the “dynamic capacity” of the planar Gunn diode provides an increasing
parametric amplification coefficient Ky(ω1) (Fig. 4). It follows from the results of computing (Table 1) that for
n0 = 1.5 · 1015 cm−3 there is no self-oscillations in the planar Gunn diode, as this is the stable regime of the
steady state domains [9].

5. Conclusion

The accurate electromagnetic modeling of nonlinear and parametric oscillations in microwave stripslot RS
loaded with a distributed planar Gunn diode shows how the efficiency of the frequency multiplication and
the parametric amplification depends on the magnitude and the electron concentration in the semiconductor.
The results of computing the bifurcation points by our numerical method permit to analyze the optimum
parameters and the size of the distributed planar Gunn diode in RS for the efficient generation and parametric
amplification taking into account constrained geometries. The new results of research into nonlinear interactions
(self-oscillations, frequency multiplication, parametric amplification) in distributed planar semiconductor Gunn
diodes could be used for future MMIC devices, in particular, new microwave mm- or submm-wave generators,
frequency multipliers, parametric amplifiers.
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Abstract—In this paper we present a low-rank QR method for evaluating the discrete Biot-Savart law on
parallel computers. It is assumed that the known current density and the unknown magnetic field are both
expressed in a finite element expansion, and we wish to compute the degrees-of-freedom (DOF) in the basis
function expansion of the magnetic field. The matrix that maps the current DOF to the field DOF is full, but if
the spatial domain is properly partitioned the matrix can be written as a block matrix, with blocks representing
distant interactions being low rank and having a compressed QR representation. The matrix partitioning is
determined by the number of processors, the rank of each block (i. e., the compression) is determined by the
specific geometry and is computed dynamically. In this paper we provide the algorithmic details and present
computational results for large-scale computations.

1. Introduction

The computation of magnetic fields from a prescribed electric current is a common problem in magnetic
design and analysis. One approach is to form the problem as a Partial Differential Equation (PDE) for the
unknown field with the prescribed electric current as the source term. Regardless of the particular PDE for-
mulation, e. g., a magnetic vector potential formulation or a mixed B-H formulation, a large volumetric mesh
must be employed, and some boundary condition must be applied on the outer boundary of the mesh. In
contrast to the PDE approach, the Biot-Savart law can be employed to directly compute the magnetic field due
to the prescribed current [1]. The advantage of the Biot-Savart law approach is that a full volume mesh is not
required, and no boundary conditions need be applied. The disadvantage of the Biot-Savart approach is the
computational cost, if there are O(N) magnetic field observation points and O(M) current samples the cost is
O(N ∗M). In this paper we review a fast low-rank QR method for compressing the M ×N Biot-Savart matrix.
The approach is similar to low-rank QR methods developed for boundary element electrostatics [2, 3] and for
low frequency electric field integral equations [4]. The key difference with our approach is that we are concerned
with volumetric current densities and implementation on parallel computers.

2. Formulation

The law of Biot and Savart is given by

~B(x) = ∇× ~A =
1

µ4π

∫

Ω′

~J(x′) × (x− x′)

|x− x′|3 d3x′. (1)

where J(x′) is the known current density at the source point x′, and B(x) is the desired magnetic flux density
at the observation point x. We assume that we have a finite element representation for J over the volume Ω′,
and a finite element representation for B over a surface Γ,

~J =

N∑

i=1

ξi ~W
2
i , ~B =

M∑

j=1

βj ~W
1
j , (2)

where ξj and βj are the ith degree-of-freedom (DOF), and ~W 2
i and ~W 1

j are vector basis functions. Inserting the
basis function expansions (2) into (1) yields the discrete Biot-Savart law

Mβ̄ = Zξ̄, (3)

where

Zij =

∫

Γ

∫

Ω′

1

µ4π

~W 2
i (x′) × (x− x′) · ~W 1

j (x)

|x− x′|3 dΩ′dΓ, (4)
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and

Mij =

∫

Γ

~W 1
i (x) · ~W 1

j (x)dΓ (5)

and where ξ̄ and β̄ are the arrays of DOF. The matrix M is a “mass matrix” due to the fact that the basis
functions are not orthogonal. The mass matrix is extremely sparse and the computational cost for forming and
solving this matrix is negligible. In many applications the problem of determining the B-field can be posed in
terms of the magnetic vector potential A = ∇×B with

~A(x) =
1

µ4π

∫

Ω

~J(x′)

|x− x′|d
3x′. (6)

Using a finite element representation for A yields another version of the discrete Biot-Savart law

~J =

N∑

i=1

ξi ~W
2
i ,

~A =

M∑

j=1

αj ~W
1
j , (7)

Mᾱ = Yξ̄, (8)

where

Yij =

∫

Γ

∫

Ω′

1

µ4π

~W 2
i (x′) · ~W 1

j (x)

|x− x′| dΩ′dΓ. (9)

We will refer to the M × N matrices Z and Y as Biot-Savart matrices. The computation of these matrices
involves singular and near-singular integrals. The surface integration is performed using standard Gaussian
quadrature points for each surface element. The volume integration uses an adaptive integration rule, which
varies the order of Gaussian quadrature based on the distance between the source point x′ and the observation
point x. When the surface element containing x is a face of the volume element containing x′, a highly accurate
height-based singularity cancellation quadrature rule is used [5]. The matrices (4) and (9) are constructed using
2-form or “face elements” for the basis functions W 2 and 1-form or “edge elements” for the basis functions W 1,
see [6] for details on the construction of the basis functions.

Our primary application for the discrete Biot-Savart law is providing boundary conditions for finite element
solution of multi-conductor eddy current problems. In each conductor we solve the time-dependent vector
diffusion equation using an edge element based A-φ finite element formulation [7]. Clearly the B-field in the

air surrounding the conductors is critical. The finite element formulation requires that either n̂ × ~A or n̂ × ~B
be specified on the conductor boundaries, corresponding to inhomogeneous Dirichlet or Neumann boundary
conditions, respectively. Our approach for dealing with the B-field in the air surrounding the conductors is to
use the discrete Biot-Savart law (3) or (8) as the boundary condition on each conducting surface.

3. Parallel Implementation

We assume that the volume Ω has been partitioned into K partitions, where K is the number of compu-
tational processors, with each partition having an equal number of volume elements. The volume elements
are distributed via the partitioning. The surface Γ is also partitioned into K equally sized surface partitions.
Note however that the surface elements are not distributed via the surface partitions, each processor can access
the entire surface mesh. The Biot-Savart matrix is then decomposed into a K × K block matrix, with every
block Zpq, p ∈ {1 : K}, q ∈ {1 : K} representing the interaction of surface partition Γp with volume Ωq. The
qth processor computes blocks Zpq, p = 1 : K, i. e., a column of blocks. Note that the matrix is decomposed
via a partitioning of elements, hence the matrices Zpq are overlapping in DOF space. The specific partitioning
algorithm used to partition the elements is not critical, in the examples below we employ a graph-based algo-
rithm [8]. The key point is that if the partitions Γp and Ωq are well-separated then the sub-matrix Zpq will
have a low-rank QR decomposition. The procedure for computing the low-rank QR decomposition is described
below. We define “well-separated” as follows: the bounding spheres for the element partitions Γp and Ωq are
computed, if the bounding spheres do not intersect then the partitions are considered well-separated and a
low-rank QR representation of Zpq is computed. We employ a recursive procedure for computing Zpq when
partitions Γp and Ωq are not well-separated. This results in a hierarchical representation for Z. If Γp and Ωq
are not well separated, Ωq is divided into eight equally sized sub-partitions, Γp is divided into four equally sized
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sub-partitions, and the “well-separated test” is applied to the sub-partitions Γpi and Ωqj , i = 1 : 4, j = 1 : 8. A
space-filling curve algorithm is used for creating the sub-partitions. The process is applied recursively, with a
low-rank QR representation computed for well-separated sub-partitions. The recursion is halted when a volume
sub-partition contains fewer than some number of elements, for application example 512. If at the lowest level
of recursion the interaction is not well separated, it is simply represented by a dense matrix.

No parallel communication is required in the construction of the hierarchical Biot-Savart matrix, each pro-
cessor has the elements that it needs to perform the integrals. Each processor has the same amount of work
hence the computation of is load balanced. Note, however, that in the low-rank QR approximation the rank k
is computed dynamically, and the rank k depends upon the geometry. Hence the application of the hierarchical
Biot-Savart matrix, i. e., the matrix-vector multiplication β̄ = Zξ̄, may not be perfectly load balanced. Also
note that the application of the hierarchical Biot-Savart matrix does require parallel communication. This
communication is as follows: (1) each processor q does a gather operation to get the values of ξ̄ that it needs,
(2) each processor q loops over the sub-matrices Zpq, p = 1 : K and computes β̄q = Zpq ξ̄q, (3) each processor
participates in a global reduction on β̄q.

Figure 1: Hierarchical partitioning of the Biot-Savart matrix. The highest level of partitioning is based on
the number of processors, as represented by the left-most matrix. The sub-matrices Zpq representing near
interactions are hierarchically decomposed into 8 sub-volumes and 4 sub-surfaces, as illustrated by the rightmost
matrix.

4. Low-rank QR Decomposition

When Γp and Ωq are well separated the matrix Zpq will have a low-rank representation

Zpqm×n ≈ Qm×k ×Rk×n, (10)

where k is the rank. We do not want to form the entire Zpq and then compress it, rather we sample the matrix
by picking s rows and columns of Zpq, where s is some predetermined number, e. g., 50. The procedure for
picking the sampled rows and columns is ad-hoc, the procedure that we employ is described in [4]. The sampling
procedure is solely linear algebra, it does not depend upon the particular Green’s function, finite element basis
functions, etc. For the ad-hoc sampling procedure to be effective we must have s greater than the expected
rank. The algorithm for computing Qm×k and Rk×n is as follows:
Step 1: Form the sampled column matrix Scm×s and the sampled row matrix Srs×n.

Step 2: Compute the rank-revealing QR decomposition Q̃m×sR̃s×s = Scm×s using LAPACK routines DGEQPF

and DORGQR. The rank k is determined by the criteria R̃kk < thresh · R̃11 where thresh is a threshold

value, we then keep only k columns of Q̃, denote this as Qm×k, and discard R̃.
Step 3: We form a new matrix Q̂s×k by taking s rows of Qm×k, the exact same rows as used to construct Sr.
Step 4: Compute the least-squares solution to Q̂s×kRk×n = Srs×n using LAPACK routine DGELSS.

At this point we have the desired matrices Qm×k and Rk×n which approximate Zpqm×n. The quality of the

approximation, and the amount of compression (the rank k), are determined by the value of thresh used in Step
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2 above. Our approach, being based on highly tuned LAPACK routines, is efficient both in terms of FLOPS
and memory usage. The complexity is O(m · s) +O(s · n), using a fixed value of s yields a linear complexity in
m and n.

5. Examples

In these examples we compute a hierarchical low-rank QR approximation of the matrix defined by Eq.( 9).
For the first example consider the geometry shown in Fig. 2. This geometry consists of 19000 volume elements
and is partitioned for 16 processors. Therefore the Biot-Savart matrix will be a 16×16 block matrix. Each block
Zpq has roughly 1200 rows and 4000 columns. Using values of s = 50 and thresh = 0.005 gives the parallel rank
map shown in (11). The compression is significant, each 1200×4000 matrix is compressed to Q1200×k+Rk×4000

where k is the value shown in (11). Note that the blocks labeled with rank 00 are near interactions and have
full rank. These blocks were decomposed further as explained in Section 3 above. For example, the Z11 near-
interaction matrix will be decomposed into 8 sub-volumes and 4 sub-surfaces, each resulting sub-matrix has
roughly 270 rows and 560 columns. The resulting rank map for the Z11 sun-matrix is shown in (12). Again
the blocks labeled with rank 00 are near-interactions and have full rank. In this specific case the sub-partitions
have around 150 volume elements each, so they will not be partitioned further. The total compression was 60×
for this specific example.

The second example is shown in Fig. 3. The geometry consists of three conducting coils, the center coil
is driven with an independent current source, and we wish to compute the eddy currents in the coils due to
the B-field in the surrounding air. The problem consists of 20736 volume elements and was partitioned for 24
parallel processors, therefore the Biot-Savart matrix is a 24× 24 block matrix. The parallel rank map for this is
too large to show here, but the results were as follow: Each processor had 24 matrices to compute at the highest
level, on average 19 of these corresponded to well-separated regions and were compressed with an average rank
of 10. The remaining 5 full-rank matrices were further partitioned into 4 · 8 = 32 sub-matrices, and on average
29 of these corresponded to well-separated regions and were compressed with an average rank of 25. At the
lowest level of the hierarchy, the near interactions were represented, on average, by dense matrices of dimension
335×439, there were a total of 24·3 = 72 of these. The total compression was 109×. This compression represents
both the memory savings and the reduction in CPU time required to apply the Biot-Savart interaction.




00 14 16 00 12 10 5 8 5 4 12 20 12 7 7 7
5 6 6 5 8 12 00 21 00 21 6 4 9 11 18 11
19 00 21 00 00 17 7 12 11 7 00 12 24 12 10 10
11 00 12 12 00 00 11 00 15 9 17 7 13 14 12 19
6 13 11 9 16 00 14 00 00 12 6 12 16 14 23 5
6 6 5 8 12 00 21 00 21 6 4 9 11 18 11 5
9 7 7 10 34 00 00 00 15 8 5 9 12 18 17 21
12 00 16 9 9 4 8 5 4 12 00 15 9 6 8 19
16 00 17 17 11 5 9 6 6 45 00 44 12 8 10 13
00 12 14 00 00 9 23 12 8 25 9 16 11 11 13 11
21 21 12 24 11 8 12 12 9 00 12 00 00 12 29 10
14 12 10 16 19 9 17 12 10 00 9 00 00 15 00 5
8 5 7 7 11 20 12 15 00 6 5 8 12 00 18 6
9 11 8 10 18 9 22 14 16 13 6 12 00 45 00 5
8 7 6 10 11 15 20 16 00 9 4 11 37 00 00 15
38 00 16 00 16 11 7 11 10 7 00 15 00 14 12 11




(11)




00 11 19 38 00 12 31 21
23 16 21 16 00 36 17 27
26 00 35 00 14 23 43 33
26 13 00 42 41 13 00 00


 (12)

The difference in compression for these two examples, 60x vs 109x, indicates that the amount of compression
depends upon the number of elements, greater compression will be a achieved as the computational mesh is
refined. If the computational mesh were refined, the well-separated interactions would still have the same rank,
hence the cost of the well-separated interactions is O(N). Each near-interaction is recursively decomposed
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Figure 2: Computational mesh for a linear induction
motor partitioned for 16 parallel processors.

Figure 3: Computational mesh for an inductive cou-
pling application partitioned for 24 parallel proces-
sors.

into 4 · 8 = 32 interactions, most of which are again well-separated and have low-rank. The dominant cost
is the nearinteractions which are represented as dense m × n matrices, where m and n are determined by
fixed parameters (e. g., the recursion halting parameter of 512 elements) which are independent of the global
dimensions M and N . The number of near interactions is, asymptotically, O(N log(N)), hence the overall
method is O(N log(N)).
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Abstract—We present a computational study of signal propagation and attenuation of a 200 MHz planar loop
antenna in a cave environment. The cave is modeled as a cylindrical guiding structure with a lossy wall. The
wall is nominally circular with a random roughness. To simulate a broad frequency band, the full wave Maxwell
equations are solved directly in the time domain via a high order vector finite element discretization using
the massively parallel CEM code EMSolve. The numerical technique is first verified against theoretical results
for a planar loop antenna in a smooth lossy cave. The simulation is then performed for a series of random
rough surface meshes in order to generate statistical data for the propagation and attenuation properties of the
antenna in a cave environment. Results for the mean and variance of the power spectral density of the electric
field are presented and discussed.

1. Introduction

The study of electromagnetic wave propagation in caves and tunnels is of great practical interest to antenna
engineers due to the increasing demands for reliable wireless communications systems in such environments.
Current wireless radio frequency (RF) communication systems were not designed to operate reliably in enclosed
environments such as caves and tunnels, and signal quality is severely compromised due to the rough and lossy
surfaces of the cave. Today there is limited ability to maintain communications in cave-like structures, tunnels
or subways, prohibiting the quick deployment of wireless systems in caves and tunnels. If the propagation
properties of the tunnel could be better characterized (dissipation, dispersion, fading, and channel capacity),
then a more robust communication system could be designed specifically for operation in such environments,
hence full wave EM simulations of propagation in this type of environment are very useful.

Much theoretical work in this field has been done in order to develop a better understanding of the RF
propagation channel. Dudley recently studied models for propagation in lossy circular tunnels [1]. He produced
expressions for the fields in terms of a Fourier transform over the axial variables, and presented the numerical
results for the field intensity both as a function of axial distance and as a function of radial distance. However,
this work only involved smooth tunnel walls and not the more realistic situation of rough wall tunnels. In this
case, the electromagnetic fields can be modeled as a stochastic process in a cave with random rough walls.
Recently, Pao and Casey have investigated the statistical properties of wave propagation in straight, rough-
walled tunnels [2, 3]. This work assumes a perfect electrical conductor (PEC) boundary at the rough wall/air
interface. A more realistic model needs to take into account the lossy nature of the rough walls and the cave
material (typically granite or some sort of earth like material with electrical conductivities on the order of
0.1 S/m).

In this paper we use a high order finite element discretization to solve the full wave Maxwell equations
directly in the time domain for the case of a planar loop antenna placed at the mouth of a straight, lossy rough
walled tunnel. We chose a time domain simulation in order to efficiently compute the response over a broad
frequency band. We begin with a brief description of the numerical method employed for this problem (as
implemented in the EMSolve code [4]). We then verify the numerical method against the theoretical results of
Dudley [1] for a planar loop antenna in a smooth lossy cave and discuss the limitations of the numerical model.
Finally, we proceed to solve the electromagnetic wave equation on a sequence of randomly generated meshes to
determine statistical properties for the power spectral density of the electric field.
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2. Numerical Formulation

We begin with the second order time dependent wave equation for the electric field in a 3 dimensional
domain Ω

ε
∂2

∂t2
E = −∇× (µ−1∇× E) − σ

∂

∂t
E − ∂

∂t
J inΩ

∇ · (εE) = 0 inΩ

n̂ × E = Ebc on ∂Ω (1)

where ∂Ω is the two dimensional boundary of the domain, n̂ is the outwardly directed unit normal of this
boundary and J is a free current density source that can be added to drive the problem. The value Ebc represents
an arbitrary boundary condition imposed on the electric field intensity while ε, µ and σ denote, respectively,
the dielectric permittivity, magnetic permeability and electrical conductivity of the materials contained in the
domain Ω.

Applying an arbitrary order Galerkin finite element discretization to the wave equation (the details of which
can be found in [5, 6]) yields the following semi-discrete system of ordinary differential equations

Mε
∂2

∂t2
e = −Sµe−Mσ

∂

∂t
e− ∂

∂t
j (2)

where Mε, Mσ are finite element mass matrices, Sµ is a finite element stiffness matrix and e, j are discrete
arrays of finite element degrees of freedom. Applying a backward difference approximation for the first order
time derivative in (2) and a central difference approximation for the second order time derivative yields the
following fully discrete linear system of equations

Mεen+1 = (2Mε − ∆t2Sµ − ∆tMσ)en + (∆tMσ −Mε)en−1 − j′ (3)

where ∆t is the discrete time step, the integer n denotes the current time step and the time derivative of the
free current source has been directly incorporated into the new source term j’.

For the results shown in section 4 below we employ second-order interpolatory H(curl) basis functions along
with custom quadrature rules that yield a diagonal “mass” matrix Mε. The details of this discretization are
presented in [7]. This method is much more accurate than standard FDTD. Indeed, the numerical dispersion
for this method is O(h4) rather than O(h2) as it is for FDTD. Compared to higher-order FDTD schemes, this
method is better at modeling the jump discontinuity of fields across the air-earth interface.

3. Verification

Before we proceed to simulations of a random rough surface, we begin by verifying our numerical method
with known theoretical values for the case of a smooth, lossy tunnel. These results were computed by Dudley
according to the procedures described in [1]. We consider the case of an axially symmetric circular current loop
of radius b = 0.2 m placed at the mouth of a circular tunnel of radius a = 2.0 m. The current loop is driven by a
time harmonic source of frequency f = 200 MHz. The electric field is “measured” along the length of the tunnel
at a radial observation point ρ such that ρ/a = 0.3. The tunnel has a relative dielectric constant of εr = 5.0.
We consider two cases, a tunnel with an electric conductivity σlow = 0.02 S/m and σhigh = 0.1 S/m.

For the numerical model, we discretize the tunnel domain in two different ways using both a Cartesian (or
“stair-step”) approximation to the smooth tunnel wall and a more accurate conforming cylindrical mesh (see
Figure 1 and Figure 2). For both cases, a planar loop of current of radius 0.2m is placed at one end of the
tunnel, while a simple absorbing boundary condition (ABC) is placed at the other. The ABC is imperfect for
anything other than plane waves at normal incidence, hence we make our tunnel mesh 75 m long and ignore
field data from the last 20% of the tunnel mesh. A perfect electric conductor (PEC) boundary condition is
applied at the cross-sectional limits of the problem space to fully define the problem. For both the Cartesian
and Cylindrical meshes, the outermost PEC boundary is made sufficiently large to prevent spurious reflections.
The temporal dependence of the current source is a Gaussian pulsed sine wave centered at 200 MHz with a
20% bandwidth. The simulation is performed using high order p = 2 basis functions to mitigate the effects of
numerical dispersion.

In Figure 3 and Figure 4 we compare results for both numerical models (Cartesian and cylindrical meshes)
to the theoretical results for both conductivity values. Note that the agreement between the theoretical model
and the numerical model using the conforming cylindrical mesh are excellent, indicating that the proposed
numerical method is working properly. The discrepancies between the Cartesian results and the theoretical
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results are due to the “stair-step” approximation to smooth surfaces, which is known to be problematic since
such approximations fail to converge to a true cylindrical surface. While the Cartesian mesh is a bad choice
for modeling smooth tunnels, it is sufficient for modeling rough surface tunnels, which we will use in the next
section.

Figure 1: Cross section of smooth tunnel Cartesian
mesh.

Figure 2: Cross section of smooth tunnel conforming
cylindrical mesh.

Figure 3: Comparison between theoretical model
and two different numerical models at 200 MHz for a
smooth cave with conductivity σlow = 0.02 S/m.

Figure 4: Comparison between theoretical model
and two different numerical models at 200 MHz for a
smooth cave with conductivity σhigh = 0.1 S/m.

Figure 5: Example of randomly generated cave mesh
with interior removed (close-up view).

Figure 6: Snapshot of computed electric field mag-
nitude at t = 89.6 ps.
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4. Computational Results

We now proceed to apply the same process discussed above to the more complicated case of random rough
walled caves. The random rough surface is generated as follows. First, we generate a cylindrical surface of
radius 2 m and length 75 m. Next, we add a random perturbation with zero mean and a standard deviation
0.28867 m. Then, we smooth the random surface (low pass filter) to introduce a surface correlation of a given
length. Finally, we generate a 3D Cartesian mesh, where the electrical conductivity of each element depends
upon whether the element is inside the random surface (air) or outside the random surface (earth). For mesh
elements that straddle the random surface, a volume-fraction is used to determine the electrical conductivity
with values ranging between σlow = 0.02 S/m and σhigh = 0.1 S/m. To model the dielectric properties of the
earth, a constant dielectric permittivity of 5 times the free space permittivity ε0 (a typical value for granite)
is used. Each computational mesh consists of 583, 200 hexahedral elements, an example of which is shown in
Figure 5. Note that the portion of the mesh representing the air has been removed to illustrate the random
rough surface. The various simulation parameters for the random rough surface computations are summarized
in Table 1.

Table 1: Summary of computational statistics for 10 random cave simulations.

Avg. Cave Radius 2 m (1.33333 λ)

Cave Length 75m (50 λ)

Element Size (∆x) 0.167 m (0.13111 λ)

Max Deviation of Surface Roughness 0.5 m (0.33333 λ)

Standard Deviation of Surface Roughness 0.288675 m (0.19245 λ)

Signal Type Modulated Gaussian pulse, planar loop antenna

Pulse Frequency 200MHz, 20% Bandwidth

Gaussian Width, Delay 4.67e–9s, 2.50e–8 s

No. of Trials 10

No. Unknowns per Trial ∼ 14 million

No. Parallel CPU’s per Trial 192

Figure 7: Mean power for 10 random cave simula-
tions at 5 different frequencies.

Figure 8: Variance of power for 10 random cave sim-
ulations at 5 different frequencies.

A total of 10 random caves were simulated. A time history was recorded at each x, for all time steps. This
data was used to find the spectrum at every spatial step. For each simulation the mean and variance of the power
spectral density (PSD) and phase were extracted over the bandwidth of the signal. Each run was normalized
by dividing by the total PSD magnitude at the first x-data point, thereby removing the characteristics of the
input signal, but preserving the relative magnitudes vs. polarization. The last 20% of the spatial samples were
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removed to avoid reflections from the end of the cave (due to the imperfect nature of the ABC). The results
for computed mean power at 5 different frequencies are shown in Figure 7. Note that in general, the scattered
field from the rough surface walls fills in nulls which are created by destructive interference in the smooth case
(see Figure 3 and Figure 4 for comparison). In addition, note that the lower frequencies are attenuated more
rapidly than the higher frequencies as expected. In Figure 8 we plot the computed variance in power across all
10 simulations. In Figure 9 we compare the smooth cave results (conforming cylindrical mesh, σlow) to random
rough wall results at 200 MHz.

Figure 9: Comparison between smooth wall and mean rough wall results at 200 MHz.

5. Conclusions

We have applied the high order time domain vector finite element methods described in [5–7] to the case of
RF electric field propagation in a lossy rough wall tunnel. This particular calculation has proved difficult to solve
using direct theoretical analysis. We have verified our numerical results by direct comparison to a theoretical
model for propagation in a smooth lossy cave. We have presented statistical data for the power spectral density
of a 200 MHz planar loop antenna and have compared our data in a rough walled cave to one with a smooth
surface. Further work will allow direct time domain modeling of more complicated cave structures with bends
and forks that are too complex for theoretical techniques.
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A Matlab-Based Virtual Propagation Tool: Surface
Wave Mixed-path Calculator
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Abstract—A new Matlab-Based, user-friendly virtual propagation tool (VPT) that can be used for multi-mixed
path surface wave path loss calculations has been designed. Any multi-mixed-path surface wave propagation
scenario may be specified by the user together with all the necessary input parameters, and path loss vs. range
plots may be produced. The effects of multi-mixed paths, electrical parameters of each propagation section, as
well as the frequency can be observed and extra path losses can be predicted. The VPT can be used both for
design and training purposes.

1. Introduction

In addition to decades of long-range marine communication systems in high frequency (HF) band surface
wave high frequency radars (HFSWR) have become a great potential in this frequency region for integrated
maritime surveillance systems (IMSS) both as primary and complementary sensors. Countries with wide-coastal
regions such as USA, Canada, France, Germany, Italy, Brazil, Turkey, Sri Lanka, China, India, etc., have already
deployed or completed the designs of such systems for their economic exclusive zones (EEZ) [1, 2]. One major
problem in HF communication/radar systems is the prediction of surface wave propagation path loss. The
propagation scenarios differ quite a lot from region to region. For example, engineers of the IMSS on the East
Coast of Canada need to know maximum monitoring range for a given transmitter power. On the other hand,
the problem of Turkey in the West Coast is to find out extra multi-mixed path propagation loss because of the
existence of many different scaled islands in the region.

At HF frequencies, ground wave propagation is dominated by the surface wave. As long as the transmitter
and receiver are close to surface direct and ground reflected waves cancel each other and only surface wave can
propagate. The Earth’s surface electrical parameters are important in reaching longer ranges. Sea surface is
a good conductor, but ground is a poor conductor at these frequencies. A challenging problem is to predict
surface wave path loss variations over mixed paths, such as sea-land or sea-land-sea transitions [3, 4]. A sharp
decrease occurs in signal strength along sea-land transition and the signal recovers itself beyond the island,
known as the Millington (recovery) effect [5].

We have introduced a few propagation packages for the calculation of surface wave propagation effects [6–
10], where analytical ray and mode models (i. e., Norton and Wait formulations) are hybridized to extend their
ranges of validity, accuracy, rate of convergence, etc., depending on such problem parameters as operational
frequencies, source/observer locations and the physical propagation environment. The WAVEPROB packages
uses analytical ray and mode methods in hybrid form that can handle propagation through standard atmosphere
over smooth spherical Earth and can be best used from a few hundred kHz up to 40–50MHz [7]. The ray
shooting algorithm SNELL GUI [8] shoots a number of rays through a propagation medium characterized by
various piecewise linear vertical refractivity profiles, so the user may visualize various ducting and anti-ducting
characteristics depending on the supplied parameters. The packages RAY GUI and HYBRID GUI [9] can be
used to investigate ray/mode formulation inside a 2D non-penetrable parallel plate waveguide. The user may
analyze individual ray/mode contributions and their collective effects as well as hybrid forms. Finally, the multi-
purpose SSPE GUI package completes the virtual set, which can be used directly in simulations of short- and
long-range radiowave propagation over user-specified, non-smooth Earth’s surface through non-homogeneous
atmosphere [10].

In this study, we have developed and designed a new Matlab-Based, user-friendly virtual propagation tool
(VPT) that can be used for multi-mixed path surface wave path loss calculations. The user may design a
propagation scenario by just using the computer mouse, specify all other input parameters, and produce path
loss vs. range plots. The effects of multi-mixed paths, electrical parameters of each propagation section, as well
as the frequency can be observed and extra path losses can be predicted. The VPT can be used both for design
and training purposes.
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2. Analytical Formulation Based on Ray-mode Approach

The fundamental analytic models are based on ray and mode techniques and are mostly known as Norton [3]
and Wait [4] formulations, respectively. The Norton formulation extracts a ray-optical asymptotic approximation
from a wavenumber spectral integral representation. The Wait formulation restructures the spectral integral as
a series of normal modes propagating along the earth’s surface. They both assume a smooth spherical earth
(and/or its earth-flattened approximate equivalent) with various smooth, penetrable ground characteristics, a
radially homogeneous atmosphere above, and excitation by a vertical or a horizontal electric dipole on or above
the earth’s surface.

Norton and Wait formulations parameterize the propagation process in terms of different phenomenological
models, their ranges of validity, accuracy, rate of convergence, etc., depending on such problem parameters as
operational frequencies, source/observer locations and the physical propagation environment, differ as well, with
particular impact on computations. Using the ray-mode approaches separately or in hybrid form, one may deal
with smooth-boundary problems [11], such as

• Surface wave path loss or field strength variation with respect to range (especially beyond the horizon and
when both transmitter and receiver are on the surface).

• Range and/or height propagation variations in interference regions (i. e., when transmitter and receiver
are above the surface and within the line-of-sight (LOS)).

• Surface wave path loss over multi-mixed propagation paths to account for, for example, land-sea or sea-
land-sea (island) transitions.

It should be noted that ray-mode and their hybridized techniques cannot handle problems, such as propagation
over rough surface terrain, and/or through surface and/or elevated ducts formed by inhomogeneous vertical
as well as horizontal atmospheric conditions. Although height gain functions in mode theory [11] can be used
to account for transmitter/receiver heights, it is difficult to deal with receiver heights in diffraction regions
(beyond LOS) because of numerical problems in calculating higher order terms in the series representation of
Airy functions.

3. Millington Effect and ITU Curve Fitting Method

Although perfectly reflecting boundary assumption provides in general sufficient approximation at VHF and
above (i. e., frequencies higher than 100–200 MHz), the use of impedance boundary condition becomes essential
at HF frequencies and below. This is especially required for the simulation of long-range marine communication
and/or ocean surveillance systems using HF frequencies. A challenging problem is to predict surface wave path
loss variations over mixed paths, such as sea-land or sea-land-sea (island) transitions. A sharp decrease occurs
in signal strength along sea-land transition and the signal recovers itself after land-sea transition (beyond the
island), known as the Millington (recovery) effect [5].

The path loss of a communication system between any pair of transmitter/receiver is defined as

Lp(d) = 10 log

(
Pr
Pt

)
(1)

For a Pt = 1 kW transmitter (i. e., for a short electric dipole with a dipole moment of M = 5λ/2π), the
received power at an arc distance d can be determined from the computed field strength E via

Pr(d) =
Er(d)

2

Z0
× λ2

4π
(2)

The path loss is then obtained from these two equations as

Lr(d) = 142.0 + 20 log (fMHz) + 20 log (EµV/m) [dB] (3)

where the units of the operating frequency and field strength are MHz and dBµV/m, respectively.
The Millington method uses a graphical interpolation approach to calculate the mixed path losses. Figure 1

shows a multi-mixed propagation medium including 5-paths. Let’s consider a scenario for 2-paths with different
surface parameters. The Millington method is based on an interpolation of a direct electric field ED and an
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Figure 1: Multi-mixed-path surface wave propagation scenario for 5 paths.

inverse electric field EI as:

ED = E1(d1) + E2(d1 + d2)E2(d1) (4)

EI = E2(d2) + E1(d1 + d2)E1(d2) (5)

Here, the field values E1(d1), E2(d2), E2(d2), E1(d1 + d2), and E2(d1 + d2) are defined as follows:

E1(d1) : Calculated field strength at a distance d1 over homogeneous Med. I
E1(d2) : Calculated field strength at a distance d2 over homogeneous Med. I
E2(d2) : Calculated field strength at a distance d2 over homogeneous Med. II
E1(d1 + d2) : Calculated field strength at a distance d1 + d2 over homogeneous Med. I

(the whole path is assumed as Med. I)
E2(d1 + d2) : Calculated field strength at a distance d1 + d2 over homogeneous Med. II

(the whole path is assumed as Med. II)

Then the total electric field is calculated by taking the average as

E(d1 + d2) = 0.5(ED + EI). (6)

The Millington method can be used for 3-paths in a similar way. If the path lengths are d1, d2 and d3,
respectively, the direct electric field ED and the inverse electric field EI are calculated via

ED = E1(d1) + E2(d1 + d2)E2(d1) + E3(d1 + d2 + d3)E3(d1 + d2) (7)

EI = E3(d3) + E2(d3 + d2)E2(d3) + E1(d3 + d2 + d1)E1(d3 + d2) (8)

and the total electric field is calculated again by taking the average as

E(d1 + d2 + d3) = 0.5(ED + EI) (9)

The extension to n-path formulas is straightforward.

4. Matlab-Based HF PATH Package

The front panel of the HF Path package is designed as shown in Figure 2, and is divided into three sub
regions. The left part of the GUI is reserved for the user-supplied parameters. The user specified parameters
are explained in Table 1. The operating frequency, range increment, transmitter height and receiver height are
supplied first. Then the electrical parameters; the conductivity and the relative permittivity of the sea and land
are to be specified next (µ = µ0 everywhere and the atmosphere is homogeneous). The parameters of all sea
paths (or land paths) are assumed same. Although it is doable, the package doesn’t allow the user to specify
N -path with N -different electrical surfaces. Finally the user specifies the number of paths along the range using
a popup menu. Once the user determines the number of paths N , only N editable textboxes become visible to
enable the user to specify the lengths of the paths. For example, in Figure 2 the number of paths is 6, so there
are 6 visible textboxes. However in Figure 3, the number of paths is 3, so there are only 3 visible textboxes.
It is also important to note that the first segment is always sea, and that a sea segment is always followed by
a land segment and vice versa. The mid-part of the front panel is reserved for the figures. The upper figure
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shows the geometry of the scenario and changes whenever the number of paths is changed by the user via the
corresponding popup menu. The lower figure displays both the geometry and plots for Path Loss vs. Range or
Field Strength vs Range variations. The sea and land segments are shown in blue and green, respectively, as
shown in Figure 2. The lengths of the blue and green filled areas correspond to actual lengths specified by the
user.

Figure 2: The front panel of HF PATH package.

Table 1: User-specified parameters of the HF Path package.

Parameter Explanation Default Value

Frequency Operating Frequency 5MHz

Range Increment The difference between each observation point 0.5 km

Transmitter Height Height of the Transmitter in [m] 0m

Receiver Height Height of the Transmitter in [m] 0m

Conductivity of Sea Conductivity of each sea segment in [S/m] 5 S/m

Conductivity of Land Conductivity of each segment land in [S/m] 0.01 S/m

Relative Permittivity of Sea Relative permittivity of each sea segment 70

Relative Permittivity of Land Relative permittivity of each land segment 15

Number of Paths Number of sea and land segments between the
transmitter and the receiver (min :1 ; max: 6)

3

Length of Path 1 Length of the first segment (sea) in [km] 100 km

Length of Path 2 Length of the second segment (land) in [km] 100 km

Length of Path 3 Length of the first segment (sea) in [km] 100 km

: : :

: : :

The control push buttons are located at the upper right part of the panel. Pressing the “Info” button opens
the MATLAB Help window that includes explanations on how to use the package. Typing “help HF Path” at
the MATLAB command line also displays the same explanations. The “Close” button terminates the program.
The “Clear” button clears the graph. Once the “Plot” button is pressed, the user-specified parameters are
written line by line to an input file named “HFMIX.INP”, then the program HFMIX.EXE is executed and the
outputs are both displayed in the figure and written to files “LMIX.DAT” and “EMIX.DAT”. Both files consist
of 2-columns of data in text format. The first column belongs to the range values in km and the second column
of LMIX/EMIX corresponds to Path Losses/Field Strengths in dB. The check boxes below the Plot button are
used to select whether to plot the Path Loss vs. Range or Field Strength vs. Range. Operational parameters
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may be changed by the user and multi-plots may be displayed by pressing the plot button more than once (as
long as the propagation scenario, i. e., the segment lengths, is kept same). The user may clear previous plots by
using the “Clear button” before the “Plot button”.

