An Improved Design for Ka-Band Phase Shifter Using Distributed MEMS Transmission Line Structure

Bo-Shi Jin1, Yu-Ming Wu1, Qun Wu1, Hao-Yuan She1, and Le-Wei Li1,2

1Harbin Institute of Technology, China
2National University of Singapore, Singapore

Abstract

The paper presents a model which describes the stage circuit of Distributed MEMS Transmission Line (DMTL) phase shifter at Ka band and an approach for DMTL design utilizing the saw-shaped coplanar waveguide (CPW). The result of circuit simulation and full wave analysis prove that the model is in good agreement with theoretical analysis. The model can effectively simplify the design complexity after optimization. Simulation results show that the S_{11} and S_{21} can achieve -20 dB and -2.5 dB, respectively, and the phase shift arrives at -180° at Ka band. Comparing with literature data, it has been predicted that S_{11} improves about 8 dB and the phase shift can increase about 100$^\circ$ in the same condition.

Introduction

Millimeter wave phased array is widely used in radar, missile guidance, satellite communication and so on. High isolation and low loss phase shifters are required for millimeter wave applications. Microelectromechanical system (MEMS) phase shifter is very popular for its good properties, such as small size, low weight, wide frequency-band, low insertion loss, are particular easy integrated with microwave circuits, where the performance of DMTL topology and phase shifter is beyond others at Ka band applications. The idea of DMTL phase shifter is to load a t-line periodically with MEMS bridges and control bridge height with DC voltage, so the distributed capacitance on the line, phase velocity and phase shift can be varied. According to result of S_{11} and S_{21} were respectively achieved to -12 dB and -5 dB at 35 GHz [1]. However, the discontinuity is introduced after loading the MEMS bridges on the normal CPW transmission line for adding the shunt capacitance, so that the reflection is higher. This paper proposed a design method with saw-shaped CPW for the improvement of S_{11} and S_{21} and the phase shift. But the improvement is at the cost of Bragg frequency, so it narrows the bandwidth, however, the bandwidth is wide enough in the millimeter wave communication system.

Design Considerations

As shown in Fig.1, the effect of capacitance produced by MEMS bridges will be offset by the effect of discontinuity caused by saw-shaped CPW [2]. w_1 and g_1 are the width of signal trace and gap, respectively, in narrow part of saw-shaped CPW transmission line, and w_2 and g_2 are the corresponding wide part, s is the periodic spacing of the bridges. For better performance, S_{11} and S_{21} parameters are required to be optimized. To do so, we modeled the equivalent circuit of each stage of saw-shaped CPW transmission line to establish mathematical expressions by using ABCD matrix analysis, and then S matrix of the completed saw-shaped CPW transmission line topology is obtained in order to find the optimized value w_1. Open-circuit stubs are equivalent to shunt capacitance and short-circuit stubs are equivalent to series inductance [3]. The saw-shaped CPW DMTL phase shifter is modeled by the equivalent circuit parameters composed of inductance and capacitance, as shown in Fig. 3, where, L_i and C_i are the per unit length of inductance and capacitance of the unloaded transmission line, respectively.

\[C_i = \sqrt{\varepsilon_{r,\text{eff}}}/cZ_0 \quad \text{and} \quad L_i = C_iZ_0^2 \quad (1) \]

Where the $\varepsilon_{r,\text{eff}}$ and Z_0 are the effective dielectric constant and characteristic impedance, respectively, of the unloaded transmission line and c is the velocity of light in free space. Z_0 can be achieved by conformal mapping to be[4]:

\[Z_0 = \frac{\eta_0K(k')}{4\sqrt{\varepsilon_{r,\text{eff}}K(k)}} \quad (2) \]
where $\varepsilon_{r,\text{eff}} = (\varepsilon_r + 1)/2$, $k = w/(w + 2g)$ and $k' = \sqrt{1-k^2}$. η_0 is the free space impedance and $K(k)$ is the complete elliptic integral of the first kind.

