ELECTROMAGNETIC WAVE THEORY

ELECTROMAGNETIC WAVE THEORY

JIN AU KONG

EMW Publishing Cambridge, Massachusetts, USA Copyright $\ \odot$ 2008 by Jin Au Kong

Published by EMW Publishing.

All rights reserved.

This book is printed on acid-free paper

ISBN 0-9668143-9-8

Manufactured in the United States of America

 $0\ 9\ 8\ 7\ 6\ 5\ 4\ 3$

PREFACE

This book presents a unified macroscopic theory of electromagnetic waves in accordance with the principle of special relativity from the point of view of the form invariance of the Maxwell equations and the constitutive relations. Great emphasis is placed on the fundamental importance of the \overline{k} vector in electromagnetic wave theory. We introduce a fundamental unit $K_o = 2\pi$ meter⁻¹ for the spatial frequency, which is cycle per meter in spatial variation. This is similar to the fundamental unit for temporal frequency Hz, which is cycle per second in time variation. The unit K_o is directly proportional to the unit Hz; one K_o in spatial frequency corresponds to 300 MHz in temporal frequency.

This is a textbook on electromagnetic wave theory, and topics essential to the understanding of electromagnetic waves are selected and presented. Chapter 1 presents fundamental laws and equations for electromagnetic theory. Chapter 2 is devoted to the treatment of transmission line theory. Electromagnetic waves in media are studied in Chapter 3 with the kDB system developed to study waves in anisotropic and bianisotropic media. Chapter 4 presents a detailed treatment of reflection, transmission, guidance, and resonance of electromagnetic waves. Starting with Cerenkov radiation, we study radiation and antenna theory in Chapter 5. Chapter 6 then elaborates on the various theorems and limiting cases of Maxwell's theory important to the study of electromagnetic wave behavior. Scattering by spheres, cylinders, rough surfaces, and volume inhomogeneities are treated in Chapter 7. In Chapter 8, we present Maxwell's theory from the point of view of Lorentz covariance in accordance with the principle of special relativity. The problem section at the end of each section provides useful exercise and applications.

The various topics in the book can be taught independently, and the material is organized in the order of increasing complexity in mathematical techniques and conceptual abstraction and sophistication. This book has been used in several undergraduate and graduate courses that I have been teaching at the Massachusetts Institute of Technology.

Preface

The first version of the book was published in 1975 by Wiley Interscience, New York, entitled Theory of Electromagnetic Waves, which was based on my 1968 Ph.D. thesis, where the concept of bianisotropic media was introduced. The book was expanded and published in 1986 with the present title and its second edition appeared in 1990. Since 1998, it has been published by EMW Publishing Company, Massachusetts. The development of the various concepts in the book relies heavily on published work. I have not attempted the task of referring to all relevant publications. The list of books and journal articles in the Reference Section at the end of the book is at best representative and by no means exhaustive. Some of the results contained in the book are taken from many of my research projects, which have been supported by grants and contracts from the National Science Foundation, the National Aeronautics and Space Administration, the Office of Naval Research, the Army Research Office, the Jet Propulsion Laboratory of the California Institute of Technology, the MIT Lincoln Laboratory, the Schlumberger-Doll Research Center, the Digital Equipment Corporation, the IBM Corporation, and the funding support associated with the award of the S. T. Li prize for the year 2000.

During the writing and preparation of the book, many people helped. In particular, I would like to acknowledge Chi On Ao for formulating the T_EX macros, and Zhen Wu for editing the text and constructing the index. Over the years, many of my teaching and research assistants provided useful suggestions and proofreading, notably Leung Tsang, Michael Zuniga, Weng Chew, Tarek Habashy, Robert Shin, Shun-Lien Chuang, Jay Kyoon Lee, Apo Sezginer, Soon Yun Poh, Eric Yang, Michael Tsuk, Hsiu Chi Han, Yan Zhang, Henning Braunisch, Bae-Ian Wu, Xudong Chen, and Baile Zhang. I would like to express my gratitude to them and to the students whose enthusiastic response and feedback continuously give me joy and satisfaction in teaching.

J. A. Kong

Cambridge, Massachusetts December 2007

CONTENTS

Chapter 1.	FUNDAMENTALS	1
1.1	Maxwell's Theory	3
	A. Maxwell's Equations	3
	B. Vector Analysis	6
1.2	Electromagnetic Waves	24
	A. Wave Equation and Wave Solution	24
	B. Unit for Spatial Frequency k	27
	C. Polarization	33
1.3	Force, Power, and Energy	45
	A. Lorentz Force Law	45
	B. Lenz' Law and Electromotive Force (EMF)	53
	C. Poynting's Theorem and Poynting Vector	56
1.4	Hertzian Waves	65
	A. Hertzian Dipole	65
	B. Electric and Magnetic Fields	68
	C. Electric Field Pattern	71
1.5	Constitutive Relations	81
	A. Isotropic Media	82
	B. Anisotropic Media	83
	C. Bianisotropic Media	84
	D. Biisotropic Media	85
	E. Constitutive Matrices	86
1.6	Boundary Conditions	90
	A. Continuity of Electric and Magnetic Field	
	Components	90
	B. Surface Charge and Current Densities	92
	C. Boundary Conditions	93
1.7	Reflection and Guidance	98
	A. Wave Vector \overline{k}	98