Figure 3: Path loss vs. range for a 3-section-path propagation scenario at 0.5 MHz, 5 MHz and 10 MHz.

Figure 4: Path loss vs. range for a 4-section-path propagation scenario at 5MHz, 15 MHz, and 30 MHz.

5. Matlab-Based HF PATH Package

To show the power and beauty of the HF PATH package some examples and typical results are presented
in this section. The first case belongs to a propagation scenario consisting 3-paths and is displayed in Figure 3.
The lengths of the segments are: d1(sea) = 120 km, d2(land) = 80 km, d3(sea) = 200 km, which makes the total
range from the transmitter to the receiver 400 km. The conductivity of sea/land are specified as 5/0.01 S/m.
The relative permittivities are 70/15. The height of the transmitter and the receiver are both chosen as 0 m.
The calculations are performed for three different operating frequencies; 0.5 MHz, 5MHz, and 15 MHz. All three
Path Loss vs. Range graphs corresponding to these frequency values are displayed in the figure with different
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colors. The Millington effect is observed at MHz frequencies and above as shown in the figure. The sharp
decrease on the sea-land transition region, and signal recovery beyond the land-sea transition are also visible in
the figure. It should be noted that, the higher the frequency the higher the path loss at the same distance.

The next example consists of a 4-segment propagation path and results are shown in Figure 4. In this
example the segment lengths are same and are equal to 100 km. The range variations of path losses at three
different operating frequencies are plotted in the figure.

The third example is shown in Figure 5 for a 5-segment-path. The example corresponds to a propagation
scenario with 2 islands with lengths of 32 km and 58 km at radial distances 98 km and 274 km from the source.
The Path Loss vs. Range graphs correspond to frequency values of 5 MHz, 15 MHz and 30 MHz.

The last example is another 3-section-path propagation scenario as shown in Figure 6. The plots correspond
to different types of lands with conductivity values of σLAND = 0.001 S/m, 0.1 S/m, 1 S/m.

Figure 5: Path loss vs. range for a 5-section-path propagation scenario at 5MHz, 15 MHz, and 30 MHz.

Figure 6: Path loss vs. range for a 3-section-path propagation scenario at σLAND = 0.001, 0.1, 1 S/m.



436 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

6. Conclusions

The new Matlab-Based, user-friendly HF PATH virtual propagation tool can be used for multi-mixed path
surface wave path loss calculations. Any multi-mixed-path surface wave propagation scenario may be specified
by the user together. The electrical parameters of the propagation segments and the operating frequency are also
user-specified parameters. The effects of multi-mixed paths, electrical parameters of each propagation section,
and the frequency on to the range variation of path loss can be simulated easily. The HF PATH can be used
for both design and training purposes.
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Abstract—Optical binding between micron-sized oil droplets in air has recently been observed. The exper-
imental setup, consisting in two vertical, counter propagating and diverging laser beams, builds up a three
dimensional trap. The cloud of oil droplets, enclosed in a glass cell, progressively fills in the trap where droplets
interact one with another. Scattered intensity is observed on a video camera. Interactions involve optical,
electrostatic, radiometric and capillary forces. Orders of magnitude are discussed.

Chains up to four droplets have been observed, the most stable structure being the doublet and not the
single drop. In air, viscosity being one thousand times smaller than in water, mean free path of a micro-sphere is
much bigger. That is why mean residence times in metastable states are of the magnitude of a few seconds and
that brownian motion quickly drives the trapped droplets in the very minimum of potential energy: the doublet
structure. Two stable states have also been obtained for the doublet. Observation of interference indicates that
oil droplets are phase-locked onto each other every λ/2.

The spraying technique we use, gives droplets smaller than the micron in radius. This is the intermediate
case of the Mie range between the small and large wavelength cases. Those new experimental results exhibit
the role of the short and long range interactions in optical binding. They are then theoretically discussed both
in the ray model and in the Rayleigh approximation, and compared with previous works on optical binding in
water. Moreover, in our case, the index contrast is much bigger. It implies stronger scattered intensities, bigger
interaction forces with light and therefore, bigger binding forces.
1. Introduction

Since the pioneering work by Ashkin [1] in the early 1970’s, optical tweezers have nowadays become a
commonly used tool for micromanipulation in water. Optical trapping in air and vacuum remains a difficult
task due to Van der Waals forces several orders of magnitude larger than optical forces. In the literature, two
possibilities were explored: the use of aerosols[1–4] and mechanical vibration coupled with strongly focused cw
laser beams [5, 16, 7, 8]. Afterwards, self-assembled structures of microparticles under strong laser illumination
have been demonstrated [9–12]. Optical binding was observed when the particle separation is either othogonal
or along the light propagation. When the separation is set orthogonal to the beam propagation and to beam
polarization, theory predicts potential minima every l for particles in the Rayleigh range [13]. This l periodicity
was experimentally observed for polystyrene spheres in the Mie range in water [10]. The Mie correction to
Rayleigh approximation was supposed to modify the interaction strength more than the periodicity. In three
dimensional optical traps made with two counter-propagating beams, potential minima appeared to be along
the beam axis. Due to the weakly focused beams and to gradient forces, the particles are constrained to remain
on the beam axis. Optical interactions then lead to chains where spheres are either stuck or separated by more
than a diameter away [12]. For spheres in the Rayleigh range, potential minima every λ/2 are expected.

Trapping in air imposes a tridimensional trap since the Van der Waals forces are not negligible as is the
case in water. However, the larger index ratio gives larger cross sections and the optical forces are consequently
stronger than in water.
2. Experiment

Our experiment [15] deals with micron-sized oil-droplets in air obtained with a spray nozzle. According to
their falling time, their diameter was estimated to be in the range between 1µm and 1.5µm. They are protected
from air convection currents by a glass cell. We use a 30 mW frequency doubled YAG laser at 532 nm. The
optical trap consists in two weakly focused (N.A. = 1/15) and counter-propagating laser beams (see Fig. 1). The
return beam is focused roughly 300µm before the forward beam. The equilibrium position of trapped particles
is at half distance of both focusing points, where the intensities of the two beams are equal. The geometry is
then similar to those previously studied in water [11, 12] with optical fibers. We chose a vertical geometry in
order to oppose gravity with the scattering force rather than with the gradient force which is much weaker for
spheres in the Mie range.
3. Results
3.1. Trapped Structures

When the cell is filled with an oil droplet cloud, radiation pressure pushes the droplets inside the trap.
By far, the most common structure observed was a doublet. We rarely saw a single droplet. Three and four
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Figure 1: Experiment principle. The scattering force is opposed to gravity. The forward beam is retro-reflected
on a mirror at the focus of a lens. The downward returning beam is focused 300µm above the upward direct
beam so as to build a stable equilibrium zone. The laterally scattered intensity is observed on a video camera
through a 10x, 0.25NA microscope lens. A cell of glass, not shown, protects from air motion.

droplet chains were also seen for a few seconds before changing into a doublet by escaping or merging processes.
Coallescence with outer droplets—tends to increase progressively the size of both droplets in a doublet. The
increasing finishes when the cloud of droplet has fallen down. We observed that in a doublet, the larger the
droplets, the further apart. We never saw a doublet collapsing or splitting away. The optical binding forces in
this case, appears to be much stronger than all other forces.

Figure 2: Doublet, triplet and quadruplet structures. The doublet is observed to be the most stable structure is
the doublet. Its droplets are spaced approximately 3.5µm apart, between centers. The length scale is the same
for all the pictures.

On a few occasions, we observed a sudden change of the doublet’s appearance, mainly regarding the in-
terference of both Airy patterns on the camera. On the first picture (see Fig. 3), images of droplets interfere
such as to give a dark fringe between droplets while on the second picture, we see bright dots on the symmetry
axis. In the first case, droplets are scattering in phase opposition as in the second case, they are emitting in
phase, corresponding to a λ/2 difference of distance. An estimate of the difference of distance separations of
doublets gave values close to λ/2. This measurement is difficult due to the low resolution power of the imaging
microscope objective. This phenomenon was assumed to be a swiching between two stable states of a doublet,
which can be understood in the dipolar approximation as explained further.
3.2. Clinging to Fringes

When trapped, particles move quikly due to speckle. Static speckle is introduced with dirtyness of opti-
cal components. Dynamic speckle is also introduced by the cloud of droplets crossing the trapping beams.
Disturbance caused by the cloud is larger when a droplet cross the beam in the vicinity of the focusing point.

The laser we use has two longitudinal modes. There are coherence beatings every three millimeters. After
a 30 cm optical path, we do not know if the return beam is coherent with the upward one. In the case where
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Figure 3: Two different equilibrium states of a 2.3µm doublet. The main difference is the interference pattern.
On the first picture, droplets are emitting in phase opposition, we see a dark fringe on the symmetry axis. On
the second one, they are emitting in phase, bright dots can be seen on the symmetry axis. It suggests that the
difference of separation distance between droplets increased. We estimated the increasing to be of the order of
half a wavelength in accordance with the interference pattern.
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Figure 4: Position spectrum of the doublet in the trap.

the two counter-propagating beams are coherent, a stable λ/2 fringe pattern should trap the structure. If the
brightness contrast is not large enough, the gradient force is weak and small intensity fluctuations between the
two counter propagating beams can unbalance the well’s minimum in the longitudinal direction. In this case,
the doublet quickly (compared with the frame rate of the video camera) sweeps a sinusoidal potential well.
As images of droplets are several pixels wide, their positions can be measured with a subpixel resolution. We
performed the Fourier transform of the positions yp of the doublet in the trap when counter-propagating beams
were circularly polarized and weakly coherent (see Fig. 4):

F (Y ) (σ) =
∑

p

e2πiσyp

The same numerical calculation for the case of a crossed-polarized beams experiment does not give those peaks.
According to imaging power λ/2 ' 1.6pixel, the main harmonic is then the 0.62 peak. The other peaks are
folded back harmonics. We can see that they are numerous and Dirac comb like, which means that the doublet
very likely mechanically clings to fringes and the position spectrum we obtain cannot be a light modulation
measurement artefact.
3.3. Theoretical Discussion on Binding

In our experiment, the spheres radii are from 0.5µm up to 1.2µm when several droplets have merged. Those
values correspond to ka (a being its radius and k the wave vector) between 12 and 14. For particles in the
Mie regime which is the case, numerical calculations have to be performed and multiscattering processes must
be taken into account to know the exact optical binding forces [14]. However, in this regime, the particles’
behaviour looks like both dipoles and large spheres. In this discussion, we aim at giving a flavour of the physics
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of the binding effect. We think this experiment can be approximately understood from the two extreme regimes
of the ray model and the Rayleigh range.

When spheres are such that ka < 1 or when kr > 1 (r being the separation distance between spheres),
the dipole approximation is sufficient to estimate potential minima. In this approximation, optical interactions
between particles are maximal when the separation is orthogonal to polarization. It can be either along or
transverse to the beam axis. In agreement with dipolar theory, it was experimentally observed [10] that potential
wells for two particles were every λ, the wavelength. When the separation is along the wave vector, a similar
calculation predicts potential wells roughly every λ/2:

V = −
∣∣∣∣
cosϕ+ f(kr)eikr cos(kr + ϕ)

1 − f(kr)2e2ikr

∣∣∣∣
2

with
f(kr) = k3α

(
1

kr
− 1

(kr)3
+

i

(kr)2

)

α =
n2 − 1

n2 + 2
a3 being the polarizability of the (identical) dielectric spheres of index n, and r being the separation

between the two spheres. The denominator corresponds to the Mossotti resonance in atom trapping. It can
only be zero for resonant particles for which the real part of f can be larger than one. This can never happen
with dielectric or even metallic particles: the spheres touch before the resonance happens. When kr > 1, we
can approximate the previous formula by:

V ' − cosϕ

(
cosϕ

(
1 +

k3α

kr

)
+
k3α

kr
cos(2kr + ϕ)

)

which exhibit a λ/2 periodicity which is consistent with the experimental observation (Fig. 3).
However we could not see jumps between many λ/2-separated potential wells like in Fournier’s experiment

[10]. The two droplets remain at a quite stable distance depending on their size. This comportement looks like
that of large spheres.

Figure 5: Principle of binding between two spheres in the ray model. Each droplet acts as a tweezer for the
other. As there is no reason why focal plans of spheres be the same, the second sphere defocuses its trapping
tweezer and can rebuild another tweezer behind it like in triplet cases or 4-droplet cases.

When the radius of spheres is such that ka > 100, optical forces can be calculated in the ray model
approximation with a good degree of accuracy [6, 17]. In this model, binding between two spherical dielectric
particles can be understood by comparison with optical tweezers. For a sufficiently focused beam, a dielectric
particle can be trapped close to the focal point. In our case, the focusing lens is nothing else than the next
droplet. Each droplet builds an optical tweezer for the other. The numerical aperture of a spherical lens can

be approximated by NA ' a

f
= 2

n− 1

n
which only depends on the index of the sphere (not on its radius). We

think this model explains the high stability of the doublet structure despite speckle: a single plane seems to be
sufficient for particles to be bound. For reaching such stability, spheres need to be close enough to each other.
When spheres are much more than a diameter away like in the case of experiments in water [11, 12], spheres
cannot be in a bound state: the focusing numerical aperture is not sufficient for the optical tweezer to be stable.
In this case, microspheres interact repulsively in a single trap so as to give chains. This comparison with optical
tweezers can also explain why structures with three and four droplets are less stable than the doublet case.
Indeed, while being trapped by the tweezer, the sphere defocuses the beam (see Fig. 5). However, there is no
reason why the optical force be zero when the focal point of the first droplet is the same as the focal point of
the second. We can then hope, for a given radius of sphere (even more in the Mie range) a configuration where
the second sphere will be trapped at two focal lengths of the focusing point. In this case, neglecting spherical
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aberrations, the second sphere will rebuild a trap behind it. This argument explains both the possibility to
build 4-droplet chains and why the doublet is much more stable than triplets and quadruplets.
3.4. Orders of Magnitude

We can see on movies than despite all the disturbing sources, the doublet is very stable, even when the laser
beam is cut for one second. We present here the main forces involved in this experiment.

The strongest forces are capillary forces. For particles smaller than 1.2µm in radius, they can be estimated

with Laplace’s theorem: ∆P =
2γ

a
' 105 pN.µm−2 where ∆P is the pressure difference between inside and

outside the droplet, γ is the capillary coefficient of the liquid and a the radius of the sphere. This pressure must
be compared with the electromagnetic pressure of the order of I/c. In a binding case, field can be enhanced
between particles so as to increase the optical force by one order of magnitude. However, if we simply consider
the trapping pressure, we obtain in the case of our experiment a pressure equal to 1 pN.µm−2.

Brownian motion could also destruct the phase locking observed between bound droplets. As the interference
pattern between images of droplets of a doublet remains despite random forces, we can conclude that the
distance never changes more than λ/4. It means that the mean thermal force over a distance λ/4 is smaller

than
kT

λ/4
' 10−2 pN. To be compared with the pressures we calculated in the previous paragraph, we can

approximate the radius of spheres to be one micron. Finaly, as droplets are negatively charged when sprayed due
to triboelectricity effects with the spray nozzle, electrostatic forces causes droplet repealing. Each droplet carry

a few elementary charges and the distance between droplets being roughly 2.5µm: F =
1

4πε0

qq′

r2
' 10−5 pN.

Electrostatic forces are then three orders of magnitude smaller than optical forces.
We should add an estimate of heating effects. As oil slightly absorbs light, convection currents may appear

inside droplets. This effect has already been discussed in a previous article [15] but a precise idea of the forces
involved cannot be given.

4. Conclusion
Our experimental results obtained in air differ appreciably from those previously reported in water. Much

of the difference probably results from the higher index contrast. Our results fit both with a Rayleigh range
binding process and a semi-classical ray model.
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Abstract—Computational methods for electromagnetic and light scattering can be used for the calculation
of optical forces and torques. Since typical particles that are optically trapped or manipulated are on the
order of the wavelength in size, approximate methods such as geometric optics or Rayleigh scattering are
inapplicable, and solution or either the Maxwell equations or the vector Helmholtz equation must be resorted
to. Traditionally, such solutions were only feasible for the simplest geometries; modern computational power
enable the rapid solution of more general — but still simple — geometries such as axisymmetric, homogeneous,
and isotropic scatterers. However, optically-driven micromachines necessarily require more complex geometries,
and their computational modelling thus remains in the realm of challenging computational problems. We review
our progress towards efficient computational modelling of optical tweezers and micromanipulation, including the
trapping and manipulation of complex structures such as optical micromachines. In particular, we consider the
exploitation of symmetry in the modelling of such devices.

1. Introduction

Optical tweezers have seen deployment in a wide range of applications in biology, soft materials, microassem-
bly, and other fields. As well as being used for the trapping and manipulation of a wide range of natural and
artificial objects, optically trapped probes are used to measure forces on the order of piconewtons. Compared
with this diverse range of experimental applications, theory and accurate computational modelling of optical
tweezers has received much less attention and has remained relatively undeveloped, especially for non-spherical
particles and non-Gaussian beams. This is unfortunate, especially when we consider the growing fields of
controlled rotation of complex microparticles — prototype optically-driven micromachines — and fully three-
dimensional manipulation using complex optical fields, where the application of theory and modelling provide
insight into the physics, and allow engineering and optimisation.

Since optical forces and torques result from the transfer of momentum and angular momentum from the
trapping beam to the particle via scattering, the theory and computational modelling of optical tweezers is,
in essence, the theory and computational modelling of the scattering of light or electromagnetic radiation.
Since typical particles that are optically trapped or manipulated are on the order of the wavelength in size,
approximate methods such as geometric optics or Rayleigh scattering are inapplicable, and solution or either the
Maxwell equations or the vector Helmholtz equation must be resorted to. As scattering by particles in this size
range is of interest in many fields, a wide variety of analytical and computational methods have been developed.
Thus, there is a solid foundation on which to develop computational modelling of optical micromanipulation.

There are, however, complications that prevent simple direct application of typical light-scattering codes.
The first, but not necessarily the most important, is that optical tweezers makes use of a highly focussed laser
beam, while most existing scattering codes assume plane wave illumination. Perhaps more fundamental is the
need for a large number of repeated calculations to characterise an optical trap — even for an axisymmetric
(but nonspherical) particle trapped in a circularly polarised Gaussian beam, we already have four degrees of
freedom. Clearly, this places strong demands on computational efficiency.

Due to this requirement for repeated calculation of scattering by the same particle, we employ the T -matrix
method [1, 2]. Below, we outline the employment of the T -matrix method for the calculation of optical forces
and torques. While most implementations of the T -matrix method are restricted to simple geometries, this is
not a limitation inherent in the method; fundamentally, the T -matrix method is a description of the scattering
properties of a particle, not a method of calculating the scattering properties. Therefore, in principle, any
method of calculating scattering can be used to obtain the T -matrix for a scatterer. We discuss such “hybrid”
methods, where a computational method not usually associated with the T -matrix method is used to calculate
the T -matrix of a scatterer, and hence the optical force and torque.
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A further important consideration is that optical micromachines, while complex, are likely to possess a high
degree of symmetry; this can be exploited to reduce computation times by orders of magnitude. We demonstrate
the effectiveness of this approach by modelling the optical trapping and rotation of a cube. The two principal
symmetries of such shapes — mirror symmetry and discrete rotational symmetry about the normal to the mirror
symmetry plane — are exactly the symmetries that typify the ideal optically-driven rotor.

2. T -matrix Formalism for Optical Force and Torque

The T -matrix method in wave scattering involves writing the relationship between the wave incident upon

a scatterer, expanded in terms of a sufficiently complete basis set of functions ψ
(inc)
n , where n is a mode index

labelling the functions, each of which is a solution of the Helmholtz equation,

Uinc =

∞∑

n

anψ
(inc)
n , (1)

where an are the expansion coefficients for the incident wave, and the scattered wave, also expanded in terms

of a basis set ψ
(scat)
k ,

Uscat =

∞∑

k

pkψ
(scat)
k , (2)

where pk are the expansion coefficients for the scattered wave, is written as a simple matrix equation

pk =

∞∑

n

Tknan (3)

or, in more concise notation,
P = TA (4)

where Tkn are the elements of the T -matrix. The T -matrix formalism is a Hilbert basis description of scattering.
The T -matrix depends only on the properties of the particle — its composition, size, shape, and orientation —
and the wavelength, and is otherwise independent of the incident field.

This means that for any particular particle, the T -matrix only needs to be calculated once, and can then be
used for repeated calculations. This is the key point that makes this an attractive method for modelling optical
tweezers, providing a significant advantage over many other methods of calculating scattering where the entire
calculation needs to be repeated.

The natural choice of basis functions when describing scattering by a compact particle is to use vector
spherical wavefunctions (VSWFs) [1]. The optical force and torque are given by sums of products of the modal
amplitudes [3–5].

Notably, neither how the VSWF expansion of the incident field nor how the T -matrix can be calculated has
entered the above description of scattering. A variety of methods exist for the former [6, 5], and the latter task
is generally the more challenging computationally.

Most implementations of the T -matrix method use the extended boundary condition method (EBCM), also
called the null field method, to calculate the T -matrix. This is so widespread that the T -matrix method and the
EBCM are sometimes considered to be inseparable, and the terms are sometimes used interchangeably. However,
from the description above, it is clear that the T -matrix formalism is independent of the actual method used
to calculate the T -matrix [7, 8].

A number of alternative methods have been used for the calculation of T -matrices. Notably, such “hybrid”
methods, for example the discrete dipole approximation (DDA) method used by Mackowski [9] can be used for
the calculation of T -matrices for particles of arbitrary shape, internal structure, and electromagnetic properties.
Complex internal structure will generally require a discretisation of the internal volume of the particle, rather
than a method based on surface discretisation. We are working on both finite-difference frequency-domain
(FDFD) and DDA based hybrid T -matrix solvers.

3. Optical Torque and Symmetry

The T -matrix elements are strongly dependent on the symmetry of the scatterer [1]. We can deduce the
principal features from Floquet’s theorem, relating solutions to differential equations to the periodicity of their
boundary conditions.
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If we have a scatterer with nth-order rotational symmetry about the z-axis, an incident mode of azimuthal
index m couples to scattered modes with azimuthal indices m,m± n,m± 2n,m± 3n and so on. For scatterers
that are mirror-symmetric, upward and downward coupling must be equal, in the sense that, for example, a
mirror-symmetric scatterer of 2nd order rotational symmetry (such as a long rod), T -matrix elements coupling
from m = 1 modes to m = −1 modes will have the same magnitudes as the elements coupling from m = −1 to
m = 1 modes. For chiral scatterers, these T -matrix elements will, in general, be different.

This directly affects the optical torque; the vector spherical wavefunctions are eigenfunctions of the angular
momentum operators J2 and Jz. Essentially, the radial mode index n gives the magnitude of the angular
momentum flux, while the azimuthal mode index m gives the z-component of the angular momentum flux.
Therefore, the coupling between orders of different m describes the generation of optical torques about the
beam axis.

For the case of a rotationally symmetric scatterer, this means that there is no coupling between modes with
differing angular momenta about the z-axis [1, 10, 11]. Therefore, it is not possible to exert optical torque on
such scatterers except by absorption (or gain) — since the incoming and outgoing angular momenta per photon
are the same, the only optical torque can result from a change in the number of photons. In general, the use
of absorption for the transfer of optical torque is impractical, due to excessive heating. Therefore, a departure
from rotational symmetry is required. This can be either at the macroscopic (the shape of the particle) or
microscopic (optical properties of the particle) level.

Birefringent and elongated or flattened particles are simple examples of introducing such asymmetry; notably,
such particles were the first to be controllably optically rotated through means other than absorption, for example
by Beth in the first measurements of optical torque [12]. Particles with these properties have also been rotated
in optical traps [13–16]. As such particles can still be axisymmetric about one axis, rapid calculation of optical
forces and torques is still possible [15, 16].

More complex particles have also been fabricated and rotated [17–19], but in these cases, there are few
results from computational modelling [20].

As such structures typically possess discrete rotational symmetry, the restrictions on coupling between
azimuthal orders can be used to reduce the number of T -matrix elements that need to be calculated. This can
greatly reduce the time required. This is also the case for the hybrid methods described above. For a scatterer
with pth-order discrete rotational symmetry, it is only necessary to perform calculations for a 1/p portion of
the entire structure. If, in addition, there is mirror symmetry about the xy plane, the parity of the VSWFs
will be preserved. Therefore, an odd-n TE mode will only couple to odd-n TE modes and even-n TM modes.
This halves number of non-zero T -matrix elements, and halves the portion of the structure that needs to be
modelled.

4. Example: Optical Trapping of a Cube

A simple example illustrating both the relationship between optical torque and symmetry, and the exploita-
tion of particle symmetry for more efficient calculation of optical forces and torques, is the optical trapping of a
cube. The cube embodies both of the symmetries — mirror symmetry and discrete rotational symmetry about
the normal to the mirror symmetry plane — that typify the ideal optically-driven rotor.

As the cube has 4th-order rotational symmetry, and mirror symmetry with respect to the Cy plane, each
incident modes only couples to approximately 1/8 the number of significant scattered modes. Although the
column-by-column calculation of the T -matrix still requires the same number of least-squared solutions, each of
this is of a smaller system of equations, and much faster. For example, the two wavelengths wide cube used in
our example below required 30 minutes for the calculation of the T -matrix on a 32 bit single-processor 3 GHz
microcomputer, as compared with 30 hours for an object of the same size lacking the cube’s symmetries. Only
one octant of the cube was explicitly included in the calculation.

If Figure 1, we show the optical force and torque exerted on a cube with relative refractive index of 1.19 =
1.59/1.34, and faces 2λ across, where λ is the wavelength in the surrounding medium. Once the T -matrix is
calculated, to calculate the optical force and torque at a particular position requires less than 1 second (unless
the point is far from the beam focus, in which case, up to 10 seconds or so can be needed).

In Figure 1(a), we see that cubic shapes can be stably trapped axially, while 1(b)–(d) show that optical
torque can be generated by such structures. The increased efficiency resulting from the use of orbital angular
momentum [5] is clear.
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Figure 1: Optical force and torque on a dielectric cube. (a) shows the axial force as a function of position along
the beam axis, showing that the cube can be trapped. (b)–(d) show the dependence of the optical torque on the
beam convergence angle and the polarisation and orbital angular momentum. In (b), the beam is Gaussian (ie
LG00), while in (c) and (d), the beams are LG01 and LG02 respectively. The solid lines are for plane polarised
beams, while dotted and dashed lines are for circularly polarised beams with spin parallel to and antiparallel to
the orbital angular momentum.

5. Conclusion

The symmetry properties of a scatterer can be used to dramatically speed the calculation of the scattering
properties of a particle. If these are expressed in the form of the T -matrix, this enables rapid and efficient
calculation of optical forces and torques. Since typical optically-driven microrotors possess discrete rotational
symmetry, they are ideal candidates for this method. In addition, mirror symmetry about a plane can also be
used to further reduce the computational burden. Finally, “hybrid” T -matrix methods can be used for particles
with geometries or internal structure making them unsuitable for traditional methods of calculating T -matrices.
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Abstract—Since its invention in the mid of eighties [1] Total Internal Reflection Microscopy (TIRM) has proven
to be an effective technique to measure weak interactions between spherical colloidal particles and surfaces with a
resolution of a few femtonewton. It is a single particle evanescent light scattering technique. In an experimental
setup a laser beam is coupled into a prism and hits the glass-water interface with an angle slightly above the
critical angle of total internal reflection. This generates an evanescent field near the interface that decays in
the lower refractive index medium (water) with a characteristic penetration depth which depends on the angle
of incidence. A colloidal particle that is dispersed in the medium will scatter light from the evanescent wave
if it is in the vicinity of the surface. By registering a scattered intensity it is possible to deduce the particle-
substrate distance. Compared to other methods for measure particle wall interactions like the surface force
apparatus or the atomic force microscopy where a colloidal particle is attached to the tip, TIRM is the most
sensitive technique because thermal fluctuations where limit the other methods in their resolution are exploited
to determine the interaction potential. In this way forces in the order of a few femtonewton can be detected.
TIRM has proven to be a valuable tool for the precise measurement of weak colloidal interactions as double
layer forces, van der Waals forces, magnetic interactions and depletion forces. Review on TIRM can be found
for example in [2, 3].

To compare experimental results with results of mathematical modeling an effective light scattering method
is needed. For this purpose the Discrete Sources Method (DSM) has been chosen. The DSM is a well-known
method for light scattering analysis, which has recently been applied for evanescent wave scattering [4].

1. Discrete Sources Method

For the theoretical modeling the Discrete Sources Method (DSM) has been chosen. The DSM is a well-known
method for the analysis of light scattering. It has recently been applied to the evanescent wave scattering [4].
In frame of the DSM the mathematical statement can be presented as follows:

∇× Hζ = jkεζEζ ; ∇× Eζ = −jkµζHζ in Dζ , ζ = 0, 1, i,

n × (Ei − E0) = 0, n × (Hi − H0) = 0, at ∂D

ez × (E0 − E1) = 0, ez × (H0 − H1) = 0, at Σ (1)

and radiation conditions at infinity.

Here, D0 is an ambient media, D1 is a glass prism, Di is an interior particle domain ∂D is a particle boundary,
Σ is a prism-air border, n is the outward unit normal vector to ∂D, k = ω/c and {Eζ , Hζ} stands for the total
field in the corresponding domainDζ . We assume that the exciting field {Ei1, Hi

1} is a plane wave propagating
from D1 at the angle θ1 with respect to the z-axis and transmitting at the interface following Snell’s law. Note
that the total field in D0 is a superposition of the refracted incident field {Ei0, Hi

0} and the scattered {Es0, Hs
0}

field. If Im εζ , µζ ≤ 0 (the time dependence for the fields is chosen as exp{jωt}) and the particle surface is
smooth enough ∂D ⊂ C(1,α), then the above boundary-value problem is uniquely solvable.

We construct an approximate solution to the scattering problem (1) according to the DSM outlines [5]. The
amplitudes of discrete sources are determined from the boundary conditions at the particle surface, which can
be rewritten as

n × ( Ei − Es0) = n × Ei0 n × ( Hi − Hs
0) = n × Hi

0, at ∂D (2)

To construct the fields of dipoles and multipoles analytically satisfying the transmission conditions at the
plane interface Σ we apply the Green tensor for a stratified interface [6].

An approximate solution takes into account an axial symmetry of the particle and the polarization of an
external excitation. For P -polarized excitation for fields presentations outside the particle the following electric
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and magnetic vector potentials are used

Ae,0
m,n = {gem(η, zn) cos(m+ 1)φ;−gem (η, zn) sin (m+ 1)φ;−fm+1 (η, zn) cos (m+ 1)φ} ,

Ah,0
m,n =

{
ghm (η, zn) sin (m+ 1)φ; ghm (η, zn) cos (m+ 1)φ;−fm+1 (η, zn) sin (m+ 1)φ

}
,

Ae,h,0
0,n =

{
0; 0; gh,em ( η, zn)

}
. (3)

where ge,hm , fm Fourier harmonics of the corresponding Green tensor components [4]. For the total field inside
the particle we define the following vector potentials:

Ae,i
m,n = {Ji

m(η, zn) cos(m + 1)φ;−Ji
m(η, zn) sin(m + 1)φ; 0},

Ah,i
m,n = {J im(η, zn) sin(m+ 1)φ;J im(η, zn) cos(m+ 1)φ; 0},

Ae,h,i
0,n = {0; 0;J i0(η, zn)}. (4)

Here J im ( η, zn) = jm ( ki, Rηz0) (ρ/Rηz0)
m

, jm (·) is the cylindrical Hankel function, {zn}∞n=1 is a dense set
of the points distributed over a segment Γiz ∈ Di of the axis of symmetry. The approximate solution for the
P-polarized excitation can be represented as

(
Enς
Hn
ς

)
=

M∑

m=0

Nm
ς∑

n=1

{
pςmnD

ς
1A

e,ς
m,n + qςmnD

ς
2A

h,ς
m,n

}
+

N0
ς∑

n=1

rςn Dς
1 Ae,ς

0,n. (5)

Where Dς
1 =

(
j

kεςµς
∇×∇×, − 1

µς
∇×

)T
, Dς

2 =
(

1
ες
∇×, j

kεςµς
∇×∇×

)T
.

The case of an S-polarized excitation can be considered in a similar way [4].
Now we would like briefly describe the numerical realization of the computational algorithm. As mentioned

above representation (5) satisfies all the conditions of the scattering problem (1) except the transmission con-
ditions at the particle surface (2). These conditions are used to determine the unknown amplitudes of discrete
sources

{
p0,i
mn, q

0,i
mn, r

0,i
n

}
. Since the scattering problem geometry is axially symmetric with respect to the Z-axis

and discrete sources are distributed over the axis of symmetry, fulfilling the transmission conditions (2) at surface
∂D can be reduced to a sequential solution of the transmission problems for the Fourier harmonics of the fields.
So, instead of matching the fields on the scattering surface, we can match their Fourier harmonics separately
thus reducing the approximation problem on the surface to a set of problems enforced at the particle surface
generatrix =. By solving these problems one can determine the discrete sources amplitudes

{
p0,i
mn, q

0,i
mn, r

0,i
n

}
.

For the determination of amplitudes the generalized point-matching technique is used [7]. The DSM is a
direct method and hence it allows to solve the scattering problem for the entire set of incident angles θ1 and
for both polarizations (P and S) at the same time. Besides, the numerical scheme provides an opportunity to
control the convergence of the approximate solution to the exact one by a posterior error estimation [5].

After the amplitudes of the discrete sources (DS) are determined, the far field pattern E∞(θ, ϕ) of the
scattered field, can be calculated. It is determined at the upper part of the unit semi-sphere Ω = {0◦ ≤ θ <
90◦, 0◦ ≤ φ ≤ 360◦} and is given by

Es0 (r)
/
E0 (0) =

exp {jk0r}
r

F (θ, ϕ) +O
(
r−2
)

r → ∞

Using asymptotical estimation of the Weyl-Sommerfeld integrals of the Green’s tensor components, the represen-
tation of the elements of a far field pattern gets a form of finite linear combinations of elementary functions [4].
This circumstance ensures an economical computer analysis of the scattering characteristics in the wave zone.

One of the most important scattering characteristics is an intensity of scattered light

IP,S (θ0, θ, ϕ) =
∣∣∣FP,Sθ (θ0, θ, ϕ)

∣∣∣
2

+
∣∣FP,Sϕ (θ0, θ, ϕ)

∣∣2 (6)

where FP,Sθ,ϕ (θ0, θ, ϕ) are the components of the far field pattern for P (5) and S polarized incident wave, in a
spherical coordinate system θ, ϕ.
In the paper we will examine the objective response function, which presents the intensity scattered into a
certain solid angle:

σP,Ss (θ0) =

∫

Ω

IP,S (θ0, θ, ϕ) dω (7)
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where Ω =
{

0 ≤ ϕ ≤ 3600; 0; 0 ≤ θ ≤ θNA
}
, θNA is an angle, which corresponds to the Numerical Aperture

(NA) of the objective lens in accordance with θNA = arcsin (NA/n0).
The number of matching points where the DS amplitudes are defined increases till the necessary accuracy

of the results is achieved. The DS number usually is 2-3 times less then the number of the matching points on
the particle generatrix. As a rule the discrete sources are deposited on the axis of symmetry inside the particle.
The order of multipoles (M) is a priori defined from the condition that the plane wave approximation should
be less then 0.1%. The detailed algorithm of matching point’s choice and deposition is described in [6].

2. Results and Discussion

In the paper we would like to present some results of numerical modelling of the TIRM calibration curve.
As an example we took a PSL sphere of diameter D = 1.6µm at wavelength of 658nm. In figures the objective
response (7) is plotted as a function of particle–prism distance. To show the results we have chosen two incident
angles which differ from critical one. In Figure one the results for PP, PS, SP and SS polarization are presented
for deviation of the incident angle from critical one by 0.58◦, and in figure 2 similar results are presented for
deviation of 2.6◦. In both figures the intensity for P polarized light has less distortions then for S polarized. It
is in good agreement with a multiple reflections theory, as the reflectance for P-polarized light is always lower
then for S-polarized one.
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 Figure 1: The objective response (7) versus particle-
prism distance for a PSL sphere of diameter D =
1.6µm for different polarizations and incident angle
deviation of 0.58◦.
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 Figure 2: The objective response (7) versus particle-
prism distance for a PSL sphere of diameter D =
1.6µm for different polarizations and incident angle
deviation of 2.6◦.