The inductance produced by the discontinuity of saw-shaped CPW transmission line, L' is given by:

$$L' = (w + 2g)L_t/4$$ (3)

Accordingly, the capacitance C', the capacitance produced by the discontinuity of saw-shaped CPW transmission line, can be derived as follows: The capacitance per unit length of each coplanar line is found by conformal mapping to be:

$$c(k) = \varepsilon_0\varepsilon_{\text{eff}}\left(\frac{K(k_3)}{K'(k_3)} + \frac{K(k)}{K'(k)}\right)$$ (4)

where $k_3 = \frac{\tanh(\frac{\pi(w+2g)}{4H})}{\tanh(\frac{\pi w}{4H})}$ and $\varepsilon_{\text{eff}} = 1 + (\varepsilon_r - 1)\frac{K(k_3)}{K'(k_3)} + \frac{\eta_0}{\varepsilon_0}K(k)$ with $K(k)$ is the elliptic integral ratio and H is the height of the substrate. Therefore, for capacitance per unit length equivalence is:

$$\varepsilon_0x_1/g_1 = c(k_1) \quad \text{and} \quad \varepsilon_0x_2/g_2 = c(k_2)$$

For the discontinuity capacitance per unit width of a step in height w_1 to w_2 is reasonable approximation to the CPW step as in the CPW majority of the field is between the inner and outer conductors with some fringing fields, it is estimated that the fringing capacitance will take up about 25%-40% in the total capacitance, and can not be ignored. The capacitance is

$$C_u(\alpha) = \frac{\varepsilon_0}{\pi}\left[\frac{\alpha^2 + 1}{\alpha}\ln\left(\frac{1 + \alpha}{1 - \alpha}\right) - 2\ln\left(\frac{4\alpha}{1 - \alpha^2}\right)\right]$$ (5)

where $\alpha = g_2/g_1$ and $\alpha < 1$. Therefore, the actual saw-shaped CPW step capacitance is given by:

$$C' = \frac{x_1 + x_2}{2} \cdot C_u\left(\frac{g_2}{g_1}\right)$$ (6)

The function relationship of (6) is shown in Fig.3, where quartz ($\varepsilon_r = 3.8$) is chosen as the substrate and $H=500 \mu m$. Comparing with C_b, the loading capacitance due to the MEMS bridge [5], we find that the step
capacitance $C'(< 1 \text{fF})$ is negligible. Therefore the model shown in Fig.2 can be modified as the new model shown in Fig.4.

Simulation and Discussions

Fig.5 shows the reflection S_{11} and the insertion loss S_{21} (after neglecting the step capacitance C') as functions of w_1, based on $C_b=20 \text{ fF}$, $h_u=1.5 \mu m$, $h_d=1.2 \mu m$, $s=100 \mu m$, $w=25 \mu m$, $f=35\text{GHz}$ and the number of sections is $n=31$, the total length is found to be $3100 \mu m$, and C_b is the capacitance introduced by MEMS bridge, h_u and h_d are the height of up and down states of MEMS bridges, s is the periodical space between MEMS bridges and w is the width of MEMS bridge. We can get the optimal value, when $w_1=66 \mu m$, $S_{11}=-48$, $S_{21}=-0.000058$, theoretically. Fig.6 and Fig.7 show the results of circuit simulation with Aglient ADS and full wave analysis with Ansoft HFSS. Fig.8 shows that the relationship between the phase shift and frequency and we can arrive at -180° at 35GHz, it increases about -10° phase shift. It has been shown that the result of circuit simulation is in good agreement with the theoretical analysis. For the result of full wave analysis, it appears that the center frequency drifts because we neglect the dielectric loss, radiation loss and the loss of MEMS bridges in the process of analysis. However, it has been predicted that all of the losses are allowed at Ka band application. From Fig.7, we can see that S_{11} and S_{21} achieved -20 dB and -3 dB from 35-37 GHz, and improved about 8 dB and 2 dB, respectively, comparing with previous results[1]. As for the Bragg frequency, which is given by:

$$f_{\text{Bragg}} = \frac{720}{\sqrt{(sL_4 + L)(sC_b' + C_b + C')}}$$ \hspace{1cm} (7)
We can get the conclusion easily that the f_{Bragg} will be lowered, and for the f_{Bragg} decides the bandwidth, so the bandwidth will be narrowed, however, from the simulation result it is wide enough in the millimeter wave system.

Conclusion

In this paper, modeling and design of a novel DMTL phase shifter are discussed. The inductance caused by the discontinuity of saw-shaped CPW offsets the capacitance caused by MEMS bridges so that the reflection S_{11} has greatly improved about 8 dB. In addition, the fabrication technology is easy to realize. The improvement of S_{11} is a active approach to better performance for the Ka band phased shifter design.

REFERENCES