- vii -

	B. Reflection and Transmission of TE Waves	99
	C. Reflection and Transmission of TM Waves	105
	D. Brewster Angle and Zero Reflection	107
	E. Guidance by Conducting Parallel Plates	111
	Answers	120
Chapter 2.	TRANSMISSION LINES	137
2.1	Transmission Line Theory	139
	A. Transmission Line Equations	139
	B. Circuit Theory	144
2.2	Time-Domain Transmission Line Theory	153
	A. Wave Equations and Wave Solutions	153
	B. Transients on Transmission Lines	156
	C. Normal Modes and Natural Frequencies	168
	D. Initial Value Problem	170
2.3	Sinusoidal Steady State Transmission	
	Lines	180
	A. Sinusoidal Steady State	180
	B. Complex Impedance	181
	C. Time Average Power	186
	D. Generalized Reflection Coefficient	187
	E. Normalized Complex Impedance	
	(Smith Chart)	190
	F. Transmission Line Resonators	192
2.4	Lumped Element Transmission Lines	201
	A. Lumped Element Line	202
	B. Dispersion Relations for Lumped Element	
	Lines	205
	C. Periodically Loaded Transmission Lines	208
2.5	Transmission Line Modeling	215
	A. Modeling Reflection and Transmission	215

	B. Modeling Antenna Radiation	220
	C. Array Antennas	225
	D. Array Pattern Multiplication	229
	E. Equivalence Principle	235
	Answers	249
Chapter 3.	MEDIA	261
3.1	Time-Harmonic Fields	263
	A. Continuous Monochromatic Waves	263
	B. Polarization of Monochromatic Waves	265
	C. Time-Average Poynting Power Vector	266
	D. Waves in Conducting Media	268
	E. Waves in Plasma Media	271
	F. Dispersive Media	278
	G. Field Energy in Dispersive Media	282
3.2	Bianisotropic Media	292
	A. Anisotropic Media	292
	B. Biisotropic Media	295
	C. Bianisotropic Media	296
	D. Symmetry Conditions for Lossless Media	297
	E. Reciprocity Conditions	299
	F. Causality Relations	301
3.3	kDB System for Waves in Media	306
	A. Wave Vector \overline{k}	306
	B. The kDB System	309
	C. Maxwell Equations in kDB System	313
	D. Waves in Isotropic Media	314
	E. Waves in Uniaxial Media	315
	F. Waves in Gyrotropic Media	323
	G. Waves in Bianisotropic Media	330
	H. Waves in Nonlinear Media	339

 $\mathbf{i}\mathbf{x}$

Contents

353

Chapter 4.	REFLECTION AND GUIDANCE	365
4.1	Reflection and Transmission	367
	A. Reflection and Transmission of TM Waves	368
	B. Reflection and Transmission of TE Waves	371
	C. Phase Matching	373
	D. Total Reflection and Critical Anglel	375
	E. Backward Waves and Negative Refraction	377
	F. Double Refraction in Uniaxial Media	378
	G. Total Transmission and Brewster Angle	380
	H. Zenneck Wave	382
	I. Plasma Surface Wave	383
	J. Reflection and Transmission by a Layered Medium	384
	K. Reflection Coefficients for Stratified Media	387
	L. Propagation Matrices and Transmission Coefficients	390
4.2	Wave Guidance	402
	A. Guidance by Conducting Parallel Plates	402
	B. Excitation of Modes in Parallel-Plate Waveguides	408
	C. TM Modes in Parallel-Plate Waveguides	410
	D. Attenuation of Guided Waves Due to Wall Loss	411
	E. Guided Waves in Isotropic Medium Coated Conductor	415
	F. Guided Waves in Layered Media	422
	G. Guided Waves in a Symmetric Slab Dielectric Waveguide	425
	H. Cylindrical Waveguides	429
	I. Cylindrical Rectangular Waveguides	430

Answers

		xi	
	J. Cylindrical Circular Waveguides	435	
4.3	Resonance	462	
	A. Rectangular Cavity Resonator	462	
	B. Circular Cavity Resonator	467	
	C. Spherical Cavity Resonator	468	
	D. Cavity Perturbation	472	
	Answers	478	
Chapter 5.	RADIATION	487	
5.1	Čerenkov Radiation	489	
5.2	Green's Functions	495	
	A. Dyadic Green's Functions	495	
	B. Radiation Field Approximation	499	
5.3	Hertzian Dipoles	504	
	A. Hertzian Electric Dipole	504	
	B. Hertzian Magnetic Dipole and Small Loop Antenna	508	
5.4	Linear Dipole Arrays	516	
	A. Uniform Array Antenna with Progressive Phase Shift	516	
	B. Array Antennas with Nonuniform Current Distributions	523	
	C. Dolph-Chebyshev Arrays	526	
	D. Array Pattern Synthesis	533	
5.5	Linear Antennas	545	
5.6	Biconical Antennas	554	
	A. Formulation and Wave Solutions	554	
	B. Solution in the Air Region and Dipole Fields	558	
	C. Solution in the Antenna Region	560	
	D. Transmission Line Model	561	