In the oral presentation more numerical results and their comparison with experimental data will be shown.
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T-matrix Simulation of Plasmon Resonances of Particles
on or Near a Surface

N. Riefler and T. Wriedt
University of Bremen, Germany

Abstract—We present the light scattering response of gold and silver particles on or near surfaces consisting
of different materials. A comparison is made between a particle near a perfectly conducting surface and near a
gold surface. The resulting scattering diagrams are found to be different. Beyond this, an approximation with
a mirror particle shows little aggrement with a particle near a metal surface. Furthermore, we compare the
spectral response of a combination of gold and silver materials for particles at different heights.

1. Introduction

Surface plasmons of small noble metal spheres can be detected as resonance peaks in the measured light
scattering spectra. Transmission dark field microscopy is a technique where only the particles scatter light into
the direction of the microscope objective. Such a measuring device can visualize very small particles as colored
discs. The surface plasmon resonance frequency from a nonspherical particle or from a particle aggregate is
different compared with a single spherical particle. With this effect, measuring techniques which use white light
as illumination are capable to differ between aggregated particles and a single particle because of their different
color. Even when a bio receptor molecule attached to a gold or silver sphere detects a biomolecular counterpart,
the resonance frequency changes.

In the following we first describe the underlying scattering theory. Then we give some simulation examples
of particles on or near a surface. We compare these results to some approximations found in the literature. This
leads us to statements about the applicability of these approximations.

2. Theory

The scattering geometry is shown in figure 1. The incident field ~k0 and the particle are in the same medium.

Figure 1: Scattering geometry; the z-axis is perpendicular onto Σ, the boundary surface.

In the T-matrix formalism using the null-filed method, the scattered intensities Isca are calculated from the
scattered field coefficients fmn and gmn. These coefficients are related to the T-matrix [1]:

[
fmn
gmn

]
= T

([
amn1

bmn1

]
+

[
fRmn1

grmn1

])
(1)

with the T-matrix T = Tmn,mn1
of the particle, the total incident field coefficients amn1

= a0
mn1

+ aRmn1
and

bmn1
= b0mn1

+ bRmn1
consisting of the direct (a0

mn1
and b0mn1

) and the reflected (aRmn1
and bRmn1

) incident fields,
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and the coefficients fRmn1
and gRmn1

representing the fields scattered on the particle and reflected back from the
surface to the particle. The aRmn1

and bRmn1
involves the Fresnel reflection coefficients. The scattered reflection

coefficients for the interacting fields fRmn1
and gRmn1

are related to the scattered fields fmn1
and gmn1

:

[
fRmn
gRmn

]
= A

[
fmn
gmn

]
. (2)

T is calculated from well known algorithms [2] and A can be found using radiating vector spherical wave
functions [1]. By combining the matrix equations (2) and (3), the far field intensity can be computed. In the

case of illumination from above (~k0 shows in the reversed direction) the incident field is calculated in the way
described so far. If the incident angle β0 get bigger than the critical angle θc = arcsin(n1/n2) with n1 < n2

and n1 and n2 are the refractive indicees of the medium above and below Σ, respectively, then the incident
field from above will be totally reflected on Σ. However, an evanescent wave with typical exponential decrease
is traveling into medium n2. In this case the Fresnel transmission coefficients used in the T-matrix method are
changing [3].

3. Results

We calculate intensities at different scattering angles over the visible spectrum of wavelengths of small
particles with diameter d = 80nm. The intensities will be detector integrated over a range of θNA = 25◦ which
corresponds to a numerical aperture of NA = n sin(θNA) of the objective lens. The particles consist of silver
or gold. The wavelength dependend refractive indices are interpolated values from Johnson et al., [4]. The
numerical aperture depends on the medium surrounding the particle. We use air, water and immersion oil with
an assumed constant refractive index.

In figures 2 and 3 the scattering diagrams of three systems are shown. In all systems the particle is a gold
sphere and the scattering medium is air. The incident beam angle with respect to the normal is β0 = 30◦ with an
incident wavelength of λ = 570 nm. For that wavelength, the refractive index of the particle is n = 0.296+i2.899.
We first compare a system consisting of two spheres without an interface (‘double-sphere’ in the legend) with
diameter d = 80nm and distance z = 4nm. The idea behind this system can be found in electrostatic theory
where a system consisting of two point charges shows an identical electrical field compared to a point charge
near a conducting plane. We approximate this second system with a surface having a nearly perfect conducting
material (‘sphere-perfect-conductor’ in the legend of the figures) with a wavelength independant refractive index
n = 0.00001 + i80, and the distance between the surface of the sphere to the plane surface is half of the first
system (z = 2nm). This idea is confirmed with figure 2.
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Figure 2: Scattering diagrams of a sphere before a
perfectly conduction plane and two spheres.
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Figure 3: Scattering diagrams of a sphere before a
perfectly conduction plane and before a gold surface.

Considering the different coordinate systems one can see that the horizontal-horizontal polarized scattering
diagrams are very similar. The vertical-vertical polarized scattering diagram of the second system cannot be a
straight line because of the Fresnel reflectance coefficients.
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In contrast to the different geometries of the systems used in figure 2, the two systems of figure 3 are
geometrically identical. A gold sphere with diameter of d = 80nm is located near an infinite surface (distance
between surface of the sphere to the plane surface z = 2nm). The only difference is that in the first system the
surface is an approximation of a perfectly conducting material used above, while in the second system the plane
surface consists of gold (‘gold surface’ in the legend). The first system with the perfectly conducting surface
shows a distinct minimum. This is due to a very small transmission coefficient and a corresponding reflection
coefficient of nearly r = 1 [3]. Therefore the particle near to the surface is excited ‘ideally’ from a plane wave.
In the second system this minimum vanishes because the Fresnel transmission coefficient do not vanish and
therefore the particle is excited differently.

We state that the scattering response of a particle located near a noble metal surface cannot be well approx-
imated with a system consisting of two identical spheres because of the different Fresnel reflection coefficients.

Now we want to consider measurement problems where an optical device pick up the light spectrum scattered
from an object on or near a surface. For example a gold particle within a liquid medium is illuminated from
a wave at oblique incidence. For the following examples the bottom (substrate) is an optically thick layer. In
practice this means a thickness of a few hundred nanometers of a noble metal [5]. The particle medium is
water (n = 1.333). We first show the scattering diagram for a particle with diameter d = 80nm, β0 = 30◦ and
λ = 570 nm, but for three different heights (figure 4). At a distance of z = 200 nm, distinct minima appear
because of multiple reflections between the particle (in the Rayleigh regime) and the surface. For a low distance
these multiple reflections vanish and with it the minima.
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Figure 4: Comparison of the scattering diagram of three different systems.
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Figure 5: Detector integrated scattering diagrams of a particle at z = 2 nm in water.

In the following figures, the intensities are detector integrated values with an aperture angle of α = 25◦.
The spectral resolution of the wavelengths is ∆λ = 5 nm. We use a spectrum of unpolarized incident waves
(λ = 450 . . . 700 nm) which irradiates four different scattering systems:
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• silver particle in water above a silver surface;

• silver particle in water above a gold surface;

• gold particle in water above a silver surface;

• gold particle in water above a gold surface.

For a distance between substrate surface and particle surface of z = 2nm (this means a z0 = 42nm in figure 1,
the spectrum of detector integrated scattering intensities are shown in figure 5. When the particle is situated
higher at a distance of z = 20nm above the noble metal surface (z0 = 60nm), the resulting scattering response
of the same four systems can be seen in figure 6. A further increase of the height to z = 200 nm above the
surface (z0 = 240 nm) results in figure 7.

Last of all we want to compare the spectral scattering response for a gold particle near to a gold surface for
three different media:

• gold particle in air (n = 1.0) above a gold surface;

• gold particle in water (n = 1.333) above a gold surface.

• gold particle in immersion oil (n = 1.518) above a gold surface.

We assume constant refractive index over all wavelengths of the media (air, water and oil). The spectral
detector integrated intensities are shown in figure 8.

The spectral response differs considerably. Especially the both liquid media show different characteristic
spectras.
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Figure 6: Detector integrated scattering diagrams of a particle at z = 20 nm in water.

450 500 550 600 650 700

10
0

10
1

10
2

Wavelength (nm)

D
e
te

c
to

r 
In

te
g
ra

te
d
 I
n
te

n
s
it
y silver particle   silver surface

silver particle   gold surface

gold particle   silver surface

gold particle   gold surface

Figure 7: Detector integrated scattering diagrams of a particle at z = 200 nm in water.
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Figure 8: Spectrum of detector integrated intensities for different media (air, water and immersion oil); the
particle position is z = 200nm.

4. Conclusion

We show that approximations like the double sphere system are far away from a qualitative similarity with
the system under investigation. This means that simulations of the real circumstances are necessary, particulary
if one needs quantitative statements of an observed system.

The results of the spectral simulations suggest that for increasing heights of a particle above the surface there
is a shift of the intensity maximum towards lower wavelengths (see figure 5–figure 7). This fact may be used
for measuring techniques. So altogehter, we want to emphasize the usage of exact techniques like the T-matrix
method used for the simulations shown in this paper as a design tool for experimental investigations (e.g., [6]).
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Magnetic Nanostructure Hysteresis Loop Calculation for
Modified Thin Film Multi-layer by Ion Irradiation

D. Bajalan

Vienna University of Technology, Austria

Abstract—The nonlinear dependence of magnetization on direction of the applied magnetic field and history
is described by statistical domain behavior using phenomenological adaptive parameters (like: g [1], h [A/m], k
[J/m3], and q that are related to anisotropy, saturation field, static hysteresis loss, and pinning site density). The
loop simulation data could be used also as parameters for thermal stability equation to calculate the relaxation
time of the stored information on any magnetic nano particles (dots) of patterned magnetic media.

1. Introduction

Magnetic nanostructures are subjects of growing interest because of their potential applications in high
density magnetic recording media and their original magnetic properties [1]. Multilayer thin films (like Co/Pt)
are well known for their high magnetic anisotropy, and the origin of this high magnetic anisotropy has been the
subject of interest for many researchers [2]. Demands for the continuous increase in the data storage density
bring the challenge to overcome physical limits for currently used magnetic recording media [3]. Patterned
magnetic media could be a way of realizing ultra high density storage media. Recently, demonstrations of
areal recording density over 60 Gb/in2 in both longitudinal and perpendicular magnetic recordings have been
successfully made [4]. Determining the properties of small magnetic structures is extremely important for the
development of data storage devices [5]. Better understanding of the micromagnetic processes in magnetic
recording media is essential for developing novel materials for future ultrahigh density recording [6]. Good
understanding of the noise mechanism in magnetic recording is required for developing heads and media for
future applications [7].

In perpendicular recording, the magnetization pattern corresponding to the bits is provided perpendicular
to the plane of the medium. The information is being stored in vertical domains or other structures of uniform
magnetization [8]. The magnetic properties of an ultra thin multilayer can be patterned by controlled ion beam
irradiation [9]. The basic step in this technique is to control the changes in the magnetic properties induced by
the irradiation process.

In magnetic materials two characteristic length scales have to be considered [10]:

• at the atomic level, nearest neighbour exchange interaction is dominating,

• at a mesoscopic level, the domain wall width is the characteristic length dominating the magnetization
reversal.

When the physical dimensions of a system become comparable to the interatomic spacing, strong modifications
of the intrinsic magnetic properties (ordering temperature, magnetic anisotropy, spontaneous magnetization)
are expected.

Micromagnetic modeling of the behavior of a nanostructured film beautifully describes the magnetization
process, but requires a high calculational effort and long computation times. Furthermore, it is difficult to predict
changes of the macroscopic physical behaviour due to variation of parameters. Phenomenological models, on the
other hand, are very useful to simulate the behaviour of the magnetic material under the influence of varying
parameters, especially when the parameters are based on physical constants.

2. Experiments

An assembly of ferromagnetic amorphous nanoparticles has been prepared by heavy ions irradiation of
paramagnetic YCo2 thin films [11, 12]. Several irradiation experiments carried out on YCo2 samples have
shown that fluences on the order 1012 U ions/cm2 causes changes in magnetic properties of the samples [12].
Important changes are reported to take place after the irradiation:

• change of spontaneous magnetization, coercivity and initial susceptibility [12], and

• a distinct change of the anisotropy perpendicular to the film plane [11].
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3. Energetic Model

The magnetic behaviour of magnetic moments is mainly described by the well known equations of Schrödinger
(exchange interaction) and Landau, Lifshitz, and Gilbert (dynamics of magnetization reversal). Above this fun-
dament is the shell of the physical constants describing spontaneous magnetization, anisotropy, magnetostriction,
etc. The energetic model (EM) is designed as an interface between this shell and the macroscopic hysteresis
phenomenon, able to predict many magnetic properties due to the relation of the parameters with the physical
constants. The EM has been applied for different magnetization processes and materials [13–17].

The hysteresis of the magnetization M depending on the applied field H is described by the following
equations, with the spontaneous magnetization Ms, the geometrical demagnetizing factor Nd, and the following
phenomenological parameters:

1. g [1] related to anisotropy, reversible processes;

2. h [A/m] related to saturation field Hs, reversible processes;

3. k [J/m3] related to static hysteresis loss, irreversible processes;

4. q [1] related to pinning site density, irreversible processes.
In the cases of large domains, the microscopic constant cr describes the influence of reversal speed. The sgn(x)
function provides the correct four quadrant calculation (with the related magnetization m = M/Ms):

H = Hd + sgn(m)HR + sgn(m−mo)HI . (1)

The first term of Eq. (1) describes linear material behaviour, using the demagnetizing field

Hd = −NdMsm, (2)

the second term represents non-linear behaviour using the reversible field

HR = h
[(

(1 +m)1+m(1 −m)1−m
)g/2 − 1

]
, (3)

including saturation at a field Hs(Ms), and the third term describes hysteresis effects like initial susceptibility
χ0, remanence Mr, coercivity Hc, static losses, and accomodation, using the irreversible field

HI =

(
k

µ0Ms
+ crHR

)[
1 − κ exp

(
− q

κ

∣∣m−mo

∣∣
)]
. (4)

For the initial magnetization, beginning with M = 0, H = 0, we set mo = 0 and κ = 1. The function κ describes
the influence of the total magnetic state at points of magnetization reversal. Therefore, κ (previous value κo)
depends on the unit magnetization reversals s = |m−mo| up to this point of field reversal (mo is the starting
value of m at the last field reversal) with the simplification e−q � 1:

κ = 2 − κo exp

[
− q

κo

∣∣m−mo

∣∣
]
. (5)

The calculation always starts with the initial magnetization curve and m is increased stepwise (the stepwidth
determines the desired resolution of the calculation), which gives the corresponding field by Eq. (1). At a point
of field reversal κ is calculated by Eq. (5) and mo is set to the actual value of m at this point. Then m is
decreased stepwise until the next reversal point, etc.

3.1. Identification

The identification of the EM with measurements or data sheets can be done easily. At given Ms and Nd the
parameters are directly calculated from special points of the hysteresis loop. Considering reference conditions,
the index 0 is to indicate that the identification is done at a temperature T = T0 without applied mechanical
stress σ, using the following equations:

k0 = µ0MsHc (6)

q0 =
Ms

Hc

1 −Ndχ0

χ0
(7)

If χ0 is not available one can also use the total static losses wl =

∫ +Ms

−Ms

HdM +

∫ −Ms

+Ms

HdM corresponding to

the area of the closed major loop (upper and lower branch of hysteresis)

wl = 4k

(
1 − 2

q

)
(8)
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and we can write the equation for q0 as

q0 =
8µ0MsHc

4µ0MsHc − wl
. (9)

These relations allow even an estimation of Ms (at cr ≈ 0), using Eqs. (6), (7), and (9) to

Ms =
2χ0Hc

1 −Ndχ0
+

wl
4µ0Hc

. (10)

Furthermore, q0 can also be determined by the reduced remanence mr of the upper branch of a loop with the
measured reduced maximum magnetization mm. Using fq as a factor related to mr,

fq =
[
(1 +mr)

1+mr (1 −Mr)
1−mr

]g0/2 − 1 , (11)

we identify q0 as

q0 =
2

mm −mr
ln

2Hc

Hc − h0fq +NdMsmr
(12)

By using fg as a factor related to mg which is the reduced magnetization at H = Hg, in the knee of the lower
branch of the hysteresis,

fg =
1

ln
√

(1 +mg)1+mg (1 −mg)1−mg − ln 2
, (13)

hence g0 is

g0 = fg ln
Hg −Hc −NdMsmg

Hs −Hc −NdMs
(14)

Using fc as a factor related to mr and mm,

fc = 1 − 2 exp

[
q0
mr −mm

2

]
, (15)

the microscopic constant describing the domain (grain) geometry ratio becomes

cr =
fq
Hs−Hc−NdMs

Ms exp g0 ln 2 − fc
Hc

Ms
+Ndmr(

fq
Hs−Hc−NdMs

Ms exp g0 ln 2 + fc
Hc

Ms

)
−Ndmr

(16)

Finally, the identification equation of h0 is

h0 =
Hs −Hc −NdMs

(cr + 1)(exp[g0 ln 2] − 1)
(17)

IfHs is not available, one can estimateHs from the measured maximum fieldHm atmm using the approximation
Hs � Hc +NdMs. Using fh as a factor related to mg and mm

fh =
ln
√

(1 +mm)1+mm(1 −mm)1−mm − ln 2

ln
√

(1+mg)1+mg (1−mg)1−mg

(1+mm)1+mm (1−mm)1−mm

(18)

we find

Hs = (Hm −Hc −NdMsmm)

(
Hm −Hc −NdMsmm

Hg −Hc −NdMsmg

)fh

. (19)

If Nd of the experimental arrangement is unknown then it can be estimated roughly by the differential suscep-
tibility χc at coercivity of a measured hysteresis loop:

Nd ≈
1

χc

∣∣∣∣
H=Hc

. (20)

If Nd of the sample is rather large so that the magnetization curve is strongly sheared (MrNd > Hc), then it
can be necessary to identify g0 and cr by the backsheared curve (Nd = 0).
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3.2. Calculation

The calculations have been done as following: At a given Nd = 0.47, the parameters g0 = 5.24, h0 =
2.79 kA/m, k0 = 1.10 kJ/m3, and q0 = 8.79 are identified for the perpendicular hysteresis at Φ = 5·1012 ions/cm2

with Ms = 20 kA/m. In the next step we vary only Ms in order to calculate the hysteresis of the other irradiation
cases. Using Eqs. (6) and (7), we find the dependencies

Hc =
k0

µ0Ms
(21)

and

χ0 =
µ0M

2
s

k0q0 + µ0M2
sNd

(22)

which strongly affects the shape of the hysteresis Curve.

4. Conclusions

The rapid development of magnetic recording leads to a large increase of the bit density. Multilayer thin films
with a perpendicular magnetic anisotropy devices may play an active role in the development and establishment
of future storage technologies. Patterning magnetic media is a potential solution for ultrahigh density magnetic
recording [18]. Ion beam modification of magnetic layers may be the possible future of ultra high density
magnetic recording media.

After ion irradiation of YCo2 thin films with different fluence values, the measured magnetizazion curves
clearly show a perpendicular aniyotropy [11]. The shape of the hysteresis loops depends strongly on Ms, which
is predicted by the EM. It turns out that Hc is inversely proportional to Ms and χ0 is proportional to M2

s , if
Nd is neglected. As the EM parameters are also related to anisotropy it will be possible also to calculate the
direction dependence of these magnetization curves, which is subject to further work.
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Energetical Model Interpretation of Thermal Stability
by Changing Direction of the Magnetization of Nano

Magnetic Structure
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Abstract—The nonlinear dependence of magnetization on the direction of the applied magnetic field and history
is described by statistical domain behavior using phenomenological adaptive parameters (like: g[1], h[A/m],
k[J/m3], and q that are related to anisotropy, saturation field, static hysteresis loss, and pinning site density).
The loop simulation data could be used also as parameters for thermal stability equation to calculate the
relaxation time of the stored information on any magnetic nano particles (dots) of patterned magnetic media.

1. Introduction
Magnetic nano particle thermal stability calculation is essential for development of patterned ultra high

magnetic storage media. The use of reliable model (like: Energetic Model (EM) in the predication of non
linear ferromagnetic materials properties [1], wich may depend also on direction and history of magnetization)
is very important. EM simulation of hysteresis opens a very big opportunities to calculate values of parameters
which we then use directly for interpretation of the stability condition of stored information on a nano magnetic
structure. The main idea behind that is to change the direction of the applied field H and then see the stability
conditions on a given nano bit volume. The value of the fBS depends strongly on Ku and the volume of the
nano structure which holds the stored magnetic information (a what so-called nano bit or nano dot). Research
and development teams in companies implementing nano-technology are gaining more and more importance in
the field of sensor systems and material science.

2. Interpretation of Magntization Processes and Result
The EM calculates the magnetic state of ferromagnetic materials by minimizing the total energy density wT

[1] (see Table 1) as the sum of the energy density:

Table 1: Relation between ku, and relaxation time τ at dot-width Dw = 22 nm and T = 10 K, as a result of
dependence of magnetization on direction of the applied magnetic field at different Φ with values(0◦, 45◦, 90◦),
where fBS condition is satisfied.

magnetization direction Φ ku [J/m3] τ [Years]

90◦ 602.51 22.3 × 103

45◦ 1110.67 22.5 × 1015

0◦ 1895.46 12.4 × 1035

wT = wH + wM (1)

Where: wH = −µ0
~M · ~H (2)

of the applied field ~H and the magnetization ~M and the material energy density
wM = wd + wR + wI (3)

The latter term is divided into the energy density of demagnetizing fields wd and into contributions described
by statistical domain behaviour: The reversible energy density wR and the irreversible energy density wI . It’s
very important to verify the components of the demagnetization factor that appears with in the magnetization
process of a nano magnetic particles. Magnetization hysteresis loops, which display the magnetic response of
a magnetic sample to an external field, have been widely used to characterize the behavior of nanostructured
magnetic materials [2]. The effective demagnetization factor (or total-demagnetziation factor) is compound of
two types (where Nd is a geometric and Ni is the inner demagnetizing factor, e. g., due to the magnetostatic
stray Fields within the microstructure of grains or particles) as the following:

Ne = Nd +Ni (4)
The characteristic features of the hysteresis loop are dependent on the material, the size and shape of

the entity, the microstructure, the orientation of the applied magnetic field with respect to the sample, the
magnetization history of the sample, and the demagnetization factor.



460 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

3. Equations
If Nd of the experimental arrangement is unknown then it can be estimated roughly by the differential

susceptibility χc at coercivity of a measured hysteresis loop [3]:

Nd ≈
1

χc

∣∣∣
H=Hc

(5)

The relation between Nd, Ne,0, Ne,π/2, and Ku is given as

Nd = Ne,0 −
K0

Ku
(Ne,π/2−Ne,0

) (6)

Ku =
K0

Ne,0 −Nd
(Ne,π/2−Ne,0

) (7)

Ku which is important for calculation of the bit stability factor (see Table 1) is also related to the Nd that
depends on the magnetization. Further the identification of K0 is given by

K0 = µ0M
2
s (8)

4. Conclusion
Nano-technology is providing a critical bridge between the physical sciences and engineering, on the one

hand, and modern molecular biology on the other. Materials scientists, for example, are learning the principles
of the nanoscale world by studying the behavior of biomolecules and biomolecular assemblies. Nano-technology
will increase its influence in electrical engineering and electrical materials strongly. The need for further de-
velopment in nano-technology is required. Companies with market-oriented innovation, research and advanced
development strategies like EVGroup have had important positions and an excellent reputation in the practical
implementation of nano-technology. New and light magnetic devices will be invented to make life in the 21st
century more functional and the researchers have to gain more knowledge of quantum effects within nano-meter
body size. The energetic model is used to identify hysteresis by changing the the direction of the applied field
to nano magnetic particles of irradiated samples. Effects of changing the direction of the magnetization field on
thermal stability and relaxation time could be then calculated. Choosing a reliable model (EM) for hysteresis
simulation of nano magnetic particles is essential. Demands for the continuous increase in the data storage
density bring the challenge to overcome physical limits for currently used magnetic recording media [5–14].
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Abstract—The fluence of ion irradiation on polycrystalline thin films affects both anisotropy and spontaneous
magnetisation Ms. The dependence of coercivity and initial susceptibility on Ms is predicted by a hysteresis
model considering the balance of energy with good qualitative agreement.

1. Introduction

Demands for the continuous increase in the data storage density bring the challenge to overcome physical
limits for currently used magnetic recording media [1, 2]. Ferromagnetic nano-particles of different polycrys-
talline thin films have been formed by heavy or light ion irradiation [2–4]. Although this modification technique
may be a way to produce nano-magnetic particles, there are some critical size limits of nanomagnetic structures
like the superparamagnetic limit (SPML) which faces magnetic nanotechnology. The magnetic properties of thin
films are strongly influenced by their structure [5]. Small changes in the way a thin film is produced often give
rise to large changes in some of the magnetic properties of the thin film [6]. This is best understood by observing
how the microstructure of the film changes with processing and then correlating the microstructure directly with
the properties of the thin film [6]. The behaviour of magnetic nanoparticles has fascinated materials scientists
for decades [7]. Magnetic nanostructures have become a centre of great interest in the scientific community
and in industry as the core technologies behind magnetic recording devices [8]. And the magnetic properties
of an ultra thin multilayer can be patterned by controlled ion beam irradiation [4]. There are fundamental
limits due to the atomic nature of matter which may impose ultimate physical bounds to nanofabrication and
miniaturization [9]. Over the past several decades, amorphous and more recently nano-crystalline materials
have been investigated for applications in magnetic devices [10]. The benefit found in the nanocrystalline alloys
stem from their chemical and structural variations on a nano-scale which are important for optimizing magnetic
recording devices [10].

2. Irradiation Process and Results

Several irradiation experiments carried out on the Co/Pt multi-layers samples (A1, A2, and A3 see Table 1)
cause changes in the magnetic properties of the thin films [1, 4]. High aspect ratio silica masks on Co/Pt
multi-layers were obtained by e-beam lithography and reactive ion etching with feature sizes down to 30 nm
for lines and 20 nm for dots [3]. He+ ion irradiation of the magnetic layers through these masks was used
to pattern the magnetic properties [3] (with fluences between 2.1014 and 2.1016 ions/cm2 [4]). After mask
removal, high resolution and high density, planar magnetic nano-structures were obtained [3]. The results
of the irradiation show perfectly square hysteresis loops at room temperature, the coercive field decreasing
progressively to zero [4]. The high perpendicular anisotropy of Pt/Co multi-layers originates from the interfaces
between the layers [11]. Other experminents carried out on YCo2 samples (thin polycrystalline film targets
of polycrystalline with thicknesses of approximately 1µm [[12]) have shown that fluences in range of 1012 U
ions/cm2 cause changes in magnetic properties of the samples [1]. The result of these experiments were changes
of the anisotropy perpendicular to the film plane [1], and change of spontaneous magnetisation, coercivity and
initial susceptibility [13].

2.1. Equations and Calculation

The energetic model (EM) [14] is used to calculate the dependence of the shape of the hysteresis loop on Ms.
The parameters of the model are calculated directly from measurements of special points of the hysteresis loop.
The identification of the parameters is done at reference conditions (index 0) at a temperature T = T0 without
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any applied mechanical stress σ, and at given Ms and Ne (Ne is the effective demagnetizing factor which is the
sum of the geometric demagnetizing factor Nd and the inner demagnetizing factor Ni). The following equations
show how to determine the parameter of the model from spontaneous magnetization Ms, coercivity Hc, and
from the effective demagnetization factor Ne.

k0 =
µ0MsHc

1 − 2 exp(−q0)
(1)

k in J/m3 related to static hysteresis loss (irreversible processes), and

q0 =
µ0M

2
s

k0

1 −Neχ0

χ0
(2)

q (dimensionless) is related to pinning site density (irreversible processes). Using Eqs. (1) and (2) with the
approximation exp[−q0] � 1, we find the dependencies

Hc =
k0

µ0Ms
(3)

and

χ0 =
µ0M

2
s

k0q0 + µ0M2
sNe

(4)

which strongly affects the shape of the hysteresis. Figure 1 shows the initial magnetization curves calculated and
measured major hysteresis loops in dependence of the measured value of Ms. No other change of the parameter
values has been made. Table 1 shows the result of the evaluation of the equations above. Figure 2 shows the
initial magnetization curves calculated with the parameters depending on Ms due to irradiation, compared to
measurements.

Figure 1: Calculated hysteresis loops for thin Films after different ion irradiation fluences perpendicular to the
film plane and measured points. The H-values are related to the maximum field Hm = 160 kA/m. The Mvalues
are related to the respective saturation values of Ms = 20 kA/m, Ms = 40 kA/m, and Ms = 60 kA/m 1. Only
these values have been changed to calculate the different major hysteresis loops.

3. Anisotropy Energy after Irradiation

The anisotropy energy ku is essential for evaluation of the thermal stability condition on a given bit. For
the three irradiated samples (A1, A2, A3), ku was calculated (Eq. 5).

ku =
Hkµ0Ms

2
(5)
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Figure 2: Calculated initial hysteresis curves loops for thin films after different ion irradiation fluences perpen-
dicular (Tab. 1) to the film plane and measured points. The H-values are related to the maximum field Hm =
160 kA/m. The calculation has been done by varying the value of Ms, only.

Table 1: Macroscopic hysteresis features depending on Ms [14].

Φ [ions/cm2] A1, 1012 A2, 5 · 1012 A3, 2 · 1013

Ms [kA/m] 20 40 60

χ0 [1] 0.157 0.199 0.536

Hc [kA/m] 43.6 21.8 14.5

4. Nano Bits Stability Factor and Its Relaxation Time Calculation

Assuming a factor fBS a simple abbreviation for “bit stability factor”, which represents the information
stability of stored data on a given nano-bit, where: fBS = kuVnano/kBT , Vnano is the nano magnetic structure
volume, kuVnano is the energy barrier (∆E), and kB = 1.38 × 10−23 J/deg Boltzmann constant. The magnetic
stored information on a nano dot is then stable: if only the condition (fBS > 40) is satisfied [16]. The relaxation
time (time duration of stored information) or switching time of stored information τ can be obtained from the
Arrhenius relation as:

τ =
1

f0
exp(fBS) (6)

Where f0 is the thermal attempt frequency [17], which is usually assumed to be 109 s−1. The irradiation of the
samples (A1, A2, A3) with different fluences as shown in Table 1, caused changes of the calculated values of ku
for each sample. Hence different values of fBS and τ were calculated (see Table 2).

Table 2: Relation between ku, and relaxation time τ at dot-width Dw = 22nm and T=10 K, as a result of
irradiation, where fBS condition is satisfied.

samples ku [J/m3] τ [Years]

A1 592.51 20.3×102

A2 1017.67 23.6×1016

A3 1975.46 11.8×1038
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5. Conclusion

Magnetic nano-structures are subject of growing interest because of their potential applications in high
density magnetic recording media and their original magnetic properties [11, 14–16]. The rapid development of
magnetic recording leads to a large increase of the bit density. Multilayer thin films with perpendicular magnetic
anisotropy devices may play an active role in the development and establishment of future storage technologies.
Patterning magnetic media is a potential solution for ultrahigh density magnetic recording [3]. The shape of
hysteresis loops depends strongly on Ms, where Hc is inversely proportional to Ms, and χ0 is proportional to
M2
s . Thermal stability is one of the serious issues for developing high density recording, and thus much effort

has been made to overcome this issue [18]. The idea to use a regular array of physically isolated grains/dots
promises an improvement in thermal stability of the recorded bits [19]. The anisotropy energy ku is essential
for evaluation of the thermal stability condition on a given bit, because ku value is used in calculation of bit
stability factor fBS . A given nano bit is then thermaly stable: if only the condition (fBS > 40) is satisfied.
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Abstract—Electromagnetic forming typically consists of a coil in front of a workpiece. The discharging of
a large capacitor connected to the coil induces eddy currents in the workpiece. The discharging process is
simulated by the finite network theory (FNM) for non-magnetic materials. A comparison with the commercial
FE program ANSYS is made to verify FNM. Since FNM excludes air from calculation the evaluation results
in a relatively small system of differential equations which allows a much faster calculation of the transient
compared to ANSYS.

1. Introduction

In recent times efforts are made in workpiece forming using magnetic repulsion forces. The so-called electro-
magnetic forming (EMF) is usually composed of a coil connected to a large capacitor and a workpiece in front
of the coil. The discharging of the capacitor-coil network induces large eddy currents in the workpiece result-
ing in a perpendicular repulsion force. The aim of the authors is the calculation of an example problem with
non-magnetic materials using the finite network theory ([1–4]). Roughly speaking, the finite network theory
(FNM) uses inductive coupled resistor networks to create the system of differential equations of current loops
whereas most of common FE programs use the magnetic vector potential and the electric scalar potential on
finite element nodes as unknowns. FNM results in a relatively small system of differential equations compared
to commercial FE programs such as ANSYS. In all calculations the authors used ANSYS as reference FE pro-
gram to proof the calculations made by FNM. It can be shown that the calculation of the transient of the EMF
process is much faster using FNM than the calculation in ANSYS:

1. FNM holds a lower number of degrees of freedom compared to ANSYS.

2. In the case of low-resistivity conductors (coil and workpiece) the transient process in FNM can be calculated
by standard methods to solve the related system of differential equations.

3. Once the inverse of the impedance matrix is calculated in FNM only back substitution is necessary in
every time step.

R
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U 0 = 21000V
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L    = 460nH

C = 450 FL

  
  
    

    10 mm 

30 mm

32 mm

5 mm

1,2 mm

2,0 mm

4,0 mmCoil (Cu)

Plate (Al)

i
C

( t )

ext

ext ext

ext

ext ext

Figure 1: Geometry of example problem and external circuit.

Our example consists of an rectangular single-loop coil made of copper in front of an aluminum plate (see Fig. 1).
The external network consists of an external inductance, an external resistor and a capacitor connected to the
rectangular coil. The external network provides an additional single loop electric network to the problem called
main loop.
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2. Simulation of the Transient by the Use of FNM

FNM discretises the conductive volumes of the coil and the aluminum workpiece into rectangular resistor
elements i and j with cross sections qi and qj and an the lengths li and lj . The self and mutual inductances of
resistor elements can be calculated by equation (1):

Li,j =
µ0

4π

1

qiqj

∫

qi

∫

qj

∫

li

∫

lj

dqidqjdlidlj
|~ri − ~rj |

(1)

Since the network equations are formulated in terms of the mesh current method the self inductances Mξ,ξ

and mutual inductances Mξ,η , ξ 6= η of (2) result from a summation of inductances Li,j of (1) over closed
current loops Cξ and Cη:

Mξ,η =
∑

i (Cξ)

∑

j (Cη)

Li,j · ~ei · ~ej (2)

The inductances Li,j vanish for perpendicular resistor elements. Since our method uses loop inductances
the orientations ~ei of resistor elements are treated in (2) for simplicity. The ~ei are parallel to the current flow
of a single resistor and include the orientation of a resistor with respect to the loop orientation by sign. The
summation

∑
i (Cξ) of (2) indicates the summation of all elements i contained in the closed loop Cξ. The Rξ,ξ

of matrix R in (3) are closed loop resistances. In the case ξ 6= η the value Rξ,η is the resistance of common
branches of the loops Cξ and Cη with respect to the orientation. Rξ,η = 0, ξ 6= η is fulfilled if two loops don’t
share common branches. FNM results in a 1st order system of differential equations with the matrices M and
R:

M =




M1,1 · · · M1,n

...
...

Mk+1,1 · · · Mn,n

Mn,1 · · · M̃n,n




R =




R1,1 · · · R1,n

...
...

