A New Type of Microstrip Coupler with Complementary Split-Ring Resonator (CSRR)

K. Y. Liu, C. Li, and F. Li
Institute of Electronics, Chinese Academy of Science, China

Abstract — A new type of microstrip Coupler with Complementary Split-Ring Resonator (CSRR) is proposed. The characteristic impedance of the even mode can be enhanced by etching CSRR structure in the grounded plane of a conventional microstrip double-line coupler. This results in a higher degree of coupling. Based on the analysis of the odd and even modes, a new type of microstrip coupler was designed. The results of simulation and measurement show that the new coupler achieves a high degree of coupling (3 dB coupling) over a wide frequency band (38.1% relative bandwidth).

DOI: 10.2529/PIERS060906085815

1. INTRODUCTION

A well-known problem of the conventional microstrip parallel-coupled couplers is their difficulty to achieve tight backward coupling because of the excessive small lines-gap required [1]. Alternative components include non-coupler-line couplers such as the branch-line or rat-race, however, these couplers are inherently narrowband (no more than 15% bandwidth) circuit. The Lange coupler [2] is a solution widely used in the MMIC industry for broadband 3-dB coupling, but it has the disadvantage of requiring bonding wires. In the past few years, there has been a great interest in the emerging field of meta-materials and more specially left-handed (LH) structures. Couplers based on LH transmission lines (TL) was proposed by some authors [3, 4]. This couplers, which composed of one or two LH-TL constituted of series interdigital capacitors and shunt shorted-stub inductors, can provide arbitrary loose/tight coupling levels. But designing this coupler is too complicated.

Very recently, Complementary Split-Ring Resonator (CSRR), which is the negative image of Split-Ring Resonators (SRR) [5] (see Fig. 1), have been reported by some authors [6]. It has been demonstrated that CSRR etched in the ground plane or in the conductor strip of planar transmission media (microstrip or CPW) provide a negative effective permittivity to the structure. CSRR has been successfully applied to the narrow band filters and diplexer with compact dimensions [7, 8].

(a) (b)

Figure 1: (a) Topology of the SRR, (b) Topology of CSRR (Metal regions are depicted in gray).

In this paper, a novel coupled-line backward coupler based on CSRR is presented. The characteristic impedance of the even mode can be enhanced by etching CSRR structure in the grounded plane of a conventional microstrip double-line coupler. This results in a higher degree of coupling. The results of simulation and measurement show that the new coupler achieves a high degree of coupling (3 dB coupling) over a wide frequency band (38.1% relative bandwidth).
2. ODD AND EVEN MODES ANALYSIS

The electric fluxline of coupling microstrip of odd mode and even mode are showed in Fig. 2. In odd mode, the E-field is asymmetric and continuous even in the presence of CSRR slot. Signal does not slow down just as the one without CSRR. In even mode, the E-field is discontinuous along the middle line of coupler. The CSRR act as open circuit for the even mode.

![Electric fluxline of coupling microstrip](image)

Figure 2: Electric fluxline of coupling microstrip. (a) odd mode, (b) even mode.

The odd and even modes S-parameters of the coupler of Fig. 3 were computed by full-wave simulation, and are showed in Fig. 4. Table 1 shows the odd and even characteristic impedances.

![Structure of conventional directional coupler and CSRR-based directional coupler](image)

Figure 3: (a) Structure of conventional directional coupler, (b) Structure of CSRR-based directional coupler.

![Magnitude of the S-parameters for the two structures](image)

Figure 4: Magnitude of the S-parameters for the two structures showed in Fig. 3 obtained by simulation. (a) odd mode, (b) even mode.
Table 1: Odd and even impedance for the two structures showed in Fig. 3 at the central frequency (2.1 GHz).

<table>
<thead>
<tr>
<th></th>
<th>Z_{eo}</th>
<th>Z_{ee}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional coupler</td>
<td>38.7 Ω</td>
<td>69.6 Ω</td>
</tr>
<tr>
<td>CSRR coupler</td>
<td>38.2 Ω</td>
<td>240 Ω</td>
</tr>
</tbody>
</table>

at the frequency of 2.1 GHz computed from the odd and even S-parameters, using the general formula

$$Z_{ci} = Z_0 \sqrt{\frac{(\Pi_i - 1)}{(\Pi_i + 1)}}$$

with

$$\Pi_i = \frac{(S_{21i}^2 - S_{11i}^2 - 1)}{(2S_{11i})}.$$

It is demonstrated that the characteristic impedance of the even mode can be enhanced by CSRR structure. This results in a higher degree of coupling.

3. DESIGN OF CSRR-BASED 3 DB DIRECTIONAL COUPLER

The structure of CSRR-based directional coupler is showed in Fig. 5. The parameter of substrate is $\varepsilon_r = 2.65$, $h = 1.5$ mm. The characteristic impedance at the ports is set to $Z_0 = 50$ Ω. The results obtained by full-wave simulation and measurement are showed in Fig. 6. The performances of the 3-dB coupler are the following: 3.7 ± 0.5 dB backward coupling, return loss smaller than -18 dB and isolation better than 25 dB over the 1.7 to 2.5 GHz range (38.1% fractional bandwidth).

![Figure 5: Structure of CSRR-based directional coupler.](image)

![Figure 6: (a) Magnitude of the S-parameters for the coupler of Fig. 4 obtained by simulation (Ansoft-Design) (b) Magnitude of the S-parameters for the coupler of Fig. 4 obtained by measurement.](image)
ACKNOWLEDGMENT
This work was supported by the National Natural Science Foundation of China under Grant No. (60501018, 60271027), and the National Basic Research Program of China under Grant No. 2004CB719800.

REFERENCES