	٠
v	1
Λ.	τ.

xii	Con	tents
	E. Formal Solution of Biconical Antenna Problem	568
5.7	Dipole Antennas in Layered Media	572
	A. Integral Formulation	572
	B. Contour Integration Methods	584
	C. Dipole Antenna on a Two-Layer Medium	607
	Answers	633
Chapter 6.	THEOREMS OF WAVES AND MEDIA	647
6.1	Equivalence Principle	649
	A. Electric and Magnetic Dipole Sources	649
	B. Image Sources	650
	C. Electric and Magnetic Current Sheets	652
	D. Induced and Impressed Current Sheets	654
	Topic 6.1A Uniqueness Theorem	661
	Topic 6.1B Duality and Complementarity	663
	Topic 6.1C Mathematical Formulations of Huygens' Principle	671
	Topic 6.1D Fresnel and Fraunhofer Diffraction	671
6.2	Reaction and Reciprocity	695
	A. Reaction	695
	B. Reciprocity	697
	C. Reciprocity Conditions	701
	D. Modified Reciprocity Theorem	702
	Topic 6.2A Stationary Formulas and Rayleigh-Ritz Procedure	703
	Topic 6.2B Method of Moments	711
6.3	Quasi-Static Limits	715
6.4	Geometrical Optics Limit	722
6.5	Paraxial Limit	743
	Topic 6.5A Gaussian Beam	743

		xiii
6.6	Quantization of Electromagnetic Waves	751
	A. Uncertainty Principle	752
	B. Annihilation and Creation Operators	755
	C. Wave Quantization in Bianisotropic Media	762
	Answers	768
Chapter 7.	SCATTERING	771
7.1	Scattering by Spheres	773
	A. Rayleigh Scattering	773
	B. Mie Scattering	776
7.2	Scattering by a Conducting Cylinder	782
	A. Exact Solution	782
	B. Watson Transformation	784
	C. Creeping Waves	786
7.3	Scattering by Periodic Rough Surfaces	789
	A. Scattering by Periodic Corrugated Conducting Surfaces	789
	B. Scattering by Periodic Dielectric Surfaces	793
7.4	Scattering by Random Rough Surfaces	801
	A. Kirchhoff Approximation	801
	B. Geometrical Optics Solution	811
	C. Small Perturbation Method	815
7.5	Scattering by Periodic Media	825
	A. First-Order Coupled-Mode Equations	827
	B. Reflection and Transmission by Periodically-Modulated Slab	829
	C. Far-Field Diffraction of a Gaussian Beam	833
	D. Two-Dimensional Photonic Crystals	835
	E. Band Gaps in One-Dimensional Periodical Media	837
7.6	Scattering by Random Media	841
	A. Dyadic Green's Function for Layered Media	843

		•	•	
x	1	1	1	

xiv	Con	tents
	B. Scattering by a Half-Space Random Medium	848
7.7	Effective Permittivity for a Volume Scattering Medium	852
	A. Random Discrete Scatterers	855
	B. Effective Permittivity for a Continuous Random Medium	860
	Answers	866
Chapter 8.	RELATIVITY	873
8.1	Maxwell-Minkowski Theory	875
8.2	Lorentz Transformation	879
	A. Lorentz Transformation of Space and Time	879
	B. Lorentz Transformation of Field Vectors	883
	C. Lorentz Invariants	888
	D. Electromagnetic Field Classification	890
	E. Transformation of Frequency and Wave Vector	892
	Topic 8.2A Aberration Effect	893
	Topic 8.2B Doppler Effect	893
8.3	Waves in Moving Media	903
	A. Transformation of Constitutive Relations	903
	B. Waves in Moving Uniaxial Media	909
	C. Moving Boundary Conditions	913
	D. Phase Matching at Moving Boundaries	922
	E. Force on a Moving Dielectric Half-Space	924
	F. Guided Waves in a Moving Dielectric Slab	927
	G. Guided Waves in Moving Gyrotropic Media	929
8.4	Maxwell Equations in Tensor Form	934
	A. Contravariant and Covariant Vectors	936
	B. Field Tensor and Excitation Tensor	942
	C. Constitutive Relations in Tensor Form	951

8.5	Hamilton's Principle and Noether's Theorem	954
	A. Action Integral	954
	B. Hamilton's Principle and Maxwell Equations	955
	C. Noether's Theorem and Energy Momentum Tensors	956
	Answers	962
	REFERENCES	969
	INDEX	991

 $\mathbf{x}\mathbf{v}$