Rn−1,1 · · · Rn−1,n

Rn,1 · · · R̃n,n




(3)

R̃n,n = Rn,n +Rext

L̃n,n = Ln,n + Lext

The external circuit of Fig. 1 enforces the correction of its loop (number n) by the external impedance Lext
and the serial resistor Rext. The 1st order system of differential equations is:

i(m)(t) =
(

i
(m)
1 (t), . . . , i(m)

n (t)
)T

u(t) = ( 0, . . . , uC(t) )
T

d

dt
i(m)(t) = M−1 ·

[
u(t) − R · i(m)(t)

]
(4)

d

dt
uC(t) = − 1

Cext
· ı(m)
n (t)

For the solution of (4) ANSYS offers the implicit Euler method [6]. To make our transient calculation
comparable with ANSYS we choose an approximate implementation of the implicit Euler method:

y(t) =
(

ı
(m)
1 (t), . . . , ı(m)

n (t), uC(t)
)T

d

dt
y(t) = A · y (5)

y
(0)
ν+1 = yν + ∆t · A · yν (6)

yν+1 = yν + ∆t · A · y(0)
ν+1 (7)
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During step ν → ν + 1 of the transient an estimation of the new solution vector y
(0)
ν+1 is calculated by the

explicit Euler method [5], see equation (6) and algorithm 1. By the use of y
(0)
ν+1 a second application of the

explicit Euler method in (7) results in an approximation of the implicit Euler method.
Equations (6) and (7) are calculated by the Cholesky decomposition of M = BL · BT

L of the inductance
matrix M instead of the use of the system matrix A of the general form of a linear system of differential
equations (6). The algorithm of equation (6) is:

Algorithm 1 Single step of explicit Euler method
1: Back substitution for vector x

BL · x = uν − R · i(m)
ν

2: Back substitution for vector y
BT
L · z = x

3: i
(m)
ν+1 = i(m)

ν + ∆t · z
4: uC,ν+1 = uC,ν − ∆t · 1

Cext
· i(m)
n,ν (t)

3. Numerical Results

The discharging of the capacitor of the example problem was calculated by FNM and ANSYS. In both cases
the same discretisation of the aluminum plate (20 × 20 × 3 elements) and of the coil (3 × 4 elements for
height and width of cross section, 3 mm discretisation for length) was used. Fig. 2 shows the discretisation of
FNM including the main loop containing the external circuit and a cutout of the finite element discretisation
of ANSYS. In ANSYS we used SOLID97 and INFIN111 elements (see Tab. 1).
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Figure 2: Discretisation of ANSYS (a) and finite network theory (b).

Table 1: ANSYS discretisation and degrees of freedom (DOF).

Area Type Number of FE

Coil SOLID97,4,0 636
Plate SOLID97,1,0 1200
Air SOLID97,0,0 9584
Infinite area INFIN111,1 130
DOF 16834

Since FNM excludes air from calculation this method results in a system of differential equations with
significantly smaller degrees of freedom of about 1/6 compared to ANSYS (see Tab. 2). Once the Cholesky
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decomposition of the inductance matrix is calculated, the application of the Euler method in FNM for the
evaluation of the transient process is straight forward. Our ANSYS version provides for transient calculations
of electromagnetic-circuit coupled fields only a direct standard solver [6]. In connection with the higher number
of degrees of freedom the total computing time in ANSYS is about 80 times the computing time of FNM for
an 83-point transient (see Tab. 3). A more appropriate solver of the transient calculation could improve the
total computing time in ANSYS. Despite this fact efforts of the finite network method (FNM) still remain since
FNM results in a system of differential equations with a much lower number of degrees of freedom.

Table 2: FNM discretisation and degrees of freedom (DOF).

Area DOF

Coil 907
Plate 1881
Mesh of external circuit 1
Capacitor of external circuit 1
DOF 2790

Table 3: Comparison of computing time for the 83-point transient simulation.

Method Processor Time

FNM Mesh generation 127.7 s
Matrix generation 213.0 s
Cholesky
decomposition 47.7 s
Transient 129.1 s
Total time 8 min 38 s

ANSYS Model generation negligible
Transient 11 h 38 min
Total time 11 h 38 min
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Figure 3: Comparison of the discharging of the external circuit calculated by ANSYS and FNM.

The discharging current of the capacitor is mainly determined by the external current. We calculated the
transient with a time step of 1µs. Care must be taken on the solution algorithm of linear system of differential
equations. There may be deviations of about 10 percent in the peak values of the transient comparing the
explicit and implicit Euler method. Fig. 3 depicts that our approximate implementation (6), (7) is in very
good agreement with the exact realisation in ANSYS. Furthermore, FNM results in a right evaluation of eddy
currents. Fig. 4 shows the total eddy current density on the lower side of the aluminum workpiece facing the
copper coil. Smaller deviations are expected: In ANSYS the faces of the single-loop coil are connected to the
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Figure 4: Total eddy current density in A · m−2 at t = 20µs calculated by ANSYS (a) and FNM (b). Both
figures show the eddy current density on the lower side of the aluminum plate facing the rectangular copper
coil. Both models use a discretisation of 3 in height of the workpiece with rectangular elements.

external circuit whereas in FNM the coil is attached only by single mesh to the external circuit.

4. Conclusion

The transient calculation of electromagnetic forming can be done by the use of commercial finite element
codes or by of the finite network method (FNM). Since the finite network method discretises conducting areas
into inductively coupled resistor networks and excludes air from calculation our method results in a system
of 1st order differential equations with a significantly smaller number of unknowns. That’s why FNM is the
preferred method to simulate inductance phenomena of conductors with relatively small volumes embedded in
air.

We confirmed our hypothesis by a comparison of ANSYS and FNM. The efforts in computing time of FNM
reinforces when a transient simulation is necessary since every time step of the transient requires the solution
of an associated linear equation system. A comparison of the absolute value of the eddy currents was made
using the same discretisation of the source of the magnetic field and the eddy current domain in both methods
(ANSYS and FNM). The good agreement of the distribution of total eddy currents of FNM and the well-known
finite element program ANSYS confirms the applicability of FNM to eddy current problems of non-magnetic
materials.
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Exact Expressions of the Orbit-curvature and
Curvature-radius of the Toroidal/Helical Orbits

R. A. Speciale
Research & Development Inc., USA

Abstract—Closed-from, exact expressions of the Toroidal/Helical orbit-curvature and curvature-radius, have
been obtained by first computing the first and second derivatives of the x, y and z components of the orbit
position-vector r as function of the wrapping-angle θ, and by then substituting those derivatives in the general
expression of the curvature of a parametric space-curve in three dimensions. Such closed-form exact expressions
open the possibility of computing the value of the continuously-evolving dipole magnetic-field B , required to
guide an electron-beam of known given energy E , expressed in Mev , along the given orbit. Additionally, the
maximum and minimum values of the dipole magnetic-field were given by performing preliminary numerical
computations with n = 9 and c = 0.2.

1. Introduction

High power microwave (HPM) sources are almost always designed as vacuum-electronic devices, and are
characterized by the capability of generating output powers in the range of Megawatt to Gigawatt, by using
beam-voltages of hundreds of kilovolts, and beam-currents of tens of ampere. HPM sources operate in either
of three broadly-defined modes: a) Short Pulse, at pulse lengths of 0.1–10µs, b) Long Pulse, at pulse lengths
of 0.1–10 ms, and c) Continuous Wave (CW). The design of high power microwave (HPM) sources has been
gradually evolving during at least the past thirty years, primarily stimulated by applications to high energy
charged-particle accelerators, and to directed-energy weapons. A number of classic review-papers document
that evolution (see [1, 2]). Currently, high energy charged-particle accelerators use almost exclusively high-
power klystron amplifiers [3], that attain peak-powers of hundreds of Megawatt in short-pulse operation, tens
of Megawatt in long-pulse operation, and about a Megawatt in CW mode. Such amplifiers provide, while
converting DC to microwaves, power-efficiency of 50%–60%, and power-gain of 40 dB–60 dB. The electron beam
of klystron amplifiers is sharply bunched by velocity modulation, followed by a drift-space where the accelerated
faster electron catch-up with the decelerated slower electron. The so attained sharp bunching generates, upon
the continuous-current electron-beam, the required microwave-frequency component, that is the essential source
of the generated high-power microwave output.

Quite recently, a number of multi-beam klystrons (MBK) have been developed experimentally, and at least
three different MBK models are already commercially available (see [4–8]). Multi-beam klystrons operate at
reduced electron-gun voltage, and higher total beam-current than the single-beam designs, thus preventing
occasional destructive gun-diode discharges, and increasing the power-efficiency up to ∼ 75%. The power-
efficiency (measured as the ratio of output microwave power to input DC power) is however still limited, even in
MBK, as it is obviously impossible to extract all the microwave energy from a sharply-bunched electron-beam,
without having the high space-charge-density of the slowing beam force it into uncontrollable defocusing. All
high-power klystron amplifiers include therefore a device known as the beam dump, which is a high-volume
expansion of the klystron vacuum-enclosure, located beyond the microwave-power extraction-structure, where
the not-quite completely energy-depleted electron-beam is collected, while converting (wasting ! ) its residual
energy to heat and X-rays.

2. Toroidal/Helical Orbits

A new, innovative design of High Power Microwave (HPM) Electron-Beam Amplifier was presented by the
Author at the PIERS 2004 Symposium, in Pisa, Italy [14]. That new design has the capability of attaining multi-
megawatt output power levels, even in long-pulse, high duty cycle or even continuous wave (CW) operation, with
very high efficiency, very high spectral-purity, and very low levels of phase and amplitude noise. The new design
was initially conceived as a combination of a multi-beam klystron (MBK), with an Electron Storage Ring (ESR).
Very high power-efficiency may be attained by having a sharply-bunched High-Current, Relativistic Electron
Beam (HIREB) circulate around a closed, re-entrant multi-turn orbit, within a strong-focusing, alternating-
gradient (AG) magnetic field, generated by an azimuth-periodic lattice of beam-guiding magnetic-dipoles, and
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magnetic quadrupole lenses. High beam currents may then be attained because, by using a multi-turn helical
electron-beam orbit, running on the outer surface of a virtual torus-surface, the beam current and the space-
charge density in each of the individual orbit-turns can be much lower than in a single-turn orbit. That orbit
configuration was initially conceived as a way of increasing the power-efficiency of high-power klystron amplifiers,
by eliminating the beam dump, and by introducing a mechanism of beam-energy recovery, similar to that of
Energy-Recovery Linacs (ERL).

It was soon seen however that the use of such closed multi-turn electron-orbit would essentially reduce the
foot-print of the newly-conceived device by a factor in the order of the square of the integer number n of turns,
while keeping the total orbit length unchanged, relative to that of a single-turn Electron Storage Ring (ESR).

It was also seen that, by keeping the electron-beam energy always in a relativistic range (such as for instance
from 50 Mev to 100 Mev), much higher single-turn beam-current, and much higher total stored beam-energy
(expressed in Joule) could be attained under a strong-focusing, alternating-gradient (AGS) magnetic field,
while at the same time any partial extraction of microwave-energy from the bunched circulating beam would
not appreciably change the electron orbital-frequency. Indeed, the total stored beam-energy (expressed in Joule)
is obviously stored in the relativistic (γ − 1)m0 mass-increase of the electrons, multiplied by the square of the
constant speed of light. Then, by keeping the electron-energy (expressed in Mev) in a relativistic range, very large
amounts of microwave energy (expressed in Joule) could be extracted from the circulating sharply-bunched beam,
while hardly changing the electron relativistic velocity-factor β (β =

√
(γ2 − 1)/γ2, while ∆E = ∆ γm0c

2).
As a consequence, such partial microwave-power extraction would hardly change the electron orbit-frequency,
provided the beam-energy (expressed in Mev) is kept within a relativistic range, where β is a very slow function
of γ. In the light of these considerations, the new HPM amplifier design, that was initially conceived as a
combination of the multi-beam klystron (MBK) with an Electron-Storage Ring (ESR), actually appears to
perform the function of an Energy-Storage Ring (while still being nevertheless an “ESR”). Quite obviously,
in any closed-orbit electron-device, the local orbit curvature is a parameter of fundamental significance, as
it determines the magnetic-field flux-density required in the beam-steering dipole-magnets, and in the beam-
focusing quadrupole lenses, as function of the electron-beam energy (expressed in Mev), and also determines
the orbit-frequency of the electron-bunches, by determining the orbit curvature-radius. A closed-form, exact
expression of the orbit-curvature, has now been obtained by first computing the first and second derivatives of
the x , y and z components of the orbit position-vector r as function of the wrapping-angle θ, and by then
substituting those derivatives in the general expression of the curvature of a parametric space-curve in three
dimensions [13].

3. Orbit Equations

The selected toroidal/helical orbit-configuration was defined as a parametric space-curve in three dimensional
space (R3), with its Cartesian coordinates being functions of the azimuth-angle ϕ (measured around the torus-
axis), and of the wrapping-angle θ (measured around the torus circular cross-section), with the implied condition
that the ratio of the two angle periods be rational, such that the orbit closes on itself after an integer number
of turns n (for 0 ≤ ϕ ≤ 2nπ). The parametric equations of that orbit are expressed by:

r̂ (ϕ, θ) = x (ϕ, θ) · î+ y (ϕ, θ) · ĵ + z (ϕ, θ) · k̂ (1)

where ϕ is the azimuth angle around the torus-axis, and θ is the helical “wrapping angle” around the torus
circular cross-section. The three Cartesian components x , y and z of the position-vector r , and the linear
relation between the angles ϕ, and θ are given by:

x = ( R + r cos θ ) cosϕ (2)

y = ( R + r cos θ ) sinϕ (3)

z = r sin θ (4)

θ =
n− 1

n
ϕ (5)

A 3D display of the selected Toroidal/Helical orbit configuration is shown in Figure 1, including a 3D display
of the locus of the moving curvature center (the “evolute” ! ). A 2D display of the corresponding X–Y plane
projections is shown in Figure 2.
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4. Curvature

Closed-form expressions have now been obtained for the multi-turn electron-orbit curvature, and for the
orbit curvature-radius, as function of the azimuth-angle ϕ, and wrapping-angle θ. The general expression of the
curvature of a space-curve in 3D is [11]:

Figure 1: 3D display of the toroidal/helical orbit and of its moving curvature center.

Figure 2: X-Yplane projection of the toroidal/helical
orbit and of its moving curvature center.

Figure 3: Normalized curvature radius of the
toroidal/helical orbit for n = 9 and c = 0.2.

κ (ϕ) =
~r′ (ϕ) × ~r′′ (ϕ)
∥∥∥~r′ (ϕ)

∥∥∥
3 where (6)

~r′(ϕ) =
dx

dϕ
·~i+ dy

dϕ
·~j +

dz

dϕ
· ~k and (7)

~r′′(ϕ) =
d2x

dϕ2
·~i+ d2y

dϕ2
·~j +

d2z

dϕ2
· ~k (8)
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are the first and second derivatives of the position-vector r̂ (ϕ, θ) = x (ϕ, θ) · î+ y (ϕ, θ) · ĵ + z (ϕ, θ) · k̂
The vector-product in the numerator of the general expression (6) is given by:

~r′ (ϕ) × ~r′′ (ϕ) =




i j k
dx
dϕ

dy
dϕ

dz
dϕ

d2x
dϕ2

d2y
dϕ2

d2z
dϕ2


 (9)

and it expands to:

~r′ (ϕ ) × ~r′ ′ (ϕ ) =
(
d y
dϕ

d2 z
dϕ2 − d z

dϕ
d2 y
dϕ2

)
·~i

−
(
d x
dϕ

d2 z
dϕ2 − d z

dϕ
d2 x
dϕ2

)
·~j

+
(
d x
dϕ

d2 y
dϕ2 − d y

dϕ
d2 x
dϕ2

)
· ~k (10)

Further, the cube of the position-vector norm in the denominator of (6) is given by:

∥∥∥ ~r′ (ϕ )
∥∥∥

3

=



√(

d x

dϕ

)2

+

(
d y

dϕ

)2

+

(
d z

dϕ

)2



3

(11)

The actual expression of the Toroidal/Helical orbit-curvature is then obtained by substituting the first and
second derivatives of the Cartesian coordinates x , y , and z in the expressions (7), (8), and (11), and simplified
to obtain:

κ(ϕ) =

√
1

8n2

[
k0 + k1 cos

(
n−1
n ϕ

)
+ k2 cos

(
2n−1

n ϕ
)

+ k3 cos
(
3n−1

n ϕ
)

+ k4 cos
(
4n−1

n ϕ
)]

[√
(1 + c cos θ)

2
+ c2

(
n−1
n

)2
]3 (12)

where the five K i coefficients are functions of the torus aspect-ratio c , and of the number of turns n :

k0 =
1

8n6

{
8n6 + 4c2n2 {1 + 2 (n− 1)n [2 + 3 (n− 1)n]} + c4 (n− 1)

2 {8 + n {n [57 + 10n (2n− 5)]}}
}

(13)

k1 =
1

2n4
c
{

3c2 (n− 1)
2
(1 + 2 (n− 1)n) + 2n2 [1 + n (3n− 2)]

}
(14)

k2 =
1

2n4
c2
{
{2n [2 + n (2n− 3)] − 1} + (n− 1)

2
[2 + n (3n− 4)]

}
(15)

k3 =
1

2n4
c3 (n− 1)

2
[1 + 2n (n− 1)] (16)

k4 =
1

8n4
c4 (n− 1)

2
(2n− 1) (17)

while the electron-orbit curvature-radius ρ is quite obviously expressed by ρ(θ) = 1/κ(θ) and is a periodic
function of the wrapping-angle θ, in the 0 ≤ θ ≤ (n − 1)2π drange (Figure 3), with period 0 ≤ θ ≤ 2π.

Figure 1 shows a 3D display of a Toroidal/Helical orbit, with n = 9 and c = 0.2, and includes the locus of
its moving curvature-center (the orbit “evolute” ! ), while Figure 2 shows the corresponding projection on the
X–Y plane. Finally, Figure 3 shows one period of the orbit curvature-radius for 0 ≤ θ ≤ 2π, normalized to
R = 1. The closed-form exact expressions of the Toroidal/Helical orbit-curvature, and curvature-radius provide
the possibility of computing the value of the continuously-evolving dipole magnetic-field B , required to guide
an electron-beam of known given energy E , expressed in Mev, along the given orbit. Preliminary numerical
computations with n = 9 and c = 0.2 have shown the maximum and minimum values of the dipole magnetic-
field to be BMAX=4274.66 Gauss, and respectively BMIN=2578.4 Gauss, for an electron-energy E=150 Mev,
and BMAX=1434.489 Gauss, and respectively BMIN=865.258 Gauss, for an electron-energy E=50 Mev. The
space-orientation of such dipole field would, however, necessarily need to be also continuously evolving, following
the continuous evolution of the Toroidal/Helical orbit torsion . The general expression of the orbit-torsion is
given by [11]:
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τ (ϕ) =
~r′ (ϕ) × ~r′′ (ϕ) · ~r′′′ (ϕ)
∥∥∥~r′ (ϕ) × ~r′′ (ϕ)

∥∥∥
2

The corresponding closed-form, exact expression for Toroida/Helical orbits will be given in a following report.

5. Conclusions

We proposed closed-from, exact expressions of the Toroidal/Helical orbit-curvature and curvature-radius by
first computing the first and second derivatives of the x, y and z components of the orbit position-vector r as
function of the wrapping-angle θ, and by then substituting those derivatives in the general expression of the
curvature of a parametric space-curve in three dimensions. The closed-form exact expressions provide of the
possibility of computing the value of the continuously-evolving dipole magnetic-field B , required to guide an
electron-beam of known given energy E , expressed in Mev , along the given orbit. Also, preliminary numerical
computations were performed.
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Dual-band/Broadband Circular Polarizers Designed
with Cascaded Dielectric Septum Loadings

T.-Y. Huang, Y.-C. Yu, and R.-B. Wu
National Taiwan University, Taiwan

Abstract—A simple method is presented in this paper for realizing a dielectric septum-loaded type circular
polarizer with either dual-band or a single broadband response. Two dielectric septum sections with different
dielectric constants and lengths that introduce various phase delay to the x- and y-polarizations of the electric
field in the same frequency range are cascaded orthogonally to obtain a dual-band response. A single wideband
response can also be achieved if two dielectric septum sections are cascaded in parallel instead. Simulations in
Ansoft HFSS show that flatter phase response and wider bandwidth can be obtained by the proposed polarizer
comparing to single section ones. Moreover, a dual-band response can only be achieved with a two-section
design. Taking advantage of dielectric septum-loaded type circular polarizers, the fabrication error or inaccurate
dielectric constants can easily be compensated by adjusting the lengths of dielectric septum sections.

1. Introduction

Circular polarizers have been widely studied and discussed because of the important roles they play in
communication systems. Groove- or iris-type circular polarizers [1–2] are robust but require precise fabrication
processes. Metal septum-type circular polarizers [3] are easy and effective to design and modify but suffer
from large signal reflection. A circular polarizer designed with a dielectric septum loading is proposed [4] with
simple design procedure and easy compensation of fabrication error while keeping signal reflection level in an
acceptable range. This paper gives a further study on dielectric septum-loaded type circular polarizers by
extending its concept to two dielectric septum sections. Two orthogonally cascaded dielectric septum sections
lead to a dual-band polarizer while a single wideband design can be achieved with two septum sections cascade
in parallel.

             (a)  (b)

Figure 1: Three dimensional view of the circular polarizer with (a) two orthogonally cascaded septum sections
and (b) two septum sections cascaded in parallel.

2. Theory

Figure 1 shows the geometry of the proposed circular polarizers, in which two dielectric septum loadings
cascaded either orthogonally (Figure 1(a)) or in parallel (Figure 1(b)) are inserted in the middle of the waveguide.
Slots on the waveguide wall are needed for precisely locating the dielectric septum. An incident wave E0 oriented
at 45◦ relative to the dielectric septum can be decomposed into two equal orthogonal projections as shown in
Figure 2(a). These two components will propagate through the septum regions with different propagation
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constants. The electric field component which is in parallel with the septum is strongly perturbs. As a result
the effective dielectric constant for this component is greater and vice versa. If the relative dielectric constants
and the lengths of these two septum regions are allowed to be different, various phase differences between the
two field components will be introduced by the two septum regions in the same frequency range, as shown in
Figure 2(b). If these parameters are chosen properly, a dual-band circular polarizer as well as a single broadband
circular polarizer can be achieved.

a

s

t

0E

yE

xE
a

s

t

0E

yE

xE

(a)

 
er = 2.20 
 
er = 2.33 
 
er = 2.50  
er = 2.60 
 
er = 2.94 
 
er = 3.27 
 
er = 3.38 
 
er = 3.48 

8 12 16 20 24

0

20

40

60

Frequency (GHz)

 
er = 2.20 
 
er = 2.33 
 
er = 2.50  
er = 2.60 
 
er = 2.94 
 
er = 3.27 
 
er = 3.38 
 
er = 3.48 

8 12 16 20 24

0

20

40

60

Frequency (GHz)

(b)

Figure 2: Field components and propagation constants. (a) Cross-sectional view of the circular polarizer and
(b) Propagation constant for various dielectric constant.

Table 1: Specifications and design parameters of the circular polarizers.

Polarizer prototype Dual-band Broadband

Operation band (GHz) 11.7–12.7, 19.7–20.2 11.7–20.2

Septum orientation Orthogonal Parallel

Waveguide radius (mm), a 8.7 8.7

Slot dimensions (mm), s 2.2 2.2

t 1.57 1.57

Septum lengths (mm), l1 207.7 34.9

l2 125.7 23.7

Septum materials, εr1 2.94 2.2

εr12 3.48 2.94

3. Design of Dual-band/broadband Circular Polarizers

Table 1 shows the specifications and the design parameters of the circular polarizers. Waveguide radius is
firstly determined by the strategy proposed in [4] to obtain a flatter phase response in the desired frequency
ranges. For physical strength and precise location of the dielectric septum, the slot on the waveguide wall can
also be determined. Once the cross-sectional dimension of the waveguide is determined, propagation constants
with various dielectric septums inserted are then calculated.

To design a dual-band circular polarizer, the prototype shown in Figure 1(a) is utilized. By properly choosing
the length and relative dielectric constants of the two septum sections, a 90◦ and a 270◦ phase differences can
be obtained at the center frequency of the lower and upper operation bands, respectively.
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On the other hand, if the second prototype (Figure 1(b)) is used, a single broadband circular polarizer can be
designed by properly placing the maximum variation point of phase difference in the desired frequency range.
Figure 3 shows the simulation results by Ansoft HFSS for the frequency response of phase difference of the
designed dual-band and broadband circular polarizers.

Figure 3: Phase difference of the polarizers with (a) dual-band and (b) a single broadband responses.

4. Conclusion

Circular polarizers with two cascaded dielectric septum loadings for dual-band and broadband applications
are proposed. Simulations results by Ansoft HFSS shows that for the broadband design not only the flatter
phase response near the center frequency but also a broader bandwidth are obtained comparing to single section
ones [4]. A dual-band design that can never be achieved with single dielectric septum section is also accomplished
in this paper. These circular polarizers are currently under fabrication and the measurement results will be
presented later in the conference.
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High-accuracy Approximation to the Integrated Length
of Toroidal/Helical Orbits

R. A. Speciale
Research & Development Inc., USA

Abstract—The new innovative concept of High Power Microwave (HPM) Amplifier recently introduced, com-
bines Multi-Beam Klystron (MBK) and Electron Storage-Ring (ESR) technologies, by using closed, multi-turn
Toroidal/Helical electron-orbits. The selected toroidal/helical orbit-configuration was defined as a parametric
space-curve in three dimensional space R3. We get the parametric equations of that orbit. A high-accuracy
approximation has now been obtained for the total length of the Toroidal/Helical orbit, that attains much faster
numerical computation. Higher accuracy could be attained by using a higher-order expansion of the orbit-length
rate-of-increase.

1. Introduction

High power microwave (HPM) sources are almost always designed as vacuum-electronic devices, and are
characterized by the capability of generating output powers in the range of Megawatt to Gigawatt, by using
beam-voltages of hundreds of kilovolts, and beam-currents of tens of ampere. HPM sources operate in either
of three broadly-defined modes: a) Short Pulse, at pulse lengths of 0.1–10µs, b) Long Pulse, at pulse lengths
of 0.1–10 ms, and c) Continuous Wave (CW). The design of high power microwave (HPM) sources has been
gradually evolving during at least the past thirty years, primarily stimulated by applications to high energy
charged-particle accelerators, and to directed-energy weapons. A number of classic review-papers document
that evolution (see [1, 2]). Currently, high energy charged-particle accelerators use almost exclusively high-
power klystron amplifiers [3], that attain peak-powers of hundreds of Megawatt in short-pulse operation, tens
of Megawatt in long-pulse operation, and about a Megawatt in CW mode. Such amplifiers provide, while
converting DC to microwaves, power-efficiency of 50%–60%, and power-gain of 40 dB–60 dB. The electron beam
of klystron amplifiers is sharply bunched by velocity modulation, followed by a drift-space where the accelerated
faster electron catch-up with the decelerated slower electron. The so attained sharp bunching generates, upon
the continuous-current electron-beam, the required microwave-frequency component, that is the essential source
of the generated high-power microwave output.

Quite recently, a number of multi-beam klystrons (MBK) have been developed experimentally, and at least
three different MBK models are already commercially available (see [4–8]). Multi-beam klystrons operate at
reduced electron-gun voltage, and higher total beam-current than the single-beam designs, thus preventing
occasional destructive gun-diode discharges, and increasing the power-efficiency up to ∼ 75%. The power-
efficiency (measured as the ratio of output microwave power to input DC power) is however still limited, even in
MBK, as it is obviously impossible to extract all the microwave energy from a sharply-bunched electron-beam,
without having the high space-charge-density of the slowing beam force it into uncontrollable defocusing. All
high-power klystron amplifiers include therefore a device known as the beam dump, which is a high-volume
expansion of the klystron vacuum-enclosure, located beyond the microwave-power extraction-structure, where
the not-quite completely energy-depleted electron-beam is collected, while converting (wasting ! ) its residual
energy to heat and X-rays.

2. Toroidal/Helical Orbits

A new, innovative design of High Power Microwave (HPM) Electron-Beam Amplifier was presented by the
Author at the PIERS 2004 Symposium, in Pisa, Italy [14]. That new design has the capability of attaining multi-
megawatt output power levels, even in long-pulse, high duty cycle or even continuous wave (CW) operation, with
very high efficiency, very high spectral-purity, and very low levels of phase and amplitude noise. The new design
was initially conceived as a combination of a multi-beam klystron (MBK), with an Electron Storage Ring (ESR).
Very high power-efficiency may be attained by having a sharply-bunched High-Current, Relativistic Electron
Beam (HIREB) circulate around a closed, re-entrant multi-turn orbit, within a strong-focusing, alternating-
gradient (AG) magnetic field, generated by an azimuth-periodic lattice of beam-guiding magnetic-dipoles, and
magnetic quadrupole lenses. High beam currents may then be attained because, by using a multi-turn helical
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electron-beam orbit, running on the outer surface of a virtual torus-surface, the beam current and the space-
charge density in each of the individual orbit-turns can be much lower than in a single-turn orbit. That orbit
configuration was initially conceived as a way of increasing the power-efficiency of high-power klystron amplifiers,
by eliminating the beam dump, and by introducing a mechanism of beam-energy recovery, similar to that of
Energy-Recovery Linacs (ERL).

It was soon seen however that the use of such closed multi-turn electron-orbit would essentially reduce the
foot-print of the newly-conceived device by a factor in the order of the square of the integer number n of turns,
while keeping the total orbit length unchanged, relative to that of a single-turn Electron Storage Ring (ESR).

It was also seen that, by keeping the electron-beam energy always in a relativistic range (such as for instance
from 50 Mev to 100 Mev), much higher single-turn beam-current, and much higher total stored beam-energy
(expressed in Joule) could be attained under a strong-focusing, alternating-gradient (AGS) magnetic field, while
at the same time any partial extraction of microwave-energy from the bunched circulating beam would not
appreciably change the electron orbital-frequency. Indeed, the total stored beam-energy (expressed in Joule)
is obviously stored in the relativistic (γ − 1)m0 mass-increase of the electrons, multiplied by the square of
the constant speed of light. Then, by keeping the electron-energy (expressed in Mev) in a relativistic range,
very large amounts of microwave energy (expressed in Joule) could be extracted from the circulating sharply-
bunched beam, while hardly changing the electron relativistic velocity-factor β (β =

√
(γ2 − 1)/γ2, while

∆E = ∆ γm0c
2). As a consequence, such partial microwave-power extraction would hardly change the electron

orbit-frequency, provided the beam-energy (expressed in Mev) is kept within a relativistic range, where β is a
very slow function of γ. In the light of these considerations, the new HPM amplifier design, that was initially
conceived as a combination of the multi-beam klystron (MBK) with an Electron-Storage Ring (ESR), actually
appears to perform the function of an Energy-Storage Ring (while still being nevertheless an “ESR”). Quite
obviously, in any closed-orbit electron-device, the total orbit length is a parameter of fundamental significance,
as it determines both the total electric-charge, and the total beam-energy (expressed in Joule) stored in the
orbit, and also determines the orbit-frequency of the electron-bunches. The closed-form exact expression of the
orbit-length that was reported in [14], had been obtained by symbolically integrating the rate-of-increase of the
orbit-length (also known as “the speed”! ) as function of the wrapping-angle θ, by using Mathematica. That
expression was however characterized by an extreme degree of complexity, even after being simplified (using the
Mathematica “FullSimplify” command) from an original a 20-page-long print-out to a single-page expression.
The computation-time required by the symbolic integration was only in the order of a minute, even on a modest
166 MHz PC (Dell XPS P166c), but the full simplification of the 20-page-long print-out required four full days,
for a total in the order of 96 hours. Even on a modern Workstation, with dual 2.4 GHz Xeon processors (HP
xw8000), that simplification requires at least in the order of six hours.

3. Orbit Equations

The selected toroidal/helical orbit-configuration was defined as a parametric space-curve in three dimensional
space R3, with its Cartesian coordinates being functions of the azimuth-angle ϕ (measured around the torus-
axis), and of the wrapping-angle θ (measured around the torus circular cross-section), with the implied condition
that the ratio of the two angle periods be rational, such that the orbit closes on itself after an integer number
of turns n (for 0 ≤ ϕ ≤ 2nπ). The parametric equations of that orbit are expressed by:

r̂ (ϕ, θ) = x (ϕ, θ) · î+ y (ϕ, θ) · ĵ + z (ϕ, θ) · k̂ (1)

where ϕ is the azimuth angle around the torus-axis, and θ is the helical “wrapping angle” around the torus
circular cross-section. The three Cartesian components x , y and z of the position-vector r , and the linear
relation between the angles ϕ, and θ are given by:

x = ( R + r cos θ ) cosϕ (2)

y = ( R + r cos θ ) sinϕ (3)

z = r sin θ (4)

θ =
n− 1

n
ϕ (5)

The closed-form, exact expression given in the original paper [14] for the multi-turn electron-orbit length, as
function of the azimuth-angle ϕ around the torus-axis, and of the wrapping-angle θ , shows a rather daunting
degree of complexity, by including all three Elliptic Integrals: a) of the first kind E, b) of the second kind F,
and c) of the third kind Π.
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4. Orbit-Length Approximations

A high-accuracy approximation has now been obtained for the total length of the Toroidal/Helical orbit, that
attains much faster numerical computation. That approximation was obtained by expanding the orbit-length
rate-of-increase ds/dϕ (“the speed” !) [13] in powers of the torus aspect-ratio c = r / R , and by integrating
that expansion term-by-term. The 6th-order power-expansion of the orbit-length rate-of-increase obtained is
expressed by:

d s

dϕ
= R

√

( 1 + c cos θ )
2

+ c2
(
n − 1

n

)2

∼= w0 + w1 c + w2 c
2 + w3 c

3 + w4 c
4 + w5 c

5 + w6 c
6 (6)

where the seven w i expansion-coefficients are given by:

w0 = R (7)

w1 = R cos θ (8)

w2 =
1

2
R

(
n − 1

n

)2

(9)

w3 = − 1

2
R

(
n − 1

n

)2

cos θ (10)
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R

8n2

(
n − 1

n

)2 [
4n2 cos2 θ − (n − 1 )

2
]
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w5 = − R

8n2

(
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cos θ
[
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(
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) ]
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R

16

(
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)2




[ (
n − 1

n

)2

− 6 cos 2 θ

] 2

− 28 cos 4 θ



 (13)

where the wrapping-angle θ is related to ϕ through the linear, rational relation (5): θ = [ (n− 1 ) /n] ϕ .
Preliminary numerical computations, using n = 9 and c = 0.2, have shown the residual error of the 6th-order

expansion of the orbit-length rate-of-increase given in (6) to have a residual error of −4 · 10−6 to + 3 · 10−6

across the 0 ≤ θ ≤ 2π range, that is consistently periodic across the whole 0 ≤ θ ≤ (n − 1) 2π range
(Figure 1).

The orbit-length approximate expression, resulting from a term-by-term integration of the 6th-order expan-
sion (6) , includes five terms, and is expressed by:

s (ϕ) = h1 θ + h2 sin θ + h3 sin 2 θ + h4 sin 3 θ + h5 sin 4 θ (14)
where the five h i coefficients are functions of the torus aspect-ratio c = r / R , and of the number of orbit-
turns n :
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The graphic displays of the integrated rate-of-increase 6th-order power expansion shown in Figure 2 have
been computed for Toroidal/Helical orbits with n = 9 turns, and aspect-ratio c = r / R from 0.1 to 0.4, in
steps of 0.1.

A preliminary numerical comparison of the approximate orbit-length expression given in Equation (14),
computed using n = 9 and c = 0.2, has shown the residual error of the approximation to be in the order of
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Figure 1: Residual error of the 6th-order expansion of the
orbit-length rate-of-increase.

± 3 · 10−6, with a single oscillation period for 0 ≤
θ≤ 2π (Figure 3). The residual error appears to be
a periodic function of the wrapping-angle θ, through
the whole interval 0≤ θ ≤ (n − 1)2π. While the
orbit-length exact-expression given in [14] shows, for
these parameter-values, a periodic discontinuity jump
of −6.3836527 at θ-values that are odd-multiples of
π, the approximation given in Equation (14) is com-
pletely continuous, and monotonic across the whole
0 ≤ θ ≤ ( n − 1)2π range, and its computational
speed is quite conveniently substantially higher, thus
providing the possibility of determining the electron
orbital-period, around either a single-turn or an n-
turn Toroidal/Helical orbit (Figure 3). Quite ob-
viously, higher accuracy could be attained by using
a higher-order expansion of the orbit-length rate-of-
increase.

Figure 2: Integrated 6th-order expansion of the
toroidal/helical orbit-length rate-of-increase.

Figure 3: Residual error of the 6th-order power-expansion
integral s(ϕ).

5. Energy Storage

A tentative baseline design of an HPM amplifier
as described in [14], has been generated, attempting to match the 1.3 GHz TESLA-Klystron specifications [15].
The virtual torus-surface radii computed are R = 1444.99 mm, and respectively r = 288.998 mm, while the
torus median-circle circumference is Lc = 9079.15 mm.

The total 9-turn orbit-length computed Lt = 83.019 m shows the use of a n-turn Toroidal/Helical orbit to lead
to a very compact “device” having a surface foot-print n2 times (= 81!) less than a conventional, circular-orbit,
electron-storage-ring “tunnel-installation”. Further, it appears feasible to have a total of 120 electron-bunch, in
40 sets of three bunch each, nominally spaced by an azimuth increment ∆ϕ= 9o around the torus median-circle
circumference, so that the bunch-set cyclotron-frequency is only f c = 1.3 GHz/40 = 0.0325 GHz ≡ 32.5 MHz,
corresponding to an electron cyclotron period tc = 30.7692 nanosec. The three electron-bunch in each set are
then spaced by a nominal wrapping-angle increment ∆θ = 120o. Also, the orbit-parameters R, r , Lc , and Lt
would hardly change if the electron-energy is always kept sufficiently high, such as from 50 Mev to 150 Mev.
Further, it appears also feasible to run a total average beam-current of 9 orbit-turn × 1.11 kA each = 10 kA total,
attaining a circulating electron-beam power of 500–1500 Gw, and a total beam kinetic-energy content between
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E1 = 500 tc = 15,384.615 Joule at 50 Mev, and E2 = 1500 tc = 46,153.385 Joule at 150 Mev. Extracting a
partial energy ∆E = E2− E1 = 30,769 Joule, by switching the circulating electron-beam from an accelerating-
structure to a microwave-power extraction-structure, would be sufficient to generate a 10 Mw peak-power, 3
msec long microwave pulse, thus exceeding the required TESLA-Collider RF System specification [15] by a
factor two in pulse-length. Re-acceleration of the electron-beam could be performed during the pulse-to-pulse
98.5 ms spacing, of the specified maximum 10 Hz pulse-repetition rate. The re-acceleration could be performed
at the third sub-harmonic of the required 1.3 GHz output-frequency, by placing the re-acceleration structure
along a single orbit-turn, where the azimuth bunch-spacing is ∆ϕ= 27o.

6. Conclusion
We give an overview on the design of high power microwave (HPM) sources. As a new, innovative design

of High Power Microwave (HPM) Electron-Beam Amplifier was presented not long before, a high-accuracy
approximation has now been obtained for the total length of the Toroidal/Helical orbit, that attains much
faster numerical computation. Higher accuracy could be attained by using a higher-order expansion of the
orbit-length rate-of-increase. A tentative baseline design of an HPM amplifier has been generated, attempting
to match the 1.3 GHz TESLA-Klystron specifications.
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Germany, Paper THP45, 706–708.

5. Beunas, A., G. Faillon, S. Choroba. S., and A. Gamp, “A high efficiency long pulse multi beam klystron for
the tesla linear collider,” http://www.cap.bnl.gov/mumu/studyii/ final draft/chapter-14/chapter-14.pdf.

6. Larionov, A., V. Teryaev, S. Matsumoto, and Y. H. Chin, “Design of multi-beam klystron in X-band,”
Proceeding of the 27th Linear Accelerator Meeting in Japan, IEDM, 1986A, 2002. http://lcdev.kek.jp/Conf
/LAM27/8P-13.pdf or: http://lcdev.kek.jp/USJ/Paper.JFY98-02.pdf

7. Larionov, A., “Optical system of the powerful multiple beam L-band klystron for linear collider,” Proceed-
ings of RuPAC XIX, 456–458, Dubna 2004.

8. Jongewaard, E., G. Caryotakis, C. Pearson, R. M. Phillips, D. Spren, and A. Vlieks, “The next linear
collider klystron deverlopment program,” XX International Linac Conference, Monterey, California, Paper
THA03, 739–741.

9. Rees, D., “Design of 250-MW CW RF system for APT,” 0-7803-4376-X/98/, IEEE, 2889–2893, 1998.
http://epaper.kek.jp/pac97/papers/pdf/9C003.PDF

10. Rees, D., W. Roybal, and III. J. Bradley, “Collector failures on 350 MHz, 1.2 MW CW lystrons at the
low energy demonstration accelerator (LEDA),” XX International Linac Conference, Monterey, California,
Paper THE12, 998–1000.

11. Dodson, C. T. J., “Mathematics 117: lecture notes for curves and surfaces module,” Department of Math-
ematics, UMIST, 1–13, Expressions (28) and (29) at page 6, http://www.ma.umist.ac.uk/kd/ma117/117l
n.pdf.

12. Dodson, C. T. J., “Introducing curves,” Department of Mathematics, UMIST, 1–11, Expressions (25) and
(26) at page 9, http://www..ma.umist.ac.uk/kd/curves/curves.pdf.

13. Dodson, C. T. J., “Mathematics 117: lecture notes for curves and surfaces module,” Department of Math-
ematics, UMIST, 1–13, Expressions (3) at page 3, http://www.ma.umist.ac.uk/kd/ma117/117ln.pdf.

14. Speciale, R. A. “High power microwave amplifiers with toroidal/helical orbits,” PIERS 2004, Pisa, Italy.
15. Choroba, S., “The tesla RF system,” RF 2003, 2003.



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 483
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Abstract—The recent advances of CMOS and SiGe process technologies have now made the design of low-
cost highly integrated millimeter-wave radios possible in Silicon. In combination with an optimum organic
Liquid Crystal Polymer packaging approach, this represents a unique opportunity to develop Gb/s radio that
could address the increasing demand in term of data rate throughput of the emerging broadband wireless
communication systems. In this paper we discuss the circuit and module challenges that will enable a successful
deployment of 60 GHz gigabits wireless systems.

1. Introduction

The demand for ultra-high data rate wireless communication systems is increasing daily with the emergence of
a multitude of multimedia applications. In particular, the needs become urgent for ultrahigh speed personal area
networking and point-to-point or point-to-multipoint data link. This demand has since pushed the development
of technologies and systems operating at the millimeter-wave frequencies, and overcome the current limitations
of alternative solution such as 802.11n and UWB. This trend has also been reinforced by the exponentially
growth of the emerging automotive collision avoidance radar applications. Indeed, the availability of several
GHz band-width unlicensed ISM bands in the 60 GHz spectrum represents a great opportunity for ultra-high
speed short-range wireless communications [1]. Since the mid–90’s, many examples of MMIC chip-set have
been reported for 60 GHz radio applications using GaAs FET and InP pHEMT technologies [2]. Despite their
commercial availability and their outstanding performances, these technologies struggle to enter the market
because of their prohibitive cost and their limited capability to integrated advanced base-band processing. In
addition, the combination, of a low cost highly producible module technology, featuring low loss and embedded
function such as antenna, is required to enable a high volume commercial use of the 60GHz systems.

Figure 1: Photo of SiGe 60 GHz integrated MMIC. Figure 2: Photo of fabricated LCP substrate.

2. Device Technology

In this paper, we will present and discuss the advances of CMOS and SiGe technology has advanced to enable
a complete chipset for 60 GHz applications [4–6]. The front-end architecture using a sub-harmonic approach
will be detailed and analyzed and example of circuits such as millimeter-waves LNA, mixer and VCO will be
presented. An example of integrated front-end chip that has been developed for this application is shown in
Figure 1. It includes a 30 GHz cross-coupled VCO oscillating at a center frequency of 30.1 GHz and exhibiting
2.3 GHz tuning range. The maximum output power after buffer is around -11.7 dBm at 29.54GHz. The sub-
harmonic APDP mixer has a measured minimum down-conversion loss of 8.3 dB with a greater than 4 GHz
of single-sided 3-dB baseband bandwidth with a 5.5 dBm local oscillator signal at 30.5 GHz. An input 1dB
compression point of -7dBm has been recorded. This is the first report of a 60 GHz sub-harmonic mixer on
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SiGe processes that can be applicable to multi-gigabit wireless personal area network application. A single stage
cascode LNA has been measured to have about 15dB of gain. A 2 stages cascode LNA is under development to
be combined with the others building blocks.

3. Module Technology

At last, the packaging of the 60 GHz radio represents a major challenge. The Liquid Crystal Polymer
has emerged as a promising low-cost alternative for millimeter-wave module implementation [7]. It combines
uniquely outstanding microwave performances, low cost and large area processing capability. It appears as a
platform of choice for the packaging of the future 60 GHz gigabit radio. We will present the recent advances in
developing mmW functions on LCP substrate such as filter and antennas as shown in Figure 2. The optimum
combination and co-design of these technologies (Figure 1) is the key for the successful deployment of ultra-
high speed, high capacity, 60 GHz WLAN access for very dense urban network and hot spot coverage. Many
other commercial applications will directly benefit from this advance. This includes high data rate Wireless
Multimedia Access, compact Wireless Gigabit Ethernet and Wireless FireWire/IEEE–1394 link that can be
ultimately combined with a fiber or cable backhaul network.

Figure 3: Concept view of a 60 GHz Gb/s radio module.

4. Conclusion

We discussed in this paper the circuit and module challenges for the next generation gigabits radio operating
at 60 GHz. We highlighted the technology issues and choices based on application, system architecture, circuit
and packaging considerations. The recent advances of CMOS and SiGe process technologies have now made
the design of low-cost, highly integrated millimeter-wave radios possible in Silicon. In combination with an
optimum packaging approach, such as a Liquid Crystal Polymer platform, these advances could have a major
impact on the cost and the performances of the future high speed systems and lead a to a successful deployment
of the 60 GHz gigabit wireless radio.
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Abstract—This paper presents the results of profile inversion of multi-frequency electromagnetic scattered
field data, measured by the Institute Fresnel, Marseille, France, from cylindrical objects, both for TM and
TE illuminations. The reconstructions are obtained by applying the Multiplicative Regularized Contrast Source
Inversion (MR-CSI) method. The results show that the MR-CSI method successfully performs ‘blind’ inversion of
a wide class of scattered field data. Further, we also show that by inverting both TM and TE data simultaneously,
a more accurate reconstructed image can be obtained.

1. Introduction

We discuss the performance of the Contrast Source Inversion (CSI) method [1, 2], enhanced with a Mul-
tiplicative Regularization technique (MR-CSI) [3]. The MR-CSI method has been applied to invert the first
set of data measured by the Institut Fresnel, Marseille, France [4]. The inversion results obtained using the
MR-CSI method from these first Fresnel data sets were presented in [5]. Following these experiments, the MR-
CSI method has been improved by the introduction of the so-called weighted L2-norm regularizer, see [6]. The
inversion results of the first Fresnel data set using the MR-CSI method with weighted L2-norm regularizer can
be found in [7].

With this version of the MR-CSI method we demonstrate the reconstructions from the second set of data
measured by the Institut Fresnel. We carry out a ‘blind’ inversion of these data sets without explicitly taking
into consideration any a priori information regarding the type of objects (either dielectric or metallic) to be
reconstructed. In all cases we reconstruct both the permittivity and the conductivity of the unknown objects.
The only a priori information which is used in the inversion is the positivity constraint on both permittivity
and conductivity. The inversion results show that the MR-CSI method seems to handle the experimental field
data very well. Furthermore we will show that by inverting both TM and TE data simultaneously we are able
to arrive at more accurate reconstructed images.

2. Methodology

The Institute Fresnel experimental setup consists of a transmitting and a receiving antennas, both of which
are double-ridged horn antennas. The antennas are moved on a circular rail around the object(s). The objects
are elongated in the direction perpendicular to the plane in which the antennas are rotated (i. e., the plane of
measurement), that a two-dimensional (2D) model is appropriate. In the plane of illumination, we choose a
2D rectangular test domain D containing the object(s). The transmitting antenna illuminates the objects from
different locations distributed equidistantly around the object. We use the subscript j to denote the measured
frequency and the subscript s to denote the dependence on the transmitter position. The receiving antenna
measures the total field and the incident field from a number of different locations distributed equidistantly
around the object. The scattered field, which is needed in the inversion, can then be found by subtracting the
incident field from the total field.

The experimental data are collected at a number of frequencies with time factor exp(−iωjt) where i2 = −1,
ωj is the radial frequency and t is time. We introduce the vectors p and q as the spatial positions in 2D. We use
the Maxwell model for the constitutive parameters of the object. Hence the contrast function for each frequency
is defined as follows:

χj(q) =
ε(q) − ε0

ε0
+ i

σ(q)

ωjε0
, (1)
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where ε and σ denote the permittivity and conductivity, which are frequency independent. The symbol ε0
denotes the permittivity in vacuum. Since ε and σ are frequency independent, it is obvious that in the inversion
we need only to invert for one value of the contrast function. Let χ1 be the contrast function value at the angular
frequency ω1, then the other values of the contrast as a function of frequency can be calculated through:

χj(q) = Re[χ1(q)] + i
ω1

ωj
Im[χ1(q)]. (2)

Since all the objects lie inside a test domain D, the contrast function is therefore non-zero inside D and zero
elsewhere.

In the TM−case where the non-zero component of the electric field is the only one parallel to the cylindrical
objects, we deal with a scalar wave field problem. The domain integral representation for the scattered field as
a function of the total field us, j and the contrast χj is given by

uscts,j (p) = KTM
j [χjus,j ] = k2

0,j

∫

D

gj(p, q)χj(q)us,j(q)dv(q), p ∈ S, (3)

where k0,j = ωj
√
ε0µ0 is the wave number in free-space and S is the data domain where the transmitter and

receiver are located. The scalar homogeneous Green function is given by

gj(p, q) =
i

4
H

(1)
0 (k0,j |p − q|), (4)

where H
(1)
0 denotes the first kind Hankel function of zero order.

In the TE−case, the field quantities are two-components vectors representing the electric field components
in the transversal plane of the cylindrical objects. The domain integral representation for the scattered field
vector as a function of the total field us,j and the contrast χj is given by

uscts,j (p) = KTE
j [χjus,j ] = (k2

0,j + ∇∇·)
∫

D

gj(p, q)χj(q)us,j(q)dv(q), p ∈ S, (5)

where ∇ is the spatial differentiation operator with respect to p.
The TM and TE total field, and the contrast inside the test domain D satisfy the following integral equation:

uincs,j (p) = us,j(p) −KTM
j [χj,nus,j,n], uincs,j (p) = us,j(p) −KTE

j [χj,nus,j,n], p ∈ D (6)

where the operators KTM
j [χjus,j ] and KTE

j [χjus,j ] are defined in (3) and (5), for the TM-case and TE-case
respectively. Eqs. (3), (5) and (6) are the basic equations for developing any inversion algorithm based on the
integral equation formulation. The goal of solving the inverse scattering problem can be formulated as follows:
Solve (3) or (5) to obtain the contrast χ1 on D from the knowledge of the scattered field uscts,j on S and the

incident field uincs,j on D subject to the necessary condition that the total field us,j on D and the contrast χ1 on
D satisfy the integral equation in (6).

We consider the inverse scattering problem as an optimization problem where, in each iteration n, we update
the contrast sources ws,j,n = χjus,j,n and the contrast χj,n alternatingly, by minimization of the cost function.
For the TM inversion the cost function is given by

Fn(χ1,n, ws,j,n)=

[∑
s,j ‖uscts,j −KTM

j [ws,j,n]‖2
S∑

s,j ‖uscts,j‖2
S

+

∑
s,j ‖ws,j,n − χj,nus,j,n‖2

D∑
s,j ‖χj,n−1uincs,j ‖2

D

]∫

D

|χ1,n(p)|2 + δ2n
|χ1,n−1(p)|2 + δ2n

dv(p), (7)

where

us,j,n = uincs,j +KTM
j [ws,j,n], δ2n =

1

∆2

∑
s,j ‖ws,j,n−1 − χj,n−1us,j,n−1‖2

D∑
s,j ‖χj,n−1uincs,j ‖2

D

(8)

and ‖ · ‖2
S and ‖ · ‖2

D denote the L2-norm on the data domain S and the object domain D, respectively. The
symbol ∆ denotes the mesh size of the discretization grid. In this CSI method, we use the back-propagation step
to arrive at initial estimates for the contrast sources and the contrast. After the initial step, in each iteration
the contrast sources and the contrast are updated alternatingly each by using one conjugate gradient step. The
optimization process may be terminated if one of the following stopping conditions is satisfied:
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Figure 1: The configuration used to obtain the data sets FoamMetExtTM.exp and FoamMetExtTE.exp.

• The difference between the normalized data error Fn at two successive iterates, n-th and (n − 1)-th, is
within a prescribed error quantity (it set to be 10−5).

• The total number of iterations exceeds a prescribed maximum Nmax=512.

The a priori information that the permittivity and the conductivity are positive are implemented by enforcing
the negative value to zero after each iteration. This simple procedure is employed in all of the inversion runs.
Details of this so-called MR-CSI method for multi-frequency problem can be found in [5]. However the procedure
to update the contrast function is replaced by the improved version in [7]. For the TE inversion the cost function
in (7) is replaced by

Fn(χ1,n,ws,j,n)=

[∑
s,j ‖uscts,j −KTE

j [ws,j,n]‖2
S∑

s,j ‖uscts,j‖2
S

+

∑
s,j ‖ws,j,n − χj,nus,j,n‖2

D∑
s,j ‖χj,n−1u

inc
s,j ‖2

D

]∫

D

|χ1,n(p)|2 + δ2n
|χ1,n−1(p)|2 + δ2n

dv(p), (9)

where
us,j,n = uincs,j +KTE

j [ws,j,n]. (10)

Further, for joint TM and TE data inversion, the cost function to be minimized is given by

Fn(χ1,n, ws,j,n,ws,j,n) =

[∑
s,j ‖uscts,j −KTM

j [ws,j,n]‖2
S∑

s,j ‖uscts,j‖2
S

+

∑
s,j ‖ws,j,n − χj,nus,j,n‖2

D∑
s,j ‖χj,n−1uincs,j ‖2

D

+

∑
s,j ‖uscts,j −KTE

j [ws,j,n]‖2
S∑

s,j ‖uscts,j‖2
S

+

∑
s,j ‖ws,j,n − χj,nus,j,n‖2

D∑
s,j ‖χj,n−1u

inc
s,j ‖2

D

]

∫

D

|χ1,n(p)|2 + δ2n
|χ1,n−1(p)|2 + δ2n

dv(p). (11)

3. Numerical Results

In this proceeding paper we only show the inversion results of the data sets FoamMetExtTM.exp and
FoamMetExtTE.exp. The inversion results of other data sets will be presented during the conference. These
data sets FoamMetExtTM.exp and FoamMetExtTE.exp are obtained by measuring a configuration as shown in
Fig. 1. This configuration consists of one circular dielectric cylinder with a relative permittivity value of εr = 1.45
with a diameter of 80 mm and one metallic cylinder with a diameter of 28.5 mm. In the experiment, there are 18
transmitters distributed uniformly on a circle with a radius of 1.67 m from the center of the experimental setup.
For each transmitter the data are measured using 241 receivers located on a circle with a radius of 1.67 m. The
data are collected at 17 frequencies in the range of 2–18 GHz. In the experimental setup the fields are generated
and received by horn antennas. However as we previously argued, the problem is predominantly 2D. Hence
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Figure 2: Reconstruction of the configuration with two disjoint cylinders, a dielectric one and a metallic one,
for TM data polarization (data set: FoamMetExtTM.exp) (a) and TE data polarization (data set: FoamMe-
tExtTE.exp) (b); and for joint inversion of both TM and TE data polarizations (c).

both receivers and transmitters are approximated as line receivers and line transmitters. Therefore, we carry
out the calibration procedure outlined in [5].

In the inversion we take a test domain D of 16.775 cm by 16.775 cm. The test domain D is discretized into
122 by 122 rectangular subdomains. The side length of each subdomain is 0.1375 cm. The wavelength at 18 GHz
is 1.67 cm, hence the width and height of the test domain D is 10 time the wavelength in vacuum. The data for
different frequencies are inverted simultaneously. However, in the figures we plot the complex contrast function
χ1 only. This is the complex contrast at the lowest frequency.

The reconstructed images from the TM and TE data sets are shown in Figs. 2(a) and (b). The left plots
give the distribution of the real part of the reconstructed contrast function and while the right plots give
the distribution of the imaginary part of the reconstructed contrast function. The inversion results from TM
data set (see Fig. 2(a)) show that the metallic cylinder is retrieved with real and imaginary parts having the
same order of magnitude. These inversion results also show that there is an ambiguity in the inversion. In
principle, when carrying out the inversion of a perfectly conducting cylinder one can only reconstruct uniquely
the boundary of the object. Inside the metal object the contrast sources are invisible, with the consequence that
any contrast inside the object may be arbitrarily arrived at. The small circular object with a large permittivity
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value appearing in the image of Re(χ1) is obviously an artefact of the inversion algorithm. However since the
reconstructed circular object in Re(χ1) lies completely inside the circular cylinder in Im(χ1), one can conclude
that we are dealing with a metallic object. On the other hand, the imaginary parts of the contrast of the
TE inversion do not exhibit any significant features (see Fig. 2(b)). However the shape of the large dielectric
cylinder is better reconstructed using the TE inversion than the one using the TM inversion.

Next we invert both the TM and TE data simultaneously. The results of this joint inversion are given in
Fig. 2(c). By inverting both TM and TE data simultaneously we obtain an improved reconstructed image of
the large dielectric cylinder. Furthermore the small artefact in the image of Re(χ1) is obviously lied completely
inside the circular cylinder in Im(χ1). Hence, we can conclude that by inverting both the TM and TE data
simultaneously we can obtain more accurate reconstructed images than by inverting the TM and TE data sets
separately.

4. Conclusions

In view of the present results and our crude approximation of the transmitting and receiving antennas, the
Multiplicative Regularized Contrast Source Inversion method seems to be very robust and is capable of ‘blindly’
handling a wide class of inverse scattering problems. Finally we note that by inverting both TM- and TE-data
simultaneously, we can obtain more accurate reconstructed images.
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New Stochastic AGLID EM Modeling and Inversion

J. Li, G. Xie, L. Xie, and F. Xie
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Abstract—The AGILD modeling and inversion have been published in PIERS2005 in Hangzhou. The new 2.5D
AGILD and new GL electromagnetic (EM) modeling and inversion are publishing in PIERS2006 in Cambridge
of USA. We have proposed the stochastic SGILD modeling and inversion in nano-physics and geophysics using
magnetic field equations in 1999 and 2002. In this paper, we present a new stochastic AGILD (SAGILD) EM
modeling and inversion and software. We propose a new EM integral equation on the strip domain. Based on
the strip integral equation, we propose new stochastic EM field strip integral equations for mean, covariance,
and second order mean EM field and parameters. These stochastic EM moments strip integral equations are
employed on the boundary strip domain. In the cylindrical and spherical coordinate system, the strip domain
includes the boundary and pole strip involving pole ρ = 0 or r = 0, North Pole θ = 0 and South Pole θ = π.
In the remainder internal domain, we use stochastic moments Galerkin equations. We coupled these equations
to construct 3D and 2.5D SAGILD modeling algorithms. By decomposing the variance of the parameter mean,
δ < σ + iωε >= δ < σ + iωε >0 + δ < σ + iωε >2, δ < µ>= δ < µ >0 +δ < µ>2, we derive the new stochastic
EM parameters increment moment strip integral equation on the strip sub domain for isotropic or anisotropic
random materials. We used the equation pair of EM parameter stochastic integral equations on the strip sub
domain and EM parameter stochastic Galerkin equation in remainder sub domain to construct the SAGILD
inversion. The SAGILD modeling and inversion have widely applications in the Earth, Sun, and Luna space
EM field exploration, nanometer material and material sciences, geophysical and Earthquake exploration, MT,
MAIL, VEMP, weather radar imaging, medical MRI and X-ray imaging, and environmental engineering, EM
stirring in steel and metal continuous casting, seismic, and finances.

1. Introduction

We have proposed the stochastic SGILD EM modeling and inversion in geophysics and nano-physics using
magnetic field equations in 1999 [1] and 2002 [2]. A new GL method and its advantages for resolving historical
difficulties will be published in PIERS2006 in Cambridge of USA [3]. The AGILD modeling and inversion has
been published in PIERS2005 in Hangzhou [4], and the 2.5D AGILD modeling and inversion will be published in
PIERS2006 in Cambridge USA [5]. In this paper, we propose a new SAGILD EM modeling and inversion. First,
we propose a new EM integral equation on the boundary strip for rectangle coordinate or boundary pole strip
domain for cylindrical and spherical coordinate. Next, we propose new stochastic EM field integral equations
for mean, covariance field and parameters, and second order mean field and parameter. These stochastic EM
moment strip integral equations are employed on the strip domain. In the cylindrical and spherical coordinate
system, the strip domain includes the boundary and pole strip domain with poles ρ = 0 or r = 0, North Pole θ = 0
and South Pole θ = π. In the remainder internal domain, we use stochastic moments EM Galerkin equations.
We couple these equations to construct the 3D/2.5D SAGILD modeling. By decomposing the variance of the
mean of the parameters, δ < µ>= δ < µ> 0 + δ < µ>2, δ < σ + iωε >= δ < σ + iωε >0 +δ < σ + iωε >2. We
derive the stochastic EM parameters moment strip integral equations on the strip sub domain for isotropic or
anisotropic materials. These new parameter integral equations are described in our internal report in detail [6].
We use the EM parameter stochastic integral equations on the strip sub domain and EM parameter stochastic
Galerkin equation in remainder sub domain to construct the SAGILD inversion. In the cylindrical and spherical
coordinate, the strip domain contains the poles for resolving the coordinate singularity difficulty.

The SAGILD modeling and inversion have widely applications in the Earth, Sun, and Luna space EM field
exploration, nanometer material and material sciences, geophysical and Earthquake exploration, MT, MAIL,
VEMP, weather radar imaging, medical MRI and X-ray imaging, and environmental engineering, and EMS
stirring in metal casting, random flows, and finances. The new SAGILD modeling and inversion have advantages
over existing random method. The SAGILD methods have AGILD’s merits and improved field and parameter
moments and its confidences.

We arrange contents in this paper as follows. The introduction has been described in the section 1. In
section 2, we propose a new EM strip integral equation. The new stochastic EM moment strip integral equation
is presented in the section 3. The stochastic EM Garlekin equation is presented in the section 4. In section
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5, we propose the stochastic EM modeling. The stochastic EM inversion is presented in the section 6. The
applications are described in the section 7. In section 8, we describe conclusions.

2. The New EM Strip Integral Equation

We have proposed EM integral equations in the paper [3], in which, our EM integral equations are
[
E(r)
H(r)

]
=

[
Eb(r)
Hb(r)

]
+

∫

Ω

[
EJb (r′, r) HJ

b (r′, r)
EMb (r′, r) HM

b (r′, r)

]
[D]

[
E(r′)
H(r′)

]
dr′, (1)

[
E(r)
H(r)

]
=

[
Eb(r)
Hb(r)

]
+

∫

Ω

[
EJ(r′, r) HJ(r′, r)
EM(r′, r) HM(r′, r)

]
[D]

[
Eb(r

′)
Hb(r

′)

]
dr′. (2)

That is available for the rectangle, cylindrical, and spherical coordinate systems. In our paper [5], we proposed
the 2.5D EM differential integral equation in the cylindrical coordinate system. In this section, we propose the
new EM strip integral equations on the strip domain in rectangle or strip pole domain in the cylindrical and
spherical coordinate for resolving coordinate singularity.
[
E(r)
H(r)

]
=

[
Eb(r)
Hb(r)

]
+

∫

Ωs

[
EJb (r′, r) HJ

b (r′, r)
EMb (r′, r) HM

b (r′, r)

]
[D]

[
E(r′)
H(r′)

]
dr′−

∫

∂Ωs−

[
HJ
b (r′, r) EJb (r′, r)

HM
b (r′, r) EMb (r′, r)

]
×
[
E(r′)
H(r′)

]
d~Sr′, (3)

[
E(r)
H(r)

]
=

[
Eb(r)
Hb(r)

]
+

∫

Ωs

[
EJ(r′, r) HJ(r′, r)
EM(r′, r) HM(r′, r)

]
[D]

[
Eb(r

′)
Hb(r

′)

]
dr′−

∫

∂Ωs−

[
HJ (r′, r) EJ (r′, r)
HM(r′, r) EM(r′, r)

]
×
[
Eb(r

′)
Hb(r

′)

]
d~Sr′. (4)

The EM strip integral equations are dual equation each other. The equations (3) and (4) are available
for the rectangle, cylindrical, and spherical coordinate systems. In the rectangle coordinate r = (x, y, z),
E = (Ex, Ey, Ez), dr = dxdydz, in the cylindrical coordinate E = (Eρ, Eθ, Ez), dr = ρdρdθdz, in spherical
coordinate, dr = r2 sin θdrdθdφ, dS = r2dθdφr + r sin θdφdrθ + rdrdθφ, E = (Er, Eθ, Eφ). For the isotropic
materials, the material matrix [D] is the 6×6 diagonal matrix with variance of the conductivity and permittivity,
(σ − σb) + iω(ε − εb), and the magnetic permeability, µ − µb. For anisotropic materials, the matrix [D] is a
full matrix with variance of the anisotropic materials. Obviously, the EM strip integral equations have no any
coordinate singularity.

3. The Stochastic EM Field Moment Strip Integral Equations

Upon substituting the decomposition of the EM field,
[
E(r)
H(r)

]
=

[
E(r)
H(r)

]

0

+

[
E(r)
H(r)

]

1

+

[
E(r)
H(r)

]

2

, (5)

and the decomposition of the material matrix

[D] =< [D] >+[D]s, (6)

into the equation (3), we propose the stochastic EM moment strip integral equations,
[
E(r)
H(r)

]

0

=

[
Eb(rs)
Hb(r)

]
+

∫

Ω

[
EJb (r′, r) HJ

b (r′, r)
EMb (r′, r) HM

b (r′, r)

]〈
[D]
〉[E(r′)
H(r′)

]

0

dr′ −
∫

∂Ω−

[
HJ
b (r′, r) EJb (r′, r)

HM
b (r′, r) EMb (r′, r)

]
×
[
E(r′)
H(r′)

]

0

d~S, (7)

and the following three stochastic EM field moment strip integral equations. Let AGILDMI to be the stochastic
EM field moment integral operator

AGILDMI

([
CσE CµE
CσH CµH

]
,

[
Cσσ Cµσ
Cσµ Cµµ

]
,

[
E0

H0

])
=

[
CσE CµE
CσH CµH

]
(r)−

∫

Ω

[
EJb (r′, r) HJ

b (r′, r)
EMb (r′, r) HM

b (r′, r)

]〈
[D]
〉[CσE CµE
CσH CµH

]
(r′)dr′

−
∫

Ω

[
EJb (r′, r)HJ

b (r′, r)
EMb (r′, r)HM

b (r′, r)

][
E0CσσE0Cµσ
H0CσµH0Cµµ

]
(r′)dr′+

∫

∂Ω−

[
HJ
b (r′, r)EJb (r′, r)

HM
b (r′, r)EMb (r′, r)

]
×
([
CσECµE
CσHCµH

]
+

[
E0CσσE0Cµσ
H0CσµH0Cµµ

])
(r′)d~S,

(8)
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AGILDMI

([
CσE CµE
CσH CµH

]
,

[
Cσσ Cµσ
Cσµ Cµµ

]
,

[
E0

H0

])
= 0, (9)

AGILDMI

([
CEECEH
CEHCHH

]
,

[
CσECµE
CσHCµH

]
,

[
E0

H0

])
= 0, (10)

〈[
E
H

]

2

〉
=

∫

Ω

[
EJb (r′, r) HJ

b (r′, r)
EMb (r′, r) HM

b (r′, r)

] 〈
[D]
〉〈[E(r′)

H(r′)

]〉

2

dr −
∫

∂Ω−

[
HJ
b (r′, r) EJb (r′, r)

HM
b (r′, r) EMb (r′, r)

]
×
〈[

E(r′)
H(r′)

]

2

〉
d~S(r′)

+

∫

Ω

[
EJb (r′, r) HJ

b (r′, r)
EMb (r′, r) HM

b (r′, r)

] [
ĈσE
ĈµH

]
dr −

∫

∂Ω−

[
HJ
b (r′, r) EJb (r′, r)

HM
b (r′, r) EMb (r′, r)

]
×
[
ĈσE
ĈµH

]
d~S(r′), (11)

4. The Stochastic EM Field Garlekin Equation

We propose the EM Garlekin equation in the rectangle, cylindrical, and spherical coordinate.
∮

∂Ω

[E H]0 × φId~S −
∫

Ω

[E H]0∇× φIdΩ =

∫

Ω

[E H]0

[
0 〈σ〉

−iω〈µ〉 0

]
φIdΩ +

∫

Ω

[Js Ms]

[
0 1

−iω〈µ〉 0

]
φIdΩ, (12)

AGILDMG

([
CσE CµE
CσH CµH

]
,

[
Cσσ Cµσ
Cσµ Cµµ

]
,

[
E0

H0

])
=

∮
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[
CσE CµE
CσH CµH

]
× φId~S −

∫

Ω

[
CσE CµE
CσH CµH

]
∇× φIdΩ

−
∫

Ω

[
0 〈σ〉

−iω〈µ〉 0

][
CσECµE
CσHCµH

]
φIdΩ −

∫

Ω

[
E0CσσE0Cµσ
H0CσµH0Cµµ

]
φIdΩ, (13)

AGILDMG

([
CσE CµE
CσH CµH

]
,

[
Cσσ Cµσ
Cσµ Cµµ

]
,

[
E0

H0

])
= 0, (14)

AGILDMG

([
CEECEH
CEHCHH

]
,

[
CσECµE
CσHCµH

]
,

[
E0

H0

])
= 0, (15)

∮
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〈[E H]2〉×φId~S−
∫

Ω

〈[E H]2〉∇×φIdΩ=

∫

Ω

〈[E H]2〉
[

0 〈σ〉
−iω〈µ〉 0

]
φIdΩ+

∫

Ω

[
ĈσE ĈµH

] [ 0 1
−iω〈µ〉 0

]
φIdΩ, (16)

The above stochastic EM moment strip integral equations are available for isotropic materials. For anisotropic
materials, the stochastic EM moment strip integral equations can be derived similarly. The [CσE ] is covariance
moment matrix, CσE =< E(r)σ(<) >,<,> is assemble mean, other covariance terms are defined similarly.
ĈIJ = 〈I(r)J(<)〉|r=<I = σ, J = E, H, [CIJ ] = [< I(r), J(<) >], I, J = σ, µ.

5. The New Stochastic SAGILD EM Modeling

5.1 The AGILD Pair of the Strip Integral Equation and the Garlekin Equation
In our AGILD modeling [4], we couple the strip integral equation or differential integral equation in the

strip domain and the Garlekin equation in the remainder internal domain for solving EM field. We call the
strip integral equation and Garlekin equation to be AGILDM pair. In the section 4, the stochastic EM moment
strip integral equations (7–11) and EM moment Garlekin equation (12–16) are used to form AGILD pair
AGILDM{7,12}; AGILDM{9,14}, AGILDM{10,15}, AGILDM{11,16}.
5.2 The New SAGILD EM Modeling

We propose the SAGILD EM modeling as following five steps,
(M.1) use AGILD modeling to solve the pair equations AGILDM{7,12} for < [E(r),H(r)] >0;
(M.2) use AGILD to solve the pair equations AGILDM{9,14} for [CIJ (r))], I = σ, µ, J = E,H;
(M.3) use AGILD to solve the pair equations AGILDM{10,15} for [CIJ (r))], I = E,H, J = E,H;
(M.4) use AGILD to solve the pair equations AGILDM{11,16} for < [E(r),H(r)] >2;
(M.5) to update < [E(r),H(r)] >=< [E(r),H(r)] >0 + < [E(r),H(r)] >2.
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6. The New Stochastic SAGILD EM Inversion

6.1 The EM Parameter Variation Moment Strip Integral Equations

δ

[
E
H

]

0
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∫

Ω

[
EJb (r′, r) HJ

b (r′, r)
EMb (r′, r) HM
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AGILDII

(
δ

[
CσE CµE
CσH CµH

]
,δ

[
CEE CEH
CEH CHH

]
,δ[D0]

)
= δ

[
CEE CEH
CEH CHH

]
(rd) −

∫

Ω

[
EJb (r′, r) HJ

b (r′, r)
EMb (r′, r) HM

b (r′, r)

]
δ

[
CσE CµE
CσH CµH

][
E
H

]

0

dr′

+

∫

∂Ω−

[
HJ
b (r′, r) EJb (r′, r)

HM
b (r′, r) EMb (r′, r)

]
× δ

[
CEE CEH
CEH CHH

]
d~S, (18)
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6.2 The EM Parameter Variation Moment Garlekin Equations

∮

∂Ω

δ[E H]0 × φId~S −
∫

Ω

δ[E H]0∇× φIdΩ =

∫
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d
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AGILDGII
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〉
,
〈
δ[E,H]2

〉
d
, δĈDE , δ[D0]

)
= 0. (25)

6.3 The SAGILD EM Parameter Inversion
We propose the SAGILD EM inversion as the following six steps,

(I.1) use AGILD inversion to solve the pair equations AGILDI{17,22} for < δ[D]0 >;
(I.2) use AGILD inversion to solve the pair equations AGILDI{19,23} for < δ[CDE(r)] >;
(I.3) use AGILD inversion to solve the pair equations AGILDI{20,24} for < δ[CDD(r)] >;
(I.4) use AGILD inversion to solve the pair equations AGILDI{21,25} for < δ[D]2 >;
(I.5) to update < δ[D] >=< δ[D]0 > + < δ[D]2 >;
(I.6) to do iteration (I.1)–(I.5) with regularizing to find [D] such that P ([D])/P (E,H)(rd)) = max.

7. Applications

Because there are random noises in the field data and parameters in the experiment and industrial measure-
ments, it is necessary to study stochastic EM field modeling and parameter inversion. Our SAGILD modeling
and inversion have AGILD’s significant merits and improved field and parameter moments and its confidences
interval. Our SAGILD methods have widely applications in the Earth, Sun, and Luna space EM field explo-
ration, nanometer and material sciences, geophysical and Earthquake exploration, MT, MAIL, VEMP, weather
imaging, medical MRI and X-ray imaging, and environmental engineering, EM stirring in casting. SAGILD is
used for finances, movie field, game field, seismic wave, acoustic wave, random flow filed, QEM particle wave in
nano-physics and nano-biophysics and photosynthesis in anisotropic media.
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8. Conclusions

The all integral equations and SAGILD methods in this paper are new original works. Field and synthetic
random data tests show that the SAGILD method is high resolution, stable, and reasonable accurate moment
modeling and inversion algorithms. It can be used to obtain the improved EM field and parameter mean with
the second mean term, covariance, and standard deviations. SAGILD is very useful for estimating uncertainty
and confidence interval for field and parameters. Our SAGILD software are effective tools for EM field and
parameters, finances, movie field, game field, seismic, acoustic, random flow, QEM particle wave in nano-physics
and biophysics and photosynthesis. Our SAGILG MCMC stochastic method and software are developing.
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Geometric Optics and Electromagnetic Models for
Cylindrical Obstacles

D. Trappeniers, R. G. Gonzàlez, E. van Lil, A. van de Capelle

K. U. Leuven, Belgium

Abstract—A software prediction tool called EPICS (Enhanced Propagation for Indoor Communications Sys-
tems) was developed at the ESAT-TELEMIC division of the K. U. Leuven in two versions: a Geometric Optics
(GO) version and a Physical Optics (PO) version. However, like many other three-dimensional package, this
can only determine the signal in an environment that can be decomposed into (ir)regular hexahedral obstacles
(with 6 sides like rectangular blocks, cubes, etc.) or (complex) combinations of them. Although most of the
real life environment can be approximated by these hexahedral obstacles, this might lead to some artefacts
like periodic radar cross section variations, the need for multiple diffractions to calculate the signal behind a
cylindrical obstacle, or reflections that are ignored (e. g., because the approximated side plane is positioned so
that a reflection on that plane can not reach the receiver) is existing. To calculate the signal more accurately
for those cases, we need to implement curved obstacles into EPICS. In a first step to achieve this goal, the
introduction of cylindrical obstacles is investigated.

In this paper, the general strategy is discussed. The first step is to determine the different intermediate
(i. e., penetration, reflection and diffraction) points on the ray between transmitter and receiver. Efficient
computational routines have been written and tested for this purpose, mostly solving the problem first in two
dimensions (projected in a plane perpendicular to the axis of the cylinder) and then transforming this solution
to the three-dimensional problem. Once these intermediate points have been found, one can start with the
computation of the electromagnetic field.

In the case of a penetration, the intermediate point(s) can be found very easily (crossing point(s) of a line and
a circle) and the electromagnetic computations don’t differ from the computations with hexahedral obstacles.
For the reflection by a non perfectly conducting surface, the plane wave Fresnel reflection coefficients can be
used. Also the finite thickness of the cylindrical walls can be taken into account, using internal (multiple)
reflections, if the losses are high or the reflection coefficient of the wall is not to large.

For the diffractions, the two-dimensional geometric problem that needs to be solved to find the diffraction
points is the determination of the tangent line to a circle (both from transmitter and receiver). Note that both
can have two tangent lines, and one might have to match the two corresponding diffraction points. In this case,
the electromagnetic computations for the vertical (i. e., field component parallel with the axis of the cylinder)
and horizontal polarisation are done separately. An important issue in these computations is the convergence
of the series used for the calculation of the field.

The reflection points on a cylindrical wall can not be found as easily as in the previous two cases. In general,
an iterative process is required. This implies that the search for a good starting value is an important issue.
Therefore some efficient computer programs were written to find firstly a good starting value of the Newton-
Raphson iteration. As for the electromagnetic computations, one has to take into account that the caustics are
transformed after the reflections and thus another amplitude factor has to be taken into account.

Although the described routines are not (yet) a part of the EPICS software, new routines based on Geometric
Optics (GO) have been written and tested (in matlab) to predict penetration, reflection and diffraction of
electromagnetic fields around cylindrical obstacles. This will be used to compute the effects of a curved airport
terminal on an Instrument Landing System (ILS).

1. Introduction

Most of the real life environment can be approximated by hexahedral obstacles, or combinations of different
hexahedral obstacles. Of course this leads to some artefacts like periodic radar cross section variations, the need
for multiple diffractions to calculate the signal behind a cylindrical obstacle, or reflections that are ignored,
because the approximated side plane is positioned so that a reflection on that plane can not reach the receiver
(see Figure 1). To calculate the signal more accurately for those cases, we need to implement cylindrical obstacles
into the EPICS program [1].
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Figure 1: Examples of combinations of hexahedral obstacles to more complex obstacles house (left) and conical
tower (right).

For each phenomenon, i. e., penetration, diffraction and reflection we briefly discuss the routines to find the
intermediate (penetration, diffraction and/or reflection) points [2]. In most cases, this implies that we first solve
a two-dimensional problem which can be easily transformed to the three-dimensional solution. The main part
of this paper, however, will be devoted to the electromagnetic computations of the field around these cylindrical
obstacles.

1. Penetrations and Attenuation
In EPICS the “direct” field between 2 (intermediate) points is calculated in free space. However, this path

might be obstructed by an obstacle. Therefore, each wall/obstacle obstructing this path introduces some attenu-
ation of the signal strength. In general we have 3 possibilities: no penetration (e. g., the line transmitter-receiver
is parallel to the axis of the cylinder but the distance between the two lines is bigger than the radius), one pen-
etration (if either the transmitter or the receiver is inside the cylinder, while the other is outside, or in the
tangent case) or two penetrations (general case).

1.1. How to Find the Penetration Points?
The routine to find the penetration points is rather easy: first we determine the crossing points of the

line transmitter-receiver (or between 2 intermediate points) with the top and bottom plane of the cylinder. If
these points are between the transmitter and receiver, and if the distance of these points to the centre of the
top/bottom plane respectively is smaller than the radius of the cylinder, these are valid penetration points. The
last step is to investigate the cylindrical wall. Therefore, we need to calculate the crossing points of the line
between the projected locations of the transmitter and receiver and a circle. Figure 2 shows the side and top
view of some examples (the transmitter is denoted by a �, the receiver by a ◦ and the penetration point(s) by
an ∗).

Figure 2: Examples of penetration: both through the side walls (left) and one penetration through a side wall
combined with a penetration through the reference/bottom plane (right).
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1.2. The GO Penetrated Field
Classical Geometrical Optics (GO) states that the high-frequency electromagnetic field propagates along

ray paths, which satisfy the principle of Fermat, which states that the propagation of waves associated with
these high frequency fields can be reduced to the study of wave paths along which the travel time is minimal.
For perpendicular polarisation, the incident field lies in the plane perpendicular to the plane of incidence (soft
boundary conditions). Hard boundary conditions require the incident field to be parallel with the plane of
incidence. For the reflection by a non-perfectly electromagnetic conducting surface the plane-wave Fresnel
reflection coefficients can be used:

Γ⊥ =
ε′ cos θ −

√
ε− sin2 θ

ε′ cos θ +
√
ε− sin2 θ

Γ‖ =
cos θ −

√
ε′ − sin2 θ

cos θ +
√
ε′ − sin2 θ

(1)

where θ is the angle between the incidence ray and the normal of the penetrated plane, ε the permittivity and σ
the conductivity of the wall. Also the finite thickness of the wall under investigation can be taken into account
if the dimensions are small with respect to the distance between transmitter and receiver. In those cases, a
plane wave model based on successive reflections within the slab leads to much better results (Figure 3). Only
when the losses are small and is not close to 1, edge effects have to be taken into account. However, for practical
cases of concrete and thick walls the losses are sufficiently high.

Figure 3: Multiple reflections within a slab.

If we suppose that walls can be approximated by a single slab of dielectric material we can easily see from
(Figure 3) that the penetrated field is given by (2), where Γ is the appropriate reflection coefficient. Using this
equation, the generalised transmission coefficient can be derived (3).

~Et = ~Ei
∞∑

n=1

(1 + Γ) (−Γ)
2n−2

(1 − Γ) e−2(n−1)sαe−2j(n−1)sβej(n−1)k0d sin θ (2)

τg =

(
1 − Γ2

)
e−sαe−jsβ

(1 − Γ2) e−2sαe−j2sβejk0d sin θ
(3)

where k0 denotes the free space phase constant, while α and β are the plane wave attenuation and phase constant
of a lossy medium [3], given by (4). As for the case of the generalised reflection coefficient, the penetration
coefficient for given material parameters may depend to a great extent on the frequency and thickness used.
Inversely, when thickness and frequency are known penetration measurements can be used to estimate the
material parameters of different structures [4].

α = ω

√
µε

2

√√
1 +

( σ
ωε

)2

− 1

β = ω

√
µε

2

√√
1 +

( σ
ωε

)2

+ 1 (4)

Figure 4 shows 2 examples of respectively a “perpendicular” incidence, where the line transmitter-receiver
is perpendicular to the axis of the cylinder and a “non-perpendicular” incidence. In this last case an extra
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parameter m can be specified (note that the line transmitter-receiver is still crossing the axis of the cylinder).
For these examples we used a wall with a thickness l of 0.1 m, a relative permittivity 2.5 (εr) and a conductivity
of 0.036 (σ). The used frequency was 2.45 GHz.

Figure 4: Examples of penetration through a cylinder: perpendicular (left) and non-perpendicular (right) case.

Note that when m gets very high the losses through the faces are also bigger. For smaller incidence angles,
resonance can occur in the wall, so that the losses are not directly proportional with s (see also Figure 3).

2. Diffractions

Again we can then solve the geometrical problem (see Figure 5). The determination of the diffraction
points in a two-dimensional environment is rather easy: we draw the lines tangent to the circle from both
the transmitter and the receiver (see top views). The last step is to determine which of the two points of the
transmitter side corresponds with which point at the receiver side (smooth transmission between the air medium
and the cylinder surface). Note that we only take diffractions around the cylinder into account. Thus, if one
or both of the two diffraction points of one ray turns out to be above the “top” plane or below the “bottom”
plane (reference plane), this ray is not taken into account (e. g., Figure 5).

Figure 5: Examples of diffraction: both diffractions are valid (left) and the righter diffraction is ignored (right).

2.1. Vertical Polarisation
We have considered a plane wave incident upon a perfectly conducting cylinder (Figure 6). The incident

wave is linearly polarised with electric vector ~Ei parallel to the axis of the cylinder. The incident ~k-vector is
perpendicular to the axis of the cylinder. In terms of cylindrical coordinates, we have

~Ei = ~izE0e
jkx = ~izE0e

−jkρ cos θ0 (5)

In this analysis we follow the procedure described by Kong [5].
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Figure 6: Scattering by a conducting cylinder.

To match the boundary conditions at ρ = a, we transform the plane wave solution into a superposition of
cylindrical waves satisfying the Helmholtz wave equation in cylindrical coordinates:

e−jkρcosθ0 =

∞∑

m=−∞
amJm(kρ)ejmφ (6)

The constant am can be determined by using orthogonality relations for ejmφ. We multiply both sides by e−jnφ

and integrate over φ from 0 to 2π. In view of the integral representation for the Bessel function,

Jn(kρ) =
1

2π

∫ 2π

0

e−jkρcosθ0−jnφ+jnπ/2dφ (7)

we obtain am = e−jnπ/2 and

e−jkρcosθ0 =

∞∑

m=−∞
Jm(kρ)ejmφ−jmπ/2 (8)

This expression is referred to as the wave transformation, which represents a plane wave in terms of cylindrical
waves.

The scattered wave can also be expressed as a superposition of the cylindrical functions satisfying the
Helmholtz wave equation. Expecting outgoing waves, we write the solution in terms of Hankel functions of the
first kind. The sum of the incident wave and the scattered wave satisfies the boundary condition of a vanishing
tangential electric field at ρ = a. We find the total solution to be

~E = ~izE0

∞∑

n=−∞

[
Jn(kρ) −

Jn(ka)

H
(1)
n (ka)

H(1)
n (kρ)

]
ejnφ−jnπ/2 (9)

The first summation term represents the incident wave; the second summation term, the scattered wave. Note
that for ρ = a, the field from (9) becomes zero. In the far-field zone, where kρ >> 1, we can make use of the

asymptotic formula for H
(1)
n (kρ) and find that the scattered wave takes the form of the first expression of (10)

for small radii a, which can be expanded with respect to ka.

~Es ≈ ~izE0

∞∑

n=−∞

√
2

πkρ

Jn(ka)

H
(1)
n (ka)

ejkρ+jn(φ−π)−jπ/4

~Es = ~izjE0

√
2

πkρ

[
1

ln(ka)
+ (ka)2 cosφ− (ka)4

8
cos 2φ+ ...

]
ejkρ−jπ/4 (10)

This series converges rapidly when the radius of the cylinder is small compared with the wavelength, ka << 1.
The first term is angle-independent and signifies that the scattered wave caused by an infinitely thin wire is
isotropic.

2.2. Horizontal Polarisation
We have also generalised the procedure and implemented the diffraction by a conducting cylinder for hori-

zontal polarisation. In this case, the electrical field can be expressed like this (see Figure 6):

~Ei = ~iyE0e
−jkρ cosφ (11)

The scattered wave takes the following form:
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~Es = ~iρ

∞∑

n=−∞
anH

(1)
n (kρ)ejn(n−π/2) + ~iφ

∞∑

n=−∞
bnH

(1)
n (kρ)ejn(n−π/2) (12)

Once again, we have to require that the φ-component of the total field (incident and scattered field) vanishes
for ρ = a.

The φ-component of the incident field (11) can be written as:

~iφ = −~ix sinφ+ ~iy cosφ

~Eiφ = − ~E0e
−jkρ cosφ cosφ (13)

By differentiating Eq. (8) with respect to ρ we obtain:

− jkejkρ cosφ = k

∞∑

n=−∞
J ′
n(kρ)e

−jn(n−π/2) (14)

where the derivative of the Bessel function can be found from [6]:

J ′
n(z) =

Jn−1(z) − Jn+1(z)

2
(15)

J ′
0(z) = −J1(z) (16)

When considering only the φ-component of the scattered field (12), we find (17). Indeed, the φ-component
vanishes in the far field. This expression can be simplified as we have done above for the vertical polarisation.

~E = ~iφE0

∞∑

n=−∞

[
J ′
n(kρ) −

J ′
n(ka)

H
(1)
n (ka)

H(1)
n (kρ)

]
ejn(φ−π/2) (17)

In Figure 7 both the vertical and horizontal component are shown for 2 examples. Note that the horizontal
component gets stronger as the radius of the cylinder increases.

Figure 7: Examples of diffracted fields around a cylinder.

3. Reflections

3.1. Iterative Process Required to Find the Reflection Points
Whereas for the previous phenomena, the determination of the intermediate points was rather easy, this

requires some more attention in the case of a reflection. Of course, one can determine some easy cases as well,
e. g., reflections on top/bottom plane, symmetrical cases, etc. The general case for the determination of the
reflection point(s), is somewhat more complicated. To find the solutions of the two-dimensional problem we
have to solve a fourth degree equation iteratively [2]. This equation is derived by drawing a tangent line on
the circle through a chosen reflection point on the circle to determine the mirror images of the transmitter (see
Figure 8).

From those points, one can compute the points on the line transmitter-receiver (λ2 and λ2) where the
signal will be reflected to (i. e., the crossing points between this line and the lines from the mirror image of the
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Figure 8: Sketch of general case.

Figure 9: Examples of reflection on a cylinder: without (left) and with (right) reflections on the top and bottom
plane.

transmitter and the reflection points under investigation, determined by λ1). The goal is to determine λ1 so
that the vector determined by λ2, λ2b respectively, is equal to the projection of the receiver. This implies that
λ2 and λ2b should be equal to 1, leading to Eq. (18).

λ2,2b = λ1

[
±2Rc

√
a′ + b′λ1 + c′λ2

1 − 2a′ − b′λ1

±Rc
√
a′ + b′λ1 + c′λ2

1 − a′ + c′λ2
1

]

λ2,2b = 1? ⇔ A4λ
4
1 +A3λ

3
1 +A2λ

2
1 +A1λ1 +A0 = 0 (18)

where a′ is the quadratic norm of the projected transmitter (λ1 = 0), b′ twice the scalar product between this
vector and the vector between projected transmitter and receiver, c′ the quadratic norm of this last vector and
Rc the radius of the cylinder.

Unfortunately, we don’t always have the possibility to solve a linear equation of the fourth order. Therefore,
we will solve this problem iteratively by using the Newton-Raphson method. One can see that equation (18)
has 4 possible singularities (nominator equal to zero), and that they are difficult to calculate (start value of
Newton-Raphson has to be on the right side of these singularities). Therefore we will search a solution for the
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inverse function (1/λ2 = 1). The last step will be again the transformation of the two-dimensional solution to
the three-dimensional solution (excluding reflection points on the cylindrical wall that lie above the top plane
or below the bottom plane).

3.2. Reflected Field Computations
For the implementation of the computation of the reflected field, one has to keep in mind that after the

reflection, the location of the caustics, both for parallel and perpendicular to the axis of the cylinder, might
have been changed as is shown in Figure 10.

Figure 10: Reflection against a curved surface (parallel case).

Taking a cross-section along one of the radii of curvature, and expressing the arc on the circle as a function
of the viewing angles, one can obtain:

a∆α cos θ0 = l∆γ1 = ρ∆γ2 (19)

where ∆γ1 = ∆θ0 − ∆α and ∆γ2 = ∆θ0 + ∆α. Eliminating ∆α/∆θ0 this leads to

1

ρi
=

1

l
+

2

Ri cos θ0

1

R1
=

cos2 α

a
(20)

1

R2
=

sin2 α

a

where Ri represents the radius of curvature (parallel and perpendicular to the axis). Indeed, it can be shown
in analysis that the radius of curvature of a function y(x) is given by:

Ri =
y′′√

(1 + y′2)3
(21)

In general the cut of a cylinder is an ellipse which can be expressed by (x/a′)2 + (y/b′)2 = 1, where a′ = a
and b′ = a/ cosα, bearing in mind that α is the angle between the axis of the cylinder and the cut. Using (21)
at the expression of the ellipse, one obtain the formulas of (20). Note that for the parallel case R2 will become
infinite. This implies that the distance to the new caustics can be computed:

Figure 11: A bunch of rays with a different radius of curvature.
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1

ρ1
=

1

l
+

2 cos2 α

a cos θ0

1

ρ2
=

1

l
+

2 sin2 α

a
(22)

Keeping in mind that the total distance after reflection is given by di = ρi + s, this implies that the field
attenuation after reflection can be computed using:

|E| = |E0|
√

ρ1ρ2

(ρ1 + s)(ρ2 + s)
(23)

where |E0| is the field at reflection point ~M . This attenuation has to be multiplied by the reflection coefficients
which can be determined from the slab-approximation of the wall (see Figure 3).

~Er = ~Ei

[
Γ +

∞∑

n=1

(1 + Γ) (−Γ)
2n−1

(1 − Γ) e−2nsαe−2jnsβejnk0d sin θ

]
(24)

Γg = Γ

[
1 −

(
1 − Γ2

)
e−2sαe−j2sβejk0d sin θ

(1 − Γ2) e−2sαe−j2sβejk0d sin θ

]
(25)

3.3. Case Study: Brussels Airport Terminal

At Brussels airport, a few years ago a new terminal was build. This A-terminal has a curved shape, to
reduce the influence on the Instrument Landing System (ILS) of the neighbouring runway. This ILS systems
allows blind landings, and thus has to be very reliable. Using a curved shape, the effect of this new terminal
was reduced radically. Figure 12 shows the effect of a rectangular building (left) and a curved building (right)
on the differnce pattern of the ILS system (zero along the runway). Note that the buiding was approximated
by a cylinder with a horizontal axis, which comes close to the current shape of this A-terminal. One can clearly
see that in the zone where reflections can occur (between 3720 and 5200 m along the x-axis), the effect of the
cylindrically shaped building is much smaller.

Figure 12: Comparsion between rectangular shaped (left) and curved shaped (right) A-terminal for the
difference-pattern of the ILS system.

4. Conclusion

In this paper we investigated the influence of a cylindrical obstacle on the electromagnetic signal. Though it
is not presented as a part of the EPICS software yet, new routines based on Geometric Optics (GO) have been
written and tested to predict penetration, reflection and diffraction of electromagnetic fields around cylindrical
obstacles as a step in a future implementation in EPICS.
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3D and 2.5D AGLID EMS Stirring Modeling in the
Cylindrical Coordinate System

G. Q. Xie, J. H. Li, J. Li, and F. Xie
GL Geophysical Laboratory, USA

Abstract—We have proposed the new GL and AGILD modeling and inversion in the PIERS 2005 in Hangzhou.
In this paper, we propose 2.5D AGILD modeling algorithm for electromagnetic (EM) stirring, motor and
generator design. In the cylindrical coordinate system, the EM field is vector function of r, θ, and z. The
electrical conductivity is only depended on radial coordinate r and vertical coordinate z. Upon substituting
the Fourier serious of the magnetic field into the strip differential integral equation on boundary strip with pole
ρ = 0 and Galerkin equation in the internal sub domain, we construct 2.5D AGILD EM stirring modeling in
cylindrical coordinate system for the steel and metal continuous casting. There are serious difficulties in the EM
stirring modeling by using FEM method and FD method. First, there is u/ρ2 term in the Maxwell magnetic
field differential equation in the cylindrical coordinate system, the pole ρ = 0 is strong coordinate singularity.
The coordinate singularity is difficult in the EM stirring modeling by using FEM and FD method. Our 2.5
AGILDEMS modeling method resolved this difficulty. There is no any coordinate singularity in our 2.5D EM
differential integral equation. Second, because the conductivity in air is zero but it is 105 in steel, what is a
suitable boundary condition on ρ = 0 for current, electric field, and magnetic field that is another difficulty
when FEM method and FD method to be used. Our AGILDEMS overcome this difficulty. Based on our 2.5D
AGILDEMS algorithm, we developed the 2.5D AGILDEMS modeling software. Many applications show that
the 2.5D AGILDEMS software is a powerful tool for design of the EM stirring and real time control monitor
in the continuous casting. The AGILD K-ε flow modeling and software are developing and joining with our
AGILD EMS modeling for continuous casting. GL EMS and AGILD EMS modeling can be used for micro,
nano motor, generator and geophysics and materials.

1. Introduction

In the steel and metal continuous caster, the electromagnetic (EM) stirring (EMS) is an established technique
and important approach for improving steel quality. Many EMS with variable style have been working in the
steel and metal continuous caster industrial in the world. To exactly calculate the EM field and determine the
bloom/billet’s size and properties in EMS are an important and difficult task. Because the conductivity in the
air environmental is zero but 50,000 1/ohm in steel. The sharp high contrast is difficult in inversion. The EM
field artificial boundary condition for infinite domain is inaccurate and complicated. The coordinate singularity
is another difficulty in FEM for EMS modeling in the cylindrical coordinate system. The existing EM FEM
method and software are not accurate to calculate EM field in EMS. The EMS properties inversion for steel
material and conductivity is necessary to develop. We have proposed the new GL and AGILD modeling and
inversion in the PIERS 2005 in Hangzhou [1, 2]. We propose the GL method and its advantages for resolving
the historical difficulties [3] and the stochastic AGILD EM modeling and inversion in Piers 2006 in Cambridge
[4]. In this paper, we propose the 2.5D AGILD EMS stirring modeling using our magnetic field differential
integral equation and magnetic field Garlekin equation. Our AGILD EMS modeling is an important tool for
EMS design and EMS real time processes monitoring in the continuous caster. Also EMS modeling and inversion
are useful for variable motor and generator design, environment, geophysics, coaxial antenna, etc. sciences and
engineering.

The description order in this paper is as follows. In the section 2, we derive the 3D and 2.5D magnetic field
strip differential integral equations in the cylindrical coordinate system. The 3D and 2.5D magnetic field strip
Garlekin equations are derived in the section 3. In the section 4, we present the 3D and 2.5D EMS modeling.
The applications of the EMS modeling is described in the section 5. In the section 6, we describe conclusions.

2. The 3D and 2.5D Magnetic Field Strip Differential Integral Equations

We derive the 3D and 2.5D magnetic field differential integral equations in the strip domain in the cylindrical
coordinate system in this section. We call the equations to be the strip magnetic field differential integral
equations.
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2.1. The 3D Magnetic Field Strip Differential Integral Equation
Upon substituting the field and coordinate transformation between the rectangle and cylindrical coordinate

system, we derive the 3D magnetic field strip differential integral equation in the cylindrical coordinate system
as follows

FH3(H,Hbρ, H
Mρ

b , E
Mρ

b )
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Hρ(r) = FH3(H,Hbρ,H
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b ),

Hθ(r) = FH3(H,Hbθ,H
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b ),
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b ),

(2)

where E is the electric field, H is the magnetic field, Emb and Hm
b is Green function exciting by the magnetic

dipole source, Emb (r′, r) has weak and integrative singular at r = r′, the r locates in the outside boundary of the
strip or in the subsurface with ρ′ = 0, the r′ locates in ∂Ω−, the internal boundary of the strip, therefore, the
3D strip magnetic field differential integral equation has no coordinate singular at pole ρ′ = 0. It has integrative
weak singular kernel.
2.2. The 2.5D Magnetic Field Differential Integral Equation

Substituting the EM field Fourier series, H(ρ, θ, z) =
∑∞
m=−ωHm(ρ, z)eimθ, into the 3D strip magnetic

field differential integral equation (2), we derive the 2.5D equations in the cylindrical coordinate system
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(4)

3. The 3D and 2.5D Magnetic Filed Garlekin Equation
We derive the 3D and 2.5D magnetic field Garlekin equation in the cylindrical coordinate system.

3.1. The 3D Magnetic Field Garlekin Equation
Substituting field and coordinate transformation from rectangle to cylinder into the magnetic field Galerkin

equation [2], we derive the 3D magnetic field Garlekin equation in the cylindrical coordinate system as followsZ
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3.2. The 2.5D Magnetic Field Garlekin Equation
Upon substituting the Fourier series, H(ρ, θ, z) =

∑∞
m=−ωHm(ρ, z)eimθ into the 3D Garlekin equation (5),

we derive the 2.5D magnetic field Garlekin equation in the cylindrical coordinate system as followsZ
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(6)
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Figure 1: Rotation magnetic field Hθ in time =0 s.
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Figure 2: Rotation magnetic field Hθ in time =0.1 s.

4. 3D and 2.5 D EMS Modeling

4.1. 3D EMS Modeling
We use collocation FEM the 3D strip magnetic field differential integral equation (2) in the boundary strip

domain including pole point ρ = 0, and the 3D magnetic field Galerkin equation (5) in the reminder internal
domain without pole ρ = 0 to construct 3D AGILD EMS magnetic field modeling for EM field in the Stirring
and motor etc industrial engineering and sciences.
4.2. 2.5D EMS Modeling

We use collocation FEM the 2.5D strip magnetic field differential integral equation (4) in the boundary
strip domain including pole point ρ = 0, and use the 2.5D magnetic field Galerkin equation (6) in the reminder
internal domain without pole ρ = 0 to construct 2.5D AGILD EMS magnetic field modeling for EM field in the
stirring and motor etc industrial engineering and sciences.

5. The Applications of the AGILD EMS Modeling

Our 3D and 2.5D AGILD and GL EMS modeling has been used to calculate the EM field for several EM
stirring with variable style. Some asynchronous EMS stirring is designed as follows: its outer radius is 500 mm,
the internal radius is 350 mm, and it is divided 6 sectors. The electric current has inverse direction for any
adjoining two sectors. The input electric current density intensity is 1 A/mm2. The frequency is 4 Hz. Before
installation of the stirring without steel flow, the factor did measure the magnetic field intensity. By using digit
magnetic GAUSS meter, the measurement value of the magnetic field intensity at center of the stirring is 1500
Gauss. By using our 2.5D AGILD EMS modeling simulation, the evaluated magnetic field intensity is 1513.28
Gauss at center of the stirring. The rotational EM field is very accurate and very stable. The AGILD EMS
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rotation magnetic field in caster Hρ(ρ, θ, zc, t) at the 0.0∼0.25 second are plotted in the Figures 1 and 4. They
show that by using the GL EMS and AGILD EMS modeling, the rotational magnetic field’s frequency is exactly
4 Hz. The GL EMS [3, 5] and 2.5D AGILD EMS magnetic field Hρ, Hθ intensity are plotted in Figures 5 and
6, the red curve is the GL magnetic field and blue curve is AGILD magnetic field, the two curves are close
matched. GL EMS and AGILD EMS modeling can be used for micro, nano motor, generator and group holes
geophysics and materials etc. We are developing GL and AGILD K-ε model steel flow driving by the EMS
Lorentz force and join it with AGILD EMS modeling to work for the steel and metal continuous casters.
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Figure 3: Rotation magnetic field Hθ in time =0.2 s.
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Figure 4: Rotation magnetic fieldHθ in time =0.25 s.
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Figure 5: The magnetic field Hρ intensity ,The red
line is GL magnetic field, The blue line is AGILD
magnetic field.
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Figure 6: The magnetic field Hθ intensity, The red
line is GL magnetic field, The blue line is AGILD
magnetic field.

6. Conclusions

Many EM field in the stirring and motor simulations show that the 3D and 2.5D AGILD, and GL EMS
modeling are accurate and fast and stable. The AGILD EMS has merits over existing FEM, FD, and Born
approximation. The 3D and 2.5D AGILD and GL EMS modeling will be new tools for widely applications in
the sciences and engineering.
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Reduction of FDTD Simulation Time with Modal
Methods

D. A. Gorodetsky and P. A. Wilsey
University of Cincinnati, USA

Abstract—In order to simulate electromagnetic phenomena at high frequencies, full wave solvers such as the
FDTD method must be used. An alternative to the conventional FDTD method is to compute the zero state
response with convolution. Convolution results in an increased computation time with every time step. By
performing eigenmodal decomposition of the inputs, a constant time for the convolution can be achieved. We
show how the solution can be constructed analytically in terms of the eigenvalues and the eigenvectors of the
state transition matrix.

1. Introduction

FDTD is an evolutionary scheme that solves Maxwell’s equations in the time domain [1, 2]. The evolution
continues until steady state or stability in the output is achieved. Schemes of this type are often used when the
analytical solution to an electromagnetic problem is prohibitive. Problems to be solved with FDTD are abundant
in simulations of aircraft radar cross section at high frequency, microwave ICs, optical pulse propagation,
antennas, bioelectromagnetic systems, bodies of revolution, etc. [1]. Situations where it is important to model
on-chip interconnect include various microwave circuits such as amplifiers and optoelectronic circuits fabricated
in CMOS technology. Reference [3] discusses the design of on-chip waveguides at optical frequencies and
reference [4] discusses microwave frequencies. Such real-life problems often require grids with very large numbers
of points, due to fine features of the simulated objects and high excitation frequencies. The end result of the
fine grids is unreasonable simulation time. With the method proposed in this paper it may be possible to reduce
this simulation time to a more acceptable level.

The starting point for the FDTD solution can be the initial conditions, such as an excitation signal. If the
solution grid is partitioned into sub grids (i.e., for distributed computation) each containing N field variables,
then the starting point is either the initial conditions or the inputs from the adjacent sub grids. We use the
N × 1 vector Q(n) to denote the state of every electric and magnetic field variable in the sub grid. The N ×N
state transition matrix A(n − i) is used to obtain the state at time n from the state at time i. We also define
the N × 1 input vector X(n), to represent the inputs to the sub grid at time n. The manipulation of these
matrices in order to get the output of the sub grid, also called a module, was discussed in [5] and only the basic
results are given here.

If the inputs are combined in X(n), an I × 1 vector, then Y(n), the O × 1 output vector of the module is
given as:

Y(n) = [CA(n)B] ∗ X(n) (1)

where the ∗ symbol represents convolution, and the term in brackets is the impulse response h(n) of the FDTD
module. From the results in [5] and from Equation (1) we can observe that the computing time grows with
every time step, due to the properties of convolution. Therefore this method is useful only at early stages in
the simulation when the number of inputs is small, and the convolution workload does not exceed the time to
simulate the module with the standard FDTD.

A strategy to overcome this limitation for the TLM method was discussed in [6]. It involves writing each
entry in the location (i, o) of the impulse response matrix as a sum of the eigenvalues of the state transition
matrix as follows:

h(i, o, n) =
P∑

p=1

biopλ
n
p =

P∑

p=1

biop |λp|nejωpn∆t (2)

This can be interpreted as the sum of P matrices, each modulated by a different eigenvalue λp. Instead of
requiring the storage of the entire history of the inputs, this method requires storage of P matrices, where P is
some fraction of N , as will be described later in this paper. This method takes a constant amount of time for
every time step of the algorithm, with the number of multiplications given by IOP. In this paper we propose an
alternative method that involves decomposing the input vector into a sum of eigenvectors. With the proposed
method, the number of multiplications is reduced to OP.
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2. Proposed Method

A technique to express the state Q(n) as a superposition of eigenvectors and to solve for the zero-input
response was discussed in [7]. We propose the extension of that work to the zero-state response. In [7] the
initial state is written as:

Q(0) = a0y0 + a1y1 + . . .+ aNyN (3)

where yk are the eigenvectors of the state transition matrix. Using Equation (3), the evolution in time can be
expressed as:

Q(n) = (λ0)
na0y0 + (λ1)

na1y1 + . . .+ (λN )naNyN (4)

Our modification involves expressing the inputs as follows:

X(0) = a00y0 + a01y1 + . . .+ a0NyN
X(1) = a10y0 + a11y1 + . . .+ a1NyN

. . . .

. . . .
X(T ) = aT0y0 + aT1y1 + . . .+ aTNyN

(5)

With the inputs expressed as in Equation (5), the convolution will involve keeping only a sum for each column
as shown below:

Y(1) = h(1)X(0)
= λ0a00y0 + λ1a01y1 + . . .+ λNa0NyN
= s10y0 + s11y1 + . . .+ s1NyN

Y(2) = h(2) X(0) + h(1)X(1)
= λ0s10y0 + λ1s11y1 + . . .+ λNs1NyN
+λ0a10y0 + λ1a11y1 + . . .+ λNa1NyN

= s20y0 + s21y1 + . . .+ s2NyN

(6)

From Equation (6) it is clear that a running sum of each column is kept and that convolution involves the
multiplication of each column by its eigenvalue. In general the number of multiplications will depend on the
number of entries in the yk vectors and N , the total number of points in the module. Assuming that P out of
N eigenvectors are kept for the solution and the remaining ones are discarded, that the size of Y is O× 1, thus
the number of multiplications per time step is reduced to OP.

The complex eigenvalues have a non-zero characteristic frequency obtained by finding the phase angle of
the eigenvalue and indicated by Ωi = 2πfi. The corresponding frequency domain frequency is given by ωi =
ΩI/∆t [7]. By properly selecting p, eigenmodes that satisfy the criteria Ωi > 2πp can be eliminated since it is
known that the discretization mechanism of the numerical simulation does not properly propagate these higher
frequencies [9]. Adhering to the constraint that only wavelengths that are greater than 10 times the length of
a side of a cell can be propagated allows p to be set at 1/10. After the elimination, P indicates the number of
remaining eigenmodes.

Hence, the storage of the complex eigenvectors will take up the equivalent of 2OPk1 bytes, where k1 is the
number of bytes per double. As can be seen from Equation (6), during every time step two multiplications
must be performed for every complex double that is stored. Also, the solution of Equation (5) requires 4OPk1

multiplications because the coefficients will in general be complex. Therefore, neglecting additions, every cycle
will take roughly 8OPk2 milliseconds, where k2 is the time per multiplication.

3. Results

A module with one interface was analyzed. The dimensions of this module were 1 × 20 × 2 cells. Because
the field was assumed zero on the boundary, the module contained only 175 points that participated in the
calculation. This resulted in 175 eigenvalues, 116 of which consisted of 58 complex conjugate pairs while the
remaining ones were either zero or unity and could be discarded. By setting p = 0.1, all but one of the complex
conjugate pairs were discarded.

The module was attached to the terminating face a parallel plate waveguide structure that was simulated
with the conventional FDTD and with the algorithm presented in this paper. At the excitation face a constant
plane wave source of 10 GHz. was introduced. The dimensions of the waveguide without the module were
58 × 20 × 2 cells, which translates to the dimensions of 2 × 0.0229 × 0.002 wavelengths at 10 GHz. The electric
field at various points along the length of the waveguide was obtained for the first 10,000 iterations. The results
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were always virtually identical between the conventional FDTD and our methods. In Figure 1 the electric field
variation with time in cell (29, 10, 1) is shown. Figure 2 demonstrates that the simulation results match the
predictions from electromagnetic theory.

Figure 1: Comparison of results of conventional and
proposed methods. The point is located in the mid-
dle of the waveguide.
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Figure 2: The electric field in the transverse direc-
tion. The results correctly indicate the presence of
the TM0 mode.

In order to demonstrate the case when the results were not identical, a module with dimensions of 3×20×2
cells was utilized. This translated to 525 points. In order to get accurate results from the larger module, p
had to be increased to 0.14 in this case. This caused the final system to end up with 16 complex conjugate
pairs. The electric field variation in the cell adjacent to the excitation face of the waveguide is displayed in
Figure 3. The comparison with the situation where the module produces zero output proves the functionality
of the module. Figure 4 shows the small difference between the output of the module at its interface and the
electric field produced by the conventional FDTD method at the same point. This difference is barely noticeable
in the beginning of the simulation and increases as the simulation progresses in time.
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Figure 3: The electric field (Ez) near the waveguide
entrance. The overall effect of the module on the
simulation can be observed.
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Figure 4: The electric field at the module interface.

4. Conclusion

In this paper we discussed the full-wave simulation of interconnect that is found on high frequency integrated
circuits. To speed up the simulation, we developed a recursive algorithm for convolution. This recursive
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algorithm is based on the modal decomposition approach to the impulse response of the finite-difference time-
domain numerical simulation. Its advantages over an earlier approach [5] is that the storage of the history of
the impulse responses (IOT) is no longer required. The only storage required is that of the eigenvectors (2OP),
eigenvalues (2P ), and coefficients (2P ). Another improvement over [5] is that the storage of the inputs (IT) is
replaced by the much smaller storage of the coefficients. In regards to the approach published in [6], the storage
requirement is improved from ∼ (IOP ) to ∼ (OP ) and the number of multiplications per time step is improved
in the same manner.

The methods discussed in this paper for interconnect can be extended to a majority of other electromagnetic
simulation scenarios such as antennas and radar cross section simulation. An important application is the use
of the FDTD method to simulate the propagation of electromagnetic waves in semiconductor devices. This is
done by coupling the electron transport equations with Maxwell’s equations [10].

Future work will involve the investigation into the techniques, such as change of basis, with which multiple
modules can be combined together to reduce the overall simulation time. As was seen in the results, the
relationship between the N and P varies with the size of the module as well as the choice of p. More insight into
this relationship will be required in order to be able to optimize the module for speed or accuracy requirements.
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Approximate Decomposition for the Solution of
Boundary Value Problems for Elliptic Systems Arising

in Mathematical Models of Layered Structures

Y. Shestopalov and N. Kotik
Karlstad University, Sweden

Abstract—We present an alternative approach to the solution of boundary value problems (BVPs) for elliptic
systems arising in mathematical models of layered structures. The main idea of the method is to consider
auxiliary problems for differential operators separated componentwise and to reduce them to a sequence of
iterative problems such that each can be solved (explicitly) by the Fourier method. The solution sequence is
then constructed with the help of a contracting transfer operator evaluated explicitly. This method facilitates
both analytic and numerical solutions and can be generalized to more complicated mixed BVPs for semilinear
partial differential operators.

1. Introduction

The processes which take place in layered structures may be described in terms of boundary value problems
(BVPs) for elliptic systems [1, 2], among them are the Laplace, Helmholtz, and Lamè equations, equipped
with appropriate boundary conditions of mixed type, including boundary–value contact problems (BVCPs)
formulated and investigated in [3].

The simplest examples of BVPs with boundary conditions of mixed type in electromagnetics and acoustics
[1, 2] arise when the Dirichlet (or Neumann) conditions are stated on one part of the boundary and the Neumann
(Dirichlet) condition on its complement. Such problem are formulated, e. g., in mathematical models of the wave
propagation in transmission lines [1]. A decomposition for the solution to the BVPs for the equation systems can
be applied when the differential operator can be separated while the boundary value (trace) operators are mixed
componentwise on the boundary. In Section 3 we present an example of such a separation (decomposition).

In this work we present an approach for analytical and numerical solution of BVPs in thin layers based on
approximate decomposition. The main idea of this method is to simplify the general BVP and to reduce it to a
chain of auxiliary problems and then to a sequence of iterative problems such that each of them can be solved
(explicitly) by the Fourier method.

2. Formulation

We present the method for the case of a BVCP [3] for the system of Lamè equations in a thin layer (band)
equipped with mixed boundary conditions. To this end, consider an elastic band S = {−∞ < x1 < +∞, 0 <
x2 < h} with Poisson’s ratio ν situated on the stiff base x2 ≡ 0. The boundary lines x2 = h and x2 ≡ 0

are denoted, respectively, by K1 and K2 (Fig. 1); ω =
⋃N
m=1 ωm, where ωm = [ am, bm], is a set of disjoint

segments; and ω∗ = K1 \ ω. Distribution of shearing strains on line K1, displacements on ω, and elongations
on ω∗ are given. We denote by uj and Fj , (j = 1, 2) the displacements and respectively projections of the
body forces in directions xj . The determination of uj reduces to a mixed BVP [3] for the Lamè equations in S

∆uj + k0
∂

∂xj

(∂u1

∂x1
+
∂u2

∂x2

)
= Fj , k0 =

1

1 − 2ν
, j = 1, 2 (1)

with the boundary conditions

u2 = 0,
∂u1

∂x2
+
∂u2

∂x1
= 0 on K2,

∂u2

∂x1
+
∂u1

∂x2
= f1(x1) on K1,

u2 = f2(x1) on ω,

(k0 − 1)
∂u1

∂x1
+ (k0 + 1)

∂u2

∂x2
= f3(x1) on ω∗

(2)
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and the conditions at infinity

Φs(u1, u2) =

∫

S

ΠS ds <∞,

Πs = (k0 − 1)
( 2∑

j=1

∂uj
∂xj

)2

+ 2
2∑

j=1

(∂uj
∂xj

)2

+
(∂u1

∂x2
+
∂u2

∂x1

)2

,

(3)

BVP (1)–(3) has the unique classical solution if the boundary functions are sufficiently smooth. Namely, the
following statement is valid (see [3]):

If the functions F1 ∈ Lp(S), F2 ∈ Lp(S), f1 ∈ Lp(K1), f3 ∈ Lp(ω
∗), p > 1 (f ∈ Lp(Ω) if |f |p is integrable

over Ω) and function f2 ∈ Cq(K1), q > 3, is a smooth (q-times continuously differentiable) compactly-supported
function with supp f2 ∈ ω then problem (1)–(3) is uniquely solvable if and only if

∫

K1

f1 dx1 +

∫

S

F1 dS = 0

and the solutions uj ∈ C2(Πah)∩C(Π̄ah) in every rectangle Π = Πah = {(x1, x2) : 0 < x1 < a, 0 < x2 < h}.

3. Approximate Decomposition

Consider a simplified version of the problem (1)–(3) which will be called problem A: body forces F1,F2 ≡ 0;
shearing stresses f1 ≡ 0 on K2; and normal stresses f3 ≡ 0 on ω∗. Consider this problem in a long rectangle
Πah bounded by the curve Γ = K̂1

⋃ K̂2

⋃H1

⋃H2, where K̂i = Ki
⋂{0 < x1 < a}, (i = 1, 2); ω̂∗ = ω∗⋂{0 <

x1 < a}; H1 = {x = (x1, x2) : x1 = 0, 0 < x2 < h}, H2 = {x = (x1, x2) : x1 = a, 0 < x2 < h}; and
u = (u1, u2) denotes the vector of displacements. Introduce the trace operators L(1) and L(2) specifying the
boundary conditions on ω̂, ω̂∗ and Γ:

L(1)u =

(
l
(1)
11 0

0 l
(1)
22

)
u,

l
(1)
11 u1 =

∂u1

∂ν
(x ∈ Γ), l

(1)
22 u2 = u2 (x ∈ ω ∪ K̂2 ∪H1 ∪H2)

(4)

is the operator of the Neumann–Dirichlet boundary conditions, and

L(2)u =

(
l
(2)
11 l

(2)
12

l
(2)
21 l

(2)
22

)
u,

l
(2)
11 u1 = 0, l

(2)
12 u2 =

∂u2

∂τ
(x ∈ Γ),

l
(2)
21 u1 = αu1,1 l

(2)
22 u2 = u2,2 (x ∈ ω̂∗),

(5)

where

∂

∂τ
=





∂

∂x1
, x ∈ K1

⋃K2

∂

∂x2
, x ∈ H1

⋃H2

,
∂

∂ν
=





(−1)i
∂

∂x2
, x ∈ Ki

(−1)i
∂

∂x1
, x ∈ Hi

, α =
k0 + 1

k0 − 1
. (6)

The operator Lu = L(1)u + L(2)u specifies the boundary conditions of problem A in the form Lu = f ,
with f = (0, f̂2(x)) and

f̂2(x) =

{
f2(x1), x = (h, x1) ∈ ω,

0, x ∈ Γ\ω, (7)

being a differentiable function on Γ with a compact support supp f2 ⊆ ω. Introduce matrix differential operators
of the system in problem (1)–(3) and problem A and rewrite the latter as

Du = 0, Lu = f , (8)
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where

D = ∆ + k0A, ∆ =

(
∆1 0
0 ∆2

)
,

∆1u1 = (k0 + 1)
∂2u1

∂x2
1

+
∂2u1

∂x2
2

, ∆2u2 =
∂2u2

∂x2
1

+ (k0 + 1)
∂2u2

∂x2
2

,

A =

(
0 1
1 0

)
∂2

∂x1∂x2
, f = (0, f̂2(x)).

(9)

Assuming that displacements u2 are absent on ω∗ write problem A in the form

Du = 0, L̂u = f , L̂ = L̂(1) + L̂(2), (10)

where L̂(1) = ‖l̂(1)ii ‖i=1,2 is defined as in (4) with the only difference that l̂
(1)
22 u2 = 1

2u2, x ∈ Γ, and L̂(2) has two

nontrivial components: l̂
(2)
21 defined in (5) and l̂

(2)
22 u2 = 1

2u2, x ∈ Γ.
Define the sequence {un} of vector-functions according to

∆u0 = 0, L̂(1)u0 = f0 =
(
− ∂f̂2
∂x1

, f̂2(x1)
)
, x1 ∈ ω,

∆un+1 = −k0Aun, L̂(1)un+1 = −L̂(2)un, n = 0, 1, 2, . . .

(11)

The limiting function (if exists) u = limn→∞ un (where the limit is determined with respect to an ap-

propriate norm) satisfies (8). In order to prove the existence consider BVP (11) for un+1 = (u
(n+1)
1 , u

(n+1)
2 ).

Componentwise, (11) consists of two inhomogeneous BVPs for Poisson equation in the rectangle. The solution
to each problem can therefore be obtained as a sum of the corresponding volume and surface (line) potentials.
In the vector–operator form the relationship between two intermediate problems (11) can be represented as

un+1 = Kun, (12)

where K is a volume–surface integral operator defined in term of the potentials.
Applying the Schauder a priori estimates of the solution to BVPs for elliptic PDEs [4, 5], using the explicit

form of un+1 and properties of logarithmic and Green’s potentials [6, 7], one can show that

‖un+1‖C2(Π) 6 Mn

(
‖un‖C2(Π) + ‖f2‖C2(ω)

)
, n = 1, 2, . . . , (13)

where constant Mn depends on the diameter of Πah and Mn → 0 if diam Πah → 0. Thus, operator K (12) is a
contraction in the space C2(Π)∩C(Π̄) of two-component vector-functions if the diameter of set ω, parameter h,
and the norm of boundary function f2 are sufficiently small. This implies the existence of the unique solution
u ∈ C2(Π) ∩ C(Π̄) to problem A.

This approximate decomposition can be applied to the solution of BVPs of the type (1), (2) for semilinear
systems with the differential operators Du = 4u +F(u,ux1

,ux2
,ux1x2

), where F is nonlinear with respect to
u and uxi

. Constructing the iterations similar to (11) or (12) and showing or assuming that the corresponding
transfer operator K is contraction, we obtain a recursive procedure (12) to determine displacements u.

4. Solution by the Fourier Method

One can obtain explicit solution to every intermediate BVP (11) in the form of Fourier series

u
(n+1)
2 =

∞∑

m=1

sin
πm

a
x1

(
dm sinh

πm
√
k0 + 1

a
x2 + em sinh

πm

a
√
k0 + 1

x2

)
,

u
(n+1)
1 =

∞∑

m=1

cos
πm

a
x1

(
gm cosh

πm

a
√
k0 + 1

x2 + qm cosh
πm

√
k0 + 1

a
x2

)
,

(14)

where

am = −
sinh

πmh

a
√
k0 + 1

sinh
πmh

√
k0 + 1

a

bm, bm =
fm

sinh
πmh

a
√
k0 + 1

, (15)
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fm = 2
a

a∫
0

f2(x1) sin πm
a dx1 are Fourier coefficients for the function f2 from boundary condition (2) and

dm =

√
k0 + 1

k0 + 2
bm, em =

(
1 +

√
k0 + 1

k0 + 2

)
bm,

gm =

√
k0 + 1

k0 + 2
bm, qm =

k0 + 3

(k0 + 2)
√
k0 + 1

ambm

(16)

are the Fourier coefficients obtained for (11) on the previous stage n.
Series (14) converge absolutely and uniformly in every rectangle Πδ

ah = {0 6 x1 6 a, δ 6 x2 6 h} with
0 < δ < h and admit term-wise differentiation arbitrary number of times. The rate of convergence is exponential.

In view of the explicit solution (14) it is reasonable to specify a boundary function f2(x1) in problem A and
(7) as a smooth compactly-supported function f2 ∈ Cp(R), p > 3, with supp f2 ∈ ω. One can consider, for
example, the case when f2(x1) is the so-called hat function of order p (a product of a polynomial in even powers
of argument that vanishes at the endpoints of ω and a Gaussian exponent) for which the Fourier coefficients can
be calculated explicitly. Such hat functions possess the properties of B–splines; therefore, one can approximate
or interpolate a smooth function on the line R with a finite support ω by a finite linear combination of hat
functions and apply the approximate decomposition with rapidly converging series solutions to BVPs with
virtually arbitrary boundary functions.

-

6

?

h

6

ω∗ a1 b1 a2 b2 aN bN

ω1 ω2 ωN

x1

x2

K1

K2

S

Figure 1: Statement of the problem. Figure 2: The function f2.

Figure 3: The displacement u1. Figure 4: The displacement u2.
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5. Numerical

Let us present some qualitative results of numerical–analytical solution to problem A (a simplified version of
(1)–(3) considered in a long rectangle) obtained using approximate decomposition (first iteration); the profiles of
boundary displacements are taken as hat functions presented in Fig. 2. Fig.s 3 and 4 show u1 and u2 calculated
in the case of a/h = 10 and two disjoint segments ω = ∪2

i=1[xSi
− pi, xSi

+ pi].
Values of displacement u1 in Fig. 3 are zero at xS1,2

because these points shift only in x2-direction; values in
the support intervals (xS1

− p1, xS1
) and (xS2

− p2, xS2
) are negative because these points shift in the opposite

direction; values in the intervals (xS1
, xS1

+ p1) and (xS2
, xS2

+ p2) are positive because these points also shift
in the x2-direction and take maximum and minimum at the respective points. Function u2 in Fig. 4 takes only
positive values in the intervals (xS1

− p1, xS1
+ p1) and (xS2

− p2, xS2
+ p2), maximum and minimum are at

the points xS1
and xS2

respectively.

6. Conclusion

We have developed a method of approximate analytical–numerical solution to BVPs for elliptic system in
parallel-plane layers based on decomposition of boundary value conditions. An advantage of the method is the
possibility of explicit determination and fast computation and visualization of all components at every point of
the layer. The method can be extended to wide families of BVPs using spline-type approximations based on
hat functions.
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Abstract—An approach is proposed to obtain some exact explicit solutions in terms of elliptic functions to the
Novikov-Veselov equation (NVE[V (x, y, t)] = 0). An expansion ansatz V → ψ =

∑2
j=0 ajf

j is used to reduce

the NVE to the ordinary differential equation (f ′)2 = R(f), where R(f) is a fourth degree polynomial in f .

The well-known solutions of (f ′)2 = R(f) lead to periodic and solitary wave like solutions V . Subject to certain
conditions containing the parameters of the NVE and of the ansatz V → ψ the periodic solutions V can be used
as start solutions to apply the (linear) superposition principle proposed by Khare and Sukhatme.

1. Introduction

The Novikov-Veselov (NV) equation [1] as a “natural” two-dimensional generalization of the celebrated
Korteweg-de Vries (KV) equation [2] has relevance in nonlinear physics (in particular in inverse scattering
theory) [3, 4] and mathematics (cf. e. g., [5, 6]).

As regards to physics, Tagami [3] derived solitary solutions of the NV equation by means of the Hirota
method. Cheng [4] investigated the NV equation associated with the spectral problem (∂x∂y + u)ψ = 0 in
the plane and presented solutions by applying the inverse scattering transform. With regards to mathematics,
Taimanov [5] investigated applications of the (modified) NV equation to differential geometry of surfaces. Fer-
apontov [6] used the (stationary) NV equation to describe a certain class of surfaces in projective differential
geometry (the so-called isothermally asymptotic surfaces).—Apart from these applications solutions of the NV
equation are interesting in and of themselves.

In the following we derive some solutions of the NV equation by combining a symmetry reduction method
[7, 8] and the Khare-Sukhatme superposition principle [9–12].

2. Elliptic Solutions

2.1. General Considerations
Following Novikov and Veselov [1] we consider the system

Vt = ∂3V + ∂
3
V + 3∂(uV ) + 3∂(uV ), (1)

∂u = ∂V, (2)

where ∂ =
1

2
(∂x − i∂y), ∂ =

1

2
(∂x + i∂y) are the Cauchy-Riemann operators in R

2. System (1), (2) is equivalent

to

Vt =
1

4
(Vxxx − 3Vxyy) + 3V (u1x + u2y) + 3(u1Vx + u2Vy), (3)

Vx = u1x − u2y, −Vy = u1y + u2x (4)

with u(x, y, t) = u1(x, y, t)+iu2(x, y, t), where u is defined up to an arbitrary holomorphic function ϕ = ϕ1+iϕ2

so that ϕ1x = ϕ2y, ϕ1y = −ϕ2x. (4) imply

u1 = −2∂−1
x ∂yD̃V + V + ϕ1, u2 = −2D̃V + ϕ2. (5)

The operator D̃ := (∂−1
x ∂y + ∂−1

y ∂x)
−1 is well-defined [13, (6)], so that u1, u2 can be inserted into (3).

Traveling wave solutions

V (x, y, t) = ψ(z), z = x+ ky − vt (6)
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imply ∂−1
x = k∂−1

y and thus lead to ϕ ≡ const. = C0 + iC1. Hence, (3) can be written as

− vψz =
1 − 3k2

4
ψzzz + 6

1 − 3k2

k2 + 1
ψψz + 3ψz(C0 + C1k). (7)

Following an approach outlined previously [7, 8, 14] it seems useful to find elliptic (traveling wave) solutions
of the form (p = 2 follows from balancing the linear term of highest order with the nonlinear term in (7))

ψ(z) =

p=2∑

j=0

ajf(z)j (8)

with [15]
(
df(z)

dz

)2

= αf4 + 4βf3 + 6γf2 + 4δf + ε ≡ R(f). (9)

The coefficients a0, a1, a2, α, β, γ, δ, ε are assumed to be real but otherwise either arbitrary or interrelated.

Inserting (8) into (7) and using (9) we obtain a system of algebraic equations that can be reduced to yield
the nontrivial solutions

α = 0, β = − 2a1

1 + k2
, γ = − 4a0

1 + k2
+

2F

3(3k2 − 1)
, δ, ε arbitrary,

subject to a2 = 0, 3k2 − 1 6= 0, (10)

α = − 2a2

1 + k2
, β = − a1

1 + k2
, γ =

F

6(3k2 − 1)
− a2

1 + 4a0a2

4a2(1 + k2)
,

δ =
1

8a2
2

(
a3
1 − 12a0a1a2

1 + k2
+

2a1a2F

3k2 − 1

)
, ε arbitrary,

subject to a2 6= 0, 3k2 − 1 6= 0 (11)

with F = v + 3C0 + 3kC1.

Thus, the coefficients of the polynomial R(f) are (partly) determined leading to solutions f(z) of (9). As is
well known [15, pp. 4–16], [16, p. 454] f(z) can be expressed in terms of Weierstrass’ elliptic function ℘(z; g2, g3)
according to

f(z) = f0 +
R′(f0)

4

[
℘(z; g2, g3) −

1

24
R′′(f0)

] , (12)

where the primes denote differentiation with respect to f and f0 is a simple root of R(f).

The invariants g2, g3 of ℘(z; g2, g3) and the discriminant ∆ = g3
2 −27g2

3 are related to the coefficients of R(f)
[17, p. 44]. They are suitable to classify the behaviour of f(z) and to discriminate between periodic and solitary
wave like solutions [8].

Solitary wave like solutions are determined by (cf. (12) and Ref. [18, pp. 651–652])

f(z) = f0 +
R′(f0)

4

[
e1 −

R′′(f0)

24
+ 3e1csch

2(
√

3e1z)

] , 4 = 0, g3 < 0, (13)

where e1 =
1

2
3
√
|g3| in (13).

In general, f(z) (according to (12)) is neither real nor bounded. Conditions for real and bounded solutions
f(z) can be obtained by considering the phase diagram of R(f) [19, p. 15]. They are denoted as “phase diagram
conditions” (PDC) in the following. An example of a phase diagram analysis is given in [14].
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2.2. Periodic Solutions
At first the coefficients according to (10) are considered. For simplicity we assume ε = 0, so that f0 = 0 is a

simple root of (9). The solution (12) can be evaluated to yield

V (x, y, t) = a0 + a1
3(1 + k2)(1 − 3k2)δ

(1 + k2)F + 6a0(1 − 3k2) + 3(1 + k2)(1 − 3k2)℘(x+ ky − vt; g2, g3)
(14)

with g2, g3 according to (10) and [8].
Evaluating (12) with coefficients according to (11) (with ε = 0 for simplicity) in the same manner we obtain

periodic solutions depending on a0, a1 and a2.

2.3. Solitary Wave like Solutions
To find the subset of solitary wave like solutions of the NV equation according to (10), (13) the discriminant

∆ must vanish. This is given if δ = 0 or δ = − (6a0(1 − 3k2) + (1 + k2)F )2

8a1(1 − 3k2)2(1 + k2)
.

For g3 < 0 we obtain solitary wave like solutions and here the PDC is fulfilled automatically for g3 < 0.

If δ = 0, ε = 0, f0 =
6a0(1 − 3k2) + (1 + k2)F

2a1(3k2 − 1)
, we obtain (cf. (8), (13))

V (x, y, t) = a0 +
6a0(1 − 3k2) + (1 + k2)F

2(3k2 − 1)
sech2

[√
− 6a0

1 + k2
+

F

3k2 − 1
(x+ ky − vt)

]
. (15)

If δ = − (6a0(1 − 3k2) + (1 + k2)F )2

8a1(1 − 3k2)2(1 + k2)
, ε = 0, f0 = 0, (8) reads

V (x, y, t) = a0 +
6a0(1 − 3k2) + (1 + k2)F

4(3k2 − 1)
tanh2

[√
F

2(1 − 3k2)
+

3a0

1 + k2
(x+ ky − vt)

]
. (16)

Subject to (10) (15), (16) represent general physical traveling solitary wave solutions of the NV equation for
ε = 0. While periodic solutions depend on a0 and a1, solitary solutions only depend on a0.

Solitary wave like solutions according to (11) can be obtained by an analogous procedure.

3. Superposition Solutions

Khare and Sukhatme proposed a superposition principle for nonlinear wave and evolution equations (NL-
WEEs) [9]. They have shown that suitable linear combinations of periodic traveling-wave solutions expressed by
Jacobian elliptic functions lead to new solutions of the nonlinear equation in question. Combining the approach
above with this superposition principle we have evaluated the following start solutions for superposition [20]

f(z) =





− 3γ+
√

9γ2−16βδ

4β dn2

(
1
2

√
3γ +

√
9γ2 − 16βδz,

2
√

9γ2−16βδ

3γ+
√

9γ2−16βδ

)
, βδ > 0, γ > 0,

4δ

−3γ+
√

9γ2−16βδ
sn2

(
1
2

√
−3γ +

√
9γ2 − 16βδz,

3γ+
√

9γ2−16βδ

3γ−
√

9γ2−16βδ

)
, βδ > 0, γ < 0,

− 3γ+
√

9γ2−16βδ

4β cn2

(
(9γ2−16βδ)

1
4√

2
z,

3γ+
√

9γ2−16βδ

2
√

9γ2−16βδ

)
, βδ < 0.

(17)

In (10) we choose ε = 0 for simplicity and thus, we obtain start solutions for superposition according to (17).
As an example we consider solutions of the form dn2 for p = 3, further results for cn2, sn2 and according to
(11) can be obtained in the same manner.

According to (8), (10) the start solution for superposition reads

V (x, y, t) = a0 + a1 A dn2(µ(x+ ky − vt),m), (18)

with A, µ, m according to (17), so that the superposition ansatz can be written as

Ṽ (x, y, t) = a0 + a1 A
3∑

i=1

dn2

[
µ(x+ k y − v3 t) +

2(i− 1)K(m)

3
,m

]
. (19)
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Inserting Ṽ (x, y, t) (denoting di = dn
(
µ(x+ ky − v3t) + 2(i−1)K(m)

3 ,m
)
) into (7) (v → v3) and using well

known relations for c2i and s2i [22, p. 16] leads to

6Aa1µm(1 − 3k2)

(
µ2 − 2Aa1

1 + k2

) 3∑

i=1

cid
3
i si −

12A2a2
1mµ(1 − 3k2)

1 + k2

3∑

i=1

d2
i

3∑

j 6=i
cjdjsj (20)

−2Aa1µm

(
6a0(1 − 3k2)

1 + k2
+ 3(C0 + C1k) + (2 −m)(1 − 3k2)µ2 + v3

) 3∑

i=1

cidisi = 0.

Remarkably, µ2 − 2Aa1

1 + k2
vanishes automatically [20, (13)]. By use of [23], (21) reads

−2Aa1µm

(
6a0(1 − 3k2)

1 + k2
+ 3(C0 + C1k) + (2 −m)(1 − 3k2)µ2 + v3

) 3∑

i=1

cidisi

−2Aa1µm

(
−12Aa1(1 − 3k2)(m− 1 + q2)

(1 + k2)(1 − q2)

) 3∑

i=1

cidisi = 0. (21)

Thus, the speed v3 in the superposition solution (19) is given by

v3 =
6a0(3k

2 − 1)

1 + k2
− 3(C0 + C1k) + (2 −m)(3k2 − 1)µ2 +

12Aa1(3k
2 − 1)(m− 1 + q2)

(1 + k2)(q2 − 1)
. (22)

The start solution V and the superposition solution Ṽ are shown in Fig. 1.

-4 -2 2 4

1

2

3

4

5

6

V, V

z

V

V

Figure 1: V and Ṽ (cf. (18), (19)) for c = −1, k = 1, a0 = −1, a1 = −1, C0 = 1, C1 = 1, δ = 4 (therefore:
v3 = −8.66008).

4. Conclusion

For the NV equation we have shown that a rather broad set of traveling wave solutions according to (6),
(8) and subject to the nonlinear ordinary differential equation (9) can be obtained. Periodic and solitary wave
solutions can be presented in compact form in terms of Weierstrass’ elliptic function and its limiting cases (4 = 0,
g3 ≤ 0), respectively. The phase diagram conditions (PDC) yield constraints for real and bounded solutions.
Finally, it is shown that application of the Khare-Sukhatme superposition principle yields new periodic (real,
bounded) solutions of the NV equation.
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Effects of the Resonant Scattering of Intensive Fields by
Weakly Nonlinear Dielectric Layer

V. V. Yatsyk
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Abstract—The transverse inhomogeneous, isotropic, nonmagnetic, linearly polarized, weakly nonlinear (a Kerr-
like dielectric nonlinearity) dielectric layer is considered. The results of a numerical analysis of the diffraction
problem of a plane wave on the weakly nonlinear object with positive and negative value of the susceptibility
are shown. The effects: non-uniform shift of resonant frequency of the diffraction characteristics of a weakly
nonlinear dielectric layer; itself the channeling of a field; increase of the angle of the transparency of the nonlinear
layer when growth of intensity of the field (at positive value of the susceptibility); de-channeling of a field (at
negative value of the susceptibility) are found out.

1. The Nonlinear Problem

Let the time dependence be exp (−iω t) and ~E (~r), ~H(r) complex amplitudes of an electromagnetic field.

We consider a nonmagnetic, isotropic, transverse inhomogeneous ε(L)(z) = 1 + 4πχ
(1)
xx (z), linearly polarized

~E = (Ex, 0, 0), ~H = (0,Hy,Hz) (E-polarized) and Kerr-like weakly nonlinearity P
(NL)
x =

3

4
χ(3)
xxxx |Ex|2Ex,

max
|z|≤2πδ

(
|α| · |Ex|2

)
<< max

|z|≤2πδ

∣∣ε(L)(z)
∣∣ (where ~P (NL) =

(
P

(NL)
x , 0, 0

)
— vector of polarization, α = 3πχ

(3)
xxxx,

χ
(1)
xx and χ

(3)
xxxx is the components of susceptibility tensor) dielectric layer (Fig. 1), [1, 2].

Figure 1: Weakly nonlinear dielectric layer: max
|z|≤2πδ

(
|α| · |Ex|2

)
<< max

|z|≤2πδ

∣∣ε(L)(z)
∣∣.

The complete diffraction field Ex (y, z) = Eincx (y, z)+Escatx (y, z) of a plane wave Eincx (y, z) = ainc exp
[
i(φy−

Γ · (z − 2πδ))
]
, z > 2πδ on the nonlinear dielectric layer (Fig. 1) satisfies such conditions of the problem:

∇2 · ~E +
ω2

c2
· ε(L)(z) · ~E +

4πω2

c2
· ~P (NL) ≡

(
∇2 + κ2 · ε

(
z, α · |Ex|2

))
· Ex (y, z) = 0, (1)

the generalized boundary conditions:

Etg and Htg are continuous at discontinuities ε
(
z, α · |Ex|2

)
;

Ex (y, z) = U (z) · exp (iφy), the condition of spatial quasihomogeneity along y;
(2)

the condition of the radiation for scattered field:

Escatx (y, z) =

{
ascat

bscat

}
· ei (φy±Γ· (z∓2πδ)), z

>
<

± 2πδ (3)
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Here: ε
(
z, α · |Ex|2

)
=

{
1, |z| > 2π∇2

ε(L) (z) + α · |Ex|2, |z| ≤ 2πδ
; ∇2 =

∂2

∂ y2
+

∂2

∂ z2
; α = 3πχ

(3)
xxxx; Γ =

(
κ2 − φ2

)1/2
;

φ ≡ κ · sin (ϕ); |ϕ| < π/2 (see Fig. 1); κ = ω/c ≡ 2π/λ; c = (ε0 µ0)
−1/2

, ε0, µ0 and λ length of the wave are the
parameters of environment.

In this case the required solution of the problem (1)–(3) has the form:

Ex (y, z) = U (z) · eiφy =




ainc · ei(φy−Γ·(z−2πδ)) + ascat · ei(φy+Γ·(z−2πδ)),

Uscat (z) · eiφy,
bscat · ei(φy−Γ·(z+2πδ)),

z > 2πδ,
|z| ≤ 2πδ,
z < −2πδ.

(4)

Here U (−2πδ) = bscat, U (2πδ) = ainc + ascat.
The nonlinear problem (1)–(3) is reduced to finding the solutions U (z) ∈ L2

(
[−2πδ, 2πδ]

)
(see (4)) of the

inhomogeneous nonlinear integrated equation of the second kind [3, 4]:

U (z) +
i κ2

2Γ

2π δ∫

−2π δ

exp (iΓ · |z − z0|)
[
1 −

(
ε(L) (z0) + α |U (z0)|2

)]
U (z0) dz0 = U inc (z) , |z| ≤ 2πδ, (5)

where U inc (z) = ainc exp [−iΓ · (z − 2πδ)].
The integrated equation (5) with application of the quadrature method and use (4) is reduced to system of

the nonlinear equations of the second kind [4].

2. Susceptibility and Effects Resonant Scattering of the Intensive Fields

2.1. Intensity and Resonant Frequency
The effect of non-uniform shift of resonant frequency of the diffraction characteristics of nonlinear dielectric

layer is found out at increase of intensity of inciting field [4, 5] (see Fig. 2(a), at positive value of the susceptibility
α = 0.01, and also Fig. 2(b), at negative value of the susceptibility α = −0.01). Growth of intensity of
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Figure 2: Parameters of structure: δ = 0.5; ϕ = 450; κ = 0.375; ε(L) = 16. (a)|I| =
∣∣inca

∣∣ = 11.4; α = 0.01,

(b)|I| =
∣∣inca

∣∣ = 22.4; α = −0.01.
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the inciting field |I| =
∣∣ainc

∣∣ results in change of the share of the reflected wave η (R (α)) = |R (α)|2
/
|I|2 (here

|R (α)| ≡ |ascat (α)|, |T (α)| ≡ |bscat (α)|, |I|2 = |T (α)|2 + |R (α)|2): reduction of value of resonant frequency
with increase and reduction of a steepness of the diffraction characteristics before and after resonant frequency
(Fig. 2(a), at α > 0); increase of value of resonant frequency with reduction and increase of a steepness of the
diffraction characteristics before and after resonant frequency (Fig. 2(b), at α < 0).

2.2. Intensity and Angle
The effects: itself the channeling of a field — increase of the angle of the transparency of the nonlinear

layer (α 6= 0) when growth of intensity of the field (Fig. 3(a), at positive value of the susceptibility, α > 0);
de-channeling of a field (Fig. 3(b), at negative value of the susceptibility, α < 0) are found out, [4, 5].

 

0 10 20 30 40 50 60 70 80

2

4

6

8

10

ϕ

In
te

n
s
it
y

0

0.1250

0.2500

0.3750

0.5000

0.6250

0.7500

0.8750

1.000

η(R(α));
α = 0,01 > 0

 

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

η(
R

(α
))

; η
(T

(α
))

ϕ

 η(R(0))

 η(T(0))

 η(R(0,01)); |a
inc

|=8

 η(T(0,01)); |a
inc

|=8

 η(R(0,01)); |a
inc

|=11,4

 η(T(0,01)); |a
inc

|=11,4

(a) 

0 10 20 30 40 50 60 70 80

5

10

15

20

η(R(α));
α = − 0,01 < 0

ϕ

In
te

n
s
it
y

0

0.1250

0.2500

0.3750

0.5000

0.6250

0.7500

0.8750

1.000

 

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

 η(R(0))
 η(T(0))

 η(R(-0,01)); |a
inc

|=15

 η(T(-0,01)); |a
inc

|=15

 η(R(-0,01)); |a
inc

|=22,4

 η(T(-0,01)); |a
inc

|=22,4η(
R

(α
))

; 
η(

T
(α

))

ϕ
(b)

Figure 3: Parameters of structure: δ = 0.5; κ = 0.375; ε(L) = 16; for linear layer with α ≡ 0 and for nonlinear
layer: a with α = 0.01; b with α = −0.01.

The increase of the angle of a transparency with growth of intensity at positive value of the susceptibility
α = 0.01 is easy for tracking on Fig. 3(a):

∣∣ainc
∣∣ = 8, ϕ ≈ 46◦ and

∣∣ainc
∣∣ = 11.4, ϕ ≈ 85◦.

Weak nonlinearity of a dielectric layer ε
(
z, α · |Ex|2

)
≡ ε
(
z, α · |U |2

)
,

max
|z|≤2πδ

(
|α| · |Ex|2

)
<< max

|z|≤2πδ

∣∣∣ε(L)(z)
∣∣∣ , (6)

i.e., the small nonlinear additive α |U (z)|2 to a linear part ε(L)(z) of the dielectric permeability, caused by
intensity

∣∣U inc
∣∣ of a field of excitation of nonlinear object, results in essential changes diffraction characteristics.

Exceeding some critical threshold of intensity the statement (6) loses force, computing process is broken. For
example, diffraction characteristics reach critical values with growth of intensity of field, see lines for α > 0 on
Fig. 3(a): point of a transparency ϕ = ϕ∗(|ainc|), where η(R)|ϕ=ϕ∗(|ainc|) = 0 and η(T )|ϕ=ϕ∗(|ainc|) = 1, here

ϕ∗(|ainc|) defined from: dη(R)
dϕ |ϕ=ϕ∗(|ainc|) = dη(T )

dϕ |ϕ=ϕ∗(|ainc|) = 0, weakly nonlinear layer aspires to limiting

value ϕ∗(|ainc|) → 90◦ at |ainc| → max{|ainc|} = 11.5. The analysis of results for α < 0 on Fig. 3(b) shows, that
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limiting critical values η(R)|ϕ=ϕ∗(|ainc|)≡0◦ → 0.5 and η(T )|ϕ=ϕ∗(|ainc|)≡0◦ → 0.5 at |ainc| → max{|ainc|} = 22.4
lay on curves of translucent η(R) = η(T ) = 0.5 weakly nonlinear structure. It allows to estimate numerically
size of required intensity of a field of excitation

max
|z|≤2πδ

(
|α| · |U (z)|2

)
≤ max

|z|≤2πδ

(
|α| ·

∣∣U inc (z)
∣∣2
)
< C · max

|z|≤2πδ

∣∣∣ε(L)(z)
∣∣∣ (7)

to make an estimation weakly sizes C, at which (6) does not lose force with growth of intensity of a field of
excitation of a nonlinear layer.

For example, see Fig. 3(a), (where: ε(L) (z) = 16, α = 0.01), convergence of iterative process is broken when∣∣U inc
∣∣ > 11.5. From (7) it is received: C = 0.083. Hence, weak nonlinearity proves at intensity not surpassing∣∣U inc
∣∣ = 11.5 and variations of small nonlinearity layer: max

|z|≤2πδ

(
|α| · |U (z)|2

)
< 1.328.

These effects (see sections 2.1 and 2.2) are connected to resonant properties of a nonlinear dielectric layer
and caused by increase at positive value of the susceptibility or reduction at negative value of the susceptibility
of a variation of dielectric permeability of a layer (its nonlinear components) when increase of intensity of a field
of excitation of researched nonlinear object.

3. Conclusion

The principal fields where the results of our numerical analysis are applicable are as follows: the investigation
of wave self-influence processes; the analysis of amplitude-phase dispersion of eigen oscillation-wave fields in
the nonlinear objects, see [6]; extending the description of evolutionary processes near to critical points of the
amplitude-phase dispersion of nonlinear structure; new tools for energy selecting, transmitting, and remembering
devices; etc.
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Abstract—The Global Positioning System, also known with the acronym GPS, is today widely used in civil and
military applications, as for correct object positioning, as in other fields (ionospheric inferences, soil mapping
and characterization, and so on). A limitation in the accuracy retrievable by differential GPS measures is due to
multipath error which arises when GPS signal is reflected by surfaces around the antenna. In particular, many
GPS receivers are projected with firmware implemented by means of classical mathematic algorithms, which
can minimize multipath errors. This paper describes project criteria and experimental results obtained by a
multipath rejection system based on Radial Basis Function Neural Networks, compared with measures retrieved
by a commercial Differential GPS receiver.

1. Introduction

One of the most relevant source of error in GPS differential measures is due to reflection of signal com-
ing from satellite by surfaces around GPS antenna. This phenomenon introduces a distortion in error phase
measurements, which in scientific literature is normally defined as multipath error [1]. In order to reduce its
influence, many solutions have been studied, working at level of elaboration of received GPS signal at ground.
In order to deject multipath effect, further methods are to position GPS antennas where reflections of signal
coming from GPS constellation are minimized, or to give extended ground plane to GPS antennas. In many
cases, however, these solutions are practically difficult to apply: an example is the installation of a GPS antenna
on a satellite in order to calculate its correct position in real-time. Nowadays, the most part of commercialized
Differential GPS (DGPS) receivers are able to grant performances of multipath rejection in the order of 75%,
with obtaining times averagely near of 10 s. In scientific environment there is the requirement to obtain an
expert and quick inferential model, that can guarantee multipath rejection quality at least comparable to clas-
sical models, but with better flexibility and robustness qualities, smaller computational complexity and lower
calculus times during regression phase, for real-time applications. Therefore, a Radial Basis Function Neural
Network (RBFNN) is used to calculate multipath biases, comparing retrieved simulation results with measure-
ments obtained by a commercial DGPS receiver. Two quantities have been considered to evaluate our RBFNN
model: gaps between RBFNN simulations and DGPS measurements, and elapsed times for retrieving RBFNN
results and DGPS measurements. In detail, the paper is structured according to the following schema: section
2 describes the fundamental of DGPS, with a brief explanation of multipath effect; in section 3 RBFNN are
drawn up; the case study and the campaigns of measurements are respectively pointed out in section 4 and 5;
section 6 is used to show RBFNN simulation results and, finally, some conclusions are illustrated in section 7.

2. Differential GPS: the Multipath Minimization Problem

The NavSTAR GPS (Navigation Satellite Timing And Ranging Global Positioning System) system was
originally borne in USA for military purposes; it allows the three-dimensional positioning of objects (also
moving) to be identified by means of information coming from a geostationary satellite system by using distance
measuring spatial intersections (ground receiver - orbit satellite). Mainly two kinds of GPS measures can be
used [2]: the pseudo-range and phase measures. GPS satellites transmit on two frequencies, L1 (1575.42 MHz)
and L2 (1227.6 MHz), of which the C/A code is modulated only on L1 while the P code is modulated on both
frequencies [3]. Mathematically, the pseudorange observable is formulated as follows [4]:

p = ρ+ dρ+ c(dt− dT ) + dion + dtrop + εp (1)

where p is the measured pseudorange ([m]), ρ is the geometric range ([m]), dρ is the orbital error ([m]), c is
the speed of light in ([m/s]), dt is the satellite clock error ([s]), dT is the receiver clock error ([s]), dion is the
ionospheric error ([m]), dtrop is the tropospheric error ([m]), εp is the receiver code noise plus multipath ([m]).
In the above equation, there are four unknowns, the three components of the user position and the receiver
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clock error. Thus, assuming that all other errors are either removed by modelling or are zero mean, at least
four pseudoranges must be observed in order to obtain a solution. The carrier phase observable is very similar
to the pseudorange observable:

Φ = ρ+ dρ+ c(dt− dT ) + λN − dion + dtrop + εΦ (2)

where Φ is the observed integrated carrier phase ([m]), λ is the wavelength ([m]), N is the integer ambiguity
(integer number of wavelengths between the satellite and the receiver), εΦ is the receiver carrier phase noise
plus multipath ([m]). In an attempt to reduce the errors in positioning results using equations (1) and (2), the
difference between observations from two different receivers but the same satellite are considered. Therefore, the
satellite clock error, is completely eliminated while the atmospheric and orbital errors are significantly reduced.
This method is commonly referred to as DGPS. By further differencing the observables between satellites (see
Fig. 1), the receiver clock error term is also eliminated and the double difference equations (represented by ∆∇)
become:

∆∇p = ∆∇ρ+ ∆∇dρ+ ∆∇dion + ∆∇dtrop + ∆∇εp (3)

∆∇Φ = ∆∇ρ+ ∆∇dρ+ λ∆∇N − ∆∇dion + ∆∇dtrop + ∆∇εΦ (4)

The main advantage of the double difference observation is that the receiver clock errors are eliminated, and
ionospheric, tropospheric, and orbital errors are reduced.

Figure 1: Graphic schematization for double differences calculation

2.1. Multipath errors
Multipath is defined as ”the phenomena whereby a signal arrives at a receiver via multiple paths” [5]. It

can be caused by almost any reflective surface near the antenna (Fig. 2). For short baselines (i.e. <10 km),
multipath is usually the largest error source. Under severe multipath conditions, errors can reach 1 wavelength
(i.e. 1 chip length) for code observations or 1/4 of a wavelength for phase observations. Recently, improvement
has been made in receiver design to reduce the effect of multipath in code measurements, with percentages equal
to 75% depending on the multipath delay.

Figure 2: Graphical description of multipath phenomenon
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3. Radial Basis Function Neural Networks

Adaptive Neural Networks are very good tools for non-linear approximation [6]. Neural networks are com-
posed of simple elements operating in parallel. These elements are inspired by biological nervous systems. As
in nature, the network function is determined largely by the connections between elements. Commonly neural
networks are adjusted, or trained, so that a particular input leads to a specific target output. It is possible to
train a neural network to perform a particular function by adjusting the values of the connections (weights)
between elements. Typically many such input/target pairs are used, in this supervised learning, to train a
network. Therefore, Adaptive Neural Networks are basically adaptive systems that ”learn” to correctly execute
a defined job (complex, non linear and multi-variable relations) by using some examples [7]. RBFNNs have
capabilities to solve function approximation problems [8]. RBFNNs consist of three layers of nodes: more than
input and output layers, RBFNNs have a hidden layer, where Radial Basis Functions are applied on the input
data. A schematic representation of RBFNN is described in Fig. 3:

Figure 3: RBFNN schema

The ‖dist‖ box in this figure accepts the input vector p and the input weight matrix IW1,1, and produces a
vector having S1 elements. The elements are the distances between the input vector and vectors iIW

1,1 formed
from the rows of the input weight matrix. We can understand how this network behaves by following an input
vector p through the network to the output a2. If we present an input vector to such a network, each neuron
in the radial basis layer will output a value according to how close the input vector is to each neuron’s weight
vector. Thus, radial basis neurons with weight vectors quite different from the input vector p have outputs near
zero. These small outputs have only a negligible effect on the linear output neurons. In contrast, a radial basis
neuron with a weight vector close to the input vector p produces a value near 1. If a neuron has an output
of 1 its output weights in the second layer pass their values to the linear neurons in the second layer. In fact,
if only one radial basis neuron had an output of 1, and all others had outputs of 0’s (or very close to 0), the
output of the linear layer would be the active neuron’s output weights. This would, however, be an extreme
case. Typically several neurons are always firing, to varying degrees.

4. The Case Study

Faculty of Engineering of University ”Mediterranea” of Reggio Calabria (Italy) activated a stable network to
monitor relative movements of Sicilian and Calabrian shores inner the area of Stretto di Messina by means GPS
techniques. Since vertexes of a main network cannot make movements in the order of the measure uncertainty
(10−6÷10−7), it has been necessary to implement a control subnet for each main vertex. One of these subnets is
composed by 4 vertexes (Fig. 4); they are located in a surely stable area with an optimal visibility of satellites.
It has been chosen short bases in order to avoid tropospheric and ionospheric errors; but it has been retrieved
multipath errors in base 2-4, due to reflecting surfaces near one of the vertexes.

Therefore, it has been exploited a RBFNN-based system in order to minimize multipath errors, evaluating
multipath as a function of other GPS quantities. RBFNNs are able to approximate the trend of a function after
a training procedure, which is carried out by a collection of data examples. Therefore, it is necessary to make a
measurement campaign in order to implement a dataset of training (DBTrain) and another to test the behavior
of RBFNN (DBTest).
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Figure 4: Control subnet implemented to guarantee stability of main network

5. Data Collection Campaign and RBF Simulation Results

The data collection campaign has been carried out inner the area described on section 4, by means of a
L1/L2 GPS antenna without multipath rejection, in two different days (acquisition times about equal to 24
hours). Multipath error has subsequently been calculated by means of equation (5), representing a simplified
schematization of phase differential measure:

b • s = mλ+ ∆ϕ+ ∆ϕric + ∆ϕbias + ∆ϕmp (5)

where b is baseline direction; s is the arrival direction of GPS signal; ∆ϕ is the fractional part of phase differential
measure (observable); ∆ϕric is the receiver noise (white noise with standard deviation approximately equal to
1-2 mm.); ∆ϕbias is the bias noise, considered as a constant (autocalibration procedure); ∆ϕmp is the multipath
error (highly correlated coloured noise). It is possible to obtain the ∆ϕmp value expressed in degree for each
base, by a comparison with the opportune ”nominal reference” and after approximations of bias and noise
in equation (5). Moreover, it is necessary to verify that approximations influence the measure value without
changing it, if the measure is compared by means of different antennas. This value is calculated by exploiting the
position of the two receivers and the satellite providing GPS signal; the satellite position is defined by azimuth
and elevation and is retrievable by ephemeredes of GPS signal. By using a classical GPS antenna without
multipath rejection, a set of measurements has been carried out in different places of Reggio Calabria, Italy.
So, a set of values has been collected for each of the following quantities (see eq. 5): b, ∆ϕ, ∆ϕric, ∆ϕbias; let
us define, for each measurement, these quantities as an input pattern. Subsequently, by using equations (5), (4)
and (2) the ∆ϕmp values (output patterns) has been calculated, and each input pattern has been linked to its
proper output pattern, making a so called data pattern. So, a set of 1500 data patterns has been collected in
order to implement the database used for training phase of RBFNN. The trained RBFNN retrieved by Neural
Network Matlab Toolbox has been subsequently tested inner the base 2-4 (Fig. 4). Specifically, it has been
considered mean, standard deviation and Round Mean Square (RMS) of errors introduced by ∆ϕmp . They
have been obtained after the elaboration of raw data during the 24 hours of acquisition using all visible satellites.
Retrieved results demonstrate a reduction of multipath effect in average equal to 45%, in standard deviation
of 20% and in RMS of 25%. Moreover, performances of our approach have been tested measuring the slope
distance of base 2-4. Measure retrieved by RBFNN-based system has been compared with ones retrieved by a
LEICA SR530 receiver.

Table 1 shows the measurements retrieved by LEICA SR530 and our RBFNN-based system for multipath
rejection, compared with actual slope distance measured by classical techniques. Performances of our RBFNN-
based system are also evaluated by a comparison of elapsed times to obtain 2-4 slope distance with the used
commercial GPS receiver (Table 2).

Table 1: Slope distance of base 2-4

Actual LEICA SR530 RBFNN-based System

Slope distance 2-4 (meters) 50.000 ± 0.0001 50.12 ± 0.0001 50.004 ± 0.0001

Table 2: Elapsed times to obtain 2-4 slope distance

LEICA SR530 RBFNN-based System

10 seconds 1.2 second
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6. Conclusions and Future Works

In this article, the problem of multipath in GPS measures has been analyzed. This is a very significant
problem, above all when application field needs a great accuracy in GPS observation. By means of a classical
GPS antenna, measurement campaigns has been carried out, and an heuristic system based on RBFNN has been
considered in order to reject multipath effects. Performances of our RBFNN-based system for multipath rejection
has been evaluated during the acquisition period and compared with measurements retrieved by commercial
receiver LEICA SR530. Retrieved results show the following advantages of RBF approach:

• during the 24 hours of acquisition, the RBFNN-based system allows a reduction of multipath effect aver-
agely equal to 30%;

• concerning the calculation of slope distance for base 2-4, a reduction of measure error about equal to
0.234% is obtained exploiting our RBFNN approach against the LEICA receiver;

• RBFNN-based system shows lower elaboration times than LEICA receiver; it is due to the lower compu-
tational complexity of the RBFNN-based system

Therefore, the usage of RBFNNs to reduce multipath errors show very interesting results, even if, considering
the approximations in (5) for bias and noise, they would have to be verified according to the application
environment. Moreover, a further development will be the hardware deployment on FPGA of trained RBFNN,
in order to build a Special Purpose Chip (SPC). The aim is to integrate the SPC into a GPS receiver without
multipath minimization capabilities, in order to compare its performances with ones obtained by a multipath
rejection antenna.
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Abstract—The measurement of irradiance on a spherical shell is a common in different fields that goes from
geological, biological and many others. Accuracy depends of a judicious use of the sampling, and the last is
often defined by technical limitations due to the available infrastructure in each field. Such is the case of the
so called planetary array, described as a set of satellite like trajectories on the spherical shell. Both, the data
acquisition and the ideal data base, in this case spherical harmonics, may be optimized. The measured points
are distributed over maximal circles obtained from the equator, and each other are related by the corresponding
rotations. Each circle has 2L+1 equidistant points (the first one and the last one coincides), and the field on
the sphere is adjusted by the determination of the harmonic coefficients, as an optimization problem, with Nc
equation systems of 2L+1 simultaneous equations for (L+1)2 variables.

1. Introduction

We had previously analyzed the problem of the irradiance measurement under circular and spherical geome-
tries, considering a uniform sensor detection system [1]. Now, we are trying to measure a field F, on the surface
of the Earth using a spherical detection system. The detectors are localized on trajectories, which are obtained
by rotations over the equator, as it is shown in Fig. 1, but the arrangement of the detectors is not uniform
distributed on the trajectories as in our earlier spherical experiments.

Equator

Geocenter

Satellite
orbital

Figure 1: One of the detectors of the proposed spherical detection system.

The analysis of the new system requires the mathematics development that is described as follows:
At first, we consider an observable F (θn;φn) over a determined number of points in the sphere. The points

of measurement are distributed over Nc maximal circles, which are obtained since rotations from the equator
C0 (defined by θ = 1

2π and 0 ≤ φ < 2π):

C(αj ,βj ,γj) := R(αj , βj , γj) : C0 (1)

by Euler angles (αj , βj , γj), j = 1, 2, ..., Nc. The normal lines to these circles are (βj , γj) on the sphere, and its
phases are αj respect to the Greenwich meridian.

Over each circle there are distributed an odd number 2L+ 1 of equidistant points, where we measured the
value of F (θn;φn). In this way, we can calculate its 2L + 1 Fourier coefficients Gm through the FFT [2]. For
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the equator case C0, we calculate:

F̃ 0
m :=

1√
2l + 1

L∑

n=−L
F (

1

2
π, φn)e

i(mφn), where φn :=
2πn

2L+ 1
, (2)

with n,m ∈ {−L,−L+ 1, ..., L} module 2L + 1 in the symmetrical interval f cycling. The Fourier synthesis is
given by:

F (
1

2
π, φn) =

1√
2L+ 1

L∑

m=−L
F̃ 0
me

−imφn . (3)

On the maximal circles C(αj ,βj ,γj) we will have the measurements and calculations of the 2L+1 corresponding

coefficients, F̃
(αj ,βj ,γj)
m , m

∣∣L−L, j
∣∣Nc

1
.

The F field over the sphere under measurement has a development in spherical harmonics truncated at L
value, given by:

F (θ, φ) =

L∑

`=0

∑̀

m=−`
F`,mY`,m . (4)

The number of elements in the series is 1 + 3 + 5 + · · · + (2L+ 1) = (L+ 1)2. The question is: How we can

calculate the (L+ 1)2 coefficients of spherical harmonics F`,m in terms of the Nc(2L+ 1) coefficients F̃
(αj ,βj ,γj)
m

obtained over the circles?

In the following section we present the development over the equator, in section 3 we present the rotation
over any maximal circle, and in section 4 we compare the obtained results.

2. Development over the Equator

The spherical harmonics are given by:

Y`,m(θ, φ) = (−1)m
√

(`+ 2)(`+m)!(`−m)!
eimφ√

2π
×
∑

k

(−1)k(sin θ)2k+m

2k+m(k +m)!k!

(cos θ)`−2k−m

(`− 2k −m)!
. (5)

The factorials implies that the addition is over all integers k among max(−m, 0) and 1
2 (`−|m|), the number

of elements in the addition is given by 1
2 (` − |m|) + 1 (where |x| is the integer part of x). Over the equator

θ = 1
2π, the factor (cos θ)`−2k−m is different of zero, only when its power is zero, id est k = 1

2 (`−m) with `−m
even. Then:

Y`,m(
1

2
π, φ) = y`,m

eimφ√
2π
, y`,m = y`,−m, (6)

Y`,m :=





(−1)(`+m)/2

√
(`+ 1

2 )(`+m)!(`−m)!

2`( 1
2 [`+m])!(( 1

2 [`−m])!)
`±m even

0, `±m odd .

(7)

Over the equator C0, the field F (θ, φ) development in a different of zero harmonics series (4) is:

F (
1

2
π, φ) =

L∑

`=0

L∑

m=−`
F`,mY`,m(

1

2
π, φ),

(
the harmonics of zero
value in C0 are absent

=

L∑

m=−`

eimφ√
2π

L∑

`=|m|
`−m even

F`,m y`,m,

(
interchanging
additions ` andm

=
1√

2L+ 1

L∑

m=−`
eimφF̃ 0

m ,

(
in agreement with (3)
considering φn = 2πn/(2L+ 1).

(8)
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Comparing the last two terms, related with the coefficients introducing the 2L+1 measured/calculated data:

G0
m :=

√
2π

2L+ 1
F̃ 0
m =

L∑

`=|m|
`−m even

F`,m y`,m, m
∣∣L−L. (9)

Here we have the key relationships among the 2L + 1 coefficients {G0
m}Lm=−L measured/calculated over

the equator, and the (L + 1)2 coefficients
{
F`,m

}` L

m=−`,`=0
of the spherical harmonic development that we are

looking for. The harmonics with `−m even are absent, which have one of their nodal circles over the equator.

As an example we consider the case with L = 3 Then we have the development with 16 spherical harmonics:

Y0,0, {Y1,m}1
m=−1 , {Y1,m}2

m=−2 , and {Y1,m}3
m=−3

with their corresponding coefficients F`,m.

On the other side, we have the 7 measured/calculated coefficients
{
G0
m

}3

m=−3
,
{
G0
m

}
=
√

2π/7 F̃ 0
m. The

equations (9) are then:

G0
3 = F3,3 y3,3 m = 3 •

G0
2 = F2,2 y2,2 m = 2 • ◦

G0
1 = F1,1 y1,1 + F3,1 y3,1 m = 1 • ◦ •

G0
0 = F0,0 y0,0 + F2,0 y2,0 m = 0 • ◦ • ◦ −→ `

G0
−1 = F1,−1 y1,−1 + F3,−1 y3,−1 m = −1 • ◦ •

G0
−2 = F2,−2 y2,−2 m = −2 • ◦

G0
−3 = F3,−3 y3,−3 m = −3 •

(10)

The right diagram shows the structure of the present terms • in the truncated series, and the absent ones ◦.
The equations used to calculate the 16 [that is, the (L + 1)2] coefficients of the harmonic series F`,m are

divided in three groups: are divided in three groups:

• Determined: F3,±3 and F2,±2 Always are 4: FL,±L and FL−1,±(L−1).

• In linear combination: F1,1 ↔ F3,1, F0,0 ↔ F2,0, F1,−1 ↔ F3,−1. Generally For |m| ≤ L − 2, there
are F`,m ↔ F`′,m with 0 ≤ ` ≤ `′ ≤ L. In the horizontal line m of the diagram (10), there are a total of
1
2 [(L − |m|)] + 1 coefficients in linear combination. There are a total of 1

2 (L2 + 3L − 6) F`,m coefficients
that we known only inside of linear combinations.

• Undetermined: F3,±2, F2,±1, F1,0, and F3,0. Generically, they are the known F`,m with ` − m odd,
whose spherical harmonics are zero in the equator, and the number of them is 1

2L(L+ 1).

3. Development over the Circle C(α,β,γ)

In this section, we rotate this maximal circle as it is presented in equation (1) in order to obtain the generic
circle C(α,β,γ).

Under the rotation by means of the Euler angles (α, β, γ), the spherical harmonics showed in equation (4)
of each ` order, is transformed as:

Y`,m(θ′, φ′) = [R(α, β, γ) : Y`,m](θ, φ) =
∑̀

m′=−`
D`
m,m′(α, β, γ) : Y`,m′(θ, φ), (11)
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where the rotation of the polar coordinates in the sphere is:



sin θ′ cosφ′

sin θ′ sinφ′

cos θ′


=




cosα − sinα 0
sinα cosα 0

0 0 1






cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ


×




cos γ − sin γ 0
sin γ cos γ 0

0 0 1






sin θ cosφ
sin θ sinφ

cos θ


. (12)

And the coefficients of the linear combination are the functions D of Wigner, D`
m,m′(α, β, γ), which is factorized

as:
D`
m,m′(α, β, γ) = e−imαd`m,m′(β)e−im

′γ . (13)

In terms of phases, for α and γ, and the little-D of Wigner, d`m,m′(β), given by:

d`m,m′(β)=
√

(`+m)!(`−m)!(`+m′)!(`−m′)!
∑

k

(−1)m−m′+k (sin 1
2β)2k+m−m′

(k+m−m′)!k!

(cos 1
2β)2`+m

′−m−2k

(`−m−k)!(`+m′−k)! . (14)

The k index of the addition takes the integer values among the values: max(m′−m, 0) ≤ k ≤min(`−|m|, `−|m′|).
The little-d coefficients satisfy many relationships, such as:

d`m,m′(β) = d`m,m′(−β) = d`−m′,−m(β) = (−1)m−m′

d`−m,−m′(β), (15)

and they are related with the spherical harmonics by:

Y`,m(θ, φ) =

√
2L+ 1

4π
d`m,0(θ)e

jmφ. (16)

They satisfy recurrence S of three terms in m and m′:
√

(`−m′)(`+m′+1) sinβd`m,m′+1(β)+2(m−m′cosβ)d`m,m′(β)+
√

(`+m′)(`−m′+1) sinβd`m,m′−1(β) = 0 (17)

√
(`−m)(`+m+1) sinβd`m+1,m′(β)−2(m′−m cos β)d`m,m′(β) +

√
(`+m)(`−m+1) sinβd`m−1,m′(β) = 0 (18)

The harmonics Y`,m are transformed as a column vector. Under the rotation matrix ‖D`
m,m′‖, then, the

coefficients F`,m of the series (4), that we are trying to find, are transformed as a row vector:

F ′
`,m = [R(αj , βj , γj) : F ]`,m =

∑̀

m′=−`
F`,m′Dm′,m(α, β, γ). (19)

The equator has been transformed in the circle C(α,β,γ), nd over it, we make the measurements/calculations of

the corresponding coefficients G
(α,β,γ)
m , in the same way as in G0

m, given by equation (10). So, we have, as in
(9):

G(α,β,γ)
m =

L∑

`=|m|
`−m even

F ′
`,m y`,m =

L∑

`=|m|
`−m even

y`,m

L∑

m′=−`
F`,m′D`

m′,m(α, β, γ). (20)

The arrangement of the two additions can not be made directly, but in generic form, it can be written in terms
of the column vectors:

F0,0, F1,· :=




F1,1

F1,0

F1,−1


 , F2,· :=




F2,2

F2,1

F2,0

F2,−1

F2,−2



, . . . F`,· :=




F`,`
F`,`−1

F`,`−2

...
F`,−`



, (21)

and the row vectors:
D`

·,m := (D`
`,m D`

`−1,m D`
`−2,m . . . D`

−`,m). (22)

The equations (20), which related to the spherical harmonic coefficients F`,m that we are trying to find, and

the measured/calculated coefficients Gm ≡ G
(α,β,γ)
m over the maximal circle, are obtained from equation (10)
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changing F`,m by F ′
`,m in accordance with equation (19). The sub-matrix representation can be compared with

the case L = 3:




G
(ω)
3

G
(ω)
2

G
(ω)
1

G
(ω)
0

G
(ω)
−1

G
(ω)
−2

G
(ω)
−3




=




0 0 0 y3,3D
3
�,3

0 0 y2,2D
2
�,2 0

0 y1,1D
1
�,1 0 0

y0,0 0 y2,0D
2
�,0 0

0 y1,−1D
1
�,−1 0 y3,−1D

3
�,−1

0 0 y2,−2D
2
�,−2 0

0 0 0 y3,−3D
3
�,−3







F0,�

F1,�

F2,�

F4,�




. (23)

The matrix is not square, it has 7 rows and its 4 columns represent the 1 + 3 + 5 + 7 = 16 columns of the
developed matrix, which generically is of (2L+ 1) × (L+ 1)2.

When we calculate the elements of the matrix (23), we use the properties y`,m = y`,−m and the recurrence
property mentioned in equation (15).

4. Equation Systems

Over the equator and in respect to the Greenwich meridian, the equation system (23) obtains again it most
simple representation, as in equation (10), since D`

m,m′(0, 0, 0) = δm,m′ After each rotation, however, the number
of determined, in linear combination and the undetermined coefficients are the same (for L = 3, 4, 6 and 6).
And 2L+ 1 < (L+ 1)2 for L < 0.

Considering now, several measurement circles C(ωj), j = 1, 2, . . . , Nc, with orientation ωj = (αj , βj , γj). For
each Nc and L, we will have a set of equations of the form (23)–(20):

G(ωj)
m =

L∑

`=|m|
`−m even

y`,m D`
•,m(ωj) F`,• . (24)

They can be written using the double indexes (j and m) and (` and m′) for enumerate the arrows and columns
of the matrix Nc(2L+1)×(L+1)2:

G = MF (25)

where G = ‖Gj,m‖ , Gj,m = G
(ωj)
m , M = ‖Mj,m;`,m′‖ , Mj,m;`,m′ = y`,mD

`
m′,m(ωj), F = ‖F`,m′‖ .

5. Conclusions

The problem of determining the spherical harmonics of the field F (θ, φ) over the sphere can be considered as
an optimization problem, where there are Nc systems of 2L+ 1 simultaneous equations with (L+ 1)2 variables.

If the observations of F (θn, φn) ⇒ F
(ωj)
m ⇒ G

(ωj)
m are not accurate, we will need to adjust to the harmonic

coefficients F`,m by minimal square or other algorithm.
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Abstract—Power line communication (PLC) system is spreading as a new communication system without
providing new infrastructure for network communication. However, It is needed to investigate the EMI problem
caused by PLC, and it is often tested in an anechoic chamber and an open area test site (OATS). The semi
anechoic chamber lined ferrite tiles used for EMC testing is not generally designed in the frequency range from
2 MHz to 30 MHz used for PLC system. This paper presents characteristics of conventional ferrite absorber
which are used for a semi anechoic chamber (SAC) and site attenuation of the semi anechoic chamber in the
frequency range used for PLC system.

1. Introduction

Recently, power line communication (PLC) system is spreading as convenient communication without pro-
viding new infrastructure for network communication. PLC system is using utility-owned power lines in the
low-voltage mains grid to provide broadband Internet access in areas that are mostly residential. PLC uses un-
shielded, low-voltage power line distribution cables inside and outside of buildings as transmission media with
high speed rates. Because PLC system uses the frequency range from 2 MHz to 30 MHz in order to communicate
information, it becomes a subject of discussion to influence other electrical or electronic device. Therefore RF
emissions from PLC system have been investigated in an anechoic chamber or an open area test site (OATS).
Ferrite absorber with thickness from about 6 mm to 7 mm without some kind of pyramidal absorbers is used for
3 m or compact anechoic chamber (CAC), because the ferrite absorber has excellent absorption in the frequency
range from 30 MHz to 1 GHz. In this paper, we discussed the characteristics of conventional ferrite absorber
which is used for a 3 m or a CAC from 2 MHz to 30 MHz utilized for PLC system. Site attenuation characteristics
of the conventional 3 m anechoic chamber were investigated.

 

Figure 1: Semi anechoic chamber lined ferrite tiles. (Ferrite tiles are installed back of the white interior finishing
panel. Pyramidal ferrite absorbers are installed back of the black color rea).

2. Characteristics of Ferrite Absorber
2.1. Measurement Method

The Reflection characteristics, relative permittivity and relative permeability of ferrite absorbers were mea-
sured using the coaxial line with a diameter of 39 mm (The 39 D Coax.) in Figure 2, and the square coaxial line
with a section of 300mm × 300mm (The Square Coax.) in Figure 3. The 39 D Coax is used for measurement
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complex permittivity and permeability. In this paper, it was used to measure characteristics of ferrite material
without small gaps. It is well known that minute air gaps between ferrite tiles reduce absorption of ferrite
absorber, and the Square Coax is able to evaluate the reflection of ferrite tiles including the air gaps. This mea-
surement procedure of the Square Coax is same way as the 1.8m × 1.8m Large Square Coax which had been
developed and presented [1]. The Square Coax is an outer conducting line with a section of 302mm × 302mm
and an inner conducting line with a section of 98mm × 98mm, and eight pieces of ferrite tiles were arranged.
A special feature is to set two ports in order to measure full complex S parameter (S11, S22 and S21) of a test
sample, and it is possible to calculate complex permittivity and permeability from the measured S parameter
of the test sample. As it is well known, it is very important to know the complex permittivity and permeability.
Because the characteristics impedance of the Square Coax was about 60Ω, there was impedance mismatching
between a 50Ω coaxial cable and a port of the Coax. To solve this mismatching problem, a serial resistance
was inserted at the end of inner conducting line, and it could reduce inner reflection. On the other hand, the
mismatching at the port of viewpoint from outside increased by the inserted serial resistance. The complex S
parameters which removed the redundant reflections are driven by quotation (1), (2), and (3).

S11cor =
S11sample − S11air

1 − S11air
RPRS11 (1)

S22cor =
S22sample − S22air

1 − S22air
RPRS22 (2)

S21cor =
S21sample
S21air

(3)

Where
RPRS11 = eJ·

2π·2(ELs11−d)
λ (4)

RPRS22 = eJ·
2π·2·ELs22

λ (5)

RPRS21 = eJ·
2π·d

λ (6)

Where
d: Thickness of test sample
λ: Wave length
ELS11: Electric Length between the calibration point of port 1 and the sample set point
ELS22: Electric Length between the calibration point of port 2 and the sample set point

 

Figure 2: The 39D Coax and test sample.

 

Figure 3: The 300 Square Coax.

2.2. Fundamental Characteristics of Ferrite Absorber
At first the fundamental characteristics of the Ni–Zn–Cu ferrite absorber with 6.3 mm thick was investigated

below 30 MHz, in order to confirm the characteristics which is influenced by minute air gaps between ferrite
tiles. The 39 D Coax and the Square Coax were each used for obtaining the fundamental characteristics of
without or with the influence of minute air gaps. Figure 4 shows the shape of test sample for 39 D Coax, and
Figure 5 shows the eight piece of ferrite tiles are inserted in the Square Coax.

Figure 6 shows chart of the reflectivity of conventional ferrite absorber which was measured using the 39 D
Coax. In this chart, this ferrite absorber does not have sufficient absorbing characteristics in the frequency
range from 3 MHz to 30 MHz used for PLC system. The absorbing characteristics of eight piece of ferrite tile
including minute air gaps were reduced compared from the measured data of ferrite absorber with no air gap.
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These air gaps were not artificially given between ferrite tiles, ferrite tiles were arranged to keep minimum air
gaps. The complex permittivity and permeability are shown in Figures 7 and 8, and the value of the imaginary
permeability which is loss paragraph is reduced by minute air gaps.

 

Figure 4: Test sample for 39D Coax. Figure 5: Arrangement of Ferrite Tiles in the 300
Square Coax.

Figure 6: Measured permittivity and permeability of ferrite absorber with short end.

Figure 7: Measured permittivity and permeability of ferrite absorber. (Compare of 39 D and 300 Square Coax.)

2.3. Various Measurement Results

The following methods were investigated in order to improve the absorption of the ferrite tiles with minute
air gaps.

(1) Change the thickness of the ferrite.

(2) Put overlap tile onto the joint between ferrite tiles as shown in Figure 5.

(3) Combine a carbon material board on the ferrite absorber.
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Figure 8 shows the reflectivity of the ferrite tiles with a thickness of 6.3, 8, 10 and 12 mm thick. The reflectivity
became to reduce with to thicken the ferrite below 15 MHz, and it became larger over 10 mm thick in the
frequency range above 15 MHz. To put overlap tile onto the ferrite tile reduced the reflectivity of the ferrite in
Figure 9.

Figure 8: Relation reflectivity and thickness of fer-
rite.

Figure 9: Reflectivity of using overlap tile .

It was studied that combining carbon material was reduced the reflectivity of the conventional ferrite from
3 MHz to 30 MHz used PLC system. Figure 10 shows the relative complex permittivity of the carbon material
(Polypropylene dispersed carbon powder) for combining to the ferrite absorber. Figure 11 shows the measured
reflectivity of the double layer absorber composed the ferrite with 12 mm thick and carbon material. The
resonance frequency was lower with to thicken the carbon material.

Figure 10: Relative permittivity of carbon material
.

Figure 11: Reflectivity of combining carbon material.

3. Calculated Results of Site Attenuation of Semi Anechoic Chamber

Measurement layout for testing leaked E-field from PLC system is shown Figures 12 [2]. Figures 13 shows a
layout of two 80 MHz tuned dipole antennas in order to calculate classical site attenuation (CSA) of a typical
3 m semi anechoic chamber lined ferrite tiles with 6.0mwide × 9.0m length × 5.5mhigh. Test distance was
3 m, and the transmitting and the receiving antenna were each 1.5 m and 1.0 m high. The CSA of the SAC
was calculated by ray tracing method, and the electro motive force (EMF) method was utilized for analysis of
antenna [3]. The characteristics of the ferrite absorber which measured by the Square Coax was adopted for
calculation.

Figure 14 shows the calculated of CSA of the SAC lined the ferrite tiles. To take notice of the CSA
deviation of the 6.3 mm thick conventional ferrite without overlap tile, there were two large peak points at
about 21 MHz and 48 MHz at horizontal polarization, and there was one large peak point at about 16 MHz at
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Figure 12: Layout for leaked E-field from PLC. Figure 13: Model for CSA calculation of anechoic
chamber.

vertical polarization. These peak points were caused by the resonance of the chamber and insufficient absorbing
characteristics of the conventional ferrite absorber. The CSA deviation was reduced to put the overlap tile onto
air gap between ferrite tiles. Furthermore CSA deviation was improved to about ±4 dB by adopting the double
layers absorber composed the 12 mm thick ferrite tile and the 80 mm thick carbon material. The results showed
that there was a possibility to evaluate PLC system in the SAC lined conventional ferrite absorber without long
pyramidal absorber.

Figure 14: Calculated CSA of semi-anechoic chamber lined conventional ferrite tiles.
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4. Conclusion

The conventional ferrite absorber had not excellent absorption below 30 MHz, and it was able to improve
by changing thickness of ferrite tile, adding overlap tile onto air gap or combining the carbon material with
the ferrite tile. The calculated CSA deviation was improved to about ±4 dB by adopting the double layers
absorber composed the 12 mm thick ferrite tile and the 80 mm thick carbon material, it showed that there was
a possibility to evaluate PLC system in the SAC lined conventional ferrite absorber without long pyramidal
absorber. However the ray tracing method does not have sufficient accuracy below 100 MHz [4]. We will
calculate the site attenuation by FDTD method, and will measure the actual site attenuation of the SAC which
lined the conventional ferrite tiles.